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Abstract

Airports are some of the largest sources of air pollution in the United States. We demonstrate that
daily airport runway congestion contributes significantly to local pollution levels and contempora-
neous health of residents living nearby and downwind from airports. Our research design exploits
the fact that network delays originating from large airports on the East Coast increase runway
congestion in California, which in turn increases daily pollution levels around California airports.
Using the component of California air pollution driven by airport congestion, we find that carbon
monoxide (CO) leads to significant increases in hospitalization rates for asthma, respiratory, and
heart related emergency room admissions that are an order of magnitude larger than conventional
estimates: A one standard deviation increase in daily pollution levels leads to an additional $1
million in hospitalization costs for respiratory and heart related admissions for the 6 million indi-
viduals living within 10km (6.2 miles) of the 12 largest airports in California. While infants and
the elderly are more sensitive to air pollution, we also find significant relationships for the adult
population. The health impacts are driven by CO, not NO2 or O3, and occur at levels far below
existing EPA mandates. Our results suggest there may be sizable morbidity benefits from lowering
the existing CO standard.
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The effect of pollution on health remains a highly debated topic. The Clean Air Act (CAA)

requires the Environmental Protection Agency (EPA) to develop and enforce regulations to protect

the general public from exposure to airborne contaminants that are known to be hazardous to

human health. In January 2011, the EPA preliminarily decided against lowering the existing CAA

carbon monoxide standard due to insufficient evidence that relatively low carbon monoxide levels

adversely affect human health. In order to assess the benefits and cost of lowering the standard,

accurate estimates are needed that link contemporaneous air pollution exposure to observable

health outcomes. However, these estimates are hard to come by as pollution is rarely randomly

assigned across individuals, and individuals who live in areas of high pollution may be in worse

health for reasons unrelated to pollution. Preferences for clean air may covary with unobservable

determinants of health (e.g., exercise) which can lead to various forms of omitted variable bias in

regression analysis. Moreover, heterogeneity across individuals in either preference for, or health

responses to, ambient air pollution implies that individuals may self-select into locations on the

basis of these unobserved differences. In both cases, estimates of the health effects of ambient air

pollution may reflect the response of various subpopulations and/or spurious correlations pertaining

to omitted variables. While recent research attempts to address the issue of non-random assignment

using various econometric tools such as fixed effects or instrumental variables, these studies often

focus on infant health at annual frequencies (Chay & Greenstone 2003, Currie & Neidell 2005).

Much less is known about short-term, daily effects of ambient air pollution on the health of the

more general population.1

We develop a novel framework for estimating the contemporaneous effect of air pollution on

health using variation in local air pollution driven by airport runway congestion. Airports are one

of the largest sources of air pollution in the United States with Los Angeles International Airport

(LAX) being the largest source of carbon monoxide in the state of California (Environmental

Protection Agency 2005). A large fraction of airport emissions come from airplanes, with the

largest aggregate channel of emissions stemming from airplane idling (Transportation Research

Board 2008). We show that airport runway congestion, as measured by the total time planes spent

taxiing between the gate and the runway, is a significant predictor of local pollution levels. Since

local runway congestion may be correlated with other determinants of pollution such as weather, we

exploit the fact that California airport congestion is driven by network delays that began in large

airports outside of California.2 A recent article in the New York Times (New York Times January

1An important exception in the economics literature is recent work by Moretti & Neidell (2011), who examine
how daily inpatient hospitalizations in Los Angeles respond to fluctuations in ozone driven by the arrival of ships
to the port of Los Angeles. There is also a literature in epidemiology which focuses on daily responses to air
pollution (see e.g. Ito, Thurston & Silverman (2007), Linn et al. (1987), Peel et al. (2005), Schildcrout et al. (2006),
Schwartz et al. (1996)). The work in our paper complements the existing epidemiological literature by focusing on
issues pertaining to measurement error, avoidance behavior, and self-selection bias in the context of susceptibility
to pollution exposure. Each of these issues are critically important to providing unbiased estimates of the causal
relationship between pollution and health. The instrumental variables approach in this paper exploits arguably
exogenous pollution shocks that are unlikely to be known by local residents, allowing us to simultaneously address
issues of measurement error and avoidance behavior.

2This relationship is well known within the transportation literature (Welman, William & Hechtman 2010). Op-
timal airplane scheduling incorporates anticipated ripple effect. For example, Pyrgiotisa, Maloneb & Odoni (Forth-
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27, 2012) provides a useful motivation:

[Airplane] delays ripple across the country. A third of all delays around the nation each

year are caused, in some way, by the New York airports, according to the F.A.A. Or,

as Paul McGraw, an operations expert with Airlines for America, the industry trade

group, put it, “When New York sneezes, the rest of the national airspace catches a

cold.”

Our analysis hence links health outcomes of residents living near California airports to changes in

air pollution driven by runway congestion at airports on the East Cast. The identifying variation

in pollution is caused by events several thousand miles away (e.g., weather in Atlanta), which is

unlikely to be correlated with unobserved determinants of health in California.

This paper makes five primary contributions to the existing literature. To our knowledge,

we are the first to show how runway traffic congestion significantly increases pollution levels in

areas surrounding airports. The increase in demand for air travel has led to large increases in

airport runway congestion (Carlin & Park 1970, Morrison & Winston 2007). Average airplane taxi

time, measured by the amount of time that an airplane spends between the gate and runway, has

increased by 23 percent from 1995 to 2007 (Bureau of Transportation Statistics 2008). This increase

in average congestion, combined with increased number of flights, translates to an aggregate increase

of over 1 million airplane hours per year spent idling on runways over this time period (Bureau

of Transportation Statistics 2008). Our estimates suggest this increase also leads to significantly

higher levels of ambient air pollution. We find that a one standard deviation increase in daily

airplane taxi time at LAX increases pollution levels of carbon monoxide (CO) by 23 percent of a

standard deviation in areas within 10km (6.2 miles) of the airport. The marginal effect of taxi time

is largest in areas adjacent to an airport or directly downwind, and the effect fades with distance.

Second, this paper develops a novel approach to estimating the contemporaneous effect of

pollution on health. Our solution to the identification problem is to exploit the fact that airports

generate a tremendous amount of local ambient air pollution on a given day, with areas downwind

of an airport experiencing much larger changes in ambient air pollution relative to areas upwind.

We leverage the quasi-experimental variation in both airport activity (as mediated through network

delays) and wind direction to estimate the causal effect of air pollution on contemporaneous health.

While there are many epidemiological studies that link pollution and health, our approach is novel

as it relies on arguably exogenous daily shocks that originated several thousand miles away and are

unknown to the local population. The instrumental variables setting allows us to simultaneously

address issues pertaining to both avoidance behavior and classical forms of measurement error, each

of which lead to significant downward bias in conventional dose-response estimates. The primary

estimation framework examines how zip code level emergency room admissions covary with these

quasi-experimental increases in air pollution stemming from airports. A one standard deviation

coming) use queueing theory to simulate how delays propagate through the system. They quote a study that found
a multiplier effect of seven, i.e., each 1 hour delay of a particular airplane leads to a combined 7 hours delay for the
airline.
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increase in pollution explains roughly one third of average daily admissions for asthma problems. It

leads to an additional $1 million in hospitalization costs for respiratory and heart related admissions

of individuals within 10km of one of the 12 largest airports in California. This is likely a significant

lower bound of the true cost as the willingness to pay to avoid a sickness might be significantly

larger than the medical reimbursement cost. Our baseline IV estimates are an order of magnitude

higher than uninstrumented fixed effects estimates, highlighting the importance of accounting for

measurement error and/or avoidance behavior in conventional estimators. We find no evidence

that airport runway congestion affects diagnoses unrelated to air pollution such as bone fractures,

stroke, or appendicitis.

Third, while most existing literature focuses on the health impacts of infants or elderly, we

are able to examine the health responses of the entire population. Consistent with the previous

literature, we find that infants as well as the elderly are most sensitive to ambient air pollution.

However, given the size of pollution shocks that are caused by daily airport congestion, we are also

able to identify effects on the general adult population aged 20-64. While the adult population is

relatively less sensitive to pollution exposure, the total number of additional respiratory problems

caused by a one-standard deviation increase in pollution is largest for the general population given

its large share of the overall population. The impact of CO pollution on respiratory problems of

infants is roughly one-fourth of the total impact and an even smaller fraction for heart related

diagnoses. Studies that focus on infants will give a lower bound on the overall impact.

Fourth, we focus on morbidity outcomes using Inpatient as well as Emergency Room admission

data. While previous research has focused predominantly on the effects of pollution on mortality,

we examine the effects of daily variation in pollution on morbidity. At lower pollution levels, fluc-

tuations in pollution might not be fatal but result in sicknesses that can be treated. In addition,

previous work using administrative hospital records has mostly relied on Inpatient data from hos-

pital discharge records. These records consist only of patients who, upon admission, spent at least

one night in the hospital. In case of respiratory distress, patients are often not admitted overnight.

We show that estimates using only Outpatient data lead to underestimates of the pollution-health

relationship.

Fifth, we estimate the contemporaneous effect of multiple pollutants simultaneously. Since

short-term fluctuations among ambient air pollutants are highly correlated, it has traditionally

been difficult to decipher which pollutant is responsible for adverse health outcomes. Our solution

to this identification problem is to rely on the fact that wind speed and wind direction transport

individual pollutants in different ways. By using interactions between taxi time, wind speed, and

wind angle from airports, we can pin down the direct effect of each pollutant, while holding the

others constant. We use over-identified models to instrument for several pollutants simultaneously.

CO is responsible for the large majority of the observed increase in hospital admissions.

Finally, we present several sensitivity checks of results that do not alter our conclusions. Since

it is possible that California airport delays impact airports on the East Coast, which then feedback

to California airports, we focus on morning airport congestion in the East. Due to the difference
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in time zones, very few flights from California reach East Coast airports before 12pm. Estimates

remain similar to our baseline estimates. We also estimate a random coefficients version of our

baseline empirical model that provides a simple test of non-random sorting behavior. We find no

evidence that individuals sort according to their relative susceptibility to air pollution, which is

likely due to the fact that we focus on very small ranges around an airport. A distributed lag model

finds no evidence for delayed impacts or forward displacement, i.e., that individuals on the brink

of an asthma or heart attack may experience an episode that would have otherwise occurred in the

next few days anyway. A Poisson model linking sickness counts to pollution levels gives comparable

estimates to our baseline linear probability model, which does not account for the truncation of

daily sickness rates at zero.

Our findings have three policy implications. First, in January 2011, the EPA preliminarily

decided against lowering the existing CAA carbon monoxide standard due to insufficient evidence

that relatively low carbon monoxide levels adversely affect human health. Our estimates suggest

that daily variation in ambient air pollution has economically significant health effects at levels

below current EPA mandates.

Second, congestion at major airports has been steadily increasing over the past 15 years, and

some researchers have argued that congestion is an unfortunate, but necessary, consequence of the

“hub and spoke” system which provides large benefits to travelers (Mayer & Sinai 2003).3 An

important potential externality of congestion beyond the value of lost time are health effects due

to increasing pollution levels. As suggested in previous research, pollution externalities associated

with congestion should be counted in a full benefit-cost analysis of congestion. Our results are com-

plimentary to the recent evidence showing automobile traffic congestion influences health outcomes

of nearby residents (Currie & Walker 2011).

Third, a significant portion of taxi time is avoidable as it is a direct consequence of an inefficient

queueing system. Most airports require airplanes to push from the gate to enter a waiting queue.

If idling planes during taxi time cause significant local air pollution, a better airplane queuing

system would require airplanes to wait at the gate until they are cleared for takeoff.4 In addition,

the increased costs of congestion externalities through adverse health of local communities suggests

that congestion or landing fees as airports, designed to limit peak runway usage, may have additional

co-benefits in the form of improved local air quality.

1 Background: Airports, Airplanes, and Air Pollution

Regulators have long been aware of the pollution generated by cars, trucks, and public transit.

There have been countless legislative policies designed to curtail harmful emissions from these

sources (Auffhammer & Kellogg 2011). However, aircraft and airport emissions have only recently

3There was a significant drop in flights and congestion after September 11th, 2001, but the increase in flights and
congestion has nearly regained its pre-9/11 trend.

4Currently, airplane operators are keen on pushing off the gate as their on-time departure statistics are based on
when they push from the gate and not when they take off from the runway. Moreover, sometimes departing planes
have to push from the gateway to make space for incoming planes.
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become the subject of regulatory scrutiny, although little has been done to reduce or manage

emissions generated by airports and air travel. While there has been some effort to curtail the

substantial CO2 emissions generated by aircraft,5 there has been relatively little effort to control or

contain some of the more pernicious air pollutants generated by jet engines. This lack of regulatory

scrutiny can be traced back to the way in which pollutants are regulated in the United States

under the Clean Air Act. Current Federal law preempts all federal, state, and local agencies

except the Federal Aviation Administration from establishing measures to reduce emissions from

aircraft due to potential interstate and international commerce conflicts that might arise from other

decentralized regulations.6

Aircraft jet engines, like many other mobile sources, produce carbon dioxide (CO2), nitrogen

oxides (NOx), carbon monoxide (CO), oxides of sulfur (SOx), unburned or partially combusted

hydrocarbons (also known as volatile organic compounds, or VOCs), particulates, and other trace

compounds (Federal Aviation Administration 2005a). Each of these pollutants are emitted at

different rates during various phases of operation, such as idling, taxing, takeoff, climbing, and

landing. NOx emissions are higher during high power operations like takeoff when combustor

temperatures are high. On the other hand, CO emissions are higher during low power operations

like taxiing when combustor temperatures are low and the engine is less efficient (Federal Aviation

Administration 2005a).7 Even though the aircraft engine is often idling during taxi-out, the per

minute CO and NOx emissions factors are higher than at any other stage of a flight (?). Combining

this with the long duration of taxi-out times during peak periods of the day, total taxiing over the

course of a day can add up to a substantial amount. Consistent with these facts, Los Angeles

International airport is estimated to be the largest point source of CO emissions in the state of

California and the third largest of NOx (Environmental Protection Agency 2005).

Airports provide a particularly compelling setting through which to estimate the contempo-

raneous relationship between air pollution and health. Not only are airports some of the largest

polluters of ambient air pollution in the United States but they also have extraordinarily rich data

on daily operating activity, detailing for each flight the length of time spent taxiing to and from

the gate before takeoff and after landing. This allows for a precise understanding of the aggregate

amount of daily runway congestion at airports. Moreover, daily runway congestion at airports

exhibits a great degree of residual variation even after controlling for normal scheduling patterns.

Much of the variation in runway congestion is driven by network delays propagating from major

airport hub delays thousands of miles away. Network delays at distant airports serve as an ideal in-

strumental variable for local pollution; the effect of a snow storm in Chicago on congestion at LAX

5The European Union has recently approved greenhouse gas measures, which oblige airlines, regardless of nation-
ality, that land or take off from an airport in the European Union to join the emissions trading system starting on
January 1, 2012.

6Currently, the Environmental Protection Agency has an agreement with the FAA to voluntarily regulate ground
support equipment at participating airports known as the Voluntary Airport Low Emission (VALE) program (United
States Environmental Protection Agency 2004).

7As a result, reducing engine power for a given operation like takeoff or climb out generally increases the rate of
CO emissions and reduces the rate of NOx emissions.
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should be orthogonal to any other confounding influences of air pollution in the Los Angeles area.

In addition, local residents are likely unaware of increases in taxi time and hence cannot engage

in self-protective behavior. Lastly, every airport has detailed weather data, allowing researchers

to exploit the spatial distribution of airport generated pollution. We can therefore estimate how

areas downwind of an airport on a given day are disproportionately affected by runway conges-

tion relative to areas upwind. Understanding this spatial variation in pollutant transport improves

the efficiency of our estimates, while also providing important tests of the validity of our research

design.

2 Data

This project uses the most comprehensive data currently available on airport traffic, air pollution,

weather, and daily measures of health in California. This data is rich in both temporal and

spatial dimension, allowing for fine-grained analysis of how daily airport congestion impacts areas

downwind of an airport on a given day. The various datasets and linkages are described in more

detail below.

2.1 Airport Traffic Data

A useful feature of a study involving airports is the detailed nature of daily flight data. The

Bureau of Transportation Statistics (BTS) Airline On-Time Performance Database contains flight-

level information by all certified U.S. air carriers that account for at least one percent of domestic

passenger revenues. It has a wealth of information on individual flights: flight number, the origin

and departure airport, scheduled departure and arrival times, actual departure and arrival times,

the time the aircraft left the runway and when it touches down. We construct a daily congestion

measure for each of the 12 major airports in California by aggregating the combined taxi time of all

airplanes at an airport. This measure consists of (i) the time airplanes spend between leaving the

gateway and taking off from the runway and (ii) the time between landing and reaching the gate. An

interesting feature of aggregate daily taxi time is the large amount of residual variation remaining

after controlling for daily airport scheduling, weather, and holidays. We relate this variation to

local measures of pollution and health in our econometric analysis. One caveat of the BTS data

is that it only includes information for major domestic airline passenger travel.8 However, as long

as international flights are not treated differently in the queueing system, congestion of national

flights should be a good proxy for overall congestion.

We limit our analysis to the 12 largest airports in California by passenger count. These airports

are (including airport call sign in brackets): Burbank (BUR), Los Angeles International (LAX),

Long Beach (LGB), Oakland International (OAK), Ontario International (ONT), Palm Springs

8In January 2005, international departures (both cargo and passenger) accounted for 8.5% of total departures,
whereas cargo (both international and domestic) accounted for 5.9% of all United States airport departures (Depart-
ment of Transportation 2009).
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(PSP), San Diego International (SAN), San Francisco International (SFO), San Jose International

(SJC), Sacramento International (SMF), Santa Barbara (SBA), and Santa Ana / Orange County

(SNA). The locations of these airports are shown as blue dots in Figure 1. Average flight statistics

at each of these airports are reported in Table A1 of the appendix. There is significant variation in

daily ground congestion at airports: the standard deviation of daily taxi time at the largest airport

(LAX) is 1852 minutes. Once we account for year, month, weekday and holiday fixed effects as

well as local weather, the remaining variation is still 891 minutes. Most of the airports are close

to urban areas as they serve the travel needs of these populations. Seven airports in California

rank among the top 50 busiest airports in the nation according to passenger enplanement (Federal

Aviation Administration 2005b).

A potential concern when linking daily airport activity to daily ambient air pollution levels is

that runway congestion in California airports may be highest in the late afternoon and evening.

This would lead us to erroneously misclassify some of the daily airport effects to the wrong day.

Appendix Figure A2 plots the distribution of aggregate taxi time within a day. Most ground

activity at airports is skewed towards the beginning of the day. We will address the sensitivity

of our estimates towards these issues of misclassification or across-day spillovers in subsequent

sections.

2.2 Pollution Data

We construct daily measures of air pollution surrounding airports using the monitoring network

maintained by the California Air Resource Board (CARB). This database combines pollution read-

ings for all pollution monitors administered by CARB, including information on the exact location

of the monitor. Data includes both daily and hourly pollution readings. We concentrate on the

set of monitors with hourly emission readings for CO, NO2, and O3 in the years 2005-2007.9 The

locations of all CO and NO2 monitors in relation to airports are shown in Figure 1.

A unique feature of pollution data is the significant number of missing observations in the

database. We therefore use the following algorithm when we aggregate the hourly data to daily

pollution readings: Our measure of the daily maximum pollution reading is simply the maximum

of all hourly pollution readings. The daily mean is the duration-weighted average of all hourly

pollution readings. We define the duration as the number of hours until the next reading.10 We

prefer this approach to simply taking the arithmetic average of all hourly readings on a day since

hourly pollution data exhibit great temporal dependance. A missing hourly observation is better

9While data exists for other pollutants in California, we limit our analysis to using CO, NO2 as they are directly
emitted by airplanes and have better coverage than PM10. O3 forms from VOC and NOx, and the latter is emitted
by airplanes. We do, however, not find that O3 pollution levels are impacted by airport congestion and hence focus
on CO and NO2. While monitor data exists as far back as 1993, our hospital data, described further in this section,
exists only from 2005 onwards.

10Readings occur on the hour of each day ranging from midnight to 11pm. If readings at the beginning of a day
(midnight, 1am, etc) are missing, we adjust the duration of the first reading from midnight to the second reading.
For example, if readings occur on 3am, 5am, and 8am, the 3am reading would be assigned a duration of 5 hours and
the 5am reading would be assigned a duration of 3 hours. By the same token, if the last reading of a day is not 11pm,
the duration of that last reading is from the time of the reading until midnight.
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approximated by the previous non-missing value than the daily average. We also keep track of the

number of observations per day. In a sensitivity check (not reported) we rerun the analysis using

only monitors with at least 20 or 12 readings per day.11

We create daily zip code pollution measures by taking the average monitor reading of all mon-

itors within 15km of a zip code centroid, weighting by the inverse distance between the monitor

and the zip code centroid.12 Summary statistics are given in Panel A of Table A2 in the appendix.

Since we have both the longitude and latitude of all airports and zip code centroids, we are able to

derive (i) the distance between the airport and a zip code, and (ii) the angle at which the zip code

is located relative to the airport. In order to leverage the spatial features of our data, we normalize

the angle between a zip code centroid and an airport to 0 if the zip code is lying to the north of

the airport. Degrees are measured in clockwise fashion, e.g., a zip code that is directly east of an

airport will have an angle of 90 degrees. The angle between an airport and a zip code allows us to

explore the link between airport emissions and pollution downwind of airports using the weather

data described next.

2.3 Weather Data

We use temperature, precipitation, and wind data in our analysis to both control for the direct

effects of weather on health (Deschênes, Greenstone & Guryan 2009) and also to leverage the

quasi-experimental features of wind direction and wind speed in distributing airport pollution from

airports. Our weather data comes from Schlenker & Roberts (2009), which provides minimum and

maximum temperature as well as total precipitation at a daily frequency on a 2.5×2.5 mile grid for

the entire United States.13 To assign daily weather observations to an airport or zip code, we use

the grid cell in which the zip code centroid is located. Summary statistics for the zip-code level

data are given in Panel B of Table A2 in the appendix.

Average wind speed and wind direction come from the National Climatic Data by the National

Oceanic and Atmospheric Administration’s (NOAA) hourly weather stations. Most airports have

weather stations with hourly readings. We construct wind direction, which is normalized to equal

zero if the wind is blowing northward and counted in clockwise fashion. If the angles of the zip code

and the wind direction are identical, the zip code is hence exactly downwind from the airport. An

angle of 180 degrees implies that the zip code is upwind from the airport. The hourly wind speed

11If a monitor has not a single reading for a day, we approximate it’s value in a three step procedure: (i) we derive
the cumulative density function (cdf) at each monitor; (ii) take the inverse-distance weighted average of the cdf for
a given day at all monitors with non-missing data; (iii) we fill the missing observation with the same percentile of
the station’s cdf. For example, if surrounding monitors with non-missing data on average have pollution levels that
correspond to the 80th percentile of their respective distributions, we fill the missing value of a station with the 80th
percentile of it’s own distribution of pollution readings. This procedure gives us a balanced panel.

12Inverse distance weighting pollution measures has been used to impute pollution in previous research. See for
example, Currie & Neidell (2005).

13There is one exception: in a set of regression models where we estimate the effect of airport weather on taxi
time we use the closest non-missing daily weather weather station data from NOAA’s COOP station data set for
each airport. This is because Schlenker & Roberts (2009) use a spatial interpolation procedure that might result in
artificial correlation between weather data at airports due to the spatial interpolation technique.
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and wind direction is aggregated to the daily level by calculating the duration-weighted average

between readings comparable to the pollution data above. The distribution of wind directions is

shown in Figure 2. Airports at the ocean predominantly have winds coming from the direction of

the ocean. For example, Santa Barbara, located on the only portion of the California coast that

runs east-west has winds blowing northward. Note again that we are measuring the direction in

which the wind is blowing, not from which it is coming. In our empirical analysis, we use this daily

variation in wind speed and wind direction to predict how pollution from airports disproportionately

impacts some zip codes more than others on a given day.

2.4 Hospital Discharge and Emergency Room Data

Health effects are measured by overnight hospital admission and emergency room visits to any

hospital in the state of California. We use the California Emergency Department & Ambulatory

Surgery data set for the years 2005-2007.14 The dataset gives the exact admission date, the zip code

of the patient’s residence (as well as the hospital), the age of the patient, as well as the primary

and up to 24 secondary diagnosis codes. An important limitation of the Emergency Department

data is that any person who visits an ER and is subsequently admitted to an overnight stay drops

out of the dataset. This is done to prevent double counting in California’s hospital admissions

records, as overnight hospital stays are logged in California’s Inpatient Discharge data. Therefore

we also obtained Inpatient Discharge data for all individuals who stayed overnight in a hospital

in the years 2005-2007. In our baseline model we focus on the sum of emergency room visits and

overnight stays in a zip code-day to avoid non-random attrition in the ER data. Focusing only on

emergency room admittance would suffer from selection bias as higher pollution levels (and more

severe health outcomes) could result in more overnight stays, yet the emergency room numbers

would actually appear smaller.

We count the daily admissions of all people in a zip code who had a diagnosis code pertaining to

three respiratory illnesses: asthma, acute respiratory, and all respiratory. Note that each category

adds additional sickness counts but includes the previous. For example, asthma attacks are also

counted in all respiratory problems. We also count heart related problems, which Peters et al.

(2001) have shown to be correlated with pollution. Finally, we include three placebos: stroke, bone

fractures, and appendicitis.15 In our baseline model, we count a patient as suffering from a sickness

if either the primary or one of the secondary diagnosis codes lists the illness in question.

We merge the zip code level hospital data with age-specific population counts in each zip code

obtained from both the 2000 and 2010 Censuses. We use the weighted average between the 2000

(weight 0.4) and 2010 (weight 0.6) counts, as the midpoint of our data is 2006. We limit our

analysis to the 164 zip codes whose centroid lies within 10km of an airport and which have at least

14The Emergency Room data was not collected prior to 2005.
15The exact ICD-9 codes are: asthma: [493, 494); acute respiratory: [460,479), [493,495), [500,509), [514,515),

[516,520); all respiratory: [460, 520); heart problems: [410, 430); stroke [430, 439); bone fractures [800, 830);
appendicitis: [540, 544).

9



10000 inhabitants.16 The total population of these 164 zip codes is around 6 million people, or

roughly one sixth of the overall population of California. Summary statistics for the zip codes in

the study are given in Panel C of Appendix Table A2. We use these age-specific population counts

to construct daily hospitalization rates for zip code. Table A3 provides sickness rates per 10 million

inhabitants for both the entire population as well as population subgroups of those over 64 years

of age and under 5 years of age.

3 Empirical Methodology

We are estimating the link between ground level airport congestion, local pollution levels, and

contemporaneous hospitalization rates for major airports in the state of California. To begin, we

consider the effects of increased levels of airport traffic congestion on local measures of pollution.

3.1 Aggregate Daily Taxi Time and Local Pollution Levels

Ambient air pollution is a function of the distance between a point source and the receptor loca-

tion, as well as many other atmospheric variables including, but not limited to, wind speed, wind

direction, humidity, temperature, and precipitation. To model the effects of increases in aggregate

airport taxi time on pollution levels, we adopt the following additive linear regression model

pzat = α1Tat +WztΦ+ weekdayt +montht + yeart + holidayt︸ ︷︷ ︸
ZztΓ

+νza + ezat (1)

where pollution pzat in zip code z that is paired with airport a on day t is specified as a function

of taxi time Tat and a vector of zip-code level controls Zzt that include weather controls Wzt (a

quadratic in minimum and maximum temperature, precipitation and wind speed).17,18 We also

control for temporal variation in pollution by including weekday fixed effects (weekdayt), month

fixed effects (montht), and year fixed effects (yeart) as well holiday fixed effects (holidayt) to limit

the influence of airport congestion outliers.19 In a sensitivity check (available upon request), we

instead include day fixed effects, i.e., one for each of the 1095 days, and the results remain robust.

Since there may be time-invariant unobserved determinants of pollution for any given zip code, all

regressions include zip code fixed effects, νza.

The parameter of interest is α1, which tells us the effect of a 1000 minute increase in aggregate

daily ground congestion on local ambient air pollution levels. Increased airplane taxiing leads to an

16The latter sample restriction excludes 0.8 percent of the total population that lives in a zip code whose centroid
is within 10km of an airport but has less than 10000 inhabitants.

17In principle a zip-code z could be paired with more that one airport a. In practice, our baseline model uses zip
codes whose centroid is within 10km of an airport. Each zip code is assigned to exactly one airport as none is within
10km of two airports.

18Results are robust to different functional forms of weather control variables. Additionally, we have estimated
models that exclude all weather controls, and the coefficients for our primary pollutant of interest (CO see below)
are not significantly affected (although the standard errors increase).

19We include fixed effects for New Year, Memorial Day, July 4th, Labor Day, Thanksgiving, and Christmas, as well
as the three days preceding and following the holiday.
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increase in airplane emissions and presumably increases in ambient air pollution. Hence, we would

expect this coefficient to be positive. Consistent estimation of α1 requires E[Tat ·ezat | Zzt, νza] = 0.

If there are omitted transitory determinants of local pollution levels that also covary with ground

congestion, then least squares estimates of α1 will be biased. This could occur, for example, if

weather adversely affected airport activity while also affecting local pollution levels.

To address this potential source of bias, we need an instrumental variable that is correlated with

changes in ground congestion at an airport but is unrelated to local levels of pollution. A natural

instrument comes from delays at major airport hubs outside California, which propagate through

the air network as connecting flights are delayed, leading to more ground congestion at airports in

California. The basic logic is that instead of smoothing out scheduling over the course of the day,

planes now arrive in more distinct blocks of time, leading to more waiting/taxiing by those planes

taking off as the runway space is shared. Specifically, we instrument taxi time at each California

airport with taxi time at major airports outside of California: Atlanta (ATL), Chicago O’Hare

(ORD), and New York John F. Kennedy (JFK).20 Appendix Figure A1 shows the location of those

airports in relation to the California airports. We estimate the following system of equations via

two-stage least squares (2SLS):

Tat = αa0 +

3∑

k=1

12∑

a=1

αakTktIa + ZatΘ+ ωat (2)

Model 1: pzat = α1Tat + ZztΓ+ νza + ezat (3)

Equation (2) regresses taxi time at a California airport on taxi time at each of 3 major airports

outside of California: Atlanta (ATL), Chicago O’Hare (ORD), and New York Kennedy (JFK). We

allow the coefficients αak in equation (2) to vary by airport a by interacting taxi time with an

airport indicator Ia. These interactions allow for heterogeneity in the impact of delays from major

airports outside of California Tkt on each of the California airports Tat. This is important as the

impact of delays in Atlanta on California airports is likely to differ across airports. Our baseline

model utilizes 36 instruments (3 airports outside California interacted with each of the 12 airports

in California). We use two-way cluster robust standard errors for inference, clustering on both zip

code and day. The two-way cluster robust variance-covariance estimator implicitly adjusts standard

errors to properly account for both spatial correlation across zip codes on a given day, which are all

due to the same network delays, as well as within-zip code serial correlation in air pollution over

time.21

The standard conditions for consistent estimation of α1 in the context of our 2SLS estimator

are that αak 6= 0 in equation (2) and E[Tkt · eazt | Zzt, νza] = 0. Subsequent sections will show that

the first condition clearly holds; taxi time at airports on the East Coast leads to large increases in

20These airports were chosen because they are among the largest airports in the country, they serve different
regions, and they are subject to different weather systems. The results are robust to different airport specifications.

21Standard errors clustering on both airport and day tend to be smaller than those using zip code and day. We
choose the latter when conducting inference, as they tend to be the more conservative of the two. Results with airport
and day clustering are available upon request.
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taxi time at California airports. The second condition requires that the error term in the pollution

equation (3) be uncorrelated with taxi time at major airports outside of California, Tkt. This

condition would be violated if ground congestion in Chicago somehow co-varied with pollution levels

in California through reasons unrelated to California airport congestion due to network delays.

While the second condition is not explicitly testable, our data and research design permit

several indirect tests. First, we show evidence that taxi time in California is predicted by weather

fluctuations at airports inside and outside of California, but the reverse is not true: weather at the

major airports in California has no significant effect on taxi time at Eastern airports. Second, we

show that network delays propagate East to West rather than West to East. Taxi time in Atlanta is

not higher due to increased taxi time in Los Angeles.22 Further sensitivity checks show that using

only taxi time before noon at Eastern Airports or directly instrumenting with observed weather

variables at airports in the Eastern United States has little impact on our baseline estimates.

We also estimate models similar to equation (3), where we interact taxi time (or instrumented

taxi time) with the distance between an airport and the monitor, i.e.,

Tat = αa0 +

3∑

k=1

12∑

a=1

αakTktIa + ZatΘ+ ωat

Model 2: pzat = α1Tat + α2Tatdza + ZztΓ+ νza + ezat (4)

The additional coefficient is α2.
23 The effect of taxi time on pollution should fade out with distance,

and we would hence expect this coefficient to be negative. The marginal effect of taxi time in model

2 is α1 + α2dza.

In a third step we also include interactions with wind direction and wind speed. The intuition

is that both wind direction and speed transport pollutants across space. Thus, holding speed

constant, areas downwind should be relatively more affected by aggregate daily taxi time relative

to areas upwind. To model this relationship formally, we let vat be the wind speed and czat the

cosine of the difference between the wind direction and the direction in which the zip code is located.

The variable czat will be equal to 1 in the case that the angle in which the wind is blowing equals

the direction in which the zip code is located, and czat will be equal to zero when they are at a

right angle (the difference is 90 degrees). We allow for different impacts upwind and downwind.

22This issue is largely addressed by the difference in time zones between our instrumental variable airports and
California. Airplane traffic in the United States generally starts around 6am in the morning and slows down in the
evening. Due to the change in time zones, a flight that leaves at LAX in the morning to go to one of the airports
does not reach of the three airports outside California before noon. On the other hand, a flight that leaves at 6am
on the East Coast will reach California by 9am.

23We instrument both Tat and Tatdaz with the taxi time outside California Tkt and Tktdaz, i.e., we now have 72
instruments.
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Allowing for all possible time-varying interactions we get:24

Tat = αa0 +

3∑

k=1

12∑

a=1

αakTktIa + ZatΘ+ ωat

Model 3: pzat = α1Tat + α2Tatdza + α3TatczatI[czat>0] + α4TatczatI[czat<0]

+α5Tatvat + α6TatdzaczatI[czat>0] + α7TatdzaczatI[czat<0]

+α8Tatdzavat + α9TatczatI[czat>0]vat + α10TatczatI[czat<0]vat

+α11TatdzaczatI[czat>0]vat + α12TatdzaczatI[czat<0]vat

+ZztΓ+ νza + ezat (5)

The new coefficients are α3 through α12.
25 The predicted signs of these coefficients are less intuitive.

While higher wind speeds can clear the air they may also carry greater amounts of the pollutant

further distances.26 Moreover, downwind areas should have higher pollution levels relative to those

areas upwind, but aircrafts usually start against the wind. To better interpret the combination of all

of these interactions, we plot the marginal effects of this particular regression model using contour

plots in subsequent sections. These contour plots provide strong visual evidence of the relationship

between daily aggregate airport taxi time, wind speed, wind direction, and local pollution levels.

3.2 Aggregate Daily Taxi Time, Local Pollution, and Health

To estimate the pollution-health association in our data we begin by assuming that the relationship

between health and ambient air pollution can be summarized by the following linear model:

yzat = βpzat + ZztΠ+ ηza + ǫzat (6)

where the dependent variable yzat is our observable measure of health in zip code z when paired with

airport a on day t.27 The remaining notation is consistent with the previous models, Zzt are the

same weather and time controls and ηza is a zip code fixed effect. Here, we have made the additional

assumption that the relationship between pollution and health outcomes (β) is homogenous within

the population. We relax this assumption in subsequent sections.

We focus primarily on respiratory related hospital admissions as defined by International Sta-

tistical Classification of Diseases and Related Health Problems ICD-9 (Friedman et al. 2001, Seaton

et al. 1995). The dependent variable yzat is the number of admissions to either the emergency room

or an overnight hospital stay where either the primary or one of the secondary diagnosis code fell in

24We also include all possible time-varying interactions between distance, wind speed and angle (up and downwind)
without taxi time as pollution levels might vary if the wind comes from a different direction.

25We are now instrumenting all 12 interaction of taxi time Tat at the 12 airports by the taxi time at the three
largest airports outside California Tkt, which results in 12×12×3 = 432 instruments.

26Recall that we are already controlling for overall wind speed in Wzt, but it has so far not been interacted with
taxi time or any other weather measure.

27Our analysis implicitly assumes that we can summarize health responses and behavior at the zip code level
(responses between zip codes are more important than responses within zip codes) and that the effect of interest, β,
is stable over time.
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one of the following admission categories: asthma, acute respiratory, all respiratory, or heart related

diagnoses. These daily zip code counts are scaled by zip code population so that the dependent

variable represents hospitalization rates per 10 million zip code residents. We also estimate models

for diagnoses unrelated to pollution: strokes, bone fractures, and appendicitis. These outcomes are

meant to serve as an important test for the internal validity of our research design. Since these

health outcomes are unrelated to pollution exposure, they should not be significantly related to

changes in pollution.

The coefficient of interest in this model is β which provides an estimate of the effect of a one

unit increase in pollution levels on daily hospitalization rates in zip code z and time t. Consistent

estimation of β requires E[pzat ·ǫzat | Zzt, ηza] = 0. The inclusion of a zip code fixed effect implicitly

controls for any time invariant determinants of local health that also covary with average pollution

levels. For example, if relatively disadvantaged households live in more polluted areas and have

poorer health for reasons unrelated to air pollution, then the zip code fixed effect will control for

this time-invariant unobserved heterogeneity. However, least squares estimation of β will be biased

if there are time-varying influences of both health and pollution (e.g., weather), and/or if there is

measurement error in pzat. Since we are proxying for pollution exposure using the average level

of pollution in a zip code on a given day, measurement error might be substantial (i.e. people’s

actual exposure to ambient air pollution might differ significantly from that which is reported by a

monitor).

Instrumental variables provide a convenient solution to the bias from omitted variables as well

as the bias introduced from measurement error in the independent variable.28 We use airport

ground congestion as an instrumental variable for local pollution levels in the following two stage

least squares regression model:

Model 1: pzat = α1T̂at + ZztΓ+ νza + ezat (7)

yzat = βpzat + ZztΠ+ ηza + ǫzat (8)

The first stage regression, equation (7), estimates the degree to which instrumented airport taxi

time T̂at predicts local pollution levels in areas surrounding airports.29

The second stage equation uses the predicted values from the first stage to estimate the impact

of local pollution variation on health. We also estimate versions of equation (7) using models that

interact T̂at with distance, wind speed, and wind direction as in equations (4) and (5), models 2

and 3, respectively.

Aside from the relationship between pollution and health, we are also interested in the “reduced

28Instrumental variables only solves the bias from measurement error in the independent variable when the mea-
surement error is classical, namely mean zero and i.i.d. (Griliches & Hausman 1986).

29We are using predicted aggregate taxi time T̂at as an instrumental variable in these regression models. Taxi
time is predicted from an auxiliary regression of California taxi time on Eastern airport taxi time using equation (2).
Wooldridge (2002, p. 117) presents a weak set of assumptions for which the standard errors of 2SLS regressions using
generated instruments are unbiased. The key assumption turns on strict exogeneity between the error term in the
structural model and the covariates used to generate the instrument in the auxiliary regression.
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form” relationship between health outcomes and taxi time. As such, we estimate models of the

following form:

yzat = α1T̂at + ZztΠ+ ηza + ǫzat (9)

These “reduced form” estimates are directly policy relevant; namely, how does aggregate daily taxi

time impact the health of nearby residents? Understanding the degree to which variation in airport

runway congestion directly impacts health has implications for both managing congestion through

either demand pricing mechanisms (e.g., a congestion tax) or a more efficient runway queuing

system.

3.3 Health Outcomes: Alternative Models

We supplement our baseline health regressions with several alternative models, exploring model

specification and model dynamics in more detail. These various regression models are described in

more detail below.

3.3.1 Health Outcomes: Dynamic Effects and Forward Displacement

By looking at the daily response of health outcomes to contemporaneous pollution shocks, we may

be neglecting important dynamic effects of pollution and health. For example, contemporaneous

exposure to air pollution may have lagged effects on health, leading people to seek care one or

two days after the initial pollution episode. Our contemporaneous regression models might miss

these important lagged impacts. Alternatively, health estimates may be driven by various forms

of forward displacement. Short-term spikes in pollution might lead individuals on the brink of an

asthma or heart attack to experience an episode that would have otherwise occurred in the next

few days anyway. Such behavior would overestimate the dose-response function as an increase in

hospitalization rates is followed by a decrease once pollution levels subside. We explore the dynamic

effects of pollution on health by estimating the following distributed lag model:

yzat =

3∑

k=0

βkpza(t−k) + ZztΠ+ ηza + ǫzat (10)

Instrumented pollution pzat is again obtained using either model 1, 2, or 3 from previous sections. In

the case of forward displacement, the spike in hospital admissions should be followed by a decrease in

admissions, and hence
∑3

k=0 βk < β, where the latter β comes from the baseline, contemporaneous

regression. In a sensitivity check (available upon request) we include 6 lags and 3 leads.

3.3.2 Health Outcomes: Heterogeneity and Self-Selection

Our baseline models rely upon the relatively unattractive assumption that the relationship between

pollution and health is the same for everyone in the population. If there is heterogeneity in a person’s

relative susceptibility to pollution (or in how people respond to adverse health outcomes), then
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people may sort themselves into locations based on these observed or unobserved differences. This

heterogeneity may manifest itself through access to medical care or through biological differences in

the pollution-health relationship among certain segments of the population. Previous research (e.g.,

Chay & Greenstone (2003)) and results presented in subsequent sections of this paper suggest that

health effects differ by observable characteristics of the population. If people sort themselves based

on this underlying heterogeneity, then our estimates may identify the average effect of pollution on

health for a nonrandom subpopulation in the data (Willis & Rosen 1979, Garen 1984, Wooldridge

1997, Heckman & Vytlacil 1998).

We address these issues in various ways. In a sensitivity check, we limit our estimates to

people 65 and older who have guaranteed health insurance in the form of Medicare. Thus, any

heterogeneity in hospitalization should no longer be driven by access to health insurance. Another

concern is that the severity of the particular health shock determines whether a person will seek

emergency care. We therefore also include heart problems as a category, which are severe enough

that patients will seek medical help independent of their insurance or financial situation. There

may also exist significant heterogeneity based on unobservable characteristics. Previous research

suggests that individuals engage in avoidance behavior on days where pollution is predicted to be

high (Neidell 2009), which implies there is likely heterogeneity in β as well as correlation between

β and pzat. Here we develop a framework to test whether selection on unobserved heterogeneity

leads to bias in our estimates.

We draw upon the control function approach to the correlated random coefficient model (Garen

1984), which is a generalization of the 2SLS approach to the random coefficients model under

assumptions outlined below (Wooldridge 1997, Card 1999). An attractive feature of the control

function model is that it provides an unbiased estimate of the average treatment effect for the

population while also providing a straightforward test as to the relative importance of self-selection

bias for our estimates.30

Following Card (1999), we can write our model in a random coefficients framework, whereby the

health outcome, yzat, is related to pollution, pzat, through a linear regression model with random

slope coefficient βz:

yzat = β̄pzat + (βz − β̄)pzat + ZztΠ+ ηza + ǫzat (11)

where β̄ denotes the mean of βz, and E[pzat · ǫzat | Zzt, ηza] 6= 0.

Garen (1984) derives a set of assumptions whereby estimation of the random coefficients model

yields a consistent and unbiased estimate of β̄.31 Specifically, one needs an instrumental variable

Tat (in our case taxi time) such that conditional on the instrument, βz is symmetrically distributed

(E[(βz− β̄)|Tat,Zzt, ηza] = 0). The first stage equation relating aggregate daily taxi time to ambient

air pollution is the same as before: pzat = α1Tat+ZztΓ+νza+ezat. The primary assumptions used

30This test for self-selection bias has seen wide application in the fields of labor economics and applied econometrics.
In the context of environmental economics, Chay & Greenstone (2005) use this approach to test for self-selection bias
in the context of peoples’ marginal willingness to pay for clean air.

31Alternative assumptions necessary to recover unbiased and consistent estimates of β̄ are derived in Wooldridge
(1997) and Heckman & Vytlacil (1998).
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when estimating this model are the standard conditional independence assumptions pertaining to

the first and second stage equations, namely E[ezat|Tat,Zzt, ηza] = 0 and E[ǫzat|pzat, Tat,Zzt, ηza] =

0. We also adopt the assumption in Garen (1984) that the conditional expectation of βz is linear

in pzat and Tat, i.e., E[(βz − β̄)|pzat, Tat,Zzt, ηza] = µppzat + µTTat. Using these assumptions, one

can write the conditional expectation of yzat as

E[yzat|pzat, Tat,Zzt, ηza] = β̄pzat + ZztΠ+ ηza + γ1êzat + γ2(pzat · êzat) (12)

which implies that we can recover consistent estimates of β̄ using control functions for the last

two parameters, respectively êzat and pzat · êzat, where êzat is simply the residual from the first

stage regression of pzat on Tat.
32 The advantage of using the control function approach, relative

to the approaches outlined in both Wooldridge (1997) and Heckman & Vytlacil (1998), is that the

parameter estimate of the second control function (γ̂2) provides an implicit test as to the relative

importance of self-selection bias in our model. This model is simply a more general version of

2SLS, whereby the last term is not normally accounted for in a 2SLS model. Since the two control

functions are generated regressors from a first stage regression, we use a two-step, block-bootstrap

procedure to obtain our standard errors. Specifically, we sample zip codes with replacement and

estimate the full two-stage model for each of the 100 bootstrap draws.33

3.3.3 Health Outcomes: Poisson Model

Since our dependent variable is measured as hospital visits in a given zip code day (before we

convert it to a sickness rate), we also estimate regression models that account for the non-negative

and discrete nature of the data. Specifically, we use a conditional (“fixed effects”) quasi-maximum

likelihood Poisson model (Hausman, Hall & Griliches 1984, Wooldridge 1999).34 To account for the

endogeneity of pollution exposure, we generalize the standard conditional Poisson model into an

instrumental variables setting. To do this, we adopt a control-function approach to the conditional

Poisson model (see e.g., Wooldridge (1997) and Wooldridge (2002)), whereby we include the residual

(êzat) from our first stage regression (i.e., the effect of taxi time on pollution) in our regression

equation of interest:

E[szat|pzat, Tat,Zzt, ηza] = ηza exp (βpzat + γ1êzat + ZztΠ) (13)

32See Card (1999) for details of the derivation.
33Here, the block-bootstrap is equivalent to cluster robust standard errors at the zip code level. We forego two-

way clustering for the random coefficients model presented here to limit the computation burden. In principal it is
possible to block-bootstrap standard errors accounting for two-way clustering at the cost of a substantial increase
in computer time. See for example, Cameron, Gelbach & Miller (2011). In addition, as we discuss in subsequent
sections, clustering standard errors by zip code gives us comparable results to two-way clustering by zip code and
day.

34The Poisson model is generally preferred to alternative count data models, such as the negative binomial model,
because the Poisson model is more robust to distributional misspecification provided that the conditional mean is
specified correctly (Cameron & Trivedi 1998, Wooldridge 2002).
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where szat are sickness counts (no longer rates), pzat is the observed pollution level in a county, and

êzat is the residual from one of the first-stage regression of pollution on taxi time using model 1, 2,

or 3. The fixed effect model allows the marginal effect of pollution to differ by zip code. The model

accounts for the fact that zip codes have different number of residents through the fixed effects ηza.

While including the first-stage error purges the estimates of the various selection biases outlined

above (Wooldridge 2002, p. 663), the standard errors need to be corrected for the variation coming

from the first stage estimation. To account for the first stage sampling error in the ezat, we again

bootstrap the regression using a block-bootstrap procedure where we randomly draw the entire

history of a zip code with replacement.

4 Empirical Results

4.1 Aggregate Daily Taxi Time and Local Pollution Levels

We start by examining the effect of airport congestion on pollution levels in surrounding areas.

Since a significant portion of these pollutants are emitted during airplane taxiing (Transportation

Research Board 2008), we begin by examining the impact of aggregate daily taxi time on ambient

CO and NO2 levels surrounding airports. Taxi time is instrumented using runway congestion at

the three major airports outside of California.35 Appendix Table A4 gives the first-stage results

of columns (1a) and (2a). There is one noteworthy result: For major hubs in California, an

increase in taxi time at East Coast airports increases taxi time as delays propagate through the

system. On the other hand, the sign reverses for smaller airports: an increase in taxi time at

East Coast airports decreases local taxi time. As Pyrgiotisa, Maloneb & Odoni (Forthcoming)

point out, propagation through the system can have “counter-intuitive results.” If planes bunch

up at one hub, the effects on close-by commuter airports can be the opposite as the connectors

now arrive more evenly spread. The fact that congestion increases at some, but not all, airports

due to network delay provides evidence that the research design is absorbing up common shocks.

Table 1 presents regression estimates using the specifications outlined in equation (3), (4), and

(5), presented in columns a, b, and c, respectively. Each column represents a different regression,

where the dependent variable in the columns (1a)-(1c) is the daily mean CO measured in parts per

billion (ppb). Columns (2a)-(2c) report regression estimates for daily mean NO2, while columns

(3a)-(3c) report estimates for ozone O3. Taxi time is reported in thousands so that the coefficients

in Table 1 report the marginal effect of a 1000 minute increase in taxi time on local pollution levels.

All regressions report robust standard errors, clustering on both zip code and day.36

35OLS estimates are presented in Appendix Table A5.
36The heavily over-identified models from equation (5) impose significant computational burdens when estimating

IV models containing two-way, cluster-robust standard errors. To circumvent this issue, we report the results from
running the first stage and then using the predicted values in the second stage without accounting for the fact that
we are using generated regressors in the second stage. To understand the likely magnitude of this bias, Appendix
Table A6 reports two sets of standard errors for equations (3) and (4): (i) the IV results; and (ii) running the first
stage and using the predicted values in the second stage with two-way clustered errors but no other adjustments.
The results suggest that the standard errors from the IV are quite similar to those from manual 2SLS.
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Column (1a) suggests that a 1000 minute increase in taxi time increases ambient CO concen-

trations in zip codes within 10km of an airport by 40.37ppb (an 8% increase relative to the mean,

or 13% of the day-to-day standard deviation). Since the standard deviation of taxi time at LAX

in Table A1 is 1852, a one-standard deviation increase in taxi time leads to 0.23 standard devia-

tion increase in CO pollution of the zip codes around LAX. Column (1b) of Table 1 includes an

interaction of taxi time with distance to the airport. The non-interacted taxi time coefficient now

reports the effect of airplane idling on pollution levels directly at the airport. The point estimate

implies that a one standard deviation increase in taxi time at LAX leads to 0.32 standard deviation

increase in CO levels in areas adjacent to LAX. The interaction term shows how this effect decays

linearly with distance.

Lastly, column (1c) reports the coefficients from the estimated version of equation (5) that

interacts taxi time with wind speed and wind angle from an airport. The F-test for the joint

significance of these coefficients is given in the last two rows of the table and shows that they are

highly significant. Since individual coefficients are difficult to interpret, we plot the marginal effect

of an extra 1000 minutes of taxi time for four wind speeds in the first row of Figure 3. Wind speeds

increase from left to right. The color indicates the marginal impact ranging from low (blue) to

high (red). If a zip code is directly downwind, it is on the positive x-axis, while areas upwind are

on the negative x-axis. Areas downwind are more affected by taxi time than areas upwind. For

the very highest wind speeds, the largest marginal impact of taxi time can be found just upwind

from the centroid of the airport (although the average marginal impact remains highest downwind).

This is possibly due to the fact that airplanes start against the wind and mostly line up in the

opposite direction, i.e., the direction in which the wind is blowing. Local wind is highly predictive

of congestion. When local wind is strong and the average local taxi time is high and the queue is

long, an additional unit of congestion due to network delays will hence “add” an additional plane

that is idling upwind from the airport centroid. For example, the four runways of LAX are between

2.7km and 3.7km long, which is significant as we are examining monitors within 10km of the airport

centroid.

Columns (2a)-(2c) of Table 1 give estimates pertaining to the effect of taxi time on NO2 levels.

The results are comparable to those from CO, although the linear decrease in distance from the

airport is not significant. A one standard deviation increase in taxi time at LAX increases NO2

concentrations by roughly 1ppb, or 10% of the day-to-day standard deviation. The second row

of Figure 3 shows again that downwind areas are much more impacted than upwind areas. Both

Table 1 and Figure 3 show that the relative impact of NO2 is different than CO: the range of

marginal impacts for CO in Figure 3 is between -90% and +50% relative to the average impact

from column (1a) in Table 1. In contrast, the marginal effect of taxi time on NO2 varies between

-100% and +100% relative to the average effect from column (2a) of Table 1. The spatial pattern

is also slightly different. In subsequent sections, we use these relative differences in pollutant

dispersion to jointly estimate the effect of both CO and NO2. Recall from Section 1 that CO

emissions are higher during low power operation, while NOx is higher during high power operation.
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Larger wind speeds require more thrust during takeoff and hence change the mix of CO and NOx

emissions.

Finally, columns (3a)-(3c) replicate the same analysis for ozone (O3), a pollutant that is not

directly emitted from airplanes.37 The results in Table 1 suggest that airport taxi time has little

significant impact on ozone levels, although some of the interaction terms are significant. The

significance of the interaction terms likely stems from the fact that airplanes also emit VOC’s during

low power engine operation, where VOC’s are precursors to ozone formation. In the remainder of

the analysis we focus on CO and NO2, the two criteria air pollutants for which airplanes are large

emitters, while acknowledging that we may be picking up the health effects of other pollutants that

are correlated with airplane emissions.

Our baseline pollution estimates presented above come from models in which airport taxi time

is instrumented with taxi time at large airports outside of California. We instrument taxi time

because delays and runway congestion might be correlated with local weather, which in turn might

impact pollution levels. In addition, there is likely measurement error in our taxi time variable as it

only includes domestic, commercial flight activity. While we control for weather in our regressions,

there might be unobserved weather (or other) variables that jointly impact both pollution and taxi

time. Appendix Table A5 replicates the baseline IV analysis of Table 1 using local taxi time at

California airports, which is not instrumented. The estimated effect is generally half as big for

CO and NO2. The smaller OLS estimates are consistent with adverse weather (e.g., precipitation)

causing both airport delays and at the same time reducing ambient air pollution. Alternatively,

these results could be driven by the well known attenuation bias stemming from measurement error

in fixed effects models. In the remainder of the paper we rely on instrumented taxi time stemming

from network delays.

We use taxi time at three major airports in our baseline regressions: Atlanta (ATL), Chicago

(ORD), and New York (JFK). Appendix Table A6 presents first-stage F-statistics if we instrument

taxi time at California on up to four airports outside of California. Recall that we allow the

coefficients to vary by airport, as network congestion will have different absolute effects on California

airports. Irrespective of whether we use 1, 2, 3, or 4 airports outside of California, the F-statistic

is well above 10. In our baseline model we use three airports that cover weather patterns in three

regions of the Eastern United States: Southeast (Atlanta), Midwest (Chicago), and Northeast (New

York JFK), and the first-stage F-stat is 42.82. The fourth largest airport outside of California is

Dallas Fort Worth (DFW). While results are not particularly sensitive to including DFW, we

exclude it from our baseline specifications as it is significantly closer to California airports and thus

may be more endogenous than the other three airports. Dallas Fort Worth may be delayed because

California airports are delayed.

Reverse causality is less of a concern for the other three airports: A flight that leaves a California

airport at 6am will not reach Atlanta, Chicago, or New York until roughly noon due to the change

37Ozone is formed through a complicated chemical reaction between both nitrogen dioxides and VOC’s in the
presence of sunlight.
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in time zones. Table A7 in the appendix tests for reverse causality directly by regressing taxi

time at an airport on the eight weather measures we generally include as controls: a quadratic in

minimum and maximum temperature, precipitation, as well as wind speed. The column heading

gives the airport at which the congestion is measured while the row indicates the airport at which

the weather variables are measured.38 The table reports p-values of a hypothesis test pertaining to

the joint significance of the weather variables. The diagonal is highly significant as local weather

measures impact airport taxi time. However, while weather at the eastern airports (ATL, ORD, or

JFK) sometimes impacts taxi time at the two largest airports in California (LAX and SFO), the

reverse is not true. This is consistent with weather at Eastern airports causing local network delays

that propagate through the airspace and impact taxi time in California. The reverse direction

does not hold. California airports do not affect East Coast airports on the same day. This result

is not simply an artifact of there being less weather variation in California, as weather at LAX

significantly impacts taxi time at SFO.

We have also run two sensitivity checks to further rule out endogeneity through reverse causality,

the results of which are reported in the subsequent section on health section. First, we only

utilize the combined taxi time between 5am and noon at the three major Eastern airports to rule

out California feedback effects. This reduces the F-stat in model 1 from 42.82 to 28.50, but the

results remain similar to baseline estimates. Second, instead of using taxi time at the three major

Eastern airports, we use the eight weather variables at each of these airports. Since this effectively

increases the number of instruments by a factor of eight, we no longer estimate model 3 (which had

432 instruments to begin with). The F-statistic for the weather-instrumented regression is 22.31.

Again, results remain similar to our baseline estimates but the standard errors in the second stage

increase. The model with the highest F-statistic is the one which uses the overall taxi time at

each of the three large East Coast airports as instrumental variables. Going forward we instrument

using the overall measure.

Finally, since the variation in pollution due to delays outside of California should be uncorrelated

with weather in California, we have estimated models (not reported) that exclude California weather

controls altogether. Reassuringly, our baseline estimates for the most important pollutant (CO, see

below) are similar whether we include or exclude California weather controls, but the error terms

increase.

To put the magnitude of these effects into perspective, it is useful to consider the current

ambient air standards in place for CO as regulated by the EPA under the Clean Air Act. The

current one hour carbon monoxide standard specifies that pollution may not exceed 35 ppm (or

35000 ppb) more than once per year. California has their own CO standard which is 20ppm. A

one standard deviation increase in LAX airplane idling (1852 minutes) translates into an 75 ppb

increase (40.37 × 1.852) in carbon monoxide levels for areas within 10km of LAX using estimates

from column (1a) of Table 1. Adding this number to the average daily maximum CO level at zip

38If we pair airport taxi time with weather from another airport, we also include the local weather measure as
control. The local weather measures are not included in the joint test of significance.
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codes from Panel A of Table A2 (1235 ppb), the estimated increase in pollution concentrations is

far below the current EPA standard. Similarly, for NO2, the current EPA 1-hour standard is 100

ppb. Using estimates from column (2a) of Table 1, a standard deviation increase in LAX taxi time

would lead to a 1ppb increase in NO2 levels. Evaluated relative to the average daily maximum

NO2 levels of 35.5 ppb, these are again well below the ambient criteria standard. Note, however,

that the maximum of the maximum daily NO2 levels is above the standard as some areas are out of

attainment. The remaining sections estimate the social costs of these congestion related increases

in ambient air concentrations by focusing on heath outcomes of the populations most affected by

these emissions.

4.2 Effects of Taxi Time on Local Measures of Health

We begin by investigating the “reduced form” health effects of airports, relating aggregate daily

taxi time to local measures of health. Namely, how does variation in airport congestion predict

local health outcomes? Table 2 presents the results from a regression relating daily measures of

airport taxi time to local hospital admissions for the overall population as well as two susceptible

subgroups: people below 5 as well as people ages 65 and above. The dependent variable is measured

as the daily sum of hospital and emergency room visits for persons living in a particular zip code

scaled by the population (per 10 million individuals) in that particular zip code. The regressions are

weighted by zip code population size, and taxi time is instrumented using taxi time at three major

airports in the East. The estimated coefficient on the taxi time variable corresponds to the increased

rate of hospitalizations per 10 million individuals in a zip code for an extra 1000 minutes of taxi

time. Using various diagnosis codes, we examine the impact of taxi time on asthma, respiratory,

and heart related admissions separately. As a falsification exercise, we also estimate the incidence

of taxi time on strokes, bone fractures, and appendicitis rates. The reported standard errors are

clustered on both zip code and day.

For the overall population (Panel A), all respiratory sickness rates as well as heart problems are

significantly impacted by taxi time, while the placebo effects for stroke, bone fractures, and appen-

dicitis are not significantly affected. Results become larger in magnitude for the at-risk age groups.

For the population 65 years and above, the incidence of stroke and bone fractures is marginally

significant at the 10% level. This may be do to statistical chance or may be explained by the fact

that senior citizens may also be more susceptible to sicknesses that covary with one another (e.g.,

a respiratory problem might make them fall and break a bone). Additionally, Medicare provides

doctors implicit incentives to add additional diagnosis codes to receive higher reimbursement rates.

Consistent with this explanation, models for which the dependent variable is measured only using

the primary diagnosis code, the placebo effects for 65 and older are no longer significant.

4.3 Hospital Admissions and Instrumented Pollution Exposure

Results thus far have shown that aggregate airplane taxi time generates variation in pollution levels

of nearby communities. We exploit this variation to examine the relationship between pollution and
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health explicitly. Table 3 summarizes regression results for various pollutants and illnesses using a

variety of traditional econometric specifications. Each entry corresponds to a different regression,

where the dependent variable is measured as hospital admission rates, and the independent variable

is the daily mean ambient pollution concentration in a particular zip code. As before, regression

estimates are weighted by zip code population and standard errors are clustered on both zip code

and day.39

The first row within each panel presents estimates from a pooled OLS version of equation (6)

without any controls Zzt, which suggests that increased ambient air concentrations lead to adverse

health outcomes for respiratory and heart problems. Since various pollutants are often correlated

with one another, these estimates should be interpreted with caution, as the pollutant of interest

will proxy for other correlated air pollutants. Each consecutive row adds more controls. The the

second row uses time controls (year, month, weekday, and holiday fixed effects), and the third row

additionally adds weather controls (quadratic in minimum and maximum temperature, precipita-

tion, and wind speed). To control for unobserved, time-invariant determinants of health, the fourth

row of Table 3 reports regression estimates from a model using zip code fixed effects. The model is

identified by examining how within zip code changes in pollution are related to hospitalization rates

of that particular zip code. Again, pollution is often strongly correlated with health, although the

estimates in the fourth row are usually smaller than those in the first three. These smaller point

estimates are consistent with time-invariant omitted variables introducing bias into the estimates

from rows one through three. Alternatively, classical measurement error in the pollution variable

may lead to significant attenuation bias in fixed effects models (Griliches & Hausman 1986), and

this may be responsible for the smaller point estimates in the last row.

Aside from attenuation bias, fixed effects models may also suffer from biases introduced by any

unobserved, time-varying determinants of both pollution and health (e.g., weather). To explore this

issue further, Table 4 presents instrumental variable estimates of the pollution-health relationship,

using instrumented aggregate airport taxi time as an instrumental variable for daily mean pollution.

Table 4 presents results for both the overall population in Panel A as well as children below 5 in

Panel B and people aged 65 and above in Panel C.40 The three rows (labeled model 1-3) use (i)

taxi time, (ii) taxi time interacted with distance, and (iii) taxi time interacted with distance, wind

speed, and wind direction, respectively. These are the specifications outlined in equation (3), (4),

and (5) above.

The estimates in Table 4 are usually an order of magnitude larger than the OLS, fixed-effects

estimates from Table 3. To put the magnitudes into perspective: The average asthma sickness

rate for the overall population is 339 per 10 million inhabitants (Panel A1 and A2 of Table A3).

The asthma coefficient for CO (model 1) in Table 1 implies that a one standard deviation increase

39Unweighted regressions yield similar results and are available upon request.
40Results for the two remaining groups: children ages 5-19 and adults ages 19-64 are given in Appendix Table A8.

Children between 5 and 19 years of age show no sensitivity to pollution shocks. Conversely, the estimated dose-
response for adults are roughly comparable to the baseline estimates, which is not surprising since they are the
largest share of the overall population.
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in CO pollution leads to an additional 0.341×368 = 125 asthma attacks per 10 million people,41

which is 37% of the daily mean.42 This suggests that fluctuations in air pollution are a major cause

of asthma related illnesses. For heart related problems, the relative magnitude is 20% of the daily

mean.

Model 2 and 3 in Table 4 estimate over-identified models instrumenting pollution with both

taxi time and taxi time interactions. While estimates in model 2 are similar to those from model 1,

estimates from model 3 are generally smaller. The reason for the difference in magnitudes between

models 2 and 3 is not entirely clear. There are several possible explanations. First, recall that

model 3 uses distance as well as wind direction and wind speed. Marginal impacts of airport

congestion vary greatly across space as shown in Figure 3, much more than in a model that only

includes distance. While we know the exact location of a monitor, we only know the zip code of a

person’s residence, and the person might be staying outside the home zip code for work. This will

induce great measurement error. Strikingly, model 3 in Panel B gives comparable point estimates

to model 1 and 2 for children under the age of 5, which are more likely to be at home or in a

close-by day care. Second, another possible explanation is the well-known bias of 2SLS estimators

when instruments are weak and when there are many over-identifying restrictions (Bound, Jaeger &

Baker 1995). While the results from Table 1 suggest that model 3 is a strong first-stage predictor

of local pollution levels with a F-statistic that is 12 for CO pollution and 6 for NO2 pollution,

the first stage is not as strong as models 1 and 2, and the model is highly over-identified with

12 excluded instruments. Bound, Jaeger & Baker (1995) show how the bias of 2SLS increases in

the number of instruments and decreases in the strength of the first stage. The bias of 2SLS in

the case of weakly identified or over-identified models is towards the OLS counterpart. This is

consistent with model 3 estimates in Table 4 being smaller than both model 1 and 2 but still above

the OLS estimates. Table A9 in the appendix estimates models 2 and 3 using Limited Information

Maximum Likelihood (LIML), which is median-unbiased for over-identified, constant-effects models

(Davidson & MacKinnon 1993). Results remain similar. Finally, a third alternative explanation

for why model 3 gives lower point estimates is that the hourly wind data represent snapshots of

the wind speed and direction and include significant measurement error. Although, this is at odds

with the fact that we find such significant spatial patterns in the pollution regressions.

Panels B and C of Table 4 present estimates for children and senior citizens. While the sensitivity

is higher, so are average sickness rates. In relative terms, a one standard deviation increase in CO

pollution now causes a 40% increase in asthma cases for children under 5 compared to the average

daily mean. On the other hand, a one standard deviation increase in CO pollution causes a 26%

increase in heart problems for people 65 and above. The higher absolute sensitivity in Panel B and

C suggests that there may exist significant heterogeneity in the population response to ambient

41Panel A of Table A2 in the appendix shows that the standard deviation for CO is 368.
42This back-of-the-envelope calculation increases the pollution level in each zip code by the average overall standard

deviation of pollution fluctuations. Moreover, the average sickness rate is not population weighted. In a later part, we
increase pollution in each zip code by the zip-code specific standard deviation in pollution fluctuations and calculate
the population-weighted average sickness count. The relative impact decreases to 30% of the daily mean under the
linear probability model and 33% under a Poisson count model.
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air pollution exposure. Since the population aged 65 and older has guaranteed access to health

insurance through Medicare, they may be more inclined to visit the emergency room or hospital

relative to the rest of the population, leading to larger estimated effects. On the other hand, the

relative magnitude compared to average sickness rates are only slightly larger than for the overall

population.

Columns (3)-(5) of each panel includes results for one of three placebos: strokes, bone fractures,

and appendicitis. Both strokes and appendicitis are severe enough that people should go to the

hospital. None of the results are significant for the overall population in Panel A. Consistent with

the reduced form evidence in Table 2, some of the coefficients in Panel C are significant at the

10% level. In Appendix Table A10 we replicate the analysis using only the primary diagnosis code.

None of the placebo regressions remain significant. However, since we are interested in the overall

effect of pollution on hospitalization rates, our baseline models continue to count total sickness

counts for both primary and secondary diagnoses.

Appendix Table A11 further investigates the sensitivity of our IV estimates to different choices

of instrumental variables. As a point of comparison, Panel A replicates the baseline results of

Table 4 for all ages. Panel B instruments for pollution using only the taxi time between 5am and

noon at Eastern airports to rule out endogeneity through reverse causality. The results remain

robust to this change. Panel C goes one step further and instruments for taxi time at California

airports using only weather measures at the three major airports in the Eastern United States.

While the point estimates remain comparable, the standard errors generally increase.43

4.3.1 Inpatient versus Outpatient Data

Traditionally, studies have relied on Inpatient data sets to examine health responsiveness to various

external factors such as pollution. One limitation of such data is that a person only enters the

Inpatient data set if they are admitted for an overnight stay in the hospital. Many ER visits result

in a discharge the same day and hence never result in an overnight stay. Starting in 2005, California

began collecting Outpatient (Emergency Room) data. To better understand the differences between

these two datasets as well as compare our results to those from the previous literature, we replicate

the analysis using sickness counts from only the Inpatient data in Table A12 of the appendix. By

the same token, Table A13 of the appendix only uses the Outpatient data.44 Not surprisingly, there

is a significant relationship between pollution and heart problems (column 2) in the Inpatient data

for patient ages 65 and above (as these conditions usually require an overnight stay), but no or

very limited sensitivity of asthma or overall respiratory illnesses (column 1a and 1c) to pollution.

Conversely, the Outpatient (ER) data shows a much larger sensitivity of respiratory problems

to changes in pollution, even among the general population. These results show the importance

of Outpatient (ER) data when studying the morbidity effects of ambient air pollution on health

43We do not estimate model 3 using weather variables as it would include 3456 instruments.
44Patients that enter the ER and are later admitted for an overnight stay are dropped from the ER data to avoid

double counting.
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outcomes.

4.3.2 Jointly Estimating the Effect of Ambient Air Pollutants

A common challenge in studies linking health outcomes to pollution measures is that ambient air

pollutants are highly correlated. It is therefore difficult to determine empirically which pollutant

is the true cause of any observed changes in health. Our research design provides one possible

solution to the identification problem. Wind speed and wind direction differentially affect both CO

and NO2 dispersion patterns. Moreover, the rate of CO and NOx emissions depend on the thrust

produced by the engine, and higher wind speeds require more engine thrust. Wind speed hence

impacts both the rate at which pollutants are produced and how they disperse. Table 5 estimates

the joint effect of both CO and NO2 on health using our first stage model with wind speed and wind

direction interactions (model 3).45 Table 5 shows that the coefficient for CO remains significant

and is comparable in size to our baseline estimates from Table 4. This is true for all age groups,

including children below 5, where model 3 gave comparable estimates to model 1 and 2. Conversely,

the coefficients on NO2 sometimes switch sign and are mostly insignificant. We see this as evidence

that returns from regulating CO exceed those from regulating NO2.

It is also unlikely that ozone O3 is causing the observed relationship. Table A14 in the appendix

estimates the relationship separately for the summer (April-September) and the winter (October-

March). Ozone is higher during the summer, while CO and NO2 are higher during the winter.

The observed health effects are larger and more significant during the winter time when ozone is

not a big problem. The fact that the estimated coefficients are larger when pollution levels are

larger is consistent with increasing marginal impacts of pollution. However, the standard errors are

also much larger for the summer, especially in the case of acute respiratory problems and overall

respiratory problems. This is not surprising, because other pollutants like ozone also impact health

outcomes, which will be part of the error term.

4.3.3 Temporal Displacement and Dynamics

Our baseline regression models examine only the contemporaneous effect of pollution on health.

Contemporaneous estimates may lead to underestimates of the total effects of air pollution on health

if health effects respond sluggishly to changes in pollution. Conversely, estimates may overstate the

hypothesized effect due to temporal displacement: if spikes in daily pollution levels make already

sick people go to the hospital one day earlier, contemporaneous models overestimate the true effect

associated with permanently higher pollution levels. If temporal displacement is important, the

contemporaneous increase in sickness rates should be followed by a decrease in sickness rates in

subsequent periods.

We investigate both of these issues by estimating a distributed lag regression model, including

three lags in the pollution variable of interest. Table 6 presents the distributed lag results of

45It is not possible to include both CO and NO2 measures in our baseline model 1 as they are both linear functions
of the same instrument and thus perfectly collinear.
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pollution for the overall population. We present individual coefficients as well as the combined

effect (the sum of the four) in the last row of each panel. To preserve space, we only list the results

for the sickness categories that are impacted by changing pollution levels. Since regulatory policy

is concerned with the health effects of a permanent change in pollution, we focus on cumulative

effects of the model over the estimated 4 day horizon. The cumulative effect is slightly larger

than the comparable baseline results in Table 4. This might be because some individuals delay

hospital visits, although the exact dynamics are hard to determine empirically given the lack of

significance of the individual coefficients. We have also experimented with different leads/lags

(available upon request). For example, in a model with 3 leads and 6 lags, the sum of the six lags

and contemporaneous terms are similar in magnitude. The three leads, on the other hand, are not

jointly significant.

4.3.4 Random Coefficient Estimates of Self-Selection Bias

The baseline health results from Table 4 show a substantial amount of heterogeneity in health

responsiveness to air pollution; those over 65 years of age and below five years of age show larger

health responses. There may also be other forms of heterogeneity in the dose-response function

unobserved to the econometrician. In either case, if this heterogeneity is correlated with ambient

air pollution exposure, our estimates will be biased by self-selection.

This type of selection is plausible, as we know that people non-randomly sort into locations

based on levels and changes to air pollution (Banzhaf & Walsh 2008), and these preferences may

also be correlated with responsiveness to or health effects of air pollution. We test for the presence

of this non-random assortative behavior using equation (12) for various pollutants and health

outcomes. The results are presented in Table 7. Each column of each panel represents a separate

regression. To account for the first stage variation from the the two-step estimation procedure, we

use a block-bootstrap procedure, resampling entire zip codes with replacement.46

The first row of each column and panel provides the unbiased estimates of the average treatment

effect associated with increasing the specific pollutant by 1ppb. The second row of Table 7 provides

a simple test as to the importance of our instrumental variable in accounting for omitted variable

bias or measurement error in the context of a fixed-effects, OLS regression model. The large and

significant results suggest that failing to account for either of these issues will lead researchers to

downwardly bias estimates pertaining to pollution and health.

The test for self-selection bias in the 2SLS regression is shown in the third row of each panel.

These estimates are the coefficients from the last term in equation (12), interacting the first stage

errors with pollution variable. We fail to detect biases arising from self-selective behavior. This

lack of self-selective behavior may be in part due to our relatively homogenous sample within 10km

of an airport.

46This is equivalent to clustering by zip code instead of twoway clustering by zip code and day. Clustering by zip
code (not reported) gives comparable results to the two-way cluster procedure.
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4.3.5 Count Model

Our baseline health estimates consist of linear probability models, relating the population-scaled

hospital admission rates to changes in pollution. To account for the non-negative and discrete na-

ture of the hospital admission data, Table 8 presents estimates from a quasi-maximum likelihood,

conditional Poisson IV estimator given in equation (13). In contrast to the baseline linear proba-

bility health models, these models are not weighted. In addition, since we use a control function to

address issues pertaining to measurement error and omitted variables, we adjust standard errors

for the first stage sampling variation using a block-bootstrap sampling procedure, resampling zip

codes.47 Analogous to the linear probability model, we find that respiratory illnesses and heart

problems are sensitive to pollution fluctuations, while the three placebos are not (with the usual

caveat applying to sickness counts for people aged 65 and above).

The coefficients no longer give marginal impacts and are difficult to interpret. In order to

compare the marginal impacts of pollution exposure and congestion across all of our models, Table 9

presents the predicted increase in sickness counts from (i) a one standard deviation increase in taxi

time, and (ii) a one standard deviation increase in pollution levels in each zip code. The results

are then added for all zip codes that are within 10km of an airport. The table also summarizes

population surrounding airports. Various admission categories are given in rows, while the columns

show the results for each of the 12 airports. The last column gives the combined impact among all

12 airports.

Panels A, B, and C give the predicted increase in hospital admissions using estimates from

the baseline linear probability model whereby pollution is instrumented using model 1 (pollution

instrumented with taxi time - no interactions with distance or wind direction). These results

are presented for the overall population (Panel A), children below 5 years (Panel B), and senior

citizens 65 and above (Panel C). Panel D gives the results for the overall population using the

count model shown in Table 8. Impacts are evaluated at the sample mean for the nonlinear Poisson

model. The results from the Poisson model are similar to those from the linear probability model

in Panel A. Panel E gives the average daily sickness count in 2005-2007 for the overall population

for comparison.

Pollution fluctuations have a large effect on the 6 million people living within 10km of one of

the 12 airports: A one standard deviation increase in a zip-codes specific pollution fluctuations

increases asthma counts for the overall population by 30% under the linear probability model and

33% under the Poisson count model.48 Overall, a one standard deviation increase in zip-code

specific daily pollution levels results in 157 additional admissions for respiratory problems and 90

additional admissions for heart problems, which are 18% and 17% of the daily mean. For respiratory

problems, infants only account for roughly one fourth of the overall impacts. Studies focusing only

47This is equivalent to clustering by zip code instead of twoway clustering by zip code and day. An unweighted
regression (not reported) that clusters by zip code gives comparable results.

48Recall that these estimates are smaller than what we reported under Table 4, where we increased pollution levels
in each zip code by the average overall standard deviation in pollution levels and took an average baseline sickness
rate that was not population weighted.

28



on the impact on infants therefore would miss a significant portion of the overall impacts. Not

surprisingly, the elderly are responsible for the largest share of heart related impacts.

Airport congestion significantly contributes to the overall impacts: a one standard deviation

increase in taxi time increases respiratory and heart admissions by 11 and 6 cases, respectively. At

LAX, the largest airport in California, a one standard deviation increase in taxi time is responsible

for roughly one-fourth of the effect of a one-standard deviation increase in pollution. On the other

hand, smaller airports (e.g., Santa Barbara or Long Beach) are responsible for a much lower share

of the overall pollution impacts.

4.3.6 Economic Cost

In order to monetize the health impacts associated with both pollution exposure as well as airport

congestion, we use the diagnosis-specific reimbursement rates offered to hospitals through medi-

care.49 We view this measure as a lower bound on the total health costs for several reasons: first,

our methodology measures limited impacts on both a temporal and spatial scale. By focusing on

day-to-day fluctuations, we do not address the long run, cumulative effect of pollution on health.

If these are sizable relative to the contemporaneous effects, the overall cost estimate will be higher.

Similarly, our focus has been on individuals living within 10km of an airport. Some of our estimates

suggest the marginal impact of taxi time extends beyond the 10km radius, in which case we would

be understating the overall effect. Second, we only count people that are sick enough to go to

the hospital - anybody who sees their primary care physician or stays home feeling sick will not

be counted. Recent work by Hanna & Oliva (2011) finds that pollution decreases labor supply in

Mexico City, imposing real economic costs on society not measured in our analysis. Third, and

most importantly, the marginal willingness to pay to avoid treatment is likely higher than the cost

of treatment. For example, severe heart related problems that are not treated within a narrow

time frame will likely result in death. The statistical value of life that EPA uses for its benefit-cost

analyses is around 6 million dollars, which is 1000 times as larger as our medical reimbursement

cost for heart-related problems. Individuals might be willing to pay significantly more than medical

reimbursement rates to avoid illnesses that, if not adequately treated, have dire consequences.

Using the predicted increase in hospital visits under the linear probability model given in Table 9,

a one standard deviation increase in pollution levels amounts to about a $1 million increase in

hospitalization payments related to respiratory and heart related hospital admissions.50 Similarly,

a one standard deviation increase in taxi time at California airports results in 70 thousand dollars

of additional health expenses in a given day. For comparison, the average time cost of a one

49This information comes from a translation between our hospital diagnosis codes (ICD-9) and Diagnosis Related
Group (DRG) codes. We used the crosswalk from the AMA Code Manager Online Elite. Using the set of DRG
codes, we calculate the medicare reimbursement rates using the DRG Payment calculator provided by TRICARE
(http://www.tricare.mil/drgrates/). In accordance with medicare reimbursement policy, we adjust the DRG pay-
ments using the average wage index in our sample. The average cost for respiratory problems and heart related
admissions are US$ 2702 and 6501, respectively.

50This figure is calculated by taking the estimated increase in hospital visits and multiplying it by the average
medicare reimbursement for each of the respective diagnoses.
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standard deviation increase in taxi time at the 12 airports is 726 thousand dollars.51 The increased

hospitalization costs for local residents amounts to about 10 percent of the total time cost of

congestion for affected airline passengers. The ratio varies between 0.8% for Sacramento and 16%

for Burbank and Santa Ana airport. The ratio of health cost to time cost is highest for the last two

airports as pollution impacts a large number of people living around the airport (0.8 million) yet

the average number of passenger per plane, which impacts the time cost, are low. For the reasons

mentioned above, the health cost are likely a lower bound, and the ratio of congestion-related health

cost to time cost is hence likely even higher.

5 Conclusions

This study has shown how daily variation in ground level airport congestion due to network delays

significantly affects both local pollution levels as well as local measures of health. In doing so, we

develop a framework through which to credibly estimate the effects of exogenous shocks to local

air pollution on contemporaneous measures of health. Daily local pollution shocks are caused by

events that occur several thousand miles away and are arguably exogenous to the local area. We

address several longstanding issues pertaining to non-random selection and behavioral responses

to pollution. Our results suggest that ground operations at airports are responsible for a tremen-

dous amount of local ambient air pollution. Specifically, a one standard deviation change in daily

congestion at LAX is responsible for a 0.32 standard deviation increase in levels of CO next to the

airport that faces out with distance. The average impact for zip codes within 10km is 0.23 standard

deviations.

When connecting these models to measures of health, we find that admissions for respiratory

problems and heart disease are strongly related to these pollution changes. A one standard deviation

increase in zip-code specific pollution levels increases asthma counts by 30% of the baseline average,

total respiratory problems by 18%, and heart problems by 17%. Infants and the elderly show a

higher sensitivity to pollution fluctuations. At the same time, adults age 20-64 are also impacted.

For respiratory problems, the general adult population accounts for the majority of the total impacts

despite the lower sensitivity to fluctuations as they are the largest share of the population. A one

standard deviation increase in pollution levels is responsible for 1 million dollars in hospitalization

costs for the 6 million people living within 10km of one of the 12 airports of our study. This is

likely a significant lower bound as the willingness to pay to avoid such illnesses will be higher than

the medicare reimbursement rates.

Examining various mechanisms for the observed pollution-health relationship, we find that CO

is primarily responsible for the observed health effects as opposed to NO2 or O3. We find no

evidence of forward displacement or delayed impacts of pollution. We also find no evidence that

51This figure is calculated by dividing average boardings at each airport in 2005-2007 by the average number of
departures to get the average number of passengers per flight. We then transform additional taxi time into people-
hours of added travel time. We use the estimated cost of added travel time by Morrison & Winston (1989) ($34.04
in 1983 dollars) and transform it into 2006 dollars.
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people in areas with larger pollution shocks are less susceptible or less responsive to pollution.

These estimates suggest that relatively small amounts of ambient air pollution can have sub-

stantial effects on the incidence of local respiratory illness. While EPA recently decided against

lowering the existing carbon monoxide standards due to lack of sufficient evidence of the harmful ef-

fects of CO at levels below current EPA mandates, we find significant impacts on morbidity. Recent

research suggests that the rates of respiratory illness in the United States are rising dramatically,

even as ambient levels of air pollution have continued to fall (Center for Disease Control 2011).

Why asthma rates continue to rise is an open question, but the increase in asthma rates is most pro-

nounced amongst African Americans who disproportionately live in densely populated, congested

areas. At the same time, traffic congestion in cities has been rising dramatically. Results presented

here suggests that at least part of the increased rate of asthma in urban areas can be explained by

increased levels of traffic congestion. The exact mechanism remain beyond the scope of the current

study, but this remains an interesting area for further research.52
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Figure 1: Location of Airports, Pollution Monitors, and Zip Codes

Southern California

 

 

Airport Location
CARB CO Pollution Monitor
CARB NO2 Pollution Monitor
Zip Code Centroid [0,10] km of Airport
Zip Code Centroid (10,oo) km of Airport

Northern California

Notes: The 12 largest airports in California are shown as blue dots. The location of CO pollution monitors in the

California Air Resource Board (CARB) data base are shown as X, the location of NO2 monitors as +. Zip code

boundaries are shown in grey. They are shaded if the centroid is within 10km (6.2miles) of an airport.
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Figure 2: Histogram of Daily Wind Direction At Airports
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Notes: Histogram of the distribution of daily directions in which the wind is blowing (2005-2007). Plot is normalized

to the most frequent category. The four circles indicate the quartile range. Airport locations are shown in Figure 1.
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Figure 3: Contour Maps: Marginal Impact of Taxi Time on Pollution Levels
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Notes: Graphs display the marginal impact of taxi time (ppb per 1000 minute of taxi time, i.e., kmin) on pollution levels across space for different wind speeds.

The x-axis shows the direction in which the wind is blowing: positive x-values imply the location is downwind, negative value simply they are upwind. Points on

the y-axis are at a right angle to the wind direction. The wind speeds in columns 1-4 are 0.1m/s, 1m/s, 2m/s, and 3m/s corresponding to the 0.1, 10.6, 34.5, and

66.5 percentiles of the distribution of wind speeds in 2005-2007 at the 12 airports in our study (see Figure 1).
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Table 1: Pollution Regressed On Instrumented Taxi Time

CO Pollution NO2 Pollution O3 Pollution
Variable (1a) (1b) (1c) (2a) (2b) (2c) (3a) (3b) (3c)

Taxi Time 40.37∗∗∗ 56.16∗∗∗ 49.44∗∗∗ 0.51∗∗∗ 0.65∗∗∗ 0.76∗∗∗ -0.07 0.04 -0.11
(4.83) (9.61) (8.79) (0.09) (0.16) (0.17) (0.09) (0.11) (0.16)

Taxi x Distance -2.23∗ -1.82 -0.02 -0.03 -0.02∗ 0.01
(1.23) (1.13) (0.02) (0.02) (0.01) (0.02)

Taxi x Angleu 15.28∗∗∗ 0.30 -0.43∗∗

(5.75) (0.19) (0.17)
Taxi x Angled 1.07 -0.02 0.12

(5.38) (0.13) (0.09)
Taxi x Speed -0.50 -0.06∗∗ 0.09∗∗

(1.27) (0.03) (0.04)
Taxi x Distance x Angleu -1.27 -0.02 0.05∗∗

(0.79) (0.03) (0.02)
Taxi x Distance x Angled 0.26 0.00 -0.01

(0.66) (0.02) (0.01)
Taxi x Distance x Speed 0.19 0.00 -0.01∗

(0.15) (0.00) (0.01)
Taxi x Angled x Speed 1.03 0.04 -0.09∗

(1.65) (0.03) (0.05)
Taxi x Angleu x Speed -9.65∗∗∗ -0.17∗∗∗ 0.23∗∗∗

(2.37) (0.06) (0.08)
Taxi x Dist. x Angleu x Speed 1.29∗∗∗ 0.02∗∗ -0.03∗∗∗

(0.32) (0.01) (0.01)
Taxi x Dist. x Angled x Speed -0.34 -0.00 0.01

(0.21) (0.00) (0.01)

Observations 179580 179580 179580 179580 179580 179580 179580 179580 179580
Zip Codes 164 164 164 164 164 164 164 164 164
Days 1095 1095 1095 1095 1095 1095 1095 1095 1095
F-stat(joint sig.) 69.29 38.23 12.39 33.13 16.85 6.00 0.65 2.11 1.13
p-value (joint sig.) 3.26e-14 2.43e-14 1.09e-17 4.17e-08 2.23e-07 1.25e-08 .4223 .1251 .3373

Notes: Table regresses zip-code level pollution measures on airport congestion (total taxi time in 1000min) in 2005-2007. Taxi time at the local airport is

instrumented with the taxi time at three major airports in the Eastern United States. All regressions include weather controls (quadratic in minimum and

maximum temperature, precipitation, and wind speed) and temporal controls (year, month, weekday, and holiday fixed effects) and are weighted by the total

population in a zip code. Errors are two-way clustered by zip code and day. Significance levels are indicated by ∗∗∗ 1%, ∗∗ 5%, ∗ 10%.
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Table 2: Sickness Rates Regressed On Instrumented Taxi Time

Acute All All Bone Appen-
Asthma Respiratory Respiratory Heart Stroke Fractures dicitis

(1a) (1b) (1c) (2) (3) (4) (5)

Panel A: All Ages
Taxi Time 14.03∗∗∗ 24.98∗∗∗ 34.07∗∗∗ 19.54∗∗∗ 2.44 -1.28 0.27

(2.74) (7.88) (10.03) (5.24) (1.71) (2.89) (0.68)

Panel B: Ages Below 5
Taxi Time 24.27∗∗ 85.57 118.38∗ 6.63∗ 0.75 1.88 -0.35

(11.31) (52.12) (63.47) (3.49) (0.95) (5.83) (1.39)

Panel C: Age 65 and Above
Taxi Time 37.51∗∗∗ 65.34∗∗∗ 101.73∗∗∗ 156.77∗∗∗ 22.22∗ 19.28∗ 0.78

(11.45) (16.46) (25.31) (36.96) (12.99) (9.89) (1.22)

Observations 179580 179580 179580 179580 179580 179580 179580
Zip Codes 164 164 164 164 164 164 164
Days 1095 1095 1095 1095 1095 1095 1095

Notes: Table regresses zip-code level sickness rates (counts for primary and secondary diagnosis codes per 10 million people) on daily congestion (taxi time in

1000min) that is caused by network delays (taxi time at three major airports in the Eastern United States). All regressions include weather controls (quadratic in

minimum and maximum temperature, precipitation, and wind speed) and temporal controls (year, month, weekday, and holiday fixed effects) and are weighted

by the total population in a zip code. Errors are two-way clustered by zip code and day. Significance levels are indicated by ∗∗∗ 1%, ∗∗ 5%, ∗ 10%.
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Table 3: Sickness Rates Regressed On Pollution

Acute All All Bone Appen-
Asthma Respiratory Respiratory Heart Stroke Fractures dicitis

(1a) (1b) (1c) (2) (3) (4) (5)

Panel A: CO Pollution - All Ages
No Controls 0.070∗∗∗ 0.265∗∗∗ 0.353∗∗∗ 0.035 -0.002 -0.022∗∗∗ -0.001

(0.017) (0.041) (0.053) (0.028) (0.006) (0.007) (0.001)
Time Controls 0.030 0.058 0.070 -0.022 -0.014∗ -0.008 0.001

(0.024) (0.057) (0.075) (0.040) (0.008) (0.010) (0.001)
Time + Weather 0.070∗∗ 0.071 0.097 0.004 -0.004 -0.010 -0.001

(0.029) (0.070) (0.094) (0.054) (0.010) (0.012) (0.001)
Time + Weather + Zip Code FE 0.011 0.049∗∗∗ 0.078∗∗∗ 0.030∗∗∗ -0.000 -0.006 0.002∗

(0.007) (0.019) (0.023) (0.008) (0.003) (0.004) (0.001)
Panel B: NO2 Pollution - All Ages

No Controls 3.1∗∗∗ 10.7∗∗∗ 14.6∗∗∗ 4.3∗∗∗ 0.6∗∗∗ -0.3 0.1∗∗

(0.5) (1.3) (1.7) (1.1) (0.2) (0.2) (0.0)
Time Controls 1.7∗∗ 6.0∗∗∗ 7.9∗∗∗ 1.0 -0.1 0.6∗ 0.1∗∗

(0.7) (1.5) (2.1) (1.4) (0.3) (0.3) (0.0)
Time + Weather 4.6∗∗∗ 9.0∗∗∗ 12.3∗∗∗ 3.2 0.8∗ 0.9∗ 0.0

(1.1) (2.7) (3.8) (2.5) (0.5) (0.5) (0.1)
Time + Weather + Zip Code FE 0.1 1.1∗ 2.4∗∗∗ 1.1∗∗∗ 0.1 0.0 0.1∗∗

(0.2) (0.6) (0.8) (0.3) (0.1) (0.2) (0.0)

Notes: Table regresses zip-code level sickness rates (based on primary and secondary diagnosis codes) on daily pollution (ppb) in 2005-2007. Each entry is a

separate regression. Columns use sickness rates (counts per 10 million people) for different diseases, while rows use different controls. The first specification

(row) in each panel has no controls, while the second adds time controls (year, month, weekday as well as holiday fixed effects), the third adds weather controls

(quadratic in minimum and maximum temperature, precipitation, and wind speed), and the fourth adds zip code fixed effects. All regressions are weighted by

the total population in a zip code. Errors are two-way clustered by zip code and day. Significance levels are indicated by ∗∗∗ 1%, ∗∗ 5%, ∗ 10%.
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Table 4: Sickness Rates Regressed On Instrumented Pollution
Acute All Heart Bone Appen-

Asthma Respiratory Respiratory Problems Stroke Fractures dicitis
(1a) (1b) (1c) (2) (3) (4) (5)

Panel A: All Ages
Model 1: CO 0.341∗∗∗ 0.607∗∗∗ 0.828∗∗∗ 0.475∗∗∗ 0.059 -0.031 0.007

(0.072) (0.179) (0.230) (0.148) (0.042) (0.069) (0.016)
Model 2: CO 0.330∗∗∗ 0.592∗∗∗ 0.812∗∗∗ 0.444∗∗∗ 0.048 -0.032 0.002

(0.066) (0.179) (0.234) (0.137) (0.040) (0.070) (0.016)
Model 3: CO 0.203∗∗∗ 0.415∗∗∗ 0.534∗∗∗ 0.233∗∗∗ 0.020 -0.041 0.003

(0.049) (0.130) (0.172) (0.082) (0.031) (0.042) (0.011)
Model 1: NO2 29.2∗∗∗ 52.0∗∗ 70.9∗∗∗ 40.7∗∗∗ 5.1 -2.7 0.6

(8.0) (20.7) (26.4) (13.1) (3.7) (6.1) (1.4)
Model 2: NO2 28.7∗∗∗ 51.3∗∗ 70.3∗∗∗ 39.0∗∗∗ 4.4 -2.7 0.3

(7.8) (20.6) (26.6) (12.9) (3.6) (6.3) (1.4)
Model 3: NO2 11.9∗∗∗ 16.2 19.4 16.0∗∗ 0.6 -0.8 0.5

(4.0) (10.5) (13.7) (7.2) (2.2) (2.9) (0.9)
Panel B: Ages Below 5

Model 1: CO 0.606∗∗ 2.137∗ 2.956∗∗ 0.166∗ 0.019 0.047 -0.009
(0.262) (1.232) (1.485) (0.088) (0.023) (0.147) (0.035)

Model 2: CO 0.621∗∗ 2.095∗ 2.846∗ 0.124 0.021 0.069 -0.019
(0.252) (1.202) (1.476) (0.082) (0.025) (0.141) (0.038)

Model 3: CO 0.727∗∗∗ 2.300∗∗∗ 2.639∗∗∗ 0.076 0.023 -0.030 -0.009
(0.173) (0.800) (0.990) (0.058) (0.015) (0.126) (0.023)

Model 1: NO2 48.8∗ 172.0 237.9∗ 13.3∗ 1.5 3.8 -0.7
(25.0) (115.8) (143.5) (7.5) (1.9) (11.7) (2.8)

Model 2: NO2 50.0∗∗ 168.9 229.5 10.1 1.7 5.5 -1.5
(24.2) (113.0) (142.3) (7.1) (2.1) (11.1) (3.0)

Model 3: NO2 47.9∗∗∗ 116.9∗ 132.1∗ 4.6 2.8∗∗ 1.6 0.8
(14.8) (64.9) (78.9) (4.7) (1.2) (9.6) (2.1)

Panel C: Ages 65 and Older
Model 1: CO 0.930∗∗∗ 1.620∗∗∗ 2.523∗∗∗ 3.888∗∗∗ 0.551∗ 0.478∗ 0.019

(0.341) (0.485) (0.710) (1.098) (0.321) (0.262) (0.030)
Model 2: CO 0.864∗∗∗ 1.505∗∗∗ 2.423∗∗∗ 3.700∗∗∗ 0.503 0.417 0.017

(0.298) (0.451) (0.695) (1.035) (0.326) (0.260) (0.030)
Model 3: CO 0.529∗∗ 0.734∗∗ 1.496∗∗∗ 2.011∗∗∗ 0.187 0.182 -0.031

(0.213) (0.326) (0.545) (0.642) (0.259) (0.169) (0.028)
Model 1: NO2 78.0∗∗∗ 135.9∗∗∗ 211.6∗∗∗ 326.1∗∗∗ 46.2 40.1∗ 1.6

(26.8) (41.9) (65.5) (93.2) (28.5) (21.4) (2.6)
Model 2: NO2 77.9∗∗∗ 135.6∗∗∗ 211.5∗∗∗ 326.0∗∗∗ 46.1 39.9∗ 1.6

(26.8) (42.0) (65.7) (93.4) (28.5) (21.4) (2.6)
Model 3: NO2 35.3∗∗ 35.4 66.2 122.8∗∗∗ 0.9 9.5 -1.3

(14.4) (24.3) (41.7) (47.7) (16.1) (12.1) (1.8)

Observations 179580 179580 179580 179580 179580 179580 179580
Zip Codes 164 164 164 164 164 164 164
Days 1095 1095 1095 1095 1095 1095 1095

Notes: Table regresses zip-code level sickness rates (counts for primary and secondary diagnosis codes per 10 million

people) on daily instrumented pollution levels (ppb) in 2005-2007. Each entry is a separate regression. Pollution is

instrumented on airport congestion (taxi time) that is caused by network delays (taxi time at three major airports

in the Eastern United States). Model 1 assumes a uniform impact of congestion on pollution levels at all zip codes

surrounding an airport, while model 2 adds an interaction with the distance to the airport, and model 3 furthermore

adds interactions with wind direction and speed (columns (a)-(c) in Table 1). All regressions include weather controls

(quadratic in minimum and maximum temperature, precipitation, and wind speed), temporal controls (year, month,

weekday, and holiday fixed effects), and zip code fixed effects. Regressions are weighted by the total population in

a zip code. Errors are two-way clustered by zip code and day. Significance levels are indicated by ∗∗∗ 1%, ∗∗ 5%, ∗

10%.
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Table 5: Sickness Rates Regressed On Instrumented Pollution - Joint Estimation
Acute All Heart Bone Appen-

Asthma Respiratory Respiratory Problems Stroke Fractures dicitis
(1a) (1b) (1c) (2) (3) (4) (5)

Panel A: All Ages
Model 3: CO 0.239∗∗∗ 0.798∗∗∗ 1.084∗∗∗ 0.183 0.046 -0.109∗ -0.008

(0.091) (0.243) (0.352) (0.114) (0.045) (0.065) (0.015)
Model 3: NO2 -3.216 -34.165∗ -48.974∗ 4.399 -2.310 6.104 0.938

(6.489) (18.781) (26.680) (9.804) (2.928) (4.756) (1.221)

Panel B: Ages Below 5
Model 3: CO 0.842∗ 4.703∗∗∗ 5.519∗∗∗ 0.114 -0.050 -0.243 -0.093

(0.481) (1.824) (2.092) (0.128) (0.042) (0.290) (0.062)
Model 3: NO2 -9.776 -205.580 -246.384 -3.250 6.183∗ 18.267 7.148

(35.044) (139.758) (158.472) (10.077) (3.290) (22.111) (5.384)

Panel C: Age 65 and Above
Model 3: CO 0.346 0.851∗∗ 1.899∗∗∗ 1.623∗∗ 0.439 0.192 -0.041

(0.314) (0.410) (0.735) (0.767) (0.376) (0.256) (0.043)
Model 3: NO2 16.601 -10.548 -36.416 35.119 -22.780 -0.890 0.895

(20.161) (29.941) (56.274) (54.776) (23.046) (18.476) (2.730)

Observations 179580 179580 179580 179580 179580 179580 179580
Zip Codes 164 164 164 164 164 164 164
Days 1095 1095 1095 1095 1095 1095 1095

Notes: Table regresses zip-code level sickness rates (counts for primary and secondary diagnosis codes per 10

million people) on daily instrumented pollution levels (ppb) in 2005-2007. The effect of the two pollutants is jointly

estimated for the over-identified model 3. Pollution is instrumented on airport congestion (taxi time) that is caused

by network delays (taxi time at three major airports in the Eastern United States). All regressions include weather

controls (quadratic in minimum and maximum temperature, precipitation, and wind speed), temporal controls

(year, month, weekday, and holiday fixed effects), and zip code fixed effects. Regressions are weighted by the total

population in a zip code. Errors are two-way clustered by zip code and day. Significance levels are indicated by ∗∗∗

1%, ∗∗ 5%, ∗ 10%.
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Table 6: Sickness Rates of All Ages Regressed On Instrumented Pollution - Lagged Pollution

Effect of CO Pollution on Health Outcomes Effect of NO2 Pollution on Health Outcomes
Acute All Heart Acute All Heart

Asthma Respiratory Respiratory Problems Asthma Respiratory Respiratory Problems

Model 1: Pollution in t 0.214∗ 0.365 0.522 0.477∗∗∗ 31.8∗∗∗ 57.5∗∗ 79.2∗∗ 47.7∗∗∗

(0.112) (0.294) (0.369) (0.152) (10.7) (27.8) (35.8) (15.3)
Model 1: Pollution in t-1 -0.024 -0.058 -0.029 -0.064 -13.7∗ -26.4 -35.0 -20.3∗

(0.146) (0.280) (0.324) (0.200) (7.8) (17.3) (22.0) (11.1)
Model 1: Pollution in t-2 0.134 0.119 0.066 0.045 22.0∗∗ 37.4∗ 48.4∗ 26.6∗

(0.159) (0.277) (0.373) (0.278) (9.6) (21.2) (27.5) (15.6)
Model 1: Pollution in t-3 0.040 0.239 0.346 0.010 -8.9 -11.3 -14.7 -13.8

(0.103) (0.203) (0.269) (0.155) (6.7) (14.3) (18.7) (9.5)
Model 1: Cumulative Effect 0.364∗∗∗ 0.665∗∗∗ 0.905∗∗∗ 0.467∗∗∗ 31.2∗∗∗ 57.2∗∗∗ 77.9∗∗∗ 40.1∗∗∗

(0.076) (0.179) (0.233) (0.159) (9.0) (21.9) (28.0) (14.9)

Model 2: Pollution in t 0.213∗∗ 0.354 0.516 0.457∗∗∗ 31.1∗∗∗ 56.6∗∗ 78.6∗∗ 45.8∗∗∗

(0.108) (0.292) (0.368) (0.147) (10.2) (27.5) (35.6) (15.0)
Model 2: Pollution in t-1 -0.024 -0.053 -0.028 -0.068 -13.9∗ -26.1 -35.2 -19.6∗

(0.146) (0.282) (0.324) (0.200) (7.5) (17.1) (21.8) (10.8)
Model 2: Pollution in t-2 0.113 0.096 0.047 0.034 21.3∗∗ 36.3∗ 47.8∗ 25.3∗

(0.154) (0.276) (0.369) (0.271) (9.2) (21.1) (27.6) (15.3)
Model 2: Pollution in t-3 0.056 0.253 0.355 0.011 -8.3 -10.5 -14.3 -12.8

(0.100) (0.203) (0.269) (0.152) (6.3) (14.0) (18.6) (9.2)
Model 2: Cumulative Effect 0.357∗∗∗ 0.650∗∗∗ 0.890∗∗∗ 0.434∗∗∗ 30.1∗∗∗ 56.2∗∗∗ 76.8∗∗∗ 38.7∗∗∗

(0.069) (0.179) (0.238) (0.149) (8.7) (21.7) (28.0) (14.5)

Model 3: Pollution in t 0.184∗∗∗ 0.339 0.444 0.232∗∗ 7.7∗∗ 11.3 15.2 16.7∗∗∗

(0.070) (0.209) (0.277) (0.104) (3.9) (10.2) (14.0) (5.7)
Model 3: Pollution in t-1 -0.063 -0.005 0.002 -0.009 -2.5 -1.6 -2.1 -3.6

(0.058) (0.161) (0.201) (0.113) (1.7) (4.7) (6.1) (2.9)
Model 3: Pollution in t-2 0.084 0.033 0.038 -0.009 2.6 1.7 2.2 1.6

(0.062) (0.122) (0.159) (0.090) (1.6) (2.8) (3.8) (2.0)
Model 3: Pollution in t-3 -0.001 0.126 0.118 0.045 -1.1 0.5 -0.7 -0.6

(0.042) (0.097) (0.126) (0.058) (1.0) (2.6) (3.4) (1.5)
Model 3: Cumulative Effect 0.203∗∗∗ 0.492∗∗∗ 0.601∗∗∗ 0.258∗∗∗ 6.7∗∗ 11.8∗ 14.6 14.1∗∗∗

(0.054) (0.121) (0.162) (0.068) (3.2) (6.8) (9.3) (4.2)

Observations 179088 179088 179088 179088 179088 179088 179088 179088
Zip Codes 164 164 164 164 164 164 164 164
Days 1092 1092 1092 1092 1092 1092 1092 1092

Notes: Table replicates the results for all ages in Table 4 except that three lags of the instrumented pollution levels are included. The first four columns give the

results using CO pollution, the last four using NO2. Each column in each panel presents the coefficients from one regression as well as the cumulative effect (sum

of all four coefficients). Significance levels are indicated by ∗∗∗ 1%, ∗∗ 5%, ∗ 10%.
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Table 7: Sickness Rates of All Ages Regressed On Instrumented Pollution - Control Function
Effect of CO Pollution on Health Outcomes Effect of NO2 Pollution on Health Outcomes

Acute All Heart Acute All Heart
Asthma Respiratory Respiratory Problems Asthma Respiratory Respiratory Problems

Model 1: Pollution 0.340∗∗∗ 0.608∗∗∗ 0.830∗∗∗ 0.476∗∗∗ 29.2∗∗∗ 52.1∗∗∗ 71.0∗∗∗ 40.6∗∗∗

(0.068) (0.157) (0.212) (0.151) (7.6) (18.7) (24.5) (12.6)
Model 1: Control Function -0.340∗∗∗ -0.556∗∗∗ -0.743∗∗∗ -0.439∗∗∗ -29.5∗∗∗ -51.9∗∗∗ -69.3∗∗∗ -38.6∗∗∗

(0.071) (0.164) (0.219) (0.149) (7.7) (19.0) (24.9) (12.6)
Model 1: Pollution x Control (x1000) 9.149 -6.113 -13.807 -11.028 10695.7 32374.3 22526.0 -35707.8

(9.293) (22.543) (28.348) (14.543) (12653.1) (30657.3) (37422.2) (22188.4)

Model 2: Pollution 0.329∗∗∗ 0.593∗∗∗ 0.814∗∗∗ 0.445∗∗∗ 28.7∗∗∗ 51.4∗∗∗ 70.4∗∗∗ 38.9∗∗∗

(0.061) (0.161) (0.223) (0.137) (7.2) (18.3) (24.5) (13.1)
Model 2: Control Function -0.329∗∗∗ -0.541∗∗∗ -0.728∗∗∗ -0.408∗∗∗ -29.0∗∗∗ -51.2∗∗∗ -68.7∗∗∗ -36.9∗∗∗

(0.064) (0.168) (0.230) (0.134) (7.3) (18.6) (24.8) (13.1)
Model 2: Pollution x Control (x1000) 9.214 -6.089 -13.719 -11.113 10769.4 32419.7 22647.8 -35754.3

(9.273) (22.532) (28.337) (14.542) (12659.0) (30621.5) (37349.5) (22182.0)

Model 3: Pollution 0.185∗∗∗ 0.404∗∗∗ 0.533∗∗∗ 0.228∗∗ 7.5∗∗ 3.5 3.8 14.9∗∗

(0.054) (0.148) (0.198) (0.092) (3.6) (9.6) (11.6) (6.7)
Model 3: Control Function -0.185∗∗∗ -0.353∗∗ -0.445∗∗ -0.187∗∗ -7.7∗∗ -3.2 -1.9 -12.9∗

(0.055) (0.154) (0.204) (0.090) (3.7) (9.8) (11.7) (6.7)
Model 3: Pollution x Control (x1000) 9.287 -6.247 -14.757 -13.375 10313.0 29841.6 17999.1 -36813.4∗

(9.221) (22.727) (28.572) (14.723) (12649.9) (30694.0) (37449.1) (22304.9)

Observations 179580 179580 179580 179580 179580 179580 179580 179580
Zip Codes 164 164 164 164 164 164 164 164
Days 1095 1095 1095 1095 1095 1095 1095 1095

Notes: Table replicates the results for all ages in Table 4 except that we use a control function approach, i.e., we run a first stage of pollution on taxi time

and then include (i) pollution, (ii) the residual from the first stage, and (iii) the interaction of the pollution level with the residual from the first stage in the

regression. Further differences are that standard errors are obtained from 100 clustered bootstrap draws (drawing entire zip code histories with replacement).

The first four columns give the results using CO pollution, the last four using NO2. Significance levels are indicated by ∗∗∗ 1%, ∗∗ 5%, ∗ 10%.
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Table 8: Sickness Counts Regressed On Instrumented Pollution - Poisson Model
Acute All Heart Bone Appen-

Asthma Respiratory Respiratory Problems Stroke Fractures dicitis
(1a) (1b) (1c) (2) (3) (4) (5)

Panel A: All Ages
Model 1: CO 0.915∗∗∗ 0.652∗∗∗ 0.629∗∗∗ 0.529∗∗∗ 0.276 -0.118 0.357

(0.180) (0.119) (0.123) (0.139) (0.198) (0.198) (0.485)
Model 2: CO 0.923∗∗∗ 0.635∗∗∗ 0.618∗∗∗ 0.515∗∗∗ 0.237 -0.121 0.237

(0.180) (0.123) (0.129) (0.140) (0.198) (0.203) (0.493)
Model 3: CO 0.522∗∗∗ 0.376∗∗∗ 0.361∗∗∗ 0.287∗∗∗ 0.096 -0.196 0.172

(0.148) (0.105) (0.097) (0.102) (0.165) (0.136) (0.357)
Model 1: NO2 82.6∗∗∗ 58.6∗∗∗ 56.4∗∗∗ 47.8∗∗∗ 24.9 -10.6 32.4

(22.8) (15.1) (15.0) (14.3) (18.3) (19.5) (45.3)
Model 2: NO2 82.9∗∗∗ 58.5∗∗∗ 56.4∗∗∗ 47.8∗∗∗ 24.5 -10.6 31.0

(22.1) (15.2) (15.3) (14.5) (18.8) (19.5) (45.0)
Model 3: NO2 35.3∗∗∗ 23.6∗∗∗ 19.9∗∗∗ 19.7∗∗∗ 0.6 3.4 32.5

(9.5) (6.6) (5.6) (6.9) (10.5) (9.1) (25.5)
Panel B: Ages Below 5

Model 1: CO 1.295∗∗∗ 0.268 0.339 2.209∗ 3.501 0.181 -0.838
(0.414) (0.191) (0.222) (1.227) (3.029) (0.611) (3.202)

Model 2: CO 1.287∗∗∗ 0.234 0.299 1.939∗ 3.539 0.253 -1.402
(0.425) (0.192) (0.222) (1.172) (2.919) (0.605) (3.242)

Model 3: CO 0.851∗∗∗ 0.202 0.199 1.675 3.924 -0.078 -2.191
(0.307) (0.143) (0.159) (1.046) (2.456) (0.577) (2.783)

Model 1: NO2 116.5∗∗∗ 23.3 29.6 200.6 314.6 17.9 -76.8
(43.5) (18.1) (21.2) (123.8) (310.2) (58.4) (309.0)

Model 2: NO2 116.6∗∗∗ 22.9 29.3 198.3 315.7 18.7 -84.1
(43.2) (17.6) (21.0) (131.0) (300.8) (57.9) (316.8)

Model 3: NO2 60.3∗∗∗ 28.1∗∗∗ 28.8∗∗∗ 111.4 337.6∗∗ 10.9 30.0
(15.1) (9.6) (9.3) (75.4) (165.3) (35.4) (173.8)

Panel C: Ages 65 and Older
Model 1: CO 1.411∗∗∗ 0.832∗∗∗ 0.665∗∗∗ 0.683∗∗∗ 0.412∗ 0.673∗∗ 1.280

(0.395) (0.227) (0.190) (0.180) (0.235) (0.334) (1.326)
Model 2: CO 1.364∗∗∗ 0.802∗∗∗ 0.656∗∗∗ 0.668∗∗∗ 0.394 0.607∗ 1.218

(0.362) (0.218) (0.189) (0.181) (0.243) (0.337) (1.393)
Model 3: CO 0.849∗∗∗ 0.378∗ 0.367∗∗ 0.352∗∗ 0.214 0.231 -0.562

(0.322) (0.201) (0.160) (0.150) (0.200) (0.253) (1.309)
Model 1: NO2 127.9∗∗∗ 75.4∗∗∗ 60.1∗∗∗ 61.8∗∗∗ 37.2 60.8∗∗ 115.9

(34.9) (22.2) (18.8) (18.0) (22.8) (30.8) (121.7)
Model 2: NO2 127.7∗∗∗ 75.3∗∗∗ 60.2∗∗∗ 61.9∗∗∗ 37.1 60.2∗ 115.5

(34.1) (22.7) (19.3) (18.4) (22.8) (31.1) (116.4)
Model 3: NO2 65.9∗∗∗ 25.8∗ 21.1∗∗ 25.4∗∗ 3.7 26.0 -99.8

(20.5) (13.6) (10.5) (10.4) (12.5) (18.9) (111.9)

Observations 179580 179580 179580 179580 179580 179580 179580
Zip Codes 164 164 164 164 164 164 164
Days 1095 1095 1095 1095 1095 1095 1095

Notes: Table replicates the results of Table 4 except that we use a Poisson count model instead of a linear probability

model. Further difference are that the regressions are unweighted and standard errors are obtained from 100

clustered bootstrap draws (drawing entire zip code histories with replacement). Significance levels are indicated by
∗∗∗ 1%, ∗∗ 5%, ∗ 10%.
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Table 9: Impact of CO Pollution on Health (Model 1)
LAX SFO SAN OAK SJC SMF SNA ONT BUR SBA LGB PSP Total

Panel A: Linear Probability Model - All Ages

Population 812 182 540 448 910 41 822 454 794 59 875 93 6028
One Standard Deviation Increase in Taxi Time

Asthma 2.07 0.26 0.50 0.25 0.37 0.02 0.45 0.17 0.21 0.01 0.17 0.02 4.49
Acute Respiratory 3.68 0.47 0.88 0.45 0.67 0.03 0.80 0.30 0.38 0.01 0.30 0.03 8.00
All Respiratory 5.02 0.64 1.20 0.61 0.91 0.04 1.10 0.40 0.51 0.02 0.41 0.05 10.92
Heart Disease 2.88 0.37 0.69 0.35 0.52 0.03 0.63 0.23 0.29 0.01 0.23 0.03 6.26

One Standard Deviation Increase in Pollution
Asthma 8.45 0.91 7.03 2.41 10.49 0.31 9.03 3.48 10.42 0.31 11.36 0.26 64.47
Acute Respiratory 15.05 1.63 12.52 4.29 18.67 0.55 16.08 6.19 18.56 0.56 20.23 0.47 114.80
All Respiratory 20.53 2.22 17.08 5.86 25.47 0.75 21.93 8.45 25.31 0.76 27.60 0.64 156.60
Heart Disease 11.77 1.27 9.80 3.36 14.61 0.43 12.58 4.84 14.52 0.44 15.83 0.37 89.81

Panel B: Linear Probability Model - Ages 5 and Below

Population 54 11 33 32 68 4 58 35 55 3 65 6 424
One Standard Deviation Increase in Taxi Time

Asthma 0.25 0.03 0.05 0.03 0.05 0.00 0.06 0.02 0.03 0.00 0.02 0.00 0.54
Acute Respiratory 0.87 0.10 0.19 0.11 0.18 0.01 0.20 0.08 0.09 0.00 0.08 0.01 1.92
All Respiratory 1.20 0.14 0.27 0.15 0.24 0.01 0.28 0.11 0.13 0.00 0.11 0.01 2.66
Heart Disease 0.07 0.01 0.01 0.01 0.01 0.00 0.02 0.01 0.01 0.00 0.01 0.00 0.15

One Standard Deviation Increase in Pollution
Asthma 1.03 0.10 0.76 0.30 1.39 0.05 1.13 0.48 1.28 0.03 1.52 0.03 8.11
Acute Respiratory 3.64 0.36 2.69 1.06 4.92 0.18 3.97 1.70 4.52 0.09 5.36 0.10 28.60
All Respiratory 5.03 0.50 3.72 1.47 6.80 0.26 5.49 2.36 6.26 0.13 7.41 0.14 39.57
Heart Disease 0.28 0.03 0.21 0.08 0.38 0.01 0.31 0.13 0.35 0.01 0.42 0.01 2.22

Panel C: Linear Probability Model - Ages 65 and Above

Population 82 26 54 51 88 3 79 34 79 12 89 18 615
One Standard Deviation Increase in Taxi Time

Asthma 0.57 0.10 0.13 0.08 0.10 0.00 0.12 0.03 0.06 0.00 0.05 0.01 1.26
Acute Respiratory 1.00 0.18 0.23 0.14 0.17 0.01 0.21 0.06 0.10 0.01 0.08 0.02 2.20
All Respiratory 1.56 0.28 0.37 0.21 0.27 0.01 0.32 0.09 0.16 0.01 0.13 0.03 3.42
Heart Disease 2.40 0.43 0.56 0.32 0.41 0.01 0.50 0.14 0.24 0.02 0.20 0.04 5.27

One Standard Deviation Increase in Pollution
Asthma 2.32 0.35 1.92 0.74 2.75 0.05 2.40 0.72 2.85 0.17 3.18 0.14 17.60
Acute Respiratory 4.03 0.62 3.34 1.29 4.79 0.09 4.19 1.25 4.96 0.29 5.54 0.25 30.65
All Respiratory 6.28 0.96 5.21 2.01 7.46 0.14 6.52 1.94 7.73 0.46 8.63 0.38 47.72
Heart Disease 9.68 1.48 8.02 3.10 11.50 0.22 10.05 2.99 11.91 0.71 13.29 0.59 73.54

Panel D: Poisson Model - All Ages

One Standard Deviation Increase in Taxi Time
Asthma 2.32 0.31 0.55 0.38 0.27 0.02 0.27 0.15 0.18 0.00 0.18 0.02 4.65
Acute Respiratory 4.29 0.60 0.96 0.67 0.56 0.03 0.69 0.33 0.43 0.01 0.38 0.05 8.99
All Respiratory 5.73 0.81 1.31 0.87 0.74 0.04 0.92 0.45 0.57 0.01 0.52 0.07 12.03
Heart Disease 2.89 0.46 0.71 0.40 0.39 0.02 0.48 0.21 0.30 0.01 0.25 0.04 6.15

One Standard Deviation Increase in Pollution
Asthma 10.99 1.13 9.28 3.84 8.73 0.37 6.24 3.40 10.92 0.14 15.00 0.23 70.28
Acute Respiratory 19.55 2.26 15.35 6.64 17.46 0.56 15.51 7.55 24.06 0.32 28.91 0.64 138.82
All Respiratory 26.01 3.01 21.02 8.62 23.06 0.70 20.48 10.13 31.79 0.47 39.74 0.95 185.99
Heart Disease 12.68 1.61 11.14 3.95 11.92 0.29 10.63 4.63 16.41 0.42 19.12 0.55 93.34

Panel E: Baseline Average - All Ages

Asthma 33.1 7.9 22.3 25.4 24.2 1.6 18.1 14.9 26.0 0.9 36.0 3.0 213.6
Acute Respiratory 87.4 21.7 55.2 63.2 71.8 3.6 66.9 48.0 85.8 3.1 104.3 11.8 623.0
All Respiratory 121.3 30.3 78.2 85.2 98.7 4.7 91.6 67.2 117.9 4.6 149.0 18.0 866.8
Heart Disease 72.8 20.3 50.0 46.4 61.7 2.4 56.9 36.9 73.4 5.0 86.1 12.3 524.2

Notes: Table gives population as well as daily hospital admissions for all zip codes that are within 10km (6.2miles)

of one of the 12 major California airports. Panels A-D give predicted changes in sickness counts, while Panel E

gives baseline averages. Panels A-C use the linear probability model 1 for CO from Table 4, while panel D uses

the Poisson model 1 for CO from Table 8. Panel E gives average daily sickness counts in the data. The first 12

columns give impacts by airport, while the last column gives the total for all 12 airports. Population is in thousand.

Predicted changes in hospitalization are for both inpatient as well as outpatient admissions.
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A1 Online Appendix

Figure A1: Location of Airports in Study

Atlanta (ATL)

Chicago O‘Hare (ORD) New York (JFK)

Notes: Figure displays the location of the 12 airports in California as well as the three Eastern airports used to

instrument taxi time in California.
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Figure A2: Boxplots of Taxi Time By Hour and Airport

Panel A: Airports in California
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San Francisco (SFO)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
0

100

200

300

400

500

600

700

Time of Day

T
ot

al
 T

ax
i T

im
e 

of
 A

ll 
P

la
ne

s 
(M

in
ut

es
)

San Diego (SAN)
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Oakland (OAK)
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San Jose (SJC)
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Sacramento (SMF)
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Santa Ana (SNA)
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Ontario (ONT)
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Burbank (BUR)
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Santa Barbara (SBA)
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John F. Kennedy New York (JFK)

Notes: Boxplots of taxi time by hour of day 2005-2007. The box spans the 25%-75% range, while the median is

shown as black solid line. Whiskers extend to the minimum and maximum.

A2



Table A1: Summary Statistics: Airports
Airports in Southern California

LAX SAN SNA ONT BUR SBA LGB PSP

Average Flight Time (min) 125.60 108.55 102.74 80.28 77.45 56.70 185.16 79.27
[s.e.] [4.40] [4.15] [3.22] [4.83] [6.02] [2.50] [58.32] [12.41]

Average Flight Distance (miles) 974 815 748 562 520 303 1256 537
[s.e.] [26] [26] [18] [36] [36] [11] [181] [109]

Arrival Delays (min) 6.48 6.27 4.81 6.79 7.49 4.27 3.93 8.22
[s.e.] [7.09] [6.89] [5.85] [7.02] [7.77] [7.90] [11.10] [8.45]

Average Departure Delays (min) 7.77 6.64 6.12 6.89 7.78 4.89 4.70 6.49
[s.e.] [5.19] [5.77] [5.59] [5.78] [7.42] [8.13] [8.49] [8.44]

Average Taxi Time after Landing (min) 8.09 3.73 6.26 4.37 2.78 4.12 4.87 4.34
[s.e.] [1.06] [0.40] [0.82] [0.37] [0.46] [0.43] [0.91] [0.51]

Average Taxi Time to Takeoff (min) 15.00 13.50 13.28 10.63 11.61 9.75 14.34 10.68
[s.e.] [1.47] [1.83] [1.32] [1.27] [1.21] [1.44] [1.94] [1.51]

Daily Number of Arrivals 641.60 255.02 139.76 104.07 86.09 37.80 35.00 34.21
[s.e.] [31.58] [17.29] [13.58] [11.67] [8.63] [3.75] [3.91] [7.86]

Daily Number of Departures 641.33 255.13 139.77 104.02 86.07 37.84 34.99 34.18
[s.e.] [32.59] [17.48] [12.53] [11.74] [8.50] [3.78] [3.89] [7.88]

Daily Taxi Time All Flights (min) 14691 4369 2712 1553 1231 519 673 515
[s.e.] [1852] [666] [399] [266] [193] [83] [140] [151]

Northern California Eastern United States
SFO OAK SJC SMF ATL ORD JFK

Average Flight Time (min) 135.10 104.54 95.11 94.22 88.00 101.95 164.18
[s.e.] [5.08] [6.38] [3.74] [2.71] [11.14] [4.28] [11.56]

Average Flight Distance (miles) 1061 749 678 687 649 719 1212
[s.e.] [40] [35] [21] [19] [14] [30] [80]

Arrival Delays (min) 11.40 5.68 5.84 7.78 10.73 14.71 15.25
[s.e.] [14.44] [7.51] [6.79] [7.14] [16.62] [24.17] [19.29]

Average Departure Delays (min) 10.38 8.50 6.44 8.27 14.27 17.11 13.81
[s.e.] [9.81] [6.33] [5.77] [6.08] [12.98] [16.72] [16.08]

Average Taxi Time after Landing (min) 5.64 5.37 4.06 4.31 9.80 8.58 9.98
[s.e.] [0.49] [0.74] [0.31] [0.40] [1.55] [1.65] [2.66]

Average Taxi Time to Takeoff (min) 16.46 10.84 11.64 10.33 19.44 19.73 32.88
[s.e.] [1.73] [1.15] [0.93] [0.86] [3.48] [4.74] [9.99]

Daily Number of Arrivals 364.58 201.03 167.78 148.47 1140.18 992.96 309.53
[s.e.] [24.04] [14.24] [13.52] [13.74] [85.16] [75.09] [35.32]

Daily Number of Departures 364.66 201.01 167.73 148.43 1146.63 992.92 309.48
[s.e.] [24.46] [14.09] [13.61] [13.74] [90.51] [75.93] [34.51]

Daily Taxi Time All Flights (min) 7979 3235 2614 2166 33081 27170 13059
[s.e.] [1061] [409] [298] [324] [5743] [4735] [3804]

Notes: Table lists average flight characteristics by airport in 2005-2007. Airports are ordered by geographic area

and then by decreasing number of flights. The first six variables in each panel are characteristics per flight, while

the last three variables are average characteristics per day.
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Table A2: Summary Statistics: Pollution, Weather, and Population by Distance From Airport

Within [0,10]km of Airport Within [0,5]km of Airport Within (5,10]km of Airport
Mean (Std) Min Max Mean (Std) Min Max Mean (Std) Min Max
(1a) (1b) (1c) (1d) (2a) (2b) (2c) (2d) (3a) (3b) (3c) (3d)

Panel A: Daily Pollution Data
Mean CO (ppb) 576 (368) 0 2994 549 (391) 0 2850 587 (357) 0 2994
Max CO (ppb) 1235 (841) 0 7487 1165 (857) 0 7487 1263 (833) 0 5791
Mean NO2 (ppb) 20.5 (9.7) 0.7 66.4 19.8 (10.1) 0.7 65.0 20.7 (9.5) 1.0 66.4
Max NO2 (ppb) 35.5 (13.5) 2.0 136.0 34.6 (14.1) 2.0 125.9 35.9 (13.2) 2.0 136.0
Mean O3 (ppb) 22.8 (10.4) 1.1 90.0 23.4 (11.6) 1.1 90.0 22.6 (9.8) 1.1 65.7
Max O3 (ppb) 43.8 (16.3) 2.6 166.0 44.0 (17.1) 2.8 166.0 43.7 (16.0) 2.6 166.0

Panel B: Daily Weather
Min Temp (◦ C) 11.8 (4.3) -4.6 32.6 12.1 (4.5) -4.1 32.6 11.7 (4.2) -4.6 27.7
Max Temp (◦ C) 22.6 (5.5) 6.7 49.1 22.8 (5.9) 7.9 49.1 22.5 (5.4) 6.7 45.5
Precipitation (mm) 0.10 (0.44) 0.00 10.70 0.09 (0.42) 0.00 9.97 0.10 (0.45) 0.00 10.70
Wind Speed (m/s) 2.59 (1.33) 0.00 12.73 2.55 (1.34) 0.00 12.73 2.61 (1.32) 0.00 12.73

Panel C: Average Population
Population (1000) 36.8 (17.8) 11.1 101.1 32.4 (12.6) 11.1 60.7 38.6 (19.3) 11.4 101.1
Population Age [0,5) 2.6 (1.7) 0.4 8.7 2.2 (1.3) 0.4 5.6 2.8 (1.9) 0.5 8.7
Population Age [5,20) 7.5 (5.0) 0.8 27.4 6.5 (3.6) 0.8 15.9 7.9 (5.5) 0.9 27.4
Population Age [20,65) 22.9 (10.6) 7.1 57.7 20.2 (7.8) 7.2 36.8 24.1 (11.4) 7.1 57.7
Population Age [65,∞) 3.7 (1.7) 0.3 9.1 3.4 (1.5) 0.3 6.6 3.9 (1.8) 0.5 9.1

Notes: Table lists summary statistics (mean, standard deviation, minimum, and maximum) of variables in the data set. The first four columns (1a)-(1d) use all

zip codes, while columns (2a)-(2d) only use zip codes within 5km of an airport, and columns (3a)-(3d) use zip codes 5-10km from an airport.
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Table A3: Summary Statistics: Sickness Rates by Distance From Airport
Within [0,10]km of Airport Within [0,5]km of Airport Within (5,10]km of Airport

Mean (Std) Min Max Mean (Std) Min Max Mean (Std) Min Max
(1a) (1b) (1c) (1d) (2a) (2b) (2c) (2d) (3a) (3b) (3c) (3d)

Panel A1: Outpatient Sickness Rates - All Ages

Asthma 184 (268) 0 4162 170 (265) 0 3185 189 (270) 0 4162
Acute Respiratory 608 (568) 0 6243 594 (586) 0 5843 614 (561) 0 6243
All Respiratory 756 (653) 0 7012 748 (680) 0 7012 760 (641) 0 6243
Heart Disease 168 (254) 0 3396 172 (267) 0 3396 166 (247) 0 2775
Stroke 23 (90) 0 1456 22 (92) 0 1454 23 (89) 0 1456
Bone Fracture 208 (273) 0 2909 208 (282) 0 2909 208 (269) 0 2775
Appendicitis 2 (26) 0 903 2 (27) 0 903 2 (26) 0 875

Panel A2: Inpatient Sickness Rates - All Ages

Asthma 155 (237) 0 2775 153 (241) 0 2547 156 (235) 0 2775
Acute Respiratory 373 (379) 0 4377 372 (387) 0 3396 373 (376) 0 4377
All Respiratory 626 (522) 0 5253 635 (538) 0 5224 622 (514) 0 5253
Heart Disease 728 (589) 0 7879 747 (612) 0 5214 720 (579) 0 7879
Stroke 149 (235) 0 4183 151 (242) 0 2709 148 (231) 0 4183
Bone Fracture 92 (181) 0 2510 95 (189) 0 1829 90 (177) 0 2510
Appendicitis 32 (103) 0 1806 32 (105) 0 1806 32 (101) 0 1751

Panel B1: Outpatient Sickness Rates - Ages Below 5

Asthma 413 (1503) 0 33178 383 (1575) 0 33036 425 (1471) 0 33178
Acute Respiratory 2739 (4262) 0 90992 2777 (4621) 0 90992 2724 (4104) 0 66357
All Respiratory 3084 (4567) 0 90992 3113 (4930) 0 90992 3072 (4407) 0 66357
Heart Disease 12 (263) 0 21358 11 (255) 0 15165 12 (266) 0 21358
Stroke 1 (63) 0 10860 1 (74) 0 7651 1 (57) 0 10860
Bone Fracture 165 (963) 0 33036 160 (1031) 0 33036 166 (933) 0 27785
Appendicitis 2 (81) 0 13148 2 (75) 0 7651 2 (84) 0 13148

Panel B2: Inpatient Sickness Rates - Ages Below 5

Asthma 147 (883) 0 23697 138 (922) 0 23697 150 (866) 0 21358
Acute Respiratory 404 (1485) 0 25562 403 (1572) 0 24155 405 (1447) 0 25562
All Respiratory 483 (1635) 0 33036 483 (1734) 0 33036 483 (1592) 0 26810
Heart Disease 55 (568) 0 22701 54 (592) 0 22701 56 (557) 0 21358
Stroke 6 (186) 0 21834 7 (225) 0 21834 5 (168) 0 16589
Bone Fracture 31 (415) 0 23697 29 (420) 0 23697 31 (412) 0 21358
Appendicitis 7 (177) 0 15684 7 (181) 0 12077 7 (175) 0 15684

Panel C1: Outpatient Sickness Rates - Ages 65 and Above

Asthma 142 (696) 0 20730 127 (675) 0 12358 148 (705) 0 20730
Acute Respiratory 349 (1109) 0 38168 332 (1117) 0 38168 356 (1106) 0 20730
All Respiratory 752 (1636) 0 41459 736 (1655) 0 38168 759 (1628) 0 41459
Heart Disease 910 (1803) 0 41459 889 (1816) 0 38168 919 (1797) 0 41459
Stroke 136 (684) 0 20730 129 (686) 0 15108 138 (683) 0 20730
Bone Fracture 289 (1004) 0 38168 284 (1053) 0 38168 291 (984) 0 20730
Appendicitis 1 (46) 0 9705 1 (45) 0 4950 1 (46) 0 9705

Panel C2: Inpatient Sickness Rates - Ages 65 and Above

Asthma 488 (1342) 0 41459 496 (1426) 0 38168 485 (1305) 0 41459
Acute Respiratory 1579 (2406) 0 41459 1582 (2530) 0 38168 1578 (2353) 0 41459
All Respiratory 3143 (3472) 0 76336 3170 (3654) 0 76336 3132 (3395) 0 62189
Heart Disease 4696 (4257) 0 76336 4746 (4502) 0 76336 4675 (4152) 0 41543
Stroke 1018 (1895) 0 41459 1013 (1973) 0 38168 1020 (1861) 0 41459
Bone Fracture 392 (1151) 0 38168 402 (1183) 0 38168 387 (1138) 0 29721
Appendicitis 22 (283) 0 38168 23 (323) 0 38168 21 (265) 0 20730

Notes: Table lists summary statistics (mean, standard deviation, minimum, and maximum) of variables in the

data set. Admissions are counted if either the primary or one of the 24 other diagnosis codes include the ICD-9

classification for an illness. Sickness rates are measured in cases per 10 million people. The first four columns

(1a)-(1d) use all zip codes, while columns (2a)-(2d) only use zip codes within 5km of an airport, and columns

(3a)-(3d) use zip codes 5-10km from an airport.
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Table A4: Taxi Time at California Airports on East Coast Taxi Time

Airport LAX SFO SAN OAK SJC SMF SNA ONT BUR SBA LGB PSP

Taxi Time at ATL 71.63∗∗∗ 37.39∗∗∗ 18.63∗∗∗ 6.90∗∗∗ 8.57∗∗∗ -4.35∗∗∗ 7.86∗∗∗ -8.75∗∗∗ -6.31∗∗∗ -14.91∗∗∗ -16.62∗∗∗ -23.77∗∗∗

(8.72) (4.12) (3.67) (1.85) (1.98) (1.55) (2.21) (1.79) (1.85) (1.71) (1.92) (2.14)
Taxi Time at ORD 15.70∗∗ 16.66∗∗∗ -2.63 1.26 2.25 -5.96∗∗∗ 7.36∗∗∗ -6.42∗∗∗ -4.22∗∗ -10.25∗∗∗ -10.04∗∗∗ -11.59∗∗∗

(7.72) (4.54) (3.78) (1.78) (1.84) (1.49) (2.41) (1.80) (1.79) (1.72) (2.03) (1.86)
Taxi Time at JFK 181.64∗∗∗ 54.82∗∗∗ -5.47 -12.91∗∗ -44.20∗∗∗ -4.66 -24.85∗∗∗ -21.74∗∗∗ -30.47∗∗∗ -41.04∗∗∗ -27.75∗∗∗ -45.07∗∗∗

(12.89) (8.06) (6.92) (5.69) (5.82) (5.51) (6.02) (5.57) (5.59) (5.64) (5.83) (5.93)

Combined: F-stat 171.06 75.97 12.93 10.90 48.05 3.95 16.90 15.92 17.21 49.92 40.84 70.62
(p-val.) (9.3e-41) (4.9e-24) (6.2e-06) (3.6e-05) (3.9e-17) (.0211) (2.1e-07) (4.8e-07) (1.7e-07) (1.2e-17) (4.2e-15) (8.2e-23)

Notes: Table presents first stage of regression in column (1a) or (2a) of Table 1. All coefficients are from one single joint regression but are shown as a matrix for

easier display. Table regresses daily taxi time at each of the 12 California airports (min) on taxi time at three Eastern airports (1000 min) in 2005-2007. Airports

are ordered by the average number of daily flights. All regressions include weather controls (quadratic in minimum and maximum temperature, precipitation, and

wind speed) and temporal controls (year, month, weekday, and holiday fixed effects) and are weighted by the total population in a zip code. Errors are two-way

clustered by zip code and day. Significance levels are indicated by ∗∗∗ 1%, ∗∗ 5%, ∗ 10%.
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Table A5: Pollution Regressed On Uninstrumented Taxi Time

CO Pollution NO2 Pollution O3 Pollution
Variable (1a) (1b) (1c) (2a) (2b) (2c) (3a) (3b) (3c)

Taxi Time 18.69∗∗∗ 26.41∗∗∗ 22.18∗∗∗ 0.23∗∗∗ 0.26∗∗ 0.31 -0.02 0.04 0.06
(3.10) (6.65) (8.19) (0.07) (0.11) (0.19) (0.06) (0.08) (0.16)

Taxi x Distance -1.10 -0.94 -0.00 -0.01 -0.01∗∗ -0.02
(0.85) (1.04) (0.01) (0.03) (0.00) (0.02)

Taxi x Angleu 15.01∗ 0.35 -0.52∗∗∗

(7.67) (0.23) (0.17)
Taxi x Angled 4.40 0.03 0.05

(6.84) (0.17) (0.11)
Taxi x Speed -2.48 -0.10∗∗ 0.04

(1.91) (0.04) (0.04)
Taxi x Distance x Angleu -0.72 -0.03 0.05∗∗

(1.07) (0.03) (0.02)
Taxi x Distance x Angled 0.28 -0.00 -0.01

(0.87) (0.02) (0.02)
Taxi x Distance x Speed 0.58∗∗ 0.01∗ -0.00

(0.25) (0.01) (0.01)
Taxi x Angled x Speed 2.59 0.11∗ -0.07

(2.82) (0.06) (0.06)
Taxi x Angleu x Speed -10.56∗∗∗ -0.21∗∗ 0.26∗∗∗

(3.82) (0.10) (0.09)
Taxi x Dist. x Angleu x Speed 1.55∗∗∗ 0.03∗∗ -0.03∗∗

(0.51) (0.01) (0.01)
Taxi x Dist. x Angled x Speed -0.72∗ -0.01∗ 0.01

(0.37) (0.01) (0.01)

Observations 179580 179580 179580 179580 179580 179580 179580 179580 179580
Zip Codes 164 164 164 164 164 164 164 164 164
Days 1095 1095 1095 1095 1095 1095 1095 1095 1095
F-stat(joint sig.) 36.05 19.55 5.86 11.44 5.77 3.82 0.13 3.46 2.30
p-value (joint sig.) 1.21e-08 2.45e-08 1.08e-11 .0009012 .003775 5.47e-07 .7208 .03389 .001903

Notes: Table regresses zip-code level pollution on congestion (total taxi time in 1000min) at the airport in 2005-2007. Table is analogous to Table 1 except

that taxi time at California airports is not instrumented with taxi time outside California. All regressions include weather controls (quadratic in minimum and

maximum temperature, precipitation, and wind speed), temporal controls (year, month, weekday, and holiday fixed effects), and zip code fixed effects. Regressions

are weighted by the total population in a zip code. Errors are two-way clustered by zip code and day. Significance levels are indicated by ∗∗∗ 1%, ∗∗ 5%, ∗ 10%.
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Table A6: Pollution Regressed On Instrumented Taxi Time Using Different Airports Outside California

Variable (1a) (1b) (1c) (1d) (2a) (2b) (2c) (2d)

Panel A1 : CO Pollution
Taxi Time 33.03∗∗∗ 31.75∗∗∗ 41.16∗∗∗ 42.22∗∗∗ 49.58∗∗∗ 47.16∗∗∗ 56.98∗∗∗ 58.91∗∗∗

(s.e.) (5.77) (5.53) (4.92) (4.95) (10.61) (10.07) (9.65) (9.42)
[s.e.] [5.73] [5.50] [4.83] [4.87] [10.54] [10.03] [9.61] [9.36]

Taxi Time x Distance -2.33∗ -2.17∗ -2.23∗ -2.35∗∗

(s.e.) (1.23) (1.18) (1.23) (1.20)
[s.e.] [1.23] [1.19] [1.23] [1.20]

F-stat (joint sig.) 32.51 32.81 69.64 72.15 17.58 17.87 38.34 40.32
p-val. (joint sig.) 5.4e-08 4.8e-08 2.9e-14 1.2e-14 1.2e-07 9.6e-08 2.3e-14 5.9e-15
F-stat (1st stage) 46.00 31.32 42.82 44.96

Panel A2: NO2 Pollution
Taxi Time 0.246∗∗ 0.252∗∗ 0.480∗∗∗ 0.498∗∗∗ 0.375∗ 0.396∗ 0.613∗∗∗ 0.639∗∗∗

(s.e.) (0.121) (0.120) (0.092) (0.091) (0.220) (0.215) (0.158) (0.158)
[s.e.] [0.118] [0.117] [0.089] [0.088] [0.222] [0.216] [0.159] [0.159]

Taxi Time x Distance -0.018 -0.020 -0.019 -0.020
(s.e.) (0.025) (0.025) (0.018) (0.018)
[s.e.] [0.026] [0.025] [0.018] [0.018]

F-stat (joint sig.) 4.09 4.40 27.25 29.72 2.24 2.48 13.93 15.23
p-val. (joint sig.) .04488 .03753 5.4e-07 1.8e-07 .1098 .08678 2.6e-06 8.6e-07
F-stat (1st stage) 46.00 31.32 42.82 44.96

Busiest Airports 1 2 3 4 1 2 3 4
Observations 179580 179580 179580 179580 179580 179580 179580 179580
Zip Codes 164 164 164 164 164 164 164 164
Days 1095 1095 1095 1095 1095 1095 1095 1095

Notes: Table regresses zip-code level pollution measures on congestion (total taxi time in 1000min) at the airport in 2005-2007. Taxi time at the local airport

is instrumented on the taxi time at airports in the Eastern United States. Columns (a), (b), (c), and (d) consecutively add additional airports that are used

as instruments. Standard errors in () are obtained from joint estimation of the IV regression. Standard errors in [] are obtained from manually estimating

the first stage and using the predicted values in the second stage. All regressions include weather controls (quadratic in minimum and maximum temperature,

precipitation, and wind speed), temporal controls (year, month, weekday, and holiday fixed effects), and zip code fixed effects. Regressions are weighted by the

total population in a zip code. Errors are two-way clustered by zip code and day. Significance levels are indicated by ∗∗∗ 1%, ∗∗ 5%, ∗ 10%.
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Table A7: Taxi Time Regressed on Weather at Airport

Taxi Time Taxi Time Taxi Time Taxi Time Taxi Time
at LAX at SFO at ATL at ORD at JFK

Weather at LAX [1.3e-33]∗∗∗ [0.011]∗∗ [0.321] [0.594] [0.484]
Weather at SFO [0.272] [7.2e-21]∗∗∗ [0.357] [0.113] [0.730]
Weather at ATL [3.1e-04]∗∗∗ [7.1e-05]∗∗∗ [2.0e-09]∗∗∗ [0.002]∗∗∗ [0.338]
Weather at ORD [0.538] [3.8e-04]∗∗∗ [7.9e-06]∗∗∗ [2.0e-25]∗∗∗ [0.275]
Weather at JFK [0.123] [0.013]∗∗ [0.048]∗∗ [0.709] [5.5e-09]∗∗∗

Notes: Table gives p-values of the joint significance of the eight weather variables (a quadratic in minimum and

maximum temperature, precipitation, and wind speed) used to explain taxi time at an airport. Each entry in the

Table is from a separate regression. The taxi time is from the airport given in the column heading while the weather

variables are from the airport given in the row heading. Regressions that include weather from another airport also

control for local weather measures (not included in joint p-value). P-values are obtained using robust standard errors.

All regressions include temporal controls (year, month, weekday, and holiday fixed effects). Significance levels are

indicated by ∗∗∗ 1%, ∗∗ 5%, ∗ 10%.
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Table A8: Sickness Rates Regressed On Instrumented Pollution - Ages 5-64
Acute All Heart Bone Appen-

Asthma Respiratory Respiratory Problems Stroke Fractures dicitis
(1a) (1b) (1c) (2) (3) (4) (5)

Panel A: Ages 5 - 19
Model 1: CO -0.019 0.037 0.119 0.013 -0.001 -0.135 -0.000

(0.124) (0.315) (0.331) (0.035) (0.013) (0.155) (0.033)
Model 2: CO -0.018 0.068 0.155 0.011 0.002 -0.083 -0.003

(0.109) (0.279) (0.296) (0.034) (0.011) (0.156) (0.032)
Model 3: CO -0.006 0.004 -0.025 -0.002 -0.005 -0.056 0.022

(0.090) (0.202) (0.225) (0.029) (0.012) (0.085) (0.024)
Model 1: NO2 -1.4 2.9 9.2 1.0 -0.1 -10.4 -0.0

(9.4) (24.4) (26.2) (2.7) (1.0) (12.8) (2.5)
Model 2: NO2 -1.4 4.7 11.4 0.9 0.1 -7.5 -0.2

(8.7) (22.6) (24.4) (2.6) (0.9) (12.8) (2.5)
Model 3: NO2 -5.2 -7.6 -11.5 -1.3 -0.9 -0.8 1.2

(7.7) (16.1) (17.7) (2.0) (0.9) (6.5) (1.9)
Panel B: Ages 20 - 64

Model 1: CO 0.291∗∗∗ 0.311∗∗ 0.379∗∗ 0.082 0.001 -0.090∗ 0.008
(0.080) (0.132) (0.184) (0.096) (0.031) (0.053) (0.022)

Model 2: CO 0.285∗∗∗ 0.301∗∗ 0.369∗∗ 0.070 -0.008 -0.092∗ 0.003
(0.076) (0.127) (0.179) (0.093) (0.030) (0.053) (0.021)

Model 3: CO 0.129∗∗ 0.167∗ 0.191∗ 0.058 0.011 -0.067∗ 0.005
(0.051) (0.085) (0.115) (0.061) (0.024) (0.035) (0.013)

Model 1: NO2 26.1∗∗∗ 27.9∗∗ 34.0∗∗ 7.4 0.0 -8.1 0.7
(7.8) (12.0) (16.2) (8.2) (2.8) (5.6) (2.0)

Model 2: NO2 25.8∗∗∗ 27.3∗∗ 33.3∗∗ 6.6 -0.6 -8.3 0.4
(7.6) (11.6) (15.8) (8.1) (2.7) (5.7) (1.9)

Model 3: NO2 9.1∗∗ 9.0 7.2 5.0 1.6 -2.9 0.6
(3.7) (7.1) (9.4) (4.9) (1.7) (2.2) (1.0)

Observations 179580 179580 179580 179580 179580 179580 179580
Zip Codes 164 164 164 164 164 164 164
Days 1095 1095 1095 1095 1095 1095 1095

Notes: Table replicates Table 4 for the two remaining age groups: 5-19 and 20-64. Table regresses zip-code level

sickness rates (counts for primary and secondary diagnosis codes per 10 million people) on daily instrumented

pollution levels (ppb) in 2005-2007. Each entry is a separate regression. Pollution is instrumented on airport

congestion (taxi time) that is caused by network delays (taxi time at three major airports in the Eastern United

States). Model 1 assumes a uniform impact of congestion on pollution levels at all zip codes surrounding an airport,

while model 2 adds an interaction with the distance to the airport, and model 3 furthermore adds interactions

with wind direction and speed (columns (a)-(c) in Table 1). All regressions include weather controls (quadratic in

minimum and maximum temperature, precipitation, and wind speed) and temporal controls (year, month, weekday,

and holiday fixed effects) and are weighted by the total population in a zip code. Errors are two-way clustered by

zip code and day. Significance levels are indicated by ∗∗∗ 1%, ∗∗ 5%, ∗ 10%.
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Table A9: Sickness Rates Regressed On Instrumented Pollution - LIML
Acute All Heart Bone Appen-

Asthma Respiratory Respiratory Problems Stroke Fractures dicitis
(1a) (1b) (1c) (2) (3) (4) (5)

Panel A: All Ages
Model 2: CO 0.331∗∗∗ 0.592∗∗∗ 0.813∗∗∗ 0.447∗∗∗ 0.048 -0.032 0.002

(0.066) (0.179) (0.234) (0.137) (0.041) (0.070) (0.016)
Model 3: CO 0.207∗∗∗ 0.425∗∗∗ 0.552∗∗∗ 0.236∗∗∗ 0.020 -0.041 0.003

(0.050) (0.134) (0.178) (0.084) (0.031) (0.042) (0.011)
Model 2: NO2 28.8∗∗∗ 51.5∗∗ 70.4∗∗∗ 39.8∗∗∗ 4.5 -2.7 0.3

(7.9) (20.7) (26.7) (13.2) (3.7) (6.3) (1.4)
Model 3: NO2 12.9∗∗∗ 18.8 23.4 16.9∗∗ 0.6 -0.8 0.5

(4.5) (12.6) (17.2) (7.8) (2.2) (3.0) (0.9)
Panel B: Ages Below 5

Model 2: CO 0.621∗∗ 2.096∗ 2.848∗ 0.125 0.021 0.069 -0.019
(0.252) (1.202) (1.477) (0.082) (0.025) (0.141) (0.038)

Model 3: CO 0.733∗∗∗ 2.336∗∗∗ 2.683∗∗∗ 0.077 0.023 -0.030 -0.009
(0.175) (0.814) (1.009) (0.059) (0.015) (0.127) (0.023)

Model 2: NO2 50.0∗∗ 169.0 230.1 10.3 1.7 5.5 -1.5
(24.3) (113.1) (142.8) (7.3) (2.1) (11.2) (3.0)

Model 3: NO2 49.7∗∗∗ 127.5∗ 145.2 4.8 2.8∗∗ 1.6 0.8
(15.6) (72.7) (89.3) (4.9) (1.3) (9.9) (2.1)

Panel C: Ages 65 and Older
Model 2: CO 0.867∗∗∗ 1.511∗∗∗ 2.426∗∗∗ 3.712∗∗∗ 0.504 0.418 0.017

(0.299) (0.453) (0.696) (1.039) (0.327) (0.261) (0.030)
Model 3: CO 0.534∗∗ 0.743∗∗ 1.506∗∗∗ 2.046∗∗∗ 0.188 0.184 -0.031

(0.215) (0.331) (0.549) (0.655) (0.261) (0.170) (0.028)
Model 2: NO2 78.4∗∗∗ 136.5∗∗∗ 211.7∗∗∗ 327.0∗∗∗ 46.2 40.2∗ 1.6

(27.0) (42.4) (65.8) (93.8) (28.6) (21.6) (2.6)
Model 3: NO2 36.2∗∗ 37.0 68.5 130.4∗∗ 0.9 9.7 -1.3

(14.9) (25.4) (43.4) (51.1) (16.4) (12.4) (1.8)

Observations 179580 179580 179580 179580 179580 179580 179580
Zip Codes 164 164 164 164 164 164 164
Days 1095 1095 1095 1095 1095 1095 1095

Notes: Table replicates models 2 and 3 of Table 4 except that the IV regression is done using limited information

maximum likelihood instead of 2-stage least squares. Model 1 is dropped as it is exactly identified, in which case

LIML is identical to twos-stage least squares. Table regresses zip-code level sickness rates (counts for primary and

secondary diagnosis codes per 10 million people) on daily instrumented pollution levels (ppb) in 2005-2007. Each

entry is a separate regression. Pollution is instrumented on airport congestion (taxi time) that is caused by network

delays (taxi time at three major airports in the Eastern United States). Model 1 assumes a uniform impact of

congestion on pollution levels at all zip codes surrounding an airport, while model 2 adds an interaction with the

distance to the airport, and model 3 furthermore adds interactions with wind direction and speed (columns (a)-(c) in

Table 1). All regressions include weather controls (quadratic in minimum and maximum temperature, precipitation,

and wind speed) and temporal controls (year, month, weekday, and holiday fixed effects) and are weighted by the

total population in a zip code. Errors are two-way clustered by zip code and day. Significance levels are indicated

by ∗∗∗ 1%, ∗∗ 5%, ∗ 10%.
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Table A10: Sickness Rates (Primary Diagnosis Code) Regressed On Instrumented Pollution

Acute All Heart Bone Appen-
Asthma Respiratory Respiratory Problems Stroke Fractures dicitis

(1a) (1b) (1c) (2) (3) (4) (5)

Panel A: All Ages
Model 1: CO 0.039 0.260∗ 0.463∗∗ 0.086 0.006 -0.075 0.008

(0.043) (0.150) (0.206) (0.057) (0.024) (0.063) (0.016)
Model 2: CO 0.050 0.274∗ 0.481∗∗ 0.080 -0.002 -0.073 0.004

(0.040) (0.145) (0.202) (0.059) (0.023) (0.064) (0.016)
Model 3: CO 0.045 0.206∗ 0.343∗∗ 0.052 0.010 -0.062∗ 0.004

(0.031) (0.107) (0.145) (0.034) (0.018) (0.037) (0.011)
Model 1: NO2 3.4 22.3 39.7∗ 7.3 0.5 -6.4 0.7

(3.9) (14.7) (21.3) (5.1) (2.1) (6.1) (1.4)
Model 2: NO2 4.1 23.2 41.0∗ 7.0 0.0 -6.3 0.5

(3.8) (14.5) (21.2) (5.3) (2.0) (6.2) (1.4)
Model 3: NO2 0.3 2.3 7.6 6.9∗∗ 1.0 -2.2 0.4

(2.2) (7.6) (10.7) (3.2) (1.3) (2.8) (0.9)
Panel B: Ages Below 5

Model 1: CO 0.393∗∗ 2.274∗∗ 2.919∗∗ 0.005 0.005 -0.017 0.000
(0.173) (0.950) (1.253) (0.040) (0.013) (0.145) (0.033)

Model 2: CO 0.438∗∗∗ 2.322∗∗ 2.895∗∗ 0.002 0.009 0.007 -0.009
(0.162) (0.921) (1.238) (0.039) (0.015) (0.137) (0.035)

Model 3: CO 0.388∗∗∗ 1.902∗∗∗ 2.226∗∗∗ -0.020 0.003 -0.060 0.000
(0.113) (0.630) (0.861) (0.027) (0.009) (0.121) (0.022)

Model 1: NO2 31.6∗∗ 183.0∗∗ 234.9∗ 0.4 0.4 -1.3 0.0
(15.7) (90.3) (122.0) (3.2) (1.1) (11.8) (2.6)

Model 2: NO2 35.2∗∗ 187.1∗∗ 233.4∗ 0.2 0.7 0.5 -0.7
(15.1) (86.9) (120.3) (3.2) (1.3) (11.0) (2.8)

Model 3: NO2 21.1∗∗∗ 92.3∗ 110.0 -1.9 0.4 -1.4 1.3
(7.9) (51.0) (69.7) (2.4) (0.9) (9.1) (2.1)

Panel C: Ages 65 and Older
Model 1: CO 0.189∗ 0.499∗∗ 1.347∗∗∗ 1.067∗∗∗ 0.109 0.274 0.005

(0.105) (0.250) (0.420) (0.402) (0.197) (0.246) (0.029)
Model 2: CO 0.185∗ 0.471∗∗ 1.345∗∗∗ 1.048∗∗∗ 0.048 0.222 0.000

(0.103) (0.235) (0.405) (0.400) (0.197) (0.241) (0.028)
Model 3: CO 0.114∗ 0.334∗∗ 1.017∗∗∗ 0.523∗ 0.122 0.085 -0.028

(0.064) (0.145) (0.301) (0.285) (0.147) (0.155) (0.023)
Model 1: NO2 15.8∗ 41.8∗∗ 113.0∗∗∗ 89.5∗∗ 9.2 23.0 0.5

(8.6) (20.3) (39.9) (36.7) (16.8) (19.9) (2.4)
Model 2: NO2 15.8∗ 41.8∗∗ 113.2∗∗∗ 89.5∗∗ 8.8 22.8 0.4

(8.6) (20.3) (39.8) (36.9) (16.8) (19.9) (2.4)
Model 3: NO2 7.7∗ 19.3∗ 52.2∗∗ 53.5∗∗∗ 5.2 2.0 -0.9

(4.5) (10.3) (22.5) (20.4) (9.7) (11.2) (1.6)

Observations 179580 179580 179580 179580 179580 179580 179580
Zip Codes 164 164 164 164 164 164 164
Days 1095 1095 1095 1095 1095 1095 1095

Notes: Table replicates Table 4 except that sickness counts are based on primary diagnosis codes only. Table

regresses zip-code level sickness rates (counts per 10 million people) on daily instrumented pollution levels (ppb)

in 2005-2007. Each entry is a separate regression. Pollution is instrumented on airport congestion (taxi time) that

is caused by network delays (taxi time at three major airports in the Eastern United States). Model 1 assumes a

uniform impact of congestion on pollution levels at all zip codes surrounding an airport, while model 2 adds an

interaction with the distance to the airport, and model 3 furthermore adds interactions with wind direction and

speed (columns (a)-(c) in Table 1). All regressions include weather controls (quadratic in minimum and maximum

temperature, precipitation, and wind speed) and temporal controls (year, month, weekday, and holiday fixed

effects) and are weighted by the total population in a zip code. Errors are two-way clustered by zip code and day.

Significance levels are indicated by ∗∗∗ 1%, ∗∗ 5%, ∗ 10%.
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Table A11: Sickness Rates of All Ages Regressed On Instrumented Pollution - Sensitivity of IV
Acute All Heart Bone Appen-

Asthma Respiratory Respiratory Problems Stroke Fractures dicitis
(1a) (1b) (1c) (2) (3) (4) (5)

Panel A: Baseline: Tax Time at Eastern Airports
Model 1: CO 0.341∗∗∗ 0.607∗∗∗ 0.828∗∗∗ 0.475∗∗∗ 0.059 -0.031 0.007

(0.072) (0.179) (0.230) (0.148) (0.042) (0.069) (0.016)
Model 2: CO 0.330∗∗∗ 0.592∗∗∗ 0.812∗∗∗ 0.444∗∗∗ 0.048 -0.032 0.002

(0.066) (0.179) (0.234) (0.137) (0.040) (0.070) (0.016)
Model 3: CO 0.203∗∗∗ 0.415∗∗∗ 0.534∗∗∗ 0.233∗∗∗ 0.020 -0.041 0.003

(0.049) (0.130) (0.172) (0.082) (0.031) (0.042) (0.011)
Model 1: NO2 29.2∗∗∗ 52.0∗∗ 70.9∗∗∗ 40.7∗∗∗ 5.1 -2.7 0.6

(8.0) (20.7) (26.4) (13.1) (3.7) (6.1) (1.4)
Model 2: NO2 28.7∗∗∗ 51.3∗∗ 70.3∗∗∗ 39.0∗∗∗ 4.4 -2.7 0.3

(7.8) (20.6) (26.6) (12.9) (3.6) (6.3) (1.4)
Model 3: NO2 11.9∗∗∗ 16.2 19.4 16.0∗∗ 0.6 -0.8 0.5

(4.0) (10.5) (13.7) (7.2) (2.2) (2.9) (0.9)
Panel B: Tax Time 5am to noon at Eastern Airports

Model 1: CO 0.383∗∗∗ 0.568∗∗∗ 0.701∗∗∗ 0.525∗∗∗ 0.045 -0.055 0.014
(0.104) (0.176) (0.225) (0.177) (0.046) (0.068) (0.016)

Model 2: CO 0.365∗∗∗ 0.541∗∗∗ 0.668∗∗∗ 0.497∗∗∗ 0.038 -0.060 0.011
(0.096) (0.173) (0.223) (0.166) (0.045) (0.070) (0.016)

Model 3: CO 0.208∗∗∗ 0.386∗∗∗ 0.462∗∗∗ 0.231∗∗∗ 0.005 -0.053 0.005
(0.055) (0.119) (0.154) (0.084) (0.030) (0.038) (0.011)

Model 1: NO2 31.3∗∗∗ 46.5∗∗∗ 57.4∗∗∗ 42.9∗∗∗ 3.7 -4.5 1.1
(9.1) (16.3) (20.5) (15.1) (3.7) (5.9) (1.3)

Model 2: NO2 30.4∗∗∗ 45.2∗∗∗ 55.7∗∗∗ 41.6∗∗∗ 3.3 -4.8 1.0
(8.8) (16.2) (20.5) (14.8) (3.7) (6.0) (1.3)

Model 3: NO2 12.6∗∗∗ 15.7 16.1 15.9∗∗ -0.3 -1.9 0.7
(4.5) (9.7) (12.3) (7.3) (2.1) (2.8) (0.9)

Panel C: Weather at Eastern Airports
Model 1: CO 0.359∗ 1.057∗ 1.406∗ 0.557∗ 0.168∗ 0.278∗ -0.002

(0.195) (0.622) (0.807) (0.339) (0.098) (0.168) (0.029)
Model 2: CO 0.396∗∗ 1.122∗ 1.538∗ 0.514 0.100 0.200 -0.023

(0.200) (0.628) (0.832) (0.327) (0.084) (0.144) (0.029)
Model 1: NO2 25.4∗ 74.8 99.5 39.4 11.9 19.7∗ -0.2

(15.0) (50.5) (64.9) (24.4) (7.8) (11.6) (2.1)
Model 2: NO2 27.7∗ 77.8 107.4∗ 34.0 5.4 11.9 -2.0

(15.6) (48.6) (63.7) (22.0) (5.5) (8.4) (2.1)

Observations 179580 179580 179580 179580 179580 179580 179580
Zip Codes 164 164 164 164 164 164 164
Days 1095 1095 1095 1095 1095 1095 1095

Notes: Table lists the results for all ages from Table 4 in Panel A. Panel B instruments taxi time at California

airports on the taxi time between 5am and noon of each day at the three Eastern Airports. Panel C uses the

weather at each of the three Eastern airports as instrument (quadratic in minimum and maximum temperature,

precipitation, and wind speed). We do not estimate model 3 in panel C as it would include 3456 instruments. Table

regresses zip-code level sickness rates (counts for primary and secondary diagnosis codes per 10 million people) on

daily instrumented pollution levels (ppb) in 2005-2007. Each entry is a separate regression. Pollution is instrumented

on airport congestion (taxi time) that is caused by network delays (taxi time at three major airports in the Eastern

United States). Model 1 assumes a uniform impact of congestion on pollution levels at all zip codes surrounding

an airport, while model 2 adds an interaction with the distance to the airport, and model 3 furthermore adds

interactions with wind direction and speed (columns (a)-(c) in Table 1). All regressions include weather controls

(quadratic in minimum and maximum temperature, precipitation, and wind speed) and temporal controls (year,

month, weekday, and holiday fixed effects) and are weighted by the total population in a zip code. Errors are

two-way clustered by zip code and day. Significance levels are indicated by ∗∗∗ 1%, ∗∗ 5%, ∗ 10%.
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Table A12: Sickness Rates Regressed On Instrumented Pollution - Inpatient Data
Acute All Heart Bone Appen-

Asthma Respiratory Respiratory Problems Stroke Fractures dicitis
(1a) (1b) (1c) (2) (3) (4) (5)

Panel A: All Ages
Model 1: CO 0.048 0.129∗∗ 0.133 0.179∗ 0.020 0.043 0.008

(0.044) (0.065) (0.097) (0.101) (0.033) (0.032) (0.016)
Model 2: CO 0.043 0.120∗ 0.125 0.162 0.012 0.042 0.003

(0.041) (0.064) (0.099) (0.099) (0.032) (0.033) (0.015)
Model 3: CO 0.020 0.069 0.058 0.074 -0.009 -0.002 0.004

(0.028) (0.044) (0.073) (0.058) (0.026) (0.023) (0.011)
Model 1: NO2 4.1 11.1∗ 11.4 15.4∗ 1.7 3.7 0.7

(3.8) (6.3) (8.8) (8.7) (2.9) (2.5) (1.4)
Model 2: NO2 3.8 10.6∗ 11.0 14.4∗ 1.2 3.7 0.4

(3.6) (6.3) (8.9) (8.7) (2.8) (2.6) (1.4)
Model 3: NO2 0.8 0.9 -0.9 3.2 -1.4 0.3 0.4

(2.0) (3.5) (5.7) (5.2) (1.9) (1.6) (0.8)
Panel B: Ages Below 5

Model 1: CO 0.002 0.213 0.058 0.097 0.013 -0.032 -0.014
(0.159) (0.315) (0.404) (0.075) (0.021) (0.058) (0.026)

Model 2: CO 0.010 0.209 0.039 0.063 0.016 -0.014 -0.021
(0.149) (0.299) (0.393) (0.068) (0.023) (0.056) (0.028)

Model 3: CO 0.126 0.331∗ 0.172 0.063 0.016 -0.019 -0.004
(0.097) (0.191) (0.269) (0.047) (0.014) (0.042) (0.018)

Model 1: NO2 0.2 17.1 4.7 7.8 1.0 -2.5 -1.1
(12.8) (27.0) (33.0) (6.2) (1.7) (4.8) (2.1)

Model 2: NO2 0.8 16.9 3.2 5.1 1.3 -1.2 -1.7
(12.1) (25.8) (32.0) (5.7) (1.9) (4.6) (2.2)

Model 3: NO2 8.4 16.8 3.9 2.3 2.3∗ 0.3 1.0
(7.6) (14.4) (19.5) (4.0) (1.2) (2.7) (1.5)

Panel C: Ages 65 and Older
Model 1: CO 0.362 0.865∗∗ 0.990∗ 2.020∗∗ 0.257 0.267 0.017

(0.231) (0.381) (0.540) (0.829) (0.273) (0.169) (0.030)
Model 2: CO 0.313 0.794∗∗ 0.982∗ 1.935∗∗ 0.215 0.235 0.015

(0.204) (0.376) (0.552) (0.820) (0.277) (0.167) (0.029)
Model 3: CO 0.158 0.225 0.486 0.970∗ -0.005 -0.012 -0.035

(0.144) (0.264) (0.426) (0.512) (0.218) (0.126) (0.028)
Model 1: NO2 30.4∗ 72.5∗∗ 83.0∗ 169.4∗∗ 21.5 22.4 1.4

(18.2) (31.8) (46.3) (70.5) (23.6) (13.7) (2.5)
Model 2: NO2 30.2∗ 72.4∗∗ 83.2∗ 169.5∗∗ 21.3 22.3 1.4

(18.1) (31.9) (46.5) (70.7) (23.7) (13.7) (2.5)
Model 3: NO2 8.9 -1.8 2.9 45.8 -8.1 -0.6 -1.2

(9.8) (19.5) (32.8) (39.1) (14.5) (9.5) (1.8)

Observations 179580 179580 179580 179580 179580 179580 179580
Zip Codes 164 164 164 164 164 164 164
Days 1095 1095 1095 1095 1095 1095 1095

Notes: Table replicates Table 4 except that sickness counts only use Inpatient Data (i.e., patients stay overnight).

Table regresses zip-code level sickness rates (counts for primary and secondary diagnosis codes per 10 million

people) on daily instrumented pollution levels (ppb) in 2005-2007. Each entry is a separate regression. Pollution is

instrumented on airport congestion (taxi time) that is caused by network delays (taxi time at three major airports

in the Eastern United States). Model 1 assumes a uniform impact of congestion on pollution levels at all zip codes

surrounding an airport, while model 2 adds an interaction with the distance to the airport, and model 3 furthermore

adds interactions with wind direction and speed (columns (a)-(c) in Table 1). All regressions include weather

controls (quadratic in minimum and maximum temperature, precipitation, and wind speed) and temporal controls

(year, month, weekday, and holiday fixed effects) and are weighted by the total population in a zip code. Errors are

two-way clustered by zip code and day. Significance levels are indicated by ∗∗∗ 1%, ∗∗ 5%, ∗ 10%.
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Table A13: Sickness Rates Regressed On Instrumented Pollution - Outpatient Data
Acute All Heart Bone Appen-

Asthma Respiratory Respiratory Problems Stroke Fractures dicitis
(1a) (1b) (1c) (2) (3) (4) (5)

Panel A: All Ages
Model 1: CO 0.293∗∗∗ 0.478∗∗∗ 0.695∗∗∗ 0.295∗∗∗ 0.039∗∗ -0.074 -0.002

(0.059) (0.149) (0.185) (0.076) (0.016) (0.050) (0.004)
Model 2: CO 0.287∗∗∗ 0.472∗∗∗ 0.687∗∗∗ 0.282∗∗∗ 0.036∗∗ -0.074 -0.002

(0.058) (0.148) (0.185) (0.068) (0.015) (0.050) (0.004)
Model 3: CO 0.183∗∗∗ 0.346∗∗∗ 0.477∗∗∗ 0.159∗∗∗ 0.029∗∗∗ -0.039 -0.001

(0.044) (0.111) (0.140) (0.049) (0.011) (0.028) (0.003)
Model 1: NO2 25.1∗∗∗ 40.9∗∗ 59.5∗∗∗ 25.3∗∗∗ 3.4∗∗ -6.4 -0.2

(6.9) (16.8) (21.6) (6.9) (1.4) (4.9) (0.4)
Model 2: NO2 24.9∗∗∗ 40.8∗∗ 59.4∗∗∗ 24.6∗∗∗ 3.2∗∗ -6.4 -0.1

(6.9) (16.8) (21.7) (6.7) (1.4) (4.9) (0.4)
Model 3: NO2 11.0∗∗∗ 15.3∗ 20.4∗ 12.8∗∗∗ 2.0∗∗ -1.1 0.1

(3.8) (8.8) (11.1) (4.1) (0.9) (2.1) (0.2)
Panel B: Ages Below 5

Model 1: CO 0.604∗∗∗ 1.924∗ 2.897∗∗ 0.068∗ 0.006 0.079 0.005
(0.205) (1.048) (1.223) (0.036) (0.006) (0.129) (0.018)

Model 2: CO 0.611∗∗∗ 1.886∗ 2.807∗∗ 0.061∗ 0.006 0.083 0.002
(0.204) (1.033) (1.224) (0.035) (0.006) (0.123) (0.019)

Model 3: CO 0.602∗∗∗ 1.969∗∗∗ 2.467∗∗∗ 0.014 0.006∗ -0.011 -0.005
(0.166) (0.698) (0.827) (0.024) (0.004) (0.111) (0.011)

Model 1: NO2 48.6∗∗ 154.8 233.2∗ 5.5∗ 0.5 6.3 0.4
(20.0) (97.6) (119.5) (3.1) (0.5) (10.3) (1.5)

Model 2: NO2 49.2∗∗ 152.1 226.4∗ 4.9∗ 0.4 6.7 0.2
(20.0) (95.9) (119.0) (3.0) (0.4) (9.8) (1.6)

Model 3: NO2 39.5∗∗∗ 100.1∗ 128.2∗ 2.3 0.5∗ 1.3 -0.2
(12.2) (57.5) (69.7) (1.8) (0.3) (8.7) (1.0)

Panel C: Ages 65 and Older
Model 1: CO 0.568∗∗∗ 0.756∗∗∗ 1.534∗∗∗ 1.868∗∗∗ 0.294∗∗ 0.211 0.002

(0.161) (0.246) (0.357) (0.444) (0.117) (0.156) (0.004)
Model 2: CO 0.550∗∗∗ 0.711∗∗∗ 1.442∗∗∗ 1.765∗∗∗ 0.288∗∗ 0.182 0.003

(0.146) (0.229) (0.332) (0.402) (0.119) (0.153) (0.005)
Model 3: CO 0.371∗∗∗ 0.509∗∗∗ 1.010∗∗∗ 1.041∗∗∗ 0.192∗∗ 0.194∗∗ 0.004

(0.111) (0.157) (0.234) (0.310) (0.091) (0.094) (0.004)
Model 1: NO2 47.7∗∗∗ 63.4∗∗∗ 128.6∗∗∗ 156.6∗∗∗ 24.7∗∗ 17.7 0.2

(13.8) (21.9) (34.7) (37.1) (10.2) (13.0) (0.3)
Model 2: NO2 47.7∗∗∗ 63.2∗∗∗ 128.3∗∗∗ 156.5∗∗∗ 24.7∗∗ 17.6 0.2

(13.8) (21.9) (34.7) (37.1) (10.3) (13.0) (0.3)
Model 3: NO2 26.3∗∗∗ 37.2∗∗∗ 63.3∗∗∗ 77.0∗∗∗ 9.1 10.1 -0.1

(7.8) (10.8) (18.4) (21.7) (6.3) (8.4) (0.3)

Observations 179580 179580 179580 179580 179580 179580 179580
Zip Codes 164 164 164 164 164 164 164
Days 1095 1095 1095 1095 1095 1095 1095

Notes: Table replicates Table 4 except that sickness counts only use Outpatient Data (i.e., patients do not stay

overnight). Table regresses zip-code level sickness rates (counts for primary and secondary diagnosis codes per

10 million people) on daily instrumented pollution levels (ppb) in 2005-2007. Each entry is a separate regression.

Pollution is instrumented on airport congestion (taxi time) that is caused by network delays (taxi time at three

major airports in the Eastern United States). Model 1 assumes a uniform impact of congestion on pollution levels at

all zip codes surrounding an airport, while model 2 adds an interaction with the distance to the airport, and model

3 furthermore adds interactions with wind direction and speed (columns (a)-(c) in Table 1). All regressions include

weather controls (quadratic in minimum and maximum temperature, precipitation, and wind speed) and temporal

controls (year, month, weekday, and holiday fixed effects) and are weighted by the total population in a zip code.

Errors are two-way clustered by zip code and day. Significance levels are indicated by ∗∗∗ 1%, ∗∗ 5%, ∗ 10%.
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Table A14: Sickness Rates Regressed On Instrumented Pollution (Season)

Acute All Heart Bone Appen-
Asthma Respiratory Respiratory Problems Stroke Fractures dicitis

(1a) (1b) (1c) (2) (3) (4) (5)

Panel A: All Months
Model 1: CO 0.341∗∗∗ 0.607∗∗∗ 0.828∗∗∗ 0.475∗∗∗ 0.059 -0.031 0.007

(0.072) (0.179) (0.230) (0.148) (0.042) (0.069) (0.016)
Model 2: CO 0.330∗∗∗ 0.592∗∗∗ 0.812∗∗∗ 0.444∗∗∗ 0.048 -0.032 0.002

(0.066) (0.179) (0.234) (0.137) (0.040) (0.070) (0.016)
Model 3: CO 0.203∗∗∗ 0.415∗∗∗ 0.534∗∗∗ 0.233∗∗∗ 0.020 -0.041 0.003

(0.049) (0.130) (0.172) (0.082) (0.031) (0.042) (0.011)
Model 1: NO2 29.2∗∗∗ 52.0∗∗ 70.9∗∗∗ 40.7∗∗∗ 5.1 -2.7 0.6

(8.0) (20.7) (26.4) (13.1) (3.7) (6.1) (1.4)
Model 2: NO2 28.7∗∗∗ 51.3∗∗ 70.3∗∗∗ 39.0∗∗∗ 4.4 -2.7 0.3

(7.8) (20.6) (26.6) (12.9) (3.6) (6.3) (1.4)
Model 3: NO2 11.9∗∗∗ 16.2 19.4 16.0∗∗ 0.6 -0.8 0.5

(4.0) (10.5) (13.7) (7.2) (2.2) (2.9) (0.9)
Observations 179580 179580 179580 179580 179580 179580 179580

Panel B: Summer (April-September)
Model 1: CO 0.295∗∗ 0.086 0.328 0.431∗∗ 0.100 0.062 0.002

(0.123) (0.244) (0.301) (0.180) (0.073) (0.131) (0.030)
Model 2: CO 0.297∗∗ 0.087 0.338 0.416∗∗ 0.095 0.068 0.000

(0.120) (0.245) (0.305) (0.181) (0.073) (0.133) (0.030)
Model 3: CO 0.255∗∗ 0.002 0.156 0.304∗ 0.098 0.059 0.009

(0.105) (0.201) (0.262) (0.169) (0.067) (0.109) (0.030)
Model 1: NO2 30.4∗ 8.8 33.7 44.4∗ 10.3 6.4 0.2

(15.9) (25.9) (34.7) (23.2) (8.1) (13.0) (3.1)
Model 2: NO2 29.5∗∗ 8.8 35.8 36.0∗ 8.0 8.4 -0.3

(14.3) (25.1) (34.9) (21.4) (7.4) (13.2) (2.8)
Model 3: NO2 5.3 -13.0 -12.0 7.2 4.6 5.1 1.0

(4.8) (8.4) (10.7) (9.6) (3.4) (4.8) (1.5)
Observations 90036 90036 90036 90036 90036 90036 90036

Panel C: Winter (October-March)
Model 1: CO 0.377∗∗∗ 0.694∗∗∗ 0.802∗∗∗ 0.554∗∗∗ 0.038 -0.152∗∗ 0.022

(0.113) (0.195) (0.239) (0.213) (0.046) (0.063) (0.020)
Model 2: CO 0.346∗∗∗ 0.650∗∗∗ 0.745∗∗∗ 0.522∗∗∗ 0.027 -0.151∗∗ 0.016

(0.102) (0.184) (0.226) (0.188) (0.045) (0.063) (0.020)
Model 3: CO 0.156∗∗∗ 0.258∗∗ 0.249∗ 0.215∗∗ -0.011 -0.087∗∗ 0.005

(0.060) (0.106) (0.147) (0.100) (0.035) (0.038) (0.012)
Model 1: NO2 34.2∗∗∗ 62.9∗∗∗ 72.6∗∗∗ 50.1∗∗ 3.4 -13.7∗∗ 2.0

(12.3) (23.1) (26.8) (22.3) (4.2) (6.8) (1.9)
Model 2: NO2 35.1∗∗∗ 64.0∗∗∗ 74.2∗∗∗ 50.9∗∗ 3.9 -13.5∗∗ 2.3

(12.6) (23.2) (26.9) (22.9) (4.2) (6.7) (2.0)
Model 3: NO2 14.2∗∗ 21.5∗ 20.1 23.6∗∗ 1.4 -6.7∗ 1.4

(6.5) (11.4) (13.5) (11.8) (3.0) (3.6) (1.1)
Observations 89544 89544 89544 89544 89544 89544 89544

Notes: Table lists the results for all ages from Table 4 in Panel A and then splits the sample into the summer

months (Panel B) and winter months (Panel C). Table regresses zip-code level sickness rates (counts for primary

and secondary diagnosis codes per 10 million people) on daily instrumented pollution levels (ppb) in 2005-2007.

Each entry is a separate regression. Pollution is instrumented on airport congestion (taxi time) that is caused by

network delays (taxi time at three major airports in the Eastern United States). Model 1 assumes a uniform impact

of congestion on pollution levels at all zip codes surrounding an airport, while model 2 adds an interaction with the

distance to the airport, and model 3 furthermore adds interactions with wind direction and speed (columns (a)-(c) in

Table 1). All regressions include weather controls (quadratic in minimum and maximum temperature, precipitation,

and wind speed) and temporal controls (year, month, weekday, and holiday fixed effects) and are weighted by the

total population in a zip code. Errors are two-way clustered by zip code and day. Significance levels are indicated

by ∗∗∗ 1%, ∗∗ 5%, ∗ 10%.
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A2 Appendix - Additional Sensitivity Checks

The following tables are referred to in the text. They were not submitted to make the paper length
manageable.
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Table A15: Sickness Rates Regressed On Instrumented Pollution - No Weather
Acute All Heart Bone Appen-

Asthma Respiratory Respiratory Problems Stroke Fractures dicitis
(1a) (1b) (1c) (2) (3) (4) (5)

Panel A: All Ages
Model 1: CO 0.567∗∗∗ 1.003∗∗∗ 1.364∗∗∗ 0.804∗∗ 0.112 -0.045 0.015

(0.166) (0.384) (0.497) (0.317) (0.083) (0.129) (0.031)
Model 2: CO 0.553∗∗∗ 0.986∗∗ 1.348∗∗∗ 0.763∗∗∗ 0.096 -0.046 0.009

(0.155) (0.383) (0.501) (0.295) (0.080) (0.131) (0.031)
Model 3: CO 0.164∗∗∗ 0.292∗∗∗ 0.315∗∗ 0.206∗∗∗ 0.027 -0.044 0.005

(0.048) (0.113) (0.139) (0.080) (0.035) (0.039) (0.012)
Model 1: NO2 -28.8∗∗ -50.9∗∗ -69.2∗∗ -40.8∗∗ -5.7 2.3 -0.8

(11.5) (22.3) (30.3) (19.6) (4.4) (6.6) (1.6)
Model 2: NO2 -25.6∗∗∗ -46.1∗∗ -63.6∗∗ -33.5∗∗ -3.4 2.3 0.1

(9.5) (20.3) (28.2) (15.8) (3.8) (6.6) (1.5)
Model 3: NO2 0.3 -6.1 -12.3∗ 0.7 0.4 1.0 0.5

(1.9) (5.2) (6.7) (2.6) (1.1) (1.6) (0.4)
Panel B: Ages Below 5

Model 1: CO 0.863 3.332 4.834 0.319∗ 0.030 0.051 -0.012
(0.527) (2.580) (3.095) (0.191) (0.048) (0.299) (0.072)

Model 2: CO 0.892∗ 3.222 4.548 0.218 0.035 0.105 -0.035
(0.502) (2.495) (3.040) (0.166) (0.053) (0.285) (0.080)

Model 3: CO 0.523∗∗∗ 1.483∗∗ 1.718∗∗ 0.088 0.003 -0.159 -0.017
(0.189) (0.639) (0.777) (0.066) (0.015) (0.115) (0.020)

Model 1: NO2 -39.7 -153.4 -222.6 -14.7 -1.4 -2.4 0.5
(29.7) (120.8) (149.3) (9.7) (2.2) (13.8) (3.3)

Model 2: NO2 -41.0 -152.9 -218.6 -12.4 -1.5 -3.7 1.1
(29.2) (118.9) (147.8) (8.9) (2.4) (13.6) (3.6)

Model 3: NO2 3.3 -31.7 -39.0 0.7 -0.5 -7.6∗ 0.3
(10.9) (38.5) (40.5) (3.3) (0.5) (4.5) (1.0)

Panel C: Ages 65 and Older
Model 1: CO 1.780∗∗ 3.011∗∗∗ 4.496∗∗∗ 6.740∗∗∗ 1.084 1.061∗ 0.049

(0.800) (1.165) (1.660) (2.551) (0.664) (0.583) (0.060)
Model 2: CO 1.673∗∗ 2.827∗∗∗ 4.342∗∗∗ 6.435∗∗∗ 1.006 0.960∗ 0.046

(0.712) (1.074) (1.603) (2.402) (0.667) (0.572) (0.059)
Model 3: CO 0.414∗∗ 0.433 0.768 1.870∗∗∗ 0.261 0.157 -0.073∗∗

(0.203) (0.342) (0.547) (0.680) (0.285) (0.185) (0.034)
Model 1: NO2 -101.6∗∗ -171.9∗∗ -256.7∗∗ -384.8∗∗ -61.9 -60.6∗ -2.8

(50.6) (80.7) (120.4) (185.0) (41.1) (36.6) (3.4)
Model 2: NO2 -73.5∗∗ -123.8∗∗ -203.0∗∗ -293.2∗∗ -42.8 -38.2 -2.1

(32.2) (56.3) (93.3) (133.8) (36.0) (29.2) (3.0)
Model 3: NO2 0.4 -13.7 -39.1∗∗ 14.3 2.5 -3.7 -3.0∗∗

(5.9) (11.4) (18.1) (24.8) (8.5) (7.0) (1.2)

Observations 179580 179580 179580 179580 179580 179580 179580
Zip Codes 164 164 164 164 164 164 164
Days 1095 1095 1095 1095 1095 1095 1095

Notes: Table replicates Table 4 except that the weather controls are dropped as controls. Table regresses zip-code

level sickness rates (counts for primary and secondary diagnosis codes per 10 million people) on daily instrumented

pollution levels (ppb) in 2005-2007. Each entry is a separate regression. Pollution is instrumented on airport

congestion (taxi time) that is caused by network delays (taxi time at three major airports in the Eastern United

States). Model 1 assumes a uniform impact of congestion on pollution levels at all zip codes surrounding an airport,

while model 2 adds an interaction with the distance to the airport, and model 3 furthermore adds interactions

with wind direction and speed (columns (a)-(c) in Table 1). All regressions include temporal controls (year, month,

weekday, and holiday fixed effects) and are weighted by the total population in a zip code. Errors are two-way

clustered by zip code and day. Significance levels are indicated by ∗∗∗ 1%, ∗∗ 5%, ∗ 10%.
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Table A16: Sickness Rates Regressed On Instrumented Pollution - Errors Clustered by Airport and
Day

Acute All Heart Bone Appen-
Asthma Respiratory Respiratory Problems Stroke Fractures dicitis

(1a) (1b) (1c) (2) (3) (4) (5)

Panel A: All Ages
Model 1: CO 0.341∗∗∗ 0.607∗∗∗ 0.828∗∗∗ 0.475∗∗ 0.059∗∗ -0.031 0.007

(0.088) (0.159) (0.181) (0.209) (0.026) (0.046) (0.009)
Model 2: CO 0.330∗∗∗ 0.592∗∗∗ 0.812∗∗∗ 0.444∗∗ 0.048∗ -0.032 0.002

(0.085) (0.153) (0.173) (0.199) (0.025) (0.045) (0.008)
Model 3: CO 0.203∗∗∗ 0.415∗∗∗ 0.534∗∗∗ 0.233∗∗ 0.020 -0.041 0.003

(0.050) (0.127) (0.149) (0.116) (0.026) (0.026) (0.006)
Model 1: NO2 29.2∗∗∗ 52.0∗ 70.9∗∗ 40.7∗∗ 5.1∗ -2.7 0.6

(11.0) (27.6) (32.3) (19.4) (3.0) (4.4) (0.8)
Model 2: NO2 28.7∗∗∗ 51.3∗ 70.3∗∗ 39.0∗∗ 4.4 -2.7 0.3

(10.5) (26.5) (31.0) (18.5) (2.8) (4.3) (0.7)
Model 3: NO2 11.9∗∗ 16.2 19.4 16.0∗∗ 0.6 -0.8 0.5

(5.0) (11.0) (12.6) (7.5) (1.1) (1.8) (0.4)
Panel B: Ages Below 5

Model 1: CO 0.606∗∗∗ 2.137 2.956∗∗ 0.166∗∗ 0.019∗∗ 0.047 -0.009
(0.220) (1.348) (1.427) (0.068) (0.009) (0.113) (0.012)

Model 2: CO 0.621∗∗∗ 2.095∗ 2.846∗∗ 0.124∗∗ 0.021∗∗ 0.069 -0.019
(0.214) (1.261) (1.340) (0.063) (0.010) (0.115) (0.013)

Model 3: CO 0.727∗∗∗ 2.300∗∗∗ 2.639∗∗∗ 0.076∗∗∗ 0.023∗∗ -0.030 -0.009
(0.219) (0.810) (0.827) (0.029) (0.010) (0.071) (0.010)

Model 1: NO2 48.8∗∗∗ 172.0 237.9 13.3 1.5 3.8 -0.7
(13.9) (151.9) (174.9) (9.0) (0.9) (8.5) (0.9)

Model 2: NO2 50.0∗∗∗ 168.9 229.5 10.1 1.7∗ 5.5 -1.5
(12.9) (140.5) (160.9) (7.5) (0.9) (8.6) (1.1)

Model 3: NO2 47.9∗∗∗ 116.9 132.1 4.6 2.8∗∗∗ 1.6 0.8
(13.8) (75.2) (80.3) (4.4) (0.4) (5.8) (1.2)

Panel C: Ages 65 and Older
Model 1: CO 0.930∗∗∗ 1.620∗∗∗ 2.523∗∗ 3.888∗∗ 0.551∗∗ 0.478∗∗ 0.019

(0.270) (0.609) (1.137) (1.620) (0.222) (0.188) (0.016)
Model 2: CO 0.864∗∗∗ 1.505∗∗ 2.423∗∗ 3.700∗∗ 0.503∗∗ 0.417∗∗ 0.017

(0.259) (0.596) (1.124) (1.580) (0.217) (0.174) (0.017)
Model 3: CO 0.529∗∗ 0.734∗ 1.496∗∗ 2.011∗∗ 0.187 0.182 -0.031∗∗

(0.238) (0.445) (0.727) (0.976) (0.234) (0.177) (0.015)
Model 1: NO2 78.0∗∗∗ 135.9∗∗ 211.6∗∗ 326.1∗∗ 46.2∗∗ 40.1∗∗ 1.6

(27.9) (65.3) (105.9) (138.8) (23.4) (16.4) (1.6)
Model 2: NO2 77.9∗∗∗ 135.6∗∗ 211.5∗∗ 326.0∗∗ 46.1∗∗ 39.9∗∗ 1.6

(27.9) (65.3) (106.0) (138.8) (23.4) (16.3) (1.6)
Model 3: NO2 35.3∗∗∗ 35.4 66.2∗ 122.8∗∗ 0.9 9.5 -1.3∗∗

(12.8) (24.9) (36.4) (52.4) (8.4) (9.4) (0.5)

Observations 179580 179580 179580 179580 179580 179580 179580
Zip Codes 164 164 164 164 164 164 164
Days 1095 1095 1095 1095 1095 1095 1095

Notes: Table replicates Table 4 except that errors are two-way clustered by airport and day. Table regresses zip-code

level sickness rates (counts for primary and secondary diagnosis codes per 10 million people) on daily instrumented

pollution levels (ppb) in 2005-2007. Each entry is a separate regression. Pollution is instrumented on airport

congestion (taxi time) that is caused by network delays (taxi time at three major airports in the Eastern United

States). Model 1 assumes a uniform impact of congestion on pollution levels at all zip codes surrounding an airport,

while model 2 adds an interaction with the distance to the airport, and model 3 furthermore adds interactions

with wind direction and speed (columns (a)-(c) in Table 1). All regressions include weather controls (quadratic in

minimum and maximum temperature, precipitation, and wind speed) and temporal controls (year, month, weekday,

and holiday fixed effects) and are weighted by the total population in a zip code. Significance levels are indicated by
∗∗∗ 1%, ∗∗ 5%, ∗ 10%.
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Table A17: Sickness Rates Regressed On Instrumented Pollution - Day Fixed Effects
Acute All Heart Bone Appen-

Asthma Respiratory Respiratory Problems Stroke Fractures dicitis
(1a) (1b) (1c) (2) (3) (4) (5)

Panel A: All Ages
Model 1: CO 0.423∗∗∗ 0.690∗∗∗ 0.920∗∗∗ 0.551∗∗∗ 0.077 -0.029 0.004

(0.094) (0.210) (0.273) (0.180) (0.050) (0.081) (0.019)
Model 2: CO 0.409∗∗∗ 0.670∗∗∗ 0.899∗∗∗ 0.512∗∗∗ 0.062 -0.030 -0.002

(0.086) (0.209) (0.277) (0.165) (0.048) (0.083) (0.019)
Model 3: CO 0.278∗∗∗ 0.528∗∗∗ 0.653∗∗∗ 0.310∗∗∗ 0.036 -0.052 0.004

(0.062) (0.148) (0.196) (0.107) (0.037) (0.052) (0.014)
Model 1: NO2 51.4∗∗∗ 83.7∗∗ 111.6∗∗ 66.9∗∗ 9.3 -3.6 0.5

(19.1) (41.2) (53.0) (27.1) (6.8) (10.3) (2.4)
Model 2: NO2 50.7∗∗∗ 82.9∗∗ 110.9∗∗ 64.6∗∗ 8.4 -3.6 0.1

(18.8) (41.1) (53.2) (26.6) (6.6) (10.5) (2.3)
Model 3: NO2 13.0∗∗∗ 10.4 8.7 21.3∗∗ 2.1 0.9 1.1

(4.9) (11.0) (14.2) (9.3) (2.3) (3.4) (1.1)
Panel B: Ages Below 5

Model 1: CO 0.758∗∗ 2.561∗ 3.536∗∗ 0.205∗ 0.018 0.035 -0.010
(0.309) (1.398) (1.684) (0.107) (0.029) (0.178) (0.042)

Model 2: CO 0.774∗∗∗ 2.482∗ 3.362∗∗ 0.150 0.021 0.064 -0.023
(0.295) (1.355) (1.664) (0.098) (0.032) (0.169) (0.046)

Model 3: CO 0.805∗∗∗ 2.664∗∗∗ 3.118∗∗∗ 0.114∗ 0.016 -0.121 -0.011
(0.214) (0.933) (1.162) (0.069) (0.019) (0.146) (0.028)

Model 1: NO2 85.5∗ 288.8 398.7 23.1 2.0 4.0 -1.1
(47.4) (203.6) (257.0) (14.1) (3.3) (19.8) (4.7)

Model 2: NO2 86.9∗ 276.7 373.8 16.0 2.4 7.6 -2.8
(45.4) (193.8) (248.2) (12.6) (3.7) (18.5) (5.1)

Model 3: NO2 36.4∗∗ 19.9 33.3 7.2 1.9 0.5 1.9
(17.9) (66.5) (78.3) (7.0) (1.5) (10.1) (2.7)

Panel C: Ages 65 and Older
Model 1: CO 1.101∗∗∗ 1.813∗∗∗ 2.688∗∗∗ 4.546∗∗∗ 0.717∗ 0.581∗ 0.018

(0.410) (0.571) (0.815) (1.301) (0.377) (0.309) (0.035)
Model 2: CO 1.017∗∗∗ 1.671∗∗∗ 2.568∗∗∗ 4.309∗∗∗ 0.655∗ 0.505∗ 0.016

(0.355) (0.528) (0.796) (1.215) (0.384) (0.307) (0.034)
Model 3: CO 0.699∗∗∗ 0.950∗∗ 1.696∗∗∗ 2.631∗∗∗ 0.322 0.235 -0.037

(0.266) (0.399) (0.627) (0.807) (0.300) (0.207) (0.032)
Model 1: NO2 135.0∗∗ 222.3∗∗ 329.6∗∗ 557.4∗∗∗ 87.9 71.3∗ 2.2

(56.5) (89.4) (135.1) (204.6) (55.1) (40.1) (4.4)
Model 2: NO2 137.1∗∗ 226.1∗∗ 329.8∗∗ 560.1∗∗∗ 89.7∗ 74.4∗ 2.3

(57.3) (89.1) (132.0) (201.0) (54.1) (40.1) (4.5)
Model 3: NO2 38.9∗∗ 42.4 54.6 146.4∗∗ 4.3 11.1 -2.2

(18.3) (28.2) (45.5) (60.1) (17.1) (13.8) (2.3)

Observations 179580 179580 179580 179580 179580 179580 179580
Zip Codes 164 164 164 164 164 164 164
Days 1095 1095 1095 1095 1095 1095 1095

Notes: Table replicates Table 4 except that we use day fixed effects. Table regresses zip-code level sickness rates

(counts for primary and secondary diagnosis codes per 10 million people) on daily instrumented pollution levels

(ppb) in 2005-2007. Each entry is a separate regression. Pollution is instrumented on airport congestion (taxi time)

that is caused by network delays (taxi time at three major airports in the Eastern United States). Model 1 assumes

a uniform impact of congestion on pollution levels at all zip codes surrounding an airport, while model 2 adds an

interaction with the distance to the airport, and model 3 furthermore adds interactions with wind direction and

speed (columns (a)-(c) in Table 1). All regressions include weather controls (quadratic in minimum and maximum

temperature, precipitation, and wind speed) and temporal controls (day fixed effects) and are weighted by the total

population in a zip code. Significance levels are indicated by ∗∗∗ 1%, ∗∗ 5%, ∗ 10%.
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Table A18: Sickness Rates of All Ages Regressed On Instrumented CO Pollution - Lagged and Lead Pollution

Effect of CO Pollution on Health Outcomes Effect of NO2 Pollution on Health Outcomes
Acute All Heart Acute All Heart

Asthma Respiratory Respiratory Problems Asthma Respiratory Respiratory Problems

Model 1: Pollution in t+3 0.162 0.075 0.083 0.211 12.2 14.1 18.0 16.2
(0.135) (0.224) (0.268) (0.209) (7.6) (14.6) (18.7) (12.4)

Model 1: Pollution in t+2 -0.129 -0.083 -0.010 -0.110 -9.2 -9.4 -10.4 -11.3
(0.229) (0.360) (0.445) (0.289) (9.5) (15.1) (19.7) (13.4)

Model 1: Pollution in t+1 0.178 0.275 0.112 -0.189 14.1 21.3 21.4 9.2
(0.229) (0.393) (0.494) (0.328) (11.0) (20.1) (26.3) (16.7)

Model 1: Pollution in t -0.105 -0.269 -0.011 0.690 13.9 27.7 46.3∗ 35.4∗∗

(0.306) (0.539) (0.618) (0.458) (11.8) (22.8) (27.5) (14.3)
Model 1: Pollution in t-1 0.196 0.294 0.289 -0.185 0.4 -3.9 -10.6 -15.1

(0.245) (0.435) (0.491) (0.349) (11.2) (19.8) (23.7) (15.5)
Model 1: Pollution in t-2 -0.044 -0.098 -0.163 0.080 8.9 18.6 25.8 20.8

(0.212) (0.371) (0.496) (0.316) (11.8) (22.7) (28.6) (15.7)
Model 1: Pollution in t-3 0.191 0.377 0.536 -0.051 -1.9 -3.9 -5.6 -13.4

(0.216) (0.383) (0.515) (0.292) (10.7) (19.9) (25.9) (13.7)
Model 1: Pollution in t-4 -0.266 -0.254 -0.512 -0.101 -6.0 -1.4 -6.2 2.8

(0.237) (0.407) (0.588) (0.314) (11.8) (20.3) (28.0) (16.1)
Model 1: Pollution in t-5 0.287 0.400 0.705 0.291 9.4 12.4 21.9 5.0

(0.215) (0.389) (0.554) (0.297) (12.5) (22.1) (30.6) (16.4)
Model 1: Pollution in t-6 -0.071 0.050 -0.025 -0.215 -4.6 -2.2 -6.3 -7.3

(0.147) (0.256) (0.353) (0.230) (9.5) (16.6) (23.4) (14.0)
Model 1: Cumulative Effect (Lags) 0.187 0.501∗ 0.819∗∗ 0.509∗∗ 20.1∗∗ 47.3∗∗ 65.4∗∗ 28.2∗

(0.152) (0.266) (0.319) (0.201) (10.1) (20.9) (26.9) (14.6)
Model 1: Cumulative Effect (Leads) 0.211 0.267 0.185 -0.088 17.2∗ 26.0 28.9 14.1

(0.158) (0.301) (0.368) (0.262) (10.0) (21.2) (27.3) (16.4)

Observations 178104 178104 178104 178104 178104 178104 178104 178104
Zip Codes 164 164 164 164 164 164 164 164
Days 1086 1086 1086 1086 1086 1086 1086 1086

Notes: Table replicates Table 6 except that size lags and three leads are included. Each column in each panel presents the coefficients from one regression as

well as the cumulative effect of lags (sum of all six lags plus the contemporaneous effect) as well as the cumulative effect of the three leads. Errors are two-way

clustered by zip code and day. Significance levels are indicated by ∗∗∗ 1%, ∗∗ 5%, ∗ 10%.
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