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Abstract 

This paper presents theory and experiments to investigate how network architecture influences 
route-choice behavior. We consider changes to networks that, theoretically, exhibit the Pigou-
Knight-Downs and Braess Paradoxes. We show that these paradoxes are specific examples of 
more general classes of network change properties that we term the “least congestible route” and 
“size” principles, respectively. We find that technical improvements to networks induce 
adjustments in traffic flows. In the case of network changes based on the Pigou-Knight-Downs 
Paradox, these adjustments undermine short-term payoff improvements. In the case of network 
changes based on the Braess Paradox, these adjustments reinforce the counter-intuitive, but 
theoretically predicted, effect of reducing payoffs to network users. Although aggregate traffic 
flows are close to equilibrium levels, we see some systematic deviations from equilibrium. We 
show that the qualitative features of these discrepancies can be accounted for by a simple 
reinforcement learning model. 
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1 Introduction 

Economic agents are often presented with situations where they must decide how to get 

information, materials, or simply themselves from point A to point B. In such situations the 

agents often interact on congested networks, and an individual’s travel cost will typically depend 

on the decisions made by other network users. The externalities that network users impose on 

each other have important consequences for network performance and design. One consequence 

is that traffic flows may not be socially efficient, as each user attempts to minimize his own 

travel cost without taking into account the effect of his actions on others. A second consequence, 

of practical importance to providers and managers of networks, is that technical improvements to 

a network may have unintended consequences, as they can induce behavioral changes that, while 

sensible for each individual, negatively affect overall network performance. 

This paper investigates how network architecture influences route-choice behavior by 

comparing outcomes across different networks. In the theory section, we present two principles 

for planners. In what we term the least congestible route principle we show, employing the 

notion of Wardrop equilibrium (Wardrop, 1952, Beckmann, McGuire and Winsten, 1956), that 

the planner most effectively reduces travel time by first improving the route that is least sensitive 

to network congestion. This principle takes an extreme form when one of the routes along the 

network is non-congestible: Imagine a population of individuals who can choose between two 

routes. One route takes one hour, regardless of the number of people using it, while the other 

route is congestible, so that the travel time increases with the number of users. In equilibrium, 

the number of individuals using the congestible route will ensure that the travel time is one hour. 

Now imagine that the congestible route is improved. This will encourage people to switch from 

the non-congestible to the congestible route until, once again, the travel times on both routes are 

equalized—the travel time remains at one hour even after the improvement. In this case, the 

benefits from improving the route are completely dissipated.1 This observation is the essence of 

the Pigou-Knight-Downs Paradox (Downs, 1962), which has been described as being “so 

enshrined in transportation planning that it is often called the ‘fundamental law of traffic 

congestion’” (Arnott and Small, 1994). 

                                                 
1 This will be true so long as both options are used in equilibrium. If the congestible route takes less than an hour 
when the entire population uses it, then further improvements will reduce travel times. 
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Another example of how network architecture influences route choice behavior in 

counterintuitive ways is the Braess Paradox (Braess, 1968). A version of this is shown in Figure 

1. Suppose 60 individuals want to get from O (origin) to D (destination), and minimize the time 

spent doing so. The left panel shows the two possible routes and the travel times along each link 

where, for example, nLD represents the number of travelers using the L-D link. In equilibrium, 

half of the population takes the route O-H-D, half takes the route O-L-D, and each individual 

spends 90 minutes traveling. If a link is added between H and L that takes no time at all (right 

panel), this will induce all individuals to use the route O–H–L-D. As a result, travel times 

increase to 120 minutes—strategic effects in response to network improvements leave all 

travelers worse off. 

Figure 1: The Braess Paradox 

 

If, however, the population, N, grows sufficiently large (i.e. N >120) the efficiency of the 

additional link overcomes the adverse strategic effects, because, while each user will still take 

120 minutes with the link, her travel time will be 60 2N+  minutes without. This reversal 

illustrates the size principle—the efficiency gains from adding network links always outweigh 

losses from user externalities once the number of network users is sufficiently large.  

While the two principles and their accompanying paradoxes reflect theoretical results 

stemming from equilibrium behavior, their behavioral plausibility, and thus their applicability as 

planning tools, is far from clear. Alternatives to equilibrium models, based on adaptive models of 

route choice behavior often imply significant differences between choices and equilibrium, even 

in the long run. For example, Horowitz (1984) studies several models of adaptive route-choice 

behavior on simple two-link networks and finds that traffic flows sometimes converge to values 
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that differ substantially from equilibrium. Moreover, Bazzan and Klügl (2003) study a network 

where, in theory, the Braess paradox applies, and report simulations in which artificial agents 

employing a simple heuristic algorithm to make route choices are able to avoid the adverse 

effects of the paradox. 

Examining the behavioral relevance of equilibrium in network environments is 

notoriously difficult. As Horowitz (1984) notes, the substantial discrepancies that are often found 

between measured traffic volumes and those computed with equilibration models could reflect 

model misspecification rather than failure of equilibrium. Moreover, because of the very 

interconnectedness of traffic, data, and transportation networks, there is scant hope of finding 

“natural experiments” to cleanly and convincingly test equilibrium predictions. As a result, a 

number of researchers have recently turned to controlled laboratory experiments to examine 

route-choice behavior. In these experiments subjects make choices between routes and receive 

financial rewards that are linked to the routes chosen.2 

Along these same lines, we study the behavioral relevance of the paradoxes identified 

above by varying the network architecture using controlled laboratory experiments. Unlike many 

existing studies which use a full information design, we do not inform subjects of the travel cost 

functions of all links in the network. Rather, as is commonplace in transportation networks, our 

subjects get feedback about the travel cost of journeys they undertake as well as the number of 

other travelers sharing each link in the journey. We ask whether stable patterns of traffic flow 

emerge as individuals interact repeatedly on a network, whether traffic flows adjust in response 

to network changes and, if so, how these relate to equilibrium and efficient traffic flows and 

adjustments. 

We find that, even in this limited information setting, subjects do adjust to changes in 

network structure, altering travel patterns in an attempt to reduce travel times. In our sessions 

examining the Pigou-Knight-Downs Paradox we improve a congestible route and observe a 

significant increase in the amount of traffic using that route. In our sessions examining the 

Braess Paradox we find that adding a new road results in a shift of travelers towards the 

congestible links. These results thus reinforce a theoretical point about network design: When 
                                                 
2 We will discuss some of these experimental studies in the next section. A number of other experimental studies 
from the transportation literature use a rather different methodology in which subjects respond to descriptions of 
hypothetical route choice scenarios, but are not paid according to their decisions. See, for example, Avineri and 
Prashker (2006), Iida, Akiyama and Uchida (1992), as well as the experiments reviewed in Mahmassani and 
Srinivasan (2004). 
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considering the consequences of modifying a network, one should pay careful attention to 

induced changes in the behavior of network users. 

For the Pigou-Knight-Downs networks, both equilibrium and efficiency entail a shift in 

traffic towards the improved congestible route. However, the magnitude of actual adjustments is 

closer to equilibrium than to efficient route utilization. Improvements to the congestible route on 

the Pigou-Knight-Downs network lead to a small reduction in travel times, and an even smaller 

reduction when we focus on travel choices in later rounds after subjects had time to gain 

experience with the network. For the Braess networks, equilibrium entails a shift of traffic in the 

direction we observe, whereas efficiency entails a shift in the opposite direction. The observed 

shift in route choices has the effect of increasing travel times, and the increase in travel times is 

even greater when we focus on choices in later rounds. Thus, the Braess Paradox is observed in 

our laboratory setting. 

Although aggregate traffic flows are close to equilibrium levels, we see some systematic 

deviations from equilibrium. One important deviation we observe is persistent variability in route 

choices. In general, variability has the effect of increasing average travel times. For the 

unimproved Pigou-Knight-Downs network in particular, variability has critical consequences for 

network performance. While we see the congestible road under-utilized relative to equilibrium, 

which would result in lower travel times all else equal, the adverse effect of variability in traffic 

flows outweighs the mean effect, and travel times are, in fact, even higher than in equilibrium. 

Using a simple reinforcement learning model we are able to capture the qualitative 

features of these discrepancies. In particular, the learning model results in heterogeneous 

behavior among players that generates similar patterns of variability in route choice behavior to 

those observed in the experiment. Furthermore, we also observe a systematic tendency toward a 

more even distribution of traffic across routes than is consistent with equilibrium, and this too is 

an implication of the learning model. 

Related Experimental Literature 

Selten, Chmura, Pitz, Kube and Schreckenberg (2007) conduct a route-choice experiment where 

subjects repeatedly choose between two congestible routes on a fixed network. The information 

structure of their experiment is similar to ours: Subjects are not informed of the travel cost 

functions associated with each route. They find that although aggregate choices are close to 

equilibrium proportions, traffic flows fluctuate around equilibrium rather than converging to it. 
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Providing subjects with post-round information on the travel cost of the non-chosen route 

dampens, but does not eliminate, traffic flow fluctuations. Helbing (2004) replicates and extends 

the Selten et al. setup. He finds that by providing subjects with additional feedback either in the 

form of potential payoffs from alternative routes or individual recommendations as to route 

choices further reduces the volatility of traffic flows. Unlike our study, neither of these studies 

varies network architecture.3 

As far as we are aware, the Pigou-Knight-Downs Paradox has not been previously 

studied in the lab. However, the structure of the underlying game somewhat resembles a market 

entry game where the profits of entrants decline with the number of entrants. In the first 

experimental study of market entry games, Kahneman (1988) found that the number of entrants 

was close to the number predicted by theory. Camerer (2003) provides a useful review of 

subsequent experiments, and notes slight tendencies toward excess entry when equilibrium 

predicts few entrants, and under-entry when equilibrium predicts many entrants. These results 

are broadly consistent with ours; in our experiment aggregate choices are close to equilibrium, 

and where we see deviations from equilibrium, they tend to involve a more even allocation of 

subjects to the two routes. 

The Braess Paradox has recently been studied in experiments by Rapoport, Kugler, Dugar 

and Gisches (2005, forthcoming). There are some procedural differences between these 

experiments and ours. Rapoport et al. use a full information design, larger groups, and different 

network parameters.4 Their results are similar to ours even though the information conditions of 

subjects are quite different. Like us, they find that subjects’ route choices change in the direction 

predicted by equilibrium when changes in the network occur, that the paradox is observed in the 

laboratory, that mean traffic flows are close to equilibrium (in particular in the long run), and that 

behavior is not affected by the order in which the baseline and the improved networks are 

presented. Similar to our findings, they also observe persistent fluctuations in traffic flows and 

route switching, as well as considerable heterogeneity in behavior across individuals. 

The remainder of the paper proceeds as follows. In section 2 we present the background 

theory, and introduce the least congestible route and size principles. Our experimental design and 

                                                 
3 Schneider and Weimann (2004) and Ziegelmeyer et al. (forthcoming) also report experiments on traffic networks. 
However, their focus is on bottleneck models where subjects choose departure times. 
4 Rapoport, Mak and Zwick (2006) also use a full information design to study the effects of variation in the number 
of travelers on an augmented Braess network. 
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procedures are described in section 3, and the results in section 4. In section 5 we explore 

alternative explanations of the variability in traffic flows we find in the data. Section 6 

concludes. 

2 Theory 

Consider a network where N individual travelers wish to get from some origin, O, to a 

destination, D, to which there are k possible routes. All travelers face the same decision and 

make their choices simultaneously. Suppose further that the reward from reaching the destination 

is sufficient that all individuals find it in their interest to travel regardless of the actions of others. 

A traveler’s problem, of course, is to minimize the travel time in getting to D. Let the travel time 

along route i be given by i i i iT nα β= +  where 0, >ii βα  are parameters of the model and ni 

denotes the number of travelers using route i. The free-flow parameter iα  should be interpreted 

as the fixed time factor to traverse a road in the absence of any congestion. The congestion 

parameter iβ  is a measure of the marginal effect on travel times of congestion. Routes with high 

values of iβ  are more impacted by an additional traveler than are low iβ  roads. 

A standard framework for analyzing equilibrium traffic flows in network problems, and 

the one we adopt in this section, is the notion of Wardrop Equilibrium (Wardrop, 1952; Beckman 

et al., 1956). Such an equilibrium consists of a vector of the number of travelers using each of 

the k routes ( knnn ,,, 21 K ) such that the travel times on any used route (i.e. where 0in > ) are less 

than or equal to the travel time on any other route. When the vector ( knnn ,,, 21 K ) is integer 

valued, then a Wardrop equilibrium is also a Nash equilibrium. When it is not, a Wardrop 

equilibrium corresponds to the notion of quasi-equilibrium as defined in Ellison, Fudenberg and 

Möbius (2004). For large N, Haurie and Marcotte (1985) show that Nash equilibrium converges 

to Wardrop equilibrium. 

We will restrict attention to the case where all routes are used in equilibrium. Denoting 

the least congestible road as route 1 (i.e. iββ ≤1  for all i), the following route viability 

conditions are sufficient for all routes to be used in equilibrium: 

1αα <i  for all 1≠i , and 

1

1

k
i

i i

N α α
β=

−
>∑ .

 



 8

The first set of conditions ensures that no route is weakly dominated by route 1 (i.e. for 

no route i is it the case that iββ ≤1  and iαα ≤1 ). The latter condition merely ensures that there 

are a sufficient number of travelers so that the least congestible route is used. 

A Wardrop equilibrium is a solution to the system of equations 

1

for all 

.

i i i
k

i
i

T n i

n N

α β

=

= +

=∑  

Rewriting the representative equation above for all i, we obtain ( )i i in T α β= − . Summing over 

all i and solving for T then yields the equilibrium travel time of 

1 1

1k k
i

i ii i

T N
α
β β

∗

= =

⎛ ⎞ ⎛ ⎞
= +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠
∑ ∑ .

 (1) 

The equilibrium number of travelers on route i is 

i
i

i

T
n

α
β

∗
∗ −
=

.
 (2) 

Route Improvements 

Suppose that there is funding for a small road improvement on one of the k routes (where an 

improvement means a reduction in either the free-flow parameter or the congestion parameter). 

Which route should be improved?  

A common intuition suggests that the optimal strategy is to improve the road that is most 

heavily used. Underlying this intuition is the following argument: Since total travel time is 

1

k
i ii

n T
=∑ , if traffic flows do not adjust in response to changes in the network (i.e. reductions in 

jα  or jβ ) then the marginal reduction in travel time is greatest for the most traveled route since 

( )1

k
i i j ji

n T nα
=

∂ ∂ =∑  and ( ) 2
1

k
i i j ji

n T nβ
=

∂ ∂ =∑ . Of course, missing from this intuition is the 

idea that travelers respond (at all) to changes in the network.  

A slightly more sophisticated approach might be to improve the road where the marginal 

driver is having the greatest impact on travel times. In effect, this marginal driver is determining 

the equilibrium travel time for all drivers (since if he or she had a better route, it would 

contradict the idea that the given configuration of route choices comprises an equilibrium). Thus, 

it would seem that reducing the marginal impact of this driver would be helpful. Much like the 
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first approach, this intuition also fails to account for equilibrium readjustment of travel patterns 

following a change in network structure. Surprisingly, this approach is the worst possible use of 

the funds for road improvement.  

Instead, we show that the least congestible route principle is optimal: 

Least congestible route principle: Improvements should be made on the route least sensitive to 

congestion. 

To formalize the least congestible route principle, we consider the optimal route in which 

to make an infinitesimal change in the jα  parameter. The equilibrium effect on travel times of 

such a change is 

1

1
1k

j
j

i i

T
α β

β

∗

=

∂
=

∂ ∑ .

 (3) 

Notice that the magnitude of this change is inversely related to jβ ; hence, the smaller is jβ  the 

greater is the reduction in equilibrium travel times of the improvement to route j.5 

When 01 →β , the Pigou-Knight-Downs Paradox emerges as a special case of the least 

congestible route principle. From equation (1), using L’Hospital’s rule, we obtain 1T α∗ =  and it 

follows from equation (3) that improvements to routes other than to route 1 produce no reduction 

in travel times whatsoever. Improving route 1, on the other hand, is optimal and leads to a one 

for one reduction in equilibrium travel time. 

A modification of the least congestible route principle is required for technical 

improvements embodied in changes to the congestion parameter jβ . Differentiating equilibrium 

travel times with respect to jβ  gives 

2 2
1 1

2

11

1 1

11

k k
ji

j i j i ji i
kk

j
j

iiii

N
nT

αα
β β β β

β
β

ββ

∗∗
= =

==

⎛ ⎞
+ −⎜ ⎟

∂ ⎝ ⎠= =
∂ ⎛ ⎞

⎜ ⎟
⎝ ⎠

∑ ∑

∑∑ .

 (4) 

                                                 
5 While we have shown the improvement principle for networks with linear congestion effects, the result holds more 
generally since even for networks with nonlinear congestion, the comparative static property under consideration 
will represent a linearization. 



 10

Note that the least congestible route principle does not hold exactly for this type of 

change because this expression involves both the volume of traffic using a route and the 

congestion parameter for that route. However, for any two equally traveled routes, the better 

route to improve is the one that is less congestible.  

More Complicated Network Structures 

Next, we slightly complicate the network structure. Suppose there are k links, each of which 

leads from the origin O to a midpoint Mi , 1, ,i k= K . As before, the time cost for link i is linear: 

OM
i i i iT nα β= + . Furthermore, suppose there are another k links, one from each midpoint Mi  to 

the destination, D. The time cost for one of these links, link j, is given by MD
j j j jT nγ δ= + . 

Finally, suppose that one of the links from the origin to a midpoint and one of the links 

from a midpoint to the destination are non-congestible. Without loss of generality, we let these 

be the first among the k links from the origin and the last among the k links to the destination.6 

Figure 2 shows a representative network with this structure. 

Figure 2: A network with k midpoints 

 

                                                 
6 Formally, we study the limit as 0,1 →kδβ . 
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Notice that the original network is nested as a special case of this network. Again, we 

restrict attention to parameter values where all routes are used. When there are no further 

connections in the network, it follows from equation (1) that the equilibrium travel time is  

1i i

i i i i

T N
α γ
β δ β δ

∗ ⎛ ⎞ ⎛ ⎞+
= +⎜ ⎟ ⎜ ⎟+ +⎝ ⎠ ⎝ ⎠

∑ ∑ .
 

Now consider how the performance of the network changes when we add costless links 

connecting node Mi  with M j  for all i, j. With these links, any traveler can costlessly switch 

from any node Mi  to any other node M j . The key question is what the addition of such links 

does to the performance of the network. A representative network with this structure is shown in 

Figure 3. 

Figure 3: Costless switching between the k midpoints 

 
We offer the following: 

The Size Principle: Adding costless links reduces travel time if there are sufficiently many 

travelers.  

The implied possibility that the addition of costless links could adversely affect outcomes 

stems from the externality that “midpoint switching” by one traveler might impose on other 

travelers. At the same time, the prospect of free midpoint switching effectively increases the 

Mk 

M2 

M1 

O 

1α  

OM
k k knα β+  

OM
2 2 2nα β+  

kγ  

MD
2 2 2nγ δ+  

MD
1 1 1nγ δ+  

D 

0 



 12

number of possible paths in the network and this improves the prospect of finding a more 

efficient route. The size principle suggests that, as the number of travelers grows large, the 

efficiency effect always dominates the externality effect. 

To see the size principle formally, notice that the equilibrium in the network with costless 

midpoint connections essentially decomposes into two simple network problems. In equilibrium, 

the travel times between O and all nodes Mi  must be equal, and similarly the travel time 

between all nodes Mi  and D must be equal. This immediately implies that the equilibrium travel 

time on the “improved” network is 1 kT α γ∗∗ = + . 

To determine the effect of the new links on equilibrium travel times we must compare T ∗  

to T ∗∗ . For the improvements to actually reduce travel time requires that  

1

1

( ) ( )k
i k i

i ii

N
α α γ γ

β δ=

− + −
>

+∑ . (5) 

Equation (5) implies that the efficiency effect dominates the externality effect when N is 

sufficiently large. When N is small and the route viability condition holds for the improved 

network, the externality effect dominates⎯the Braess Paradox is a simple illustration of this. Of 

course, when N becomes very small, the route viability condition for the improved network will 

no longer be satisfied. In particular, for N sufficiently small, the noncongestible links will no 

longer be used in equilibrium in the improved network, and the efficiency effect will again 

dominate. Returning to the example in the introduction, notice that, if the number of travelers 

was reduced from 60 to 20, then the Braess “improvement” would reduce travel costs from 70 

minutes to 40 minutes. The reason is that, when there are sufficiently few travelers, the non-

congestible links cease to be viable in the improved network.7 

Previous theoretical research has also highlighted versions of the size principle. 

Specifically, Pas and Principio (1997) as well as Penchina (1997) provide versions of the 

principle for the case of an “anti-symmetric” network where k = 2.8 The size principle is also 

implicit in the complete characterization of the k = 2 case offered by Frank (1981).9 

                                                 
7 We thank the action editor for pointing this out. 
8 In our notation, an anti-symmetric network is one with the restriction that, for all i, 1i k iα γ + −=  and 1i k iβ δ + −= . 
9 Kameda, Altman, Kozawa and Hosokawa (2000) study Braess-like Paradox results occurring in a Nash 
equilibrium of a k = 2 network for parameter values where the Wardrop equilibrium does not yield Braess outcomes. 
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3 Experiment 

While the previous section derived properties of varying network architectures using Wardrop 

equilibrium and ignoring integer constraints, implementing networks in a laboratory setting 

necessitates selecting particular parameter values and dealing with consequent integer issues 

associated with the number of network users. Specifically, in all the networks we study there are 

eight network users and, as we show below, we select parameter values such that the associated 

Wardrop equilibrium number of travelers on each route is an integer.10 

Pigou-Knight-Downs (PKD) Treatments 

Figure 4 displays the first two networks used in our experiment. For the road between L and D 

the cost is nine times the number of travelers using that road. For the other roads the costs are 

fixed. We will refer to the route O-H-D as the “high road” and the route O-L-D as the “low 

road”. In the PKD Baseline network (left panel) efficiency, in the sense of minimizing average 

travel time, requires that two travelers use the low road and six use the high road. The average 

travel time with this configuration is 52.5. The PKD Improved network (right panel) has a lower 

cost of getting from O to L, and allows a planner to reduce the travel time of network users. In an 

efficient profile of choices three travelers use the low road and five use the high road, giving an 

average travel time of 46.875. Thus, if travelers use the network efficiently, the improvement 

will reduce travel times. 

However, these efficient outcomes do not constitute equilibria, as in each case there is an 

incentive for high road users to switch to the low road. Equilibrium travel time is determined by 

travel time on the high road: 57T ∗ = . When four travelers take the high road and four the low 

road travel time is equalized across routes in the PKD Baseline network.11 

                                                 
10 If instead of Wardrop equilibrium, we use the notion of Nash equilibrium, then, in addition to pure strategy Nash 
equilibria, there are also mixed-strategy Nash equilibrium solutions for our networks. We discuss these in detail in 
Section 5. 
11 There is an additional pure strategy Nash equilibrium where five travelers take the high road and travel times on 
the two routes are not equalized. In this equilibrium, even though low road travelers enjoy faster travel times, high 
road travelers are indifferent between switching or not. The additional equilibrium is an inevitable consequence of 
choosing parameters so that the Wardrop equilibrium where travel costs are equalized involves an integer number of 
users on any particular route. Note that the additional equilibrium does not survive a simple refinement. If there is an 
(arbitrarily small) ε chance that a subject does not travel, then the unique pure strategy Nash equilibrium 
corresponds to the Wardrop equilibrium. 
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Figure 4: PKD networks implemented in the experiment 

 

Turning to the PKD Improved network, equilibrium travel time is again 57T ∗ = . When 

two travelers take the high road and six take the low road travel time is equalized across the two 

routes. This swing in the number of travelers towards the low road drives the Pigou-Knight-

Downs Paradox—the benefits from the improvement are completely dissipated by a re-allocation 

of traffic from the high to the low road. 

We summarize the theoretical properties of the PKD networks in Table 1. 

Table 1: Efficient and equilibrium traffic on PKD networks 

  Baseline Improved 

Travelers on low road 2 3 
Efficiency 

Average travel time 52.5 46.875 

Travelers on low road 4 6 
Equilibrium 

Average travel time 57 57 

Braess Treatments 

Figure 5 illustrates our implementation of the Braess networks. In the Braess Baseline (left 

panel) efficiency requires that 3 travelers take the low road and 5 take the high road, giving an 

average travel time of 55.5. In contrast, in equilibrium four travelers take the high road and four 

take the low road, giving each traveler a travel time of 57. 
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Figure 5: Braess networks implemented in the experiment 

 
Now suppose a costless link is added between L and H (right panel). By permitting traffic 

to be diverted between the high and low roads, an improved allocation of traffic on the network 

is possible and the average travel time decreases (slightly) when traffic flows efficiently. The 

costless link in effect makes the network architecture equivalent to two PKD networks—one 

from O to the midpoint and one from the midpoint to D. Equilibrium on the left part of the 

network implies that the travel time from O to the midpoint will be 21 and consists of 7 travelers 

leaving on the high road. Similarly, the travel time from the midpoint to D will be 45 and 

consists of only 3 travelers arriving on the high road. Thus, the overall travel time on the network 

increases to 66 per traveler. This is the essence of the Braess Paradox—the ability of each 

traveler to freely switch between the congestible routes worsens overall congestion on the 

network. 

We summarize the theoretical properties of the Braess networks in Table 2. 

Table 2: Efficient and equilibrium traffic on Braess networks 

  Baseline Improved 

Travelers leaving on low road 3 4 or 5 

Travelers arriving on low road 3 2 or 3 Efficiency 

Average travel time 55.5 54.75 

Travelers leaving on low road 4 1 

Travelers arriving on low road 4 5 Equilibrium 

Average travel time 57 66 
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Procedures 

The experiment was conducted at the University of Nottingham in Spring 2004. Subjects were 

recruited from a university-wide subject pool comprised of undergraduates who had indicated a 

willingness to be paid volunteers in decision-making experiments. Six sessions with 16 subjects 

were conducted, with no subject participating in more than one session. Thus 96 subjects in total 

participated in the experiment. 

In each session two groups of eight subjects were formed, and no interaction across 

groups took place. Thus each group of eight can be considered as an independent observation. 

Throughout a session, no communication between subjects was permitted, and all choices and 

information were transmitted via computer terminals. At the beginning of a session, the subjects 

were seated at computer terminals and given a set of instructions, which were then read aloud by 

the experimenter.12 The session then consisted of two phases of sixty rounds. In each round 

subjects could earn points, and at the end of the session subjects were paid based on their 

accumulated point earnings from all 120 rounds using an exchange rate of 1 penny for every 5 

points earned. Earnings averaged £10.00 for sessions lasting between 50 and 60 minutes.13 

In each round subjects had forty seconds to complete a route on a road map by clicking 

on roads. If they failed to complete a route in the forty seconds they received no points in that 

round. If they completed a route they received a reward of 100 points for arriving at their 

destination and paid a travel cost. 

The actual costs were those presented above. However, subjects were only told that costs 

would be less than 100, would be calculated in the same way in every round of a phase, and 

might depend on the number of other subjects using the road. At the end of a round each subject 

was informed of the cost incurred from each link that they used, the number of subjects using 

those links, their own total travel cost and point earnings. Our rationale for this design decision 

was the following. First, we wanted to reproduce a scenario where network users learn about the 

properties of the network through their own experiences. Specifically, our design has the natural 

feature that, at the end of a given journey, users discover how long the journey took, but not how 

long it would have taken had they chosen an alternative route. Second, we wanted to examine the 

practical relevance of the least cost and size principles. One limitation of this design decision is 

                                                 
12 A copy of the instructions is included as Appendix A. 
13 At the time of the experiment the exchange rate as approximately £1 = $1.86. 
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that, strictly speaking, the experimental design is disconnected from a formal game-theoretic 

model of route choice decision making. Thus, one must be cautious in drawing conclusions 

based on comparisons between the (Nash) equilibrium of such a game theoretic model and 

results from experiments where the assumptions of the model are not met. That being said, to the 

extent one views equilibrium analysis as offering guidance in practical settings where not all of 

the model assumptions are likely to be met, it seems to us sensible to take equilibrium 

predictions as a benchmark against which to compare our experimental results.  

By providing a subject with feedback about both the cost incurred and the volume of 

traffic sharing each link taken, a subject might learn the cost structure of the network. 

Specifically, any subject could, in principle, calculate a linearization of the cost function for each 

link taken so long as there was any variation in the volume of traffic on a given link. Since the 

cost functions for each link were, in fact, linear, this calculation would yield an exact estimate of 

the cost function of a given link.  

In three sessions the PKD networks were used. One group of eight subjects experienced 

the PKD Baseline network in phase 1 and the PKD Improved network in phase 2, and the other 

group of eight subjects experienced the PKD Improved network in phase 1 and the PKD 

Baseline network in phase 2. Similarly, three sessions used the Braess networks, with one group 

experiencing the Braess Baseline network in phase 1 and the Braess Improved network in phase 

2, with the other group experiencing the networks in the reverse order. 

4 Results 

We use several different performance metrics to compare the implications of Wardrop 

equilibrium with two alternative benchmarks. The first alternative, which we term the “reduced 

form” heuristic, suggests that individuals do not respond to changes in the cost structure of the 

network at all. Under this heuristic, a social planner uses traffic flows from a given network and 

changes in cost parameters to determine the benefits of a modified network on travel times. The 

second alternative, which we term the “efficiency benchmark,” postulates that individuals self-

organize into efficient traffic flow patterns. 

Throughout, we divide the analysis into the “short-run”—the first 30 periods under a 

given network structure—and the “long run”—the last 30 period under a given network 

structure. 
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Aggregate Route Choice and Travel Time per Route 

The first performance metric we examine is aggregate route choice. To measure this, we 

compute the average number of travelers using a given route under a given network structure in 

the short-run and the long-run. Tables 1 and 2 display the equilibrium and efficiency benchmarks 

with respect to route choice. While the reduced form heuristic offers no level prediction for route 

choice, it does predict that route choices are unresponsive to a change in the network. 

Our second metric is the average travel time associated with each route. Specifically, we 

compute the per period travel time for a given route in a given network. Wardrop equilibrium 

implies that that travel time per route will be equalized across routes. In contrast, efficiency 

requires unequal travel times across routes. For instance, in the PKD networks, efficiency 

requires systematically shorter travel times along the congestible route compared to the non-

congestible route. 

Network Performance 

The third performance metric we examine is the average travel time (or latency) occurring in the 

network as a whole. To measure this, we compute the average experienced travel time for a 

given network over a given time horizon (i.e. the short-run or the long-run). As we will see, the 

statistical properties of this measure are of some interest. For the PKD networks, given some 

distribution of route link choices by individuals, the expectation of the travel time experienced 

by a network user is 

1
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Equation (6) shows that latency depends on the variance of route choices as well as the average 

traffic flows over each route.14 Moreover, equation (6) implies that higher variability of route 

choices leads to longer experienced travel times. The intuition is that every time many travelers 

use a congestible road, that road is slow and many travelers are adversely affected. On the other 

                                                 
14 While the explicit calculation of equation (6) was for the PKD networks, an analogous calculation reveals a 
variance term for the Braess networks as well. 
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hand, every time few travelers use a congestible road, that road is fast but only those few travelers 

benefit from the under-utilization. Tables 1 and 2 display the equilibrium and efficiency 

benchmarks with respect to the latency metric. The reduced form heuristic again offers no level 

prediction, but does offer a directional prediction of the effects of changing network structure 

relative to baseline behavior. 

4.1 PKD Networks 

4.1.1 Aggregate Route Choices and Travel Time per Route 

For the PKD networks the data consist of route choices made over 5,760 subject-rounds (48 

subjects x 120 rounds). In only 7 of these (about one tenth of one percent) did a subject fail to 

complete a route in the forty seconds allowed.15 Table 3 displays the average number of travelers 

choosing the low road for each group. The first three groups listed experienced the Baseline 

network first, while the second three experienced the Improved network first. Recall that both 

equilibrium and efficiency imply that the improvement in the network will lead to a shift in 

traffic onto the improved low road. In contrast, the reduced form heuristic predicts no shift in 

traffic. As Table 3 shows, the network improvement led to a shift in traffic to the low road—

even in the short run—in every group. Thus, there is a significant shift in the direction implied 

by equilibrium and efficiency (p-value = 0.031).16 

Table 3 also shows that there are systematically fewer travelers on the low road than in 

Wardrop equilibrium for both Baseline (equilibrium: 4) and Improved (equilibrium: 6) in every 

group in both the short-run and the long-run. Thus, there are significant differences between 

observed and equilibrium travel flows (p-value = 0.031). At the same time, Table 3 shows that 

there are systematically more travelers on the low road than implied by efficiency for both 

Baseline (efficient: 2) and Improved (efficient: 3) in every group in both the short-run and the 

long-run. Thus, there are significant differences between observed and efficient travel flows (p-

value = 0.031). Note, however, that in all six groups the average number of travelers on the low 

road is much closer to the equilibrium number than the efficient number. 

                                                 
15 On the Braess networks in only 3 of 5,760 subject-rounds did a subject fail to complete a route. 
16 We found no significant differences between groups who experienced the baseline or improved network first. 
Thus we pool the six independent groups and base statistical tests on two-sided Wilcoxon signed-rank tests applied 
to six independent matched pairs. Throughout the remainder of the paper p-values are based on the same procedure, 
since we found no significant order effects in any of our treatments. 
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Table 3: Traffic flow in PKD networks 
- Average number of travelers on the low road - 

 PKD Baseline  PKD Improved 

Group Rounds
1-30 

Rounds 
31-60 

 Rounds 
1-30 

Rounds 
31-60 

PKD.1 3.50 3.93  5.17 5.37 
PKD.2 3.57 3.87  5.20 5.73 
PKD.3 3.97 3.73  5.27 5.50 
PKD.4 3.60 3.87  5.30 5.60 
PKD.5 3.77 3.70  5.07 5.13 
PKD.6 3.93 3.93  5.40 5.57 

ALL 3.72 3.84  5.23 5.48 

A key characteristic of Wardrop equilibrium is that travel times across routes are 

equalized. However, because the number of travelers on the congestible low route is 

systematically lower than in equilibrium we can reject the “travel time equalization hypothesis”. 

To study this in more detail, Table 4 presents the difference in average travel times between the 

high road and the low road for each group. The congestible low route is significantly faster on 

both networks, whether we focus on the short-run or long-run (a two-sided Wilcoxon signed-

rank test yields a p-value of 0.031 in all cases). On the Improved network, there is a trend in the 

direction of equalization; the differences are significantly smaller in the long run than short run 

(p = 0.031). On the Baseline network, where differences are generally smaller, the trend is 

insignificant (p = 0.281). 

Table 4: Investigating travel time equalization in PKD networks 
- Travel time on high road minus travel time on low road - 

 PKD Baseline  PKD Improved 

Group Rounds
1-30 

Rounds 
31-60 

 Rounds 
1-30 

Rounds 
31-60 

PKD.1 4.50  0.60   7.50  5.70  
PKD.2 3.90  1.20   7.20  2.40  
PKD.3 3.60  1.20   6.30  3.60  
PKD.4 0.30  2.40   6.60  4.50  
PKD.5 2.10  2.70   8.40  7.80  
PKD.6 0.60  0.60   5.40  3.90  
ALL 2.50 1.45  6.90 4.65 
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4.1.2 Network Performance 

Table 5 displays the experienced travel time (or latency) for each group. Recall that, according to 

both the efficiency and reduced form benchmarks, the improvement in the network will lead to a 

reduction in experienced travel times. In contrast, in equilibrium the improvement should have 

no impact on network performance. As Table 5 shows, experienced travel times were reduced 

after the improvement—even in the short run—in every group. Thus, there is a significant shift 

in the direction implied by the efficiency and reduced form benchmarks (p-value = 0.031). 

Table 5: Latency in PKD networks 
- Average travel time for network users - 

 PKD Baseline  PKD Improved 

Group Rounds
1-30 

Rounds 
31-60 

 Rounds 
1-30 

Rounds 
31-60 

PKD.1 57.56 58.35  53.44 54.49 
PKD.2 56.89 57.38  54.15 55.58 
PKD.3 57.38 57.53  53.74 55.05 
PKD.4 57.49 57.30  54.53 54.71 
PKD.5 57.94 56.36  54.53 54.38 
PKD.6 58.50 57.90  54.68 55.69 
ALL 57.63 57.47  54.16 54.98 

However, latencies systematically deviate from both the efficiency and the equilibrium 

benchmarks. Table 5 shows that travel times are systematically higher than under efficiency for 

both Baseline (efficient: 52.5) and Improved (efficient: 46.875) in every group in both the short-

run and the long-run (p-value = 0.031 in every case). Travel times are systematically higher than 

those implied by equilibrium in the Baseline (equilibrium: 57) and then systematically lower 

under the Improved network (equilibrium: 57). Having said this, the observed latencies are closer 

to the equilibrium benchmark than the efficient benchmarks in all groups in both the short run 

and the long run.  

Finally, to examine the reduced form heuristic we need a benchmark from which to 

compare. For the groups that first encounter the Baseline and then the Improved network we take 

the last 30 rounds in Baseline as a benchmark. Relative to that benchmark there is a 7% 

reduction in travel time in the short run (the first 30 rounds of the Improved network) and a 5% 

reduction in the long run (the second 30 rounds of the Improved network). Using an analogous 
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procedure for the groups that first encounter the Improved network, we find that the deletion of 

the network improvement results in a 6% increase in travel time in the short run and 4% increase 

in the long run. This is vastly less than the 15% reduction (22% increase), which would have 

been forecast had one simply used reduced form estimates to predict changes in performance.17 

Moreover, the actual changes in travel time appear to be systematic: Regardless of the order in 

which networks were presented to subjects, travel time is lower in the Improved than in the 

Baseline network in all groups. 

Comparing the results of Table 5 with those in Section 4.1.1 reveals an apparent puzzle 

for the PKD Baseline network. As seen in Section 4.1.1, low road utilization in Baseline is 

significantly less than in equilibrium, which implies that the low road is significantly faster than 

in equilibrium, whereas the travel time along the high road is the same as in equilibrium because 

it is fixed regardless of the number of travelers. However, as seen in Table 5, the average 

experienced travel time exceeds the equilibrium level. The variance term in equation (6) explains 

this apparent puzzle. Despite efficiency enhancing under-utilization of the low road, the variance 

in the route choices raises the experienced travel time in the Baseline. That is, the “variance 

effect” dominates the mean effect in this network structure. In the Improved network, the 

variance effect is also present but the mean effect (under-utilization of the low road) dominates.18 

4.1.3 Summary 

The improvement to the PKD network leads to a significant shift in traffic flows, in clear 

contrast to the reduced form heuristic. While the shift is in the direction consistent with 

equilibrium and efficiency, there are significant deviations from the efficiency and equilibrium 

benchmarks. In addition, network users are adversely affected by traffic flow fluctuations, which 

in Baseline cause the experienced travel times to rise above equilibrium levels despite the under-

utilization of the congestible road. Furthermore, travel times are not fully equalized, and the 

PKD paradox—the complete dissipation of the benefits from the road improvement—is not 

borne out either in the short-run or the long-run. On the other hand, route choices and 

                                                 
17 For groups PKD.1, .2 and .3 the average travel time in the Improved network would have been 48.83 had they 
made the same choices as in the last 30 rounds of Baseline. For groups PKD.4, .5 and .6 the average travel time in 
Baseline would have been 67.32 had they made the same choices as in the last 30 rounds of Improved. 
18 In fact, variability is very similar on the two networks. Averaging across groups, the standard deviation of nt is 
1.15 for the Baseline and 1.13 for the Improved network. Such traffic flow fluctuations are of course not compatible 
with Wardrop equilibrium. In contrast, in a mixed-strategy Nash equilibrium one would expect variability in traffic 
flows. In Section 5 we investigate the explanatory power of mixed-strategy solutions in more detail. 
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experienced travel times are closer to the equilibrium than the efficiency benchmark, and on 

average travelers could not have achieved a long-run reduction in travel time by always choosing 

the faster low road. 

4.2 Braess Networks 

4.2.1 Aggregate Route Choices and Travel Time per Route 

Table 6 displays the average number of travelers choosing the low road for each group. The 

groups that first encounter the Baseline network and then the Improved network are listed first. 

Note that the Improved network can be viewed as the composition of two networks in each of 

which users make a binary choice between a congestible and a non-congestible road. In Table 6 

we analyze these two components separately. Recall that equilibrium requires a shift in traffic 

onto the congestible roads after the improvement in the network. In contrast, efficiency requires 

a shift in traffic onto the non-congestible road in the first leg, and either no shift or a shift in 

traffic onto the non-congestible road in the second leg. As Table 6 shows, traffic shifted in the 

direction of equilibrium. There is a significant increase in the amount of traffic leaving the origin 

on the congestible road and a significant increase in the amount of traffic arriving at the 

destination on the congestible road (the p-value is 0.031 in both cases and for both short and long 

run). 

Table 6: Traffic flow in Braess networks 
- Average number of travelers on the low road - 

 Braess Baseline  Braess Improved 
1st Leg 

Braess Improved 
2nd Leg 

Group Rounds 
1-30 

Rounds 
31-60 

 Rounds
1-30 

Rounds 
31-60 

 Rounds 
1-30 

Rounds 
31-60 

BRS.1 3.87 3.80  2.83 1.90  4.73 4.50 
BRS.2 3.77 4.07  2.30 1.47  4.33 4.13 
BRS.3 4.00 3.93  3.03 2.50  4.57 4.47 
BRS.4 4.13 4.20  2.77 2.23  4.60 4.90 
BRS.5 4.07 3.87  2.83 2.07  4.33 4.60 
BRS.6 3.87 3.83  2.73 1.63  4.53 5.10 

ALL 3.95 3.95  2.75 1.97  4.52 4.62 

On the Baseline network traffic flows are not significantly different from equilibrium 

flows of 4 travelers on each road (p-value = 0.529 in both short run and long run). On the 
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improved network there are systematic differences between equilibrium and actual traffic flows. 

In equilibrium, one traveler uses the low road on the first leg, and five use the low road on the 

second leg. In fact, traffic is more evenly distributed across the two routes on both legs (first leg: 

p = 0.031 for both short and long run, second leg: p = 0.031 for the short run and p = 0.063 for 

the long run). Thus, relative to equilibrium, the congestible roads are under-utilized on both legs 

of the Improved network. 

Table 7 displays the difference in the average travel times between the high road and the 

low road. Since Baseline traffic flows do not differ significantly from equilibrium, we cannot 

reject the travel time equalization hypothesis. For the case of the Improved network, where the 

congestible roads are under-utilized relative to equilibrium, these roads are significantly faster 

than the non-congestible roads, and the travel time equalization hypothesis is rejected. When we 

compare the travel time discrepancies in the short run and long run we observe a significant trend 

toward equalization on the first leg (p = 0.031), but not on the second leg (p = 0.438). 

Table 7: Investigating travel time equalization in Braess networks  
- Travel time on high road minus travel time on low road - 

 Braess Baseline  Braess Improved 
1st Leg 

Braess Improved 
2nd Leg 

Group Rounds 
1-30 

Rounds 
31-60 

 Rounds
1-30 

Rounds 
31-60 

 Rounds 
1-30 

Rounds 
31-60 

BRS.1 1.60  2.40   -5.50  -2.70  2.40  4.50  
BRS.2 2.80  -0.80   -3.90  -1.40  6.00  7.80  
BRS.3 -1.21  0.80   -6.10  -4.50  3.90  4.80  
BRS.4 -1.60  -2.40   -5.30  -3.70  3.60  0.90  
BRS.5 -0.80  1.60   -5.50  -3.20  6.00  3.60  
BRS.6 1.60  2.00   -5.20  -1.90  4.20  -0.90  

ALL 0.40 0.60  -5.25 -2.90 4.35 3.45 

4.2.2 Network Performance 

Table 8 displays latency on the Braess networks for each group. As with the PKD networks, the 

externalities road users place on one another generate inefficient travel flows. In the Baseline 

network, an efficient flow of traffic would generate an average travel time of 55.5, and actual 

travel times are 6% greater than this. Indeed, these efficiency losses exceed those that would be 
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incurred if the system were in equilibrium. For the Improved network average travel times are 

62.97, better than in equilibrium (66), but still 15% above efficient levels. 

Table 8: Latency in Braess networks 
- Average travel time for network users - 

 Braess Baseline  Braess Improved 

Group Rounds
1-30 

Rounds 
31-60 

 Rounds
1-30 

Rounds 
31-60 

BRS.1 59.50 58.30  63.03 63.65 
BRS.2 58.65 59.20  62.33 61.58 
BRS.3 60.20 58.80  61.90 62.18 
BRS.4 60.10 59.00  63.00 64.03 
BRS.5 58.90 58.40  61.90 63.18 
BRS.6 58.40 57.85  62.88 65.95 
ALL 59.29 58.59  62.50 63.43 

In the Baseline network, even though traffic flows do not differ systematically from 

equilibrium, travel times are significantly higher than in equilibrium (p = 0.031 for both the short 

run and long run). The reason for this seemingly paradoxical finding is again the adverse effect 

of variability in traffic flows (equation 6). 

On the Improved network travel times are significantly lower than in equilibrium (p = 

0.031 for both short run and long run). Although the variance effect is also present here, the 

overall outcome is dominated by the under-utilization of the congestible links relative to 

equilibrium. 

While the additional link in the Improved network in principle allows more efficient 

traffic flows than are possible in the Baseline, equilibrium entails an increase in travel times after 

the technical improvement. In the data, even though the Baseline network performs worse than in 

equilibrium, and the Improved network performs better than equilibrium, the table shows that all 

groups experience an increase in travel times after the improvement. Thus there is a significant 

increase in travel times in both the short run (p = 0.031) and the long run (p = 0.031), and the 

Braess Paradox is observed in our data. 

To get an idea of the quantitative effect, we consider the groups that first encounter the 

Baseline network and then the Improved network, and again take the last 30 rounds in Baseline 
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as a benchmark. Relative to that benchmark there is a 9% increase in travel time in both the short 

run (the first 30 rounds of the Improved network) and the long run (the second 30 rounds of the 

Improved network). For the groups that first encounter the Improved network, we find that 

eliminating the costless link results in a 15% reduction in travel time in the short run and a 17% 

reduction in the long run.  

4.2.3 Summary 

In the Braess Baseline network average traffic flows do not diverge systematically from 

equilibrium (equal usage of each road) and there is no significant difference in travel times 

between the alternative routes. Nevertheless, travel times are higher than in equilibrium, due to 

variability in choices across rounds. For the Improved network, equilibrium entails a shift in 

traffic onto congestible links. Although we see a shift in this direction, congestible links are 

under-utilized relative to equilibrium, and the Improved network performs better than in 

equilibrium. Even so, traffic flows are far from efficient and we observe the Braess Paradox: The 

Improved network is significantly slower than the Baseline network. 

4.3 Baseline Neutrality 

4.3.1 Aggregate Route Choices 

Our Braess Baseline network is derived from the PKD Baseline network by modifying the cost 

parameters on the high road so that it is no longer non-congestible, but in such a way as to 

preserve equilibrium travel flows and times. Since the previous sub-sections reported some 

systematic deviations from equilibrium, it is unclear whether this change in network architecture 

will indeed be neutral. 

First we look at the distribution of travel choices. As seen in Tables 3 and 6 there is less 

traffic on the low road in the PKD Baseline than the Braess Baseline; however, the difference is 

only marginally significant in the short run (two-sided Wilcoxon rank-sum test p = 0.078) and 

insignificant in the long run (p = 0.379). For each group we also computed the standard deviation 

of the number of low-road users over the 30 rounds in each half of a session. A two-sided 

Wilcoxon rank-sum test fails to reject the null hypothesis that the variability in traffic flows is 

identical in PKD and Braess Baseline (p-value = 0.936 for rounds 1-30, p-value = 0.576 for 

rounds 31-60). 
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4.3.2 Network Performance 

Second, we look at network performance. From equation (6) it can be shown that even if the 

distribution of choices is identical on the two networks, expected travel times will differ. 

Specifically, assuming a common expected number of low road users and a common variance in 

the number of low road users (here denoted by n), the difference in expected travel times is: 

Braess PKD
(8 [ ])(12 3 [ ]) 3 Var( )Expected Travel Time Expected Travel Time

8
E n E n n− − +

− =  

In equilibrium [ ] 4E n = and Var[ ] 0n = , and the network performances are the same. In 

the data, because the average number of low road users is slightly below 4 on both networks, and 

because the variability of the number of low road users is positive, this expression suggests that 

average journey times will be faster on the PKD network. Indeed this is the case: Average travel 

times differ significantly across networks (p-value = 0.008 for rounds 1-30, p-value = 0.020 for 

rounds 31-60), and are higher on the Braess network. 

5 Variability in Route Choice 

As we have seen, an important determinant of network performance in the experiment is 

persistent variability in traffic flows. Even in the long-run, subject route choices continued to 

display considerable variability and, as a consequence, drove latency higher than would be the 

case had route choices converged. None of our existing benchmarks offer an explanation for 

variability in route choice, so, in this section, we explore two other alternatives. The first of these 

supposes that the variability in route choices is the result of mixed strategy equilibrium play. As 

we will show, mixed strategy equilibria exist in all of our networks and, of course, these 

equilibria entail variability in route choice. The second alternative uses a learning model 

approach to generate variability in route choices as a result of the path of reinforcement received 

by a given subject. 

5.1 Mixed Strategies 

In addition to the Wardrop equilibrium, there exist mixed strategy equilibria in the networks we 

study. Here we examine completely mixed equilibria.19 Let n be the number of low road users, 

                                                 
19 At the end of section 5.2, we consider the consistency between our results and asymmetric mixed strategy 
equilibria. 
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such that the journey time on the low and the high road are L Lnα β+  and ( )H H N nα β+ − , 

respectively. Suppose now that player i ( 1, ,i N= K ) chooses the low road with probability ip . 

For this to constitute an equilibrium, the expected travel time for player i must be the same on 

either route, taking into account her own presence on each route. Thus, for all i, 

1 1 (1 )L L j H H j
j i j i

p pα β α β
≠ ≠

⎛ ⎞ ⎛ ⎞
+ + = + + −⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟
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∑ ∑  

which can be rewritten as 
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Summing over all i gives 
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 for all i. (7) 

Thus, equation (7) characterizes the unique symmetric mixed strategy equilibrium for 

each network. In such an equilibrium all players choose the low road with the same probability 

p∗ , and this implies a standard deviation in the number of travelers on each road equal to 

(1 ) 0Np p∗ ∗− > . In principle, this could account for the observed variability in route choices. 

Table 9 uses three metrics to compare our experimental results with what would be 

expected in a symmetric mixed strategy equilibrium (sMSE). The first is the usual route choice 

metric. The other two metrics relate to variability in route choices. We computed the standard 

deviation of the number of travelers on the low road treating the number of travelers on the low 

road in a given period and a given network structure as an observation. The switching propensity 

looks at the fraction of times a given traveler changes her route choice in consecutive rounds for 

a given network structure. The statistics for each of these metrics are computed only for the long-

run. 

As Table 9 shows, average under-utilization, relative to the Wardrop equilibrium, of the 

low road in PKD, Braess Baseline, and Braess Improved 2, and the high road in Braess Improved 

1 is exactly what we would expect in a symmetric mixed strategy equilibrium. In Braess 
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Improved 2, the average number of low road users does not differ significantly from the number 

we would expect in sMSE. However, in all other cases there are significant differences between 

the data and sMSE traffic flows, and these differences go in the direction of a more even 

distribution of traffic across the high and low roads (PKD Baseline: p = 0.031, PKD Improved: p 

= 0.059, Braess Baseline: p = 0.031, Braess Improved 1: p = 0.031). 

Table 9: Comparison of observed and symmetric mixed strategy equilibrium traffic flows  
- Data from last 30 rounds of a phase - 

  PKD 
Baseline 

PKD 
Improved 

Braess 
Baseline 

Braess 
Improved 1 

Braess 
Improved 2

sMSE  3.43 5.71 3.71 1.14 4.57 Avg. number 
on low road Data 3.84 5.48 3.95 1.97 4.62 

sMSE 1.40 1.28 1.41 0.99 1.40 Stdev. of no. 
on low road Data 1.02 1.02 1.08 0.93 1.07 

sMSE 49% 41% 50% 25% 49% Switching 
Propensity Data 18% 21% 27% 20% 25% 

With respect to standard deviations in route choice, we observe less variability in route 

choices than would be expected in sMSE (p-value = 0.031 in PKD Baseline, Braess Baseline and 

Braess Improved 2; p-value = 0.142 in PKD Improved and Braess Improved 1). The third metric, 

switching propensity, illustrates this even more starkly. The mixed strategy equilibrium implies 

far more switching behavior than we actually observe. 

Finally, note that, for the PKD networks and Braess Improved network, latency is the 

same in either the Wardrop equilibrium or a sMSE (in either case latency is pinned down by the 

travel cost associated with non-congestible links). Thus, we observe the same discrepancies as 

before: Latency is above equilibrium levels in PKD Baseline and below equilibrium levels in 

PKD Improved and Braess Improved. In the Braess Baseline network, sMSE travel times are 

longer than Wardrop equilibrium travel times. Although observed travel times systematically 

exceed the Wardrop equilibrium level, they remain significantly below 59.25, the level expected 

in a symmetric mixed strategy equilibrium (p-value = 0.031). Thus, observed latencies are not 

consistent with symmetric mixed strategy equilibrium. 

Summary: Persistent variability in congestion and the direction of other observed deviations 

from Wardrop equilibrium are consistent with a symmetric mixed strategy equilibrium. 
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However, we observe far less variability and route switching than one would expect in a 

symmetric mixed strategy equilibrium. Route choices and network latency are also significantly 

different from what one would expect in a symmetric mixed strategy equilibrium. 

5.2 Learning 

The discrepancies between mixed strategy equilibrium and the patterns observed in the data are 

of a fundamental nature: In any homogenous probabilistic choice model, the more “balanced” the 

road usage (i.e. the closer the probability of choosing the low road is to 0.5), the higher is the 

variability of road usage. However, in the data we find a tendency towards a more balanced road 

usage and a more concentrated distribution of road usage (relative to the sMSE). This indicates 

that there is heterogeneity of play among the travelers in our experiment. 

One way in which such heterogeneity could arise is as a result of path-dependent learning 

trajectories. To illustrate this, we ran simulations based on a simple reinforcement learning 

algorithm. We assume that in round 1 each player i has an initial propensity (1) 0ijq >  to play her 

jth pure strategy (which in Braess Improved is “high-high”, “high-low”, “low-high” or “low-

low”, and in the other networks is simply “high” or “low”). Players then update their propensities 

to play strategies by adding the payoff arising from the chosen strategy to the propensity for that 

strategy. Thus, if player i plays her kth strategy in round t and obtains a payoff ( )i tπ , then the 

propensity to play her jth strategy in round t + 1 is 

( ) ( ) if 
( 1)

( ) else.
ij i

ij
ij

q t t j k
q t

q t
π+ =⎧

+ = ⎨
⎩

 

This setup thus far is identical to the “basic” reinforcement learning model in Erev and 

Roth (1998), which has only one parameter, namely the value of (1)ijq . In our experiment 

subjects were not informed about network payoff structures. At the beginning of a session they 

only knew that they would receive 100 points for completing a journey and that there would be 

travel costs, which would be deducted from, but never exceed, the 100 points. Since there are no 

hints about which strategies might be best, we restrict initial propensities to be identical across 

strategies: (1) (1)ij iq q=  for all j. However, note that the initial propensities may still vary across 

individual agents. The parameter (1)iq  influences the speed of the adjustment process: Agents 

make greater adjustments to the probability of choosing a particular strategy, the higher the 
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experienced payoff is relative to current propensity levels. The parameter may thus be interpreted 

as reflecting expectations about how much one might earn in this game. 

Our model differs from Erev and Roth’s basic reinforcement learning model with respect 

to the stochastic response rule: In our model, player i picks strategy k in round t with probability 

( )

( )( )
i ik

i ij

q t

ik q t

j

ep t
e

β

β=
∑

 

where the sensitivity parameter iβ  determines the degree to which differences in the propensities 

( )ijq t  across strategies lead an individual to discriminate between strategies with high and low 

propensities. Such a probabilistic response would arise if each individual chose the strategy with 

the maximum propensity score in a given period, but where the propensity scores are subject to a 

random component drawn from an extreme value distribution (see McFadden, 1974).  

In order to find suitable values for the two parameters (1)iq  and iβ , which must be 

specified individually for each network user i, we estimated them from our data using the time 

series we have collected from each subject. To do this we searched (using a numeric grid search 

algorithm) for combinations of (1)iq  and iβ  that minimize the sum of the squared deviations 

between a subject’s actual choices and the probabilities of making these choices under the 

learning model, or 

( )2
( ) ( )ij ij

t j

d t p t−∑∑ , 

where ( )ijd t  is a dummy variable taking the value 1 when subject i chose strategy j in round t 

and 0 if she did not. 

The parameter estimates vary greatly across individuals. The (1)iq  parameter ranges 

from 1 to 100, with an average of 81.7 and a standard deviation of 23.0. The iβ  parameter ranges 

from 0 to 0.4, with an average of 0.038 and a standard deviation of 0.110. 

For each of the twelve groups of eight players in our experiment, we then ran computer 

simulations based on the learning algorithm described above and using the parameters we 

estimated from the eight human subjects in that group. Each simulation ran for 60 periods on the 
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relevant network, and we conducted 1000 runs of simulations for each eight-player group.20 

Table 10 summarizes our findings (averaging over the 1000 runs) using the same metrics as 

before. 

Table 10: Comparison of observed and simulated traffic flows 
- Data from last 30 rounds of a phase - 

  PKD 
Baseline 

PKD 
Improved

Braess 
Baseline 

Braess 
Improved 1 

Braess 
Improved 2

sMSE 3.43 5.71 3.71 1.14 4.57 

Simulation 3.62 4.62 3.82 3.39 4.29 Avg. number 
on low road 

Data 3.84 5.48 3.95 1.97 4.62 

sMSE 1.40 1.28 1.41 0.99 1.40 

Simulation 1.16 1.17 1.20 1.30 1.17 Stdev. of no. 
on low road 

Data 1.02 1.02 1.08 0.93 1.07 

sMSE 49% 41% 50% 25% 49% 

Simulation 24% 20% 30% 23% 23% Switching 
Propensity 

Data 18% 21% 27% 20% 25% 

sMSE 57.0 57.0 59.3 66.0 

Simulation 57.1 51.4 58.7 60.6 Avg. network 
latency 

Data 57.5 55.0 58.6 63.4 

The heterogeneity across the simulated players’ learning model parameters produces, 

relative to the sMSE, a more balanced distribution of travelers on the high and the low road and 

less variability in route choices, both in terms of the standard deviation of the number of road 

users21 and in terms of individuals’ switching propensities. At the same time, the variability in 

traffic flows is not close to zero, as would be the case in Wardrop equilibrium. Thus, the 

simulation results are characterized by the same types of deviations from equilibrium that we 

observe in the data. 

                                                 
20 Note that even with a very large number of rounds, the learning model could produce data that deviates 
substantially from equilibrium, since the process is strongly path dependent. That is players may ‘lock-in’ on 
strategies, even if the resulting pure strategy profile does not constitute an equilibrium. 
21 Braess Improved 1st leg is the only exception. The reason that the standard deviation is relatively high in Braess 
Improved 1st Leg is that the simulated propensity adjustments in this segment of the network are comparatively 
slow. This is because travel costs on the second leg (up to 72) tend to be much higher than those on the first leg (up 
to 24), and this means that the learning process in the model is more sensitive to costs incurred on the second leg. 
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Similarly, when we turn to the network latency metric we find that the direction of the 

discrepancies between equilibrium and simulation data is the same as between equilibrium and 

experimental data. For instance, the simulation produces travel times in the PKD Baseline 

treatment that are slightly greater than in equilibrium and travel times in the PKD Improved 

treatment that are lower than in equilibrium. The reason for this⎯in both the experiment and the 

simulation⎯lies in the combined effect of lower variability in road usage and more balanced 

traffic flows. While the lower variability reduces latency in both networks relative to the mixed 

strategy equilibrium, the greater balance in road usage implies more traffic on the congestible 

road in PKD Baseline, thereby increasing network latency (and overturning the benefits from 

lower variability), and implies less traffic on the congestible road in PKD Improved, thereby 

reducing network latency even further. Similar effects are also observed in the Braess networks. 

There is further evidence that path-dependent learning trajectories may play an important 

role in the dynamics of choices. For example, subjects display a tendency to “lock in” to certain 

strategies in all networks. As before, we consider the second-half data of each condition. Within 

this time frame there is no systematic trend in the overall propensities to choose the low road: 

The propensities in the third quarter (rounds 31-45) do not differ significantly from the 

propensities in the last quarter (rounds 46-60). However, both subjects who choose the low road 

more often than the high road in the third quarter and subjects who choose the high road more 

often are disproportionately more likely to again choose their “preferred” road more often in the 

fourth quarter. For example, in the third as well as the fourth quarter of PKD Baseline roughly 

half the subjects (48%) chose the low road more often than the high road. However, 87% of 

those who display a tendency for the low road in the third quarter display the same tendency in 

the last quarter, and 84% of those who choose the high road more often in the third quarter also 

do so in the last quarter. In equilibrium, where players make independent random draws in each 

round, this should not occur: Based on a time frame of 15 rounds the expected proportion of 

players displaying a tendency towards the low road is 29% (high road 71%), regardless of the 

history of play. In the simulations, on the other hand, the “lock in” effect is even stronger than in 

the experimental data: 48% of our simulated agents display a tendency towards the low road in 

the third quarter, and 98% of these (and also 98% of those with a tendency towards the high 

road) then also display a tendency towards the low road (high road) in the last quarter. This “lock 
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in” effect is not specific to PKD Baseline: We get qualitatively similar results in all our 

networks, both in the experimental data and in the simulations. 

However, there are also discrepancies between the outcomes of the learning model and 

the experimental data and, as seen in Table 10, these are not systematically smaller than the 

discrepancies between equilibrium and experimental data. An interesting question is whether this 

is because of shortcomings in the detailed assumptions underlying the learning model (i.e. the 

specifications of the stochastic response and propensity updating rules) or is because this class of 

learning models in general cannot fully capture the dynamic route-choice patterns in our 

experimental data. We do not have a conclusive answer to this question—however, we 

considered several alternative formulations of the stochastic response rule and the propensity 

updating rule and found that the simulation results reported above are quite robust. Of course, 

one could potentially improve the fit between simulated behavior and data by considering more 

complex learning models with additional parameters. However, our point here is simply to 

illustrate how broad patterns observed in the data may result from reinforcement-type learning, 

rather than to provide a fully-fledged model of the data generation process. 

Finally, we briefly compare our data with the implications of asymmetric mixed strategy 

equilibria. In such an equilibrium, some players take one of the routes with certainty while others 

mix over route choices, which gives scope for some heterogeneity amongst players. As a result, 

switching levels are lower than in the symmetric mixed strategy equilibrium and in some cases 

similar to those we find in the data. But note that although several of these asymmetric equilibria 

exist for each of our networks, the degree of heterogeneity they allow is limited, because all 

players that randomize between routes have to do so with the same probability.22 Thus, in these 

equilibria there are at most three distinct “types” of travelers: constant low road users, constant 

high road users, and switchers. In contrast, actual heterogeneity between subjects is much more 

diffused than that. To show this, we counted the proportion of times a subject used the low road 

using data from the last thirty rounds on a network. Cumulative histograms of these proportions 

are displayed in Figure 6. (For comparison we have also plotted the corresponding distributions 

that emerge in the symmetric equilibrium and in the simulations.) Almost all subjects switch 

                                                 
22 Consider two players, i and j, who both mix between routes and let n̂  be the expected number of low road users 
excluding i and j. Then, to make player i indifferent between routes, player j must choose the low road with 
probability jp  so that it solves ˆ ˆ( 1) (2 )j jn p N n pα β γ δ+ + + = + + − − . However, to make player j indifferent 
at the same time, player i must also choose the low road with that probability. 
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between roads but there is substantial variability across subjects in the propensity to use the low 

road, which in some of the networks leads to nearly uniform distributions of traveler types. This 

pattern is not consistent with any of the asymmetric mixed strategy equilibria. 

Figure 6: Cumulative distributions of players’ propensities to use low road  
- Data from last 30 rounds of a phase - 

 PKD Baseline  PKD Improved 
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6. Conclusion 

The notion of Wardrop equilibrium offers important principles for network design. We identify 

two such principles; the least congestible route principle states that improvements should be 

made on the route least sensitive to congestion, and the size principle states that adding costless 

links reduces travel time when there are a sufficiently large number of travelers on the network. 

Two paradoxes from the transportation literature are closely related to these principles. The 

Pigou-Knight-Downs Paradox can be viewed as an extreme violation of the least congestible 

route principle: Here the network has a non-congestible route, and an improvement to an 

alternative, congestible, route has no effect on equilibrium journey times. The Braess Paradox is 

a manifestation of the size principle: With a sufficiently small number of travelers on a network 

adding a costless link increases equilibrium journey times. 

We then conduct an experiment to study how technical improvements to networks affect 

travel costs. In our experiment subjects repeatedly made route choices, receiving a reward for 

reaching their destination and incurring travel costs which could depend on the number of other 

subjects taking that route. Subjects were only informed of travel costs and congestion associated 

with each journey at the end of that journey; they were not told how travel times were 

determined on alternative routes. 

In our PKD sessions we improve a congestible route on a network that also has a non-

congestible route. Here equilibrium traffic flows imply the Pigou-Knight-Downs Paradox: 

Equilibrium travel times are the same with and without the improvement. In our experiment the 

improvement causes network users to switch from non-congestible to congestible roads, eroding 

efficiency gains, particularly in the long run after subjects had acquired experience with the new 

network structure. However, even in the long run the dissipation of the gains is not quite 

complete, and travel times are 4% lower in the improved network. 

In our Braess sessions we add a new road to a network so that equilibrium implies the 

Braess Paradox: Equilibrium travel times are higher with the additional road. Here we found that 

travel times were indeed higher on the “improved” network. Focusing on the long run, we find 

that the network ‘improvement’ raises travel times by about 8%.  

For all our treatments we observe adjustments in traffic flows in response to exogenous 

changes in network architecture. Often these adjustments are in the opposite direction to that 

commensurate with attaining efficiency; indeed, we see no evidence that subjects are able to 
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coordinate and attain efficient outcomes. Thus, travelers are unable to overcome the 

inefficiencies associated with externalities on congestible roads. One feature of the network 

games studied here that may make efficient flows difficult to achieve is that they require 

inequitable travel times across individuals. Traffic flows that minimize average travel times 

mean longer travel times for some travelers than others, and without a mechanism for sharing the 

benefits of efficient traffic patterns, individuals may not be willing to suffer long travel times 

while others enjoy short travel times. In our networks a focus on private travel costs is perhaps 

even more marked because we only give subjects feedback on own travel times.  

In contrast, there is a reliable tendency for distributions of route choices to shift in the 

direction of equilibrium. Thus, our experiment reinforces the theoretical point that accounting for 

induced changes in behavior is a crucial element of successful network design, and provides 

evidence of the usefulness of equilibrium theory for predicting the direction in which traffic 

flows will change. Nevertheless, some systematic departures from equilibrium are observed, and 

variability in route choice behavior is observed, even in the long run. A contributing factor to this 

may be that equilibrium in these networks implies indifference (or near indifference) between 

alternative routes, and so noisy traffic flows around the equilibrium may occur because each 

subject can cheaply deviate from equilibrium. We note that this feature of our network games is 

shared by a vast array of models used in economics, where equilibrium involves equalization of 

returns from alternative choices. As our experiment demonstrates, this variability in route 

choices has systematic implications for network performance.  

In order to further investigate deviations from equilibrium we conducted simulations 

based on a simple reinforcement learning model. Although, this learning model does not give an 

exact explanation of subject choices, it generates similar patterns in traffic flows to those 

observed in our experimental data. For example, the higher reinforcement of more successful 

strategies tends to promote usage of routes that offer higher payoffs, and so generates 

adjustments in the direction of travel time equalization. At the same time, the model generates 

heterogeneity in individual strategies and variability in congestion over time. Thus, learning 

plays a role in both equilibrating travel times and generating deviations from equilibrium. 

Adjustments in the direction of travel time equalization and variability in congestion are also key 

features of our data, and they have important impacts on network performance. For instance, in 

the PKD network the congestible road is under-utilized relative to equilibrium. On the improved 
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network this results in better network performance than in equilibrium, and over time subjects 

shift toward the faster congestible route, reducing the disparity between travel times on the two 

routes. The unimproved network performs worse than in equilibrium, since the adverse effect of 

variability in traffic flows outweighs the effect of under-utilization of the congestible route.  

These results demonstrate both the force and limitations of equilibrium incentives. While 

attempts to minimize own travel costs undermine network performance, they do not lead to 

complete convergence to equilibrium, even in the relatively simple traffic networks examined in 

the laboratory. Moreover, even when the deviation from equilibrium involves, on average, less 

travel on congested routes, this does not improve network performance because the 

accompanying variability in route choices, as subjects persistently strive to find the best route, 

provides an offsetting source of network inefficiency. 
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Appendix A. Instructions 
 
General Rules 
 
This is an experiment in the economics of decision making. You will be paid in private and in 
cash at the end of the experiment. The amount you earn will depend on your decisions, so please 
follow the instructions carefully.  
 
There are sixteen people participating in this experiment. All participants are reading the same 
instructions as you are and have been recruited in the same fashion. Likewise, all participants are 
participating in this experiment for the first time, as you are.  
 
It is important that you do not talk, or in any way try to communicate, with the other participants 
during the experiment. If you have a question, raise your hand and a monitor will come over to 
where you are sitting and answer your question in private. 
 
The experiment will consist of two phases of 60 rounds. In every round of the experiment you 
will be matched with seven other participants – the same seven others in every round. 
 
In each round you will have an opportunity to earn points. At the end of the experiment, you will 
be paid an amount in cash that will be determined by the total number of points you earn from all 
rounds. 
 
Description of a Round 
 
At the beginning of each round you will see a roadmap on your screen. An example is given 
below (the ones you will see in the experiment will be different): 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The map has cities and roads. The cities are denoted by letters, the roads by the lines connecting 
them. You begin at city O (origin). In each round you will receive 100 points for making a trip to 
city D (destination). There are a variety of routes to D. 
 

C B 

D 

A 

O 
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You will have 40 seconds to choose a route from O to D by clicking on roads between pairs of 
cities. If you click on a road between two cities its colour will change from black to red. (You 
can change it back by clicking again). When you have created a complete route from O to D you 
will be given an opportunity to confirm your route. If you do not complete a trip to D in 40 
seconds you will earn zero points for that round. 
 
You will also pay a cost of travelling along each road you use, the cost varying from road to 
road. On some roads the cost will depend on how many other participants choose to travel along 
that road. The total cost of travel from city O to city D will always be less than 100 points 
regardless of the route travelled. 
 
When all participants have completed their trips, or after 40 seconds have passed, the round will 
end. The computer will then show you the cost you incurred from each road you used, the 
number of participants using those roads, and your total travel cost. The computer will also show 
you your point earnings for the round: 100 points for reaching D minus the travel costs, or zero 
points if you did not complete a route to D. 
 
For the 60 rounds of phase one, the way in which travel costs are determined will remain the 
same. Likewise, for the 60 rounds of phase two, the way in which travel costs are determined 
will remain the same. However the costs in phases one and two may differ. In between phases 
there will be a screen reminding you that phase one has ended and phase two is about to begin. 
 

Ending the Experiment 

 
At the end of the last round you will be informed of your total point earnings. This will be the 
sum of your point earnings from the 120 rounds. A monitor will come to your desk and pay you 
in private and in cash. You will receive 1 penny for every 5 points earned. 


