B. PROOFS OF OTHER RESULTS

1. FINITE PUNISHMENT PERIODS IN THE RG

Proposition 1 with finite punishment period. Given δ and γ, if β is sufficiently high, cooperation can be sustained under the following strategies for both players: if the game is not in a punishment phase, play NO if the other player plays NO in the previous period; if the other player has played O in the previous period, initiate a punishment phase; if the game is in a punishment phase, and it has been initiated by you, play O for T periods when given the opportunity; else play NO.

Proof. In this case, we must only analyze a single period deviation to determine when cooperation can be sustained. Here, A’s expected utility from playing O in a non-punishment phase is:

$$EU_A(A_A = O) = 1 + \gamma \sum_{i=1}^{T} \delta^i$$

The expected payoff, then, can be written:

$$EU_A(A_A = O) = 1 + \frac{\delta \gamma (1 - \delta^T)}{1 - \delta} = \frac{1 - \delta + \delta \gamma (1 - \delta^T)}{1 - \delta}$$ \hspace{1cm} (18)

If A plays NO, his expected payoff in the punishment period is:

$$EU_A(A_A = N) = \beta \sum_{i=0}^{T} \delta^i$$

which can be rewritten:

$$EU_A(A_A = N) = \frac{\beta \delta(1 - \delta^T)}{1 - \delta}$$ \hspace{1cm} (19)
Thus, \(A \) will cooperate if and only if (19) is greater than (18). Thus, I obtain the condition that \(A \) cooperates if and only if

\[
\beta > \frac{1 - \delta + \delta \gamma (1 - \delta T)}{\delta (1 - \delta T)} = \beta_A^*
\]

(20a)

From the symmetry of the game I can obtain a similar result for \(B \), substituting 1 - \(\gamma \) for \(\gamma \). Namely, \(B \) will cooperate if only if

\[
\beta > \frac{1 - \delta + \delta (1 - \gamma)(1 - \delta T)}{\delta (1 - \delta T)} = \beta_B^*
\]

(20b)

Since cooperation is sustained only if both players do not have an incentive to play \(O \), and both (20a) and (20b) are lower bounds, I therefore can define a condition such that cooperation can be sustained:

\[
\beta > \max(\beta_A^*, \beta_B^*) = \beta^*
\]

(21)

The proposition follows from the fact that \(\beta^* \) is a function of \(\delta \) and \(\gamma \). ■

Notice that grim trigger, which is equivalent to \(T \) approaching infinity, is simply a special case of this more general result.

PROPOSITION 2 WITH FINITE PUNISHMENT PERIOD. With a \(T \) period punishment strategy, as \(\gamma \) approaches 0.5, cooperation can be sustained over a wider range of the parameters.

PROOF. Solving for the maximum condition given in (5), we obtain the following:

\[
\beta^* = \begin{cases}
\beta_A^* & \text{if } \gamma > \frac{1}{2} \\
\beta_B^* & \text{if } \gamma < \frac{1}{2}
\end{cases}
\]

(22)
The proposition follows from the fact that the β^* is a decreasing function of γ if $\gamma < 0.5$ and increasing if $\gamma > 0.5$.

2. THE RG WITH NEGATIVE QUADRATIC UTILITY FUNCTIONS

Proof that propositions 1 and 2 hold with negative quadratic utility functions.

Let the structure of the game be identical to the RG except that $u_i = -(x-x_i)^2$ where, without loss of generality, the players’ ideal points are $x_A = 0$ and $x_B > 0$. Substituting into (3) above and following the analysis, we obtain that A will cooperate iff

$$x \in \{-x_B\sqrt{\delta(1-\gamma)}, x_B\sqrt{\delta(1-\gamma)}\}$$ (23)

and B will cooperate iff

$$x \in \{x_B(1-\sqrt{\delta\gamma}), x_B(1+\sqrt{\delta\gamma})\}.$$ (24)

Since the set of cooperative regions must overlap, the upper bound in (23) must be higher than the lower bound in (24), a condition we can write

$$x_B\sqrt{\delta(1-\gamma)} - x_B(1-\sqrt{\delta\gamma}) \geq 0.$$ (25)

Taking the first derivative of the left hand side of (25), it is clear that holding the other parameters constant, the expression is increasing in δ, implying that as the players’ become more patient, it is easier to sustain cooperation (or alternatively, the set of cooperative equilibria expands), which is Proposition 1. Further, we can also consider the conditions on γ in which the cooperative region is maximized. Here, if we take

$$\max_{\gamma} x_B\sqrt{\delta(1-\gamma)} - x_B(1-\sqrt{\delta\gamma})$$

we obtain the condition
Electoral Competition, Political Uncertainty and Policy Insulation

\[
- \frac{1}{2} \frac{x_B \delta}{\sqrt{\delta(1-\gamma)}} - \frac{1}{2} \frac{x_B \delta}{\sqrt{\delta \gamma}} = 0 \quad \Rightarrow \gamma = 0.5
\]

(26)

which is analogous to Proposition 2. ■

3. THE RG WITH N VETO PLAYERS

PROOF THAT PROPOSITION 2 HOLDS WITH N VETO PLAYERS.

To show that Proposition 2 holds for \(n \) veto players, it is sufficient to show that the minimum \(\beta \) required for the stronger player to cooperate is increasing in her electoral probability. Without loss of generality assume \(\gamma > 0.5 \). Let \(P_{At} \) be the probability that \(A \)'s program will be in place in period \(t \). Thus, we can write \(A \)'s payoff for defection as

\[
u_{A^c} = 1 + \sum_{t=1}^{\infty} \delta^t p_{At}
\]

(27)

This implies that if \(P_{At} \) is increasing in \(\gamma \) then \(\beta^* \) is increasing in \(\gamma \). The general form for \(P_{At} \) can be written

\[
P_{At} = p_{A^{t-1}} (1 - (1 - \gamma)^n) + (1 - p_{A^{t-1}}) \gamma^n
\]

(28)

Taking the first derivative of (28), we have

\[
\frac{\partial p_{At}}{\partial \gamma} = \frac{\partial p_{A^{t-1}}}{\partial \gamma} (1 - (1 - \gamma)^n) + np_{A^{t-1}} (1 - \gamma)^{n-1} - \frac{\partial p_{A^{t-1}}}{\partial \gamma} \gamma^n + n(1 - p_{A^{t-1}}) \gamma^{n-1}
\]

which can be rewritten

\[
\frac{\partial p_{At}}{\partial \gamma} = \frac{\partial p_{A^{t-1}}}{\partial \gamma} (1 - (1 - \gamma)^n - \gamma^n) + np_{A^{t-1}} (1 - p_{A^{t-1}})(1 - \gamma)^{n-1} \gamma^{n-1}
\]

(29)
Thus, (29) implies that

$$\frac{\partial p_A}{\partial \gamma} > 0 \quad \text{if} \quad \frac{\partial p_{A(t-1)}}{\partial \gamma} > 0.$$

(30)

By induction, (30) holds if

$$\frac{\partial p_{A1}}{\partial \gamma} > 0.$$

As argued previously,

$$p_{A1} = 1 - (1 - \gamma)^{\alpha} \quad \text{(31)}$$

which is increasing in γ. The result when $\gamma > 0.5$ follows from (27) and for $\gamma < 0.5$ by symmetry.

4. A ZERO-SUM IG

Here I introduce a modification to the IG which changes the payoff-structure to a single dimension. This allows the modeling of one form of a zero-sum game, which might be appropriate for certain empirical situations. To wit, this zero-sum insulation game (ZIG) is identical to the IG in all but one respect. Now, the payoffs if neither is insulating are as follows: if A’s program is in place by itself, the payoffs are (1,0); if both A and B’s programs are in place, the payoffs are $(\beta, 1-\beta)$; and if B’s program is in place by itself, the payoffs are (0,1). As before, if a player plays I, he ensures that her program is in place in every stage thereafter, but her payoffs are modified by a factor α, where $\alpha < 1$. In this case, the proofs are similar to those for Propositions 3a, 3b, 3c, and 4.

PROPOSITION A3a. In the ZIG, if α is sufficiently large, both players will play \{(I,O)\}.

PROOF. Here, the expected payoffs for A are identical to those given in (7). Thus, it is still the case that if the condition given in (9) holds, A’s best response to B playing (I,O) is (I,O). We call the cutpoint for A α_A. The difference in the ZIG is that B’s payoffs are no longer the
same as A’s around $\gamma=0.5$. While A’s cutpoint for insulation remains the same, it is necessary to reconsider the conditions under which B will insulate. We can solve for the condition under which B’s best response to (I,O) is (I,O) by noticing that since the game form is the same as in the IG except for the payoffs and reelection probabilities, we must only substitute $(1-\gamma)$ for γ and $(1-\beta)$ for β into (9) to obtain a similar condition for B. Making these substitutions, we obtain, B’s best response to A playing (I,O) is (I,O), if and only if

$$\alpha > \frac{1 - \gamma + 2 \beta \delta \gamma - \delta - \delta \gamma}{1 - \gamma - \delta + \beta \delta \gamma} = \alpha^*_B$$ \hspace{1cm} (32)$$

Since α must be greater than both α^*_A and α^*_B, we have the result:

$\{(I,O);(I,O)\}$ is an equilibrium $\iff \alpha > \max(\alpha^*_A, \alpha^*_B) = \alpha^*$ \hspace{1cm} (33)$

which is the proposition. \blacksquare

PROPOSITION A3b. In the ZIG, if α is not sufficiently large for both players to play $\{(I,O)\}$, then an equilibrium for the IG is either $\{(I,O);(NI,O)\}$ or $\{(NI,O);(I,O)\}$ if α is sufficiently large.

PROOF. The case for A is the same as in Proposition 3b. From (13a) we have

$$\alpha > \frac{1 - \delta + \delta \gamma}{1 - \delta + \delta \gamma + \delta \beta (1 - \gamma)} = \alpha^*_A$$ \hspace{1cm} (34a)$$

Thus, if $\alpha < \alpha^*_B$, and (34a) holds, then A will insulate while B will not. By substituting $(1-\gamma)$ for γ and $(1-\beta)$ for β in (34a), we can derive a similar result in which B will insulate and A will not. In particular, if $\alpha < \alpha^*_A$, A will play (NI,O) whether or not B plays (I,O) or (NI,O). Given that A plays (NI,O), B will play (I,O) if and only if
(34a) and (34b) constitute the proposition.\[\]