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Abstract 
 
Concerns have recently been raised that rapid technological development in artificial intelligence 
and ecommerce would help facilitate collusive behavior and threaten competition. We build on 
several strands of research in economics to assess whether algorithmic pricing poses new threats 
to competition, and, more importantly, whether new enforcement tools are needed to respond 
to these potential threats. We argue that the concerns raised are overly aggressive because of a 
basic and fundamental difficulty of achieving coordination in real-world pricing games, which 
cannot be easily overcome by algorithms. We further argue that current policy and enforcement 
tools seem broadly adequate to address the threats of collusion that can be expected to be 
present when pricing algorithms are used, at least until more rigorous research shows otherwise.  
JEL classifications: D43, K21, L13, L41. 

  

 
* We are grateful to Marc Ivaldi, Carl Shapiro and Andy Skrzypacz for helpful discussions and comments.  



 2 

1. Introduction 
 
The staggering pace of innovation in the past two decades has been remarkable - from 
ecommerce, ridesharing, and streaming entertainment, to security, home control systems, and 
digital assistants, among others. Consumers have seen expanded access to information and lower 
prices for many goods and services, as well as more free time as countless tasks have become 
more convenient and efficient. At the same time, arguments have been made that consumers 
are being exploited by large technology companies, from concerns regarding the potential loss 
of privacy in a data driven economy, to identity theft and other forms of internet fraud. There 
also appears to exist a general suspicion that the sheer size of firms signals dominance to the 
detriment of consumers and fear that firms are using data to manipulate customers’ purchases 
or to engage in unfair price discrimination. 
 
In this context, legal scholars have raised the possibility that the rapid technological development 
and increasing data availability would also facilitate the greatest threat to competition: collusive 
behavior. The proposition put forward first by Ezrachi and Stucke (2015) and Mehra (2016) and 
developed further in Ezrachi and Stucke (2016), is that pricing algorithms such as those used by 
e-commerce companies or hotel websites would greatly facilitate—and even make inevitable—
the emergence of collusion among them. The vision proposed is that companies could now reach 
and sustain collusive outcomes without any actual agreement or human interaction using 
lightnening fast pricing and machine learning algorithms. Competition regulators have reacted 
by exploring the need of new tools to address something that is perceived as a qualitatively new 
threat (see, e.g., McSweeny and O’dea, 2017). 
 
In this paper we argue that algorithmic collusion is far from inevitable because of the 
fundamental difficulty of achieving coordination (i.e. “reaching an agreement”) in real world 
pricing games. In particular, we turn to several bodies of research in economics that explore both 
collusion and algorithmic learning in order to assess the merit of the recent claims that 
algorithmic pricing will eventually lead to anticompetitive behavior. This literature offers a 
coherent framework through which we are able to assess whether the claim that algorithms in 
general, and machine learning in particular, significantly increase the danger of collusive 
outcomes in online markets in ways that cannot be addressed through traditional enforcement 
tools.  
 
Importantly, the economics literature that explores the factors that facilitate collusion assumes 
that parties can coordinate on a specific equilibrium, and the analysis is concerned with whether 
they can sustain it. However, a more recent literature in economics demonstrates that 
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coordination problems are in general hard to resolve and in most circumstances, do not appear 
to be resolvable without explicit communication. 
 
Furthermore, we explain how the empirical evidence often cited to illustrate the danger from the 
quick responses of algorithms does not demonstrate likely collusion. Several papers on 
algorithmic collusion cite incidents of how algorithmic interaction went terribly wrong and has 
led to ridiculously high prices. For example, two retailers selling on Amazon’s marketplace offered 
Peter Lawrence’s textbook “The Making of a Fly” in the spring of 2011 for $18,651,718.08 and 
$23,698,655.93 respectively. This was the result of two pricing algorithms by two competitors 
that each conditioned their price on the price of their competitor. In particular, one seller named 
profnath set its price to be 0.9983 times the price offered by a competitor named bordeebook, 
while bordeebook was setting its price at 1.270589 times the price offered by profnath, leading 
to a divergent outcome of exponentially rising prices.1 Such effects of price algorithms are clearly 
not in the interest of consumers. But notice that they are also not in the interests of sellers who 
see their sales shrink to zero.  
 
This and similar examples illustrate the casual use of economic concepts when speculating about 
the competition effects of algorithms. Instead of illustrating the danger of collusion, the example 
does the exact opposite: it illustrates the abject failure of the algorithms used to come to a viable 
collusive outcome. After all, collusion is not about reaching the highest prices possible, but 
instead is meant to achieve a higher profit than under competition, i.e., firms need to achieve a 
significant amount of sales. Charging prices that lead to zero sales is not in the interest of sellers. 
 
In fact, what failed in this example was the basic requirement of successful collusion, namely, an 
effective coordination of strategies that would lead to profitable outcomes for both firms. Failure 
to coordinate tends to lead to considerably lower profits for the firms. What is different between 
human actors and algorithms is the type of failure that occurs. With humans, the failure to 
coordinate almost invariably leads to competition and low prices. Humans will not continue to 
raise prices when profits start falling as a result, but simple algorithms might. Indeed, simple 
algorithms may often not converge to an equilibrium and instead diverge. The incidence in the 
example above is a typical outcome of divergent behavior of algorithms in games. However, such 
divergent algorithmic behavior is precisely not collusive but shows a clear failure of the algorithms 
to achieve a coordinated outcome. 2 It is precisely the issue of coordination, which the largely 

 
1 See Olivia Solon, “How a book about flies came to be priced $24 million on Amazon,” Wired Magazine, 
04/27/11 (https://www.wired.com/2011/04/amazon-flies-24-million/)  
2 Note also that the problem of divergent algorithms on a standard sales platform does not necessarily raise any 
regulatory concerns. Competing firms have a strong incentive to intervene and reset their algorithms in such a case 
if they want to increase their profits. 
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legal literature on algorithmic collusion has overlooked, that is central both for effective collusion 
and for enforcement efforts. 
 
Based on the body of research we examine, we conclude that the conditions needed to 
effectively achieve collusive outcomes in complex environments in which thousands of goods are 
sold to billions of online shoppers are demanding beyond what algorithmic pricing and machine 
learning can achieve without engaging in direct or indirect communication between algorithms. 
In order to use algorithms in support of collusive outcomes, the amount of data and code sharing 
that firms must engage in would, in our assessment, constitute an agreement generating 
sufficient evidence that would suggest a direct violation of antitrust laws even under the current 
legal regimes.  
 
Our conclusions are not in conflict with the simple intuition that has been used to spell out the 
concerns regarding algorithmic collusion because repeated interactions among competitors can 
indeed lead to collusive outcome. In the light of the repeated games literature it is impossible to 
argue that collusive outcomes can never arise, and we do not make any such claim. In fact, the 
repeated games literature upon which the intuition is based shows that almost anything can 
happen in equilibrium. Instead, we argue that collusive outcomes are improbable in the absence 
of explicit coordinating behavior, because tacit collusion based on focal points is much harder to 
achieve than often claimed.  
 
Importantly, the simple intuition conveyed by Ezrachi and Stucke (2015, 2016), that rapid 
algorithmic pricing responses will quickly punish deviators and lead to collusion, does not 
distinguish the “incentive compatibility” problem from the “coordination problem.” The nature 
of repeated interactions with high frequencies of actions and sophisticated detection 
mechanisms like those that can be achieved with algorithms do indeed help solve the incentive 
compatibility problem so that in theory, collusive agreements become easier to sustain and 
enforce. We argue, however, that in practice explicit coordination is necessary to achieve any 
robust form of collusion. Moreover, in practice the world is significantly noisier than the perfect 
information models used to show that collusion is more easily supported by frequent and rapid 
response strategies. Sannikov and Skrzypacz (20??) show that in environments with noisy 
outcomes, more frequent interactions can in fact hinder the ability of firms to collude. And he 
real world is a lot noisier and complex than the model they use to make this point.   
 
In contrast to the claims of Ezrachi and Stucke, it does not follow that fully rational behavior—or 
in case of firms, common knowledge of profit maximization of all firms (or all algorithms)—leads 
to coordination. In practice, coordination problems need additional mechanisms that allows 
every player to come to a common understanding of how everyone else thinks about the 
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commonly pursued price setting mechanism. Put differently, the incentive compatibility 
problem, which is at the heart of Ezrachi and Stucke’s arguments, is all about sustaining an 
agreement that was somehow coordinated on already. The coordination problem is concerned 
with how firms reach an agreement.  
 
Our goal is thus to build on several strands of the literature to identify the scope for collusion in 
markets, with and without algorithms. To do this, we turn to the economic literature on collusion 
in repeated games, both from a theoretical perspective as well as empirical evidence generated 
from a series of experiments that have explored the ability of players to collude with and without 
direct communication and agreements. The extreme assumptions needed to achieve collusion in 
theory, together with the results from attempted collusion in experiments, lead to the conclusion 
that the concerns raised about algorithmic pricing are neither well developed nor very plausible. 
Also, the algorithmic game theory literature points to the complexity of solving for equilibria even 
of simple games, suggesting a true uphill battle for algorithms to collude in complex real-world 
pricing games. 
 
We believe that our analysis offers an important and potent counter argument to the growing 
alarmist concerns regarding the use of algorithms coming out of the recent legal literature. 
Automated tools and algorithms enable firms, both large and small across many industries, to 
increase efficiency and grow their business. Moreover, algorithms provide consumers with 
vauable tools to purchase goods at competitive prices. For example, as discussed in Gal and Elkin-
Koren (2017), price comparisons websites and search algorithms can help consumers shop for 
the kind of goods and services they are seeking, at competitive prices, and with a variety of 
quality reassurances. Ths casues demand for any signle firm to be more elastic, which in turn 
makes collusion harder to sustain. Furthermore, with personalized discounts that can be offered 
to consumers when they log-in for a more personalized shopping experience, “secret” price cuts 
nd be offered that further hinder the ability to collude.  
 
In the real world of commerce, prices have by and large fallen over the past few years, and no 
evidence of tacit collusion by online firms has been successfully presented. In contrast, in those 
cases where algorithm-based collusion has occurred, the difficulties that the involved firms had 
in achieving coordination is testimony to the fact that spontaneous algorithmic-driven collusion 
is highly unlikely. In our view, regulatory overreaction to speculative concerns about algorithmic 
collusion, and the noticeable fears and suspicions that such speculation seems to generate, 
would risk chilling the plethora of consumer benefits of automated pricing tools, and negatively 
impact future innovation in the rapidly growing ecommerce markets in particular, and in other 
technology applications more broadly.  
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To clarify that the concerns about insufficient enforcement instruments are not warranted, we 
discuss in Section 5 how the insights developed in this paper imply that current enforcement 
rules can successfully deal with those threats that are, in fact, credible. That said, we do not 
advocate against doing nothing. What is necessary is to study the development of pricing 
algorithms to beter understand how they work, what the true dangers may be using rigorous 
theries of harm, and if needed, offer guidance for regulatory solutions. For example, in financial 
markets one may worry about algorithms destabilizing the market and creating negative 
externalities. This is not collusion, and hence falls outside the boundaries of antitrust regulation, 
but still presents a concern that regulators may wish to address.  
 
 

2. What Theoretical, Empirical and Experimental Research Implies 
About the Likelihood of Collusion 

 
2.1 The conditions for cartel stability only address one part of the collusion problem 
 
For the purpose of our analysis, we refer to collusive outcomes as those achieved through 
successfully coordinated behavior. For firms to successfully coordinate on a collusive outcome, 
they must first agree on the collusive actions and profit distribution, as well as on the 
consequences of “cheating,” namely deviations from the agreed upon behavior.  An agreement 
means that it is not enough that players think that it would be a good idea to raise the price above 
the competitive price. The game theoretic models used to demonstrate the sustainability of 
collusion assume that players believe that other players have the same idea of what prices should 
be set and what would happen in the case of deviations. Moreover, the models assume that 
players have common knowledge of the prescribed coordination. That is, they believe that the 
other players believe that they all share the same beliefs, and that they all believe that they 
believe that they share the same beliefs, and so on. As we discuss later, this is a complex 
coordination problem that cannot seem to be resolved even by the most extreme assumptions 
on rationality.  
 
In fact, by and large, the formal game theoretic analysis of cartels and collusion does not concern 
itself with how firms come to a common understanding of what prices should be set and what 
happens when someone deviates from the pricing norm. Instead, the theory spells out the 
conditions needed to sustain collusion given an understanding of an agreed upon pricing and 
distribution norm. In this section, we give a brief overview of this part of the theory to later 
distinguish it better from the discussion of the coordination problem that is at the heart of our 
argument on algorithmic collusion. 
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The conditions under which an agreement (whether tacit or explicit) can actually be enforced 
involve on one hand the incentives to deviate from the collusive pricing norm and on the other 
hand the ability and the incentives to “punish” such deviations. Collusion is possible if the short 
run incentive to deviate from the agreement (which is the force that normally generates 
competition) is sufficiently outweighed by the long run loss from switching from a high profit 
collusive equilibrium to a low profit competitive equilibrium. Theoretical models of collusive 
agreement assume a common understanding of how to coordinate the switch from one possible 
equilibrium to another.3 
 
Virtually all game theoretic treatments of the collusion problem deal with the question of how 
each one of these two aspects of the incentive balance are affected by market conditions. The 
theoretical analysis suggests two intuitive market conditions that make collusion easier: first, that 
the market be more transparent, and second, that price setting be more frequent. Transparency 
is important because without transparency it is not possible to determine whether one of the 
parties to the agreement deviated from the collusive price and thus, without sufficient 
transparency, punishment cannot be triggered. But if punishment cannot be triggered, then the 
incentive to compete in the short run cannot be deterred and any agreement that is reached 
cannot be sustained by the parties. Frequent price setting is important because the more 
frequent the price setting, the quicker the punishment response to a price cut by a deviating firm, 
and hence the smaller are the short-run gains that any firm can obtain from a deviation. 
 
Despite the simple intuitive arguments that point to the role of transparency and frequent 
response times in facilitating collusion, once the details of collusion theory are examined more 
carefully, subtleties emerge that question the validity of even the simplest intuitions. For 
example, perfect transparency is hard to achieve for many reasons, such as natural demand 
fluctuations. In an imperfectly transparent market, Abreu et al. (1991) have shown that longer 
rather than shorter time intervals between price revisions can facilitate collusion—in the sense 
discussed here—because slower price changes increase the ability to detect true deviations and 
distinguish them from random demand fluctuations. This allows competitors to trigger 
punishment with a higher level of confidence that an actual deviation occurred. 
 
An interesting and related paper by Sanikov and Skrzypacz (2007) shows that it is impossible to 

 
3 Standard theory assumes common knowledge of equilibrium. This does in of itself prove that it is a necessary 
condition for collusion. For example, one player may believe that both players are playing a “tit-for-tat” pair of 
strategies, while the other believes that they are playing “grim trigger”.  These inconsistent beliefs may keep both 
players on a path of collusive behavior, because both believe that there is some kind of threat. However, a realistic 
argument in which uncertainty and environmental changes will prove both players wrong, in turn leading to 
surprises and unplanned actions, which destroys any uncoordinated collusive behavior.  
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achieve collusion in a duopoly when (a) goods are homogenous and firms compete in quantities; 
(b) new, noisy information arrives continuously, without sudden events; and (c) firms are able to 
respond to new information quickly. What’s important in their setup is that the flexibility to 
respond quickly to new information unravels any collusive scheme that the firms may try to 
implement. So, the assertion that rapid responses help facilitate cooperation is far from proven 
fact, and rigorous theoretical research shows that the opposite may be the case.    
 
Besides the two mentioned conditions of transparency and frequent responses that supposedly 
help facilitate collusion, the check list of collusion-facilitating market conditions is long (see Ivaldi, 
Jullien, Rey, Seabright, and Tirole 2003, or Kühn 2008). It includes other conditions like the 
number of firms (more firms undermine collusion); demand growth (future growth facilitates 
collusion); business cycles and demand fluctuations (both hinder collusion); multi-market contact 
(helps facilitate collusion under restrictive conditions); innovative markets (make collusion 
harder); cross ownership (inconclusive results); and many more. Some folk wisdom has turned 
out to be incorrect (e.g. that collusion is easier with homogeneous goods, see Kühn and Rimler, 
2009). But there is certainly one feature that consistently makes collusion harder: asymmetry 
between different firms in the market. The basic reason for this conclusion in the theoretical 
literature is that when firms are different, they face different incentives. The more different firms 
become, the harder it is to satisfy all the firms’ incentives at the same time. For example, even if 
two firms sell the same product, they might have different inventory levels and hence, each may 
want to set different prices to clear different levels of inventory. 
 
In contrast to the theoretical literature that highlights these incentive problems, the empirical 
literature has put the emphasis on the fact that asymmetries make it very hard to come to an 
agreement or common understanding in the first place. (See Levenstein and Suslow, 2006). Not 
only is there a question of coordination, but it is also unclear what prices should be set by each 
firm in a setting where there may be very different benefits of different price levels for the 
potentially colluding firms. 
 
Regardless whether the difficulty is with reaching an agreement, or with providing the incentives 
necessary to sustain an agreement, from both aspects the conclusion is that asymmetry between 
firms severely limits the ability to collude, whatever the level of market transparency or the 
frequency of interaction. This result is of particular interest for algorithmic collusion because 
most competing digital firms differ from each other along many dimensions such as their cost 
structures, their product lines, their business models, their brand, etc. The literature therefore 
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suggests that in this environment, collusion would be particularly hard to sustain, and unlikely to 
occur in the first place.4 
 
It must also be stressed that the long list of factors that “facilitate” collusion only do so in the 
sense of relaxing the incentive conditions for maintaining a collusive pricing norm. They say 
nothing about the likelihood of collusion actually being achieved and cannot be taken as 
predictors for the likelihood of collusion actually occurring. The reason is that they indicate that 
collusion is more likely to be sustained (or make it sustainable at a higher price) once an 
agreement is reached, but they do not say much about the likelihood of an agreement being 
reached. This is stressed in Kühn (2008), who argues that the absence of market transparency 
and the observation of infrequent transaction could only be used as a negative test for collusion: 
markets with little transparency and with infrequent transactions make successful collusion 
unlikely even in the presence of agreements. However, the reverse does not follow. Even if 
markets are perfectly transparent and interaction takes place almost instantaneously, collusion 
does not necessarily arise. 
 
In the next two subsections, we show that the economic literature in the last 15 years has 
accumulated consistent evidence for this observation, underlining the fact that coordination is 
hard to achieve and tacit collusion is therefore not a likely outcome – even in transparent markets 
with frequent interactions between firms. It is therefore central to the assessment of collusion 
to explore how coordination is actually achieved and in which sense algorithms have real 
advantages over humans in achieving it. 
 
2.2 Perfect transparency by itself does not lead to collusion 
 
Competition policy practitioners often regard price transparency of markets as a competition 
reducing feature. For example, in German antitrust proceedings there is often the claim that 
certain transparency measures undermine the strength of “secret competition” 
(“Geheimwettbewerb”) and are therefore anticompetitive. This notion is not well grounded in 
economic theory. In models of information exchange with linear demand, expected prices are 
not systematically affected by an increase in information exchanged.5 This suggests that there is 
not a first order effect of market transparency on the price level. 
 

 
4 Of course, asymmetries do not prevent firms from reaching agreements that increase joint profit, if they can 
make side payments and have enforceable contracts. But this of course requires exactly the kind of communication 
and coordination that current law classifies as illegal, which is not made easier by the use of algorithms. 
5 See Kühn, Kai-Uwe and Xavier Vives (1994), “Information exchanges between firms and their impact on 
competition”, Report to DG IV, European Commission, Office for Publication of the European Communities, for an 
overview on this very large literature. 
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The only way in which market transparency can systematically increase prices is by facilitating 
the detection and punishment of deviations from a previously agreed upon collusive behavior. In 
the absence of cartel agreements, we should therefore only worry about market transparency if 
tacit collusion, i.e., the coordination on collusive behavior without communication and explicit 
coordination, were easy and would spontaneously arise. 
 
In principle, the assumption that individuals can solve coordination problems and coordinate on 
one among a number of many equilibria is a very strong assumption. It does not follow from 
common knowledge of rationality, which itself is already a strong assumption. In fact, the 
common knowledge of rationality assumption does not resolve the problem of coordination, 
allowing a set of multiple prices to be “rationalizable” including the prices set in any Nash 
equilibrium.6 
 
Nevertheless, some economists have suggested that the coordination problem could easily and 
spontaneously be solved. The view that coordination can be easily achieved and that tacit 
collusion is fairly pervasive has been part of the economics folklore for a long time. This general 
view goes back to a large literature that has attempted to refine the Nash equilibrium concept to 
come to a single prediction even when multiple equilibria exist. For example, Schelling (1960) in 
“Strategy of Conflict” suggested that coordination problems can often be resolved because 
obvious “focal points” will be recognized as such by individuals. It will be obvious to them that 
others will think in exactly the same way about the problem.  
 
One rule for generating focal points that has immediate appeal is the Pareto criterion. In game 
theory, it has often been assumed that Pareto optimal outcomes should be focal and that one 
could simply refine sets of equilibrium outcomes to focus on Pareto optimal equilibria among the 
players.7 Such a focus on Pareto optimality was criticized by Harsanyi and Selten (1988) who 
pointed out that some equilibria tend to be risky because the costs of non-coordination are 
particularly high should a player choose a strategy associated with the proposed Pareto optimal 
equilibrium. If the other players did not follow the reasoning that the Pareto optimal equilibrium 

 
6 Generally, in supermodular games (in which equilibria can be ranked by all the players’ payoffs), all actions 
between those of the highest and lowest equilibrium are consistent with common knowledge of rationality (see 
Milgrom and Roberts, 1990). Note that this means that even in classes of games which always produce ranked 
equilibria in terms of profits, common knowledge of rationality does not lead to a resolution of the coordination 
problem.  
7  There are different versions of this notion, e.g., focusing on Pareto Undominated equilibria as in Bernheim and 
Whinston (1998) and the concept of “perfectly coalition-proof equilibria” of Bernheim et al. (1987). But even 
Pareto optimality will not resolve the conflict of interest inherent in collusion games, because there are many 
equilibria that are Pareto optimal among the colluding parties with very different distributions of the surplus. The 
problem we point out in the text is, however, even more fundamental. 
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should be played, the payoff consequences could be particularly dire to the player who does 
follow the “focal” strategy. Harsanyi and Selten (1988) called equilibria for which this was a 
problem “risk dominated.” 
 
While the analysis in Harsanyi and Selten (1988) is still in the tradition of attempting to distill an 
equilibrium refinement to select a more robust outcome, the existence of multiple relevant 
criteria for how to play a game with multiple equilibria seriously undermines the idea that players 
can spontaneously select among multiple equilibria without an explicit coordination mechanism. 
Spontaneous coordination would rely on simultaneously having common knowledge of not only 
rationality, but also of the assessment of strategic risk in such situations. This level of 
sophistication and conformity is obviously unrealistic. Furthermore, even moving from human 
actors to algorithms, there is no theoretical guidance on how algorithmic players select one of 
many possible equilibria. Just as humans cannot independently select among equilibria without 
communication, the same holds for algorithms.  
 
Note that a profit-maximizing algorithm would not have information about other algorithms, in 
particular whether they are designed to be profit maximizing as well. This means that even an 
algorithm cannot resolve the multiple equilibrium problem without further help. Algorithms 
cannot “try out equilibria” as is often incorrectly stated in public discussions on the matter. As an 
independent algorithm, each would have to unilaterally choose decisions and strategies. Suppose 
that an algorithm was programmed to always try the strategy first, that corresponds to a Pareto 
optimal Nash equilibrium. What should the algorithm do if the other algorithmic (or non-
algorithmic) player does not play the corresponding expected strategy? It depends on what this 
algorithm predicts about the behavior of the first algorithm. It could predict that the first 
algorithm tries the action again and as a result play its action that corresponds to the Pareto 
optimal equilibrium. But it could also believe that the first algorithm made a very low profit 
relative to having played a different strategy and will now adjust to increase profits. Both 
strategies would be perfectly rational. If the second algorithm predicts that the first algorithm 
will try something new, there is no point in matching the equilibrium price of the previous period. 
In fact, it may be very costly. This is what is referred to in game theory as strategic risk.  
 
The problem with a lack of common knowledge of the strategies between the two algorithms is 
the same as that for two rational individuals. With multiple equilibria, it is impossible to forecast 
what the other player (whether human or algorithmic) will do, and if setting high prices is riskier 
than slightly lower ones it is difficult to coordinate on high prices spontaneously.8 Obviously, what 

 
8 Note that we are not claiming that coordination without explicit communication can never happen. For example, 
if there has been a history of explicit collusion in an industry then it is perfectly reasonable to expect that market 
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is missing for effective collusions is for algorithms to know each other’s price adjustment rules to 
allow them to reassure each other that they will stick to them. But since at least one algorithm 
has to adjust the decision rule, the mechanism by which the transition to coordination is achieved 
must lie outside of playing the pricing game. 
 
The importance of strategic risk for the ability to coordinate on Pareto optimal equilibria has now 
been amply demonstrated in the experimental literature. Cooper et al. (1990) and Van Huyck et 
al. (1990) first demonstrated this in very similar games in which all equilibria are Pareto ranked, 
but the higher profit equilibria are risk dominated. In these games play converges to the worst of 
the Pareto ranked equilibria when there is no communication. In particularly interesting work, 
Brandts and Cooper (2007) studied how such coordination problems can be overcome in 
manager worker relationships. In their settings, experimental subjects experience coordination 
failure. They then explore potential mechanisms to lead players back to playing better equilibria. 
Brandts and Cooper (2007) show that even though incentive schemes that pay bonuses for 
coordinating on the good outcome were somewhat helpful in improving outcomes, the main 
solution to the coordination problems was communication. In particular, whenever the manager 
gave clear instructions to play the Pareto dominant equilibrium, workers were able to return to 
this outcome. The reassurance of explicit communication and clear agreement appears to be the 
main feature necessary to overcome even some of the simplest coordination problems in one 
shot games. The reason is that only such reassurance outside the game can resolve the 
indeterminacy of how rational profit maximizing individuals (or algorithms) can rationally 
determine their expectations about the behavior of competitors. 
 
With respect to strategic risk, it is important to note that there is nothing that an algorithm can 
do that improves on the play of individual players. Algorithms that are designed to maximize 
expected profits must avoid costly strategic risk precisely because they are profit maximizing. It 
is not even enough to commit as an algorithm to the action that corresponds to the best 
equilibrium. It needs to be credibly announced that such an action will be played. Note that this 
is equivalent to what we learned is necessary in experiments to induce coordination. Clear 
communication from one party over what ought to be played generates coordination on the 
outcomes. However, this is precisely the type of coordinating communication that is generally 
illegal in antitrust law.  
 
It has to be stressed, however, that coordination problems that involve selecting among collusive 
equilibria are far more complex. First, they involve games with repeated interaction. In order to 
make collusion incentive compatible, players need to coordinate on complex contingent 

 
participants might see this as an obvious focal point. However, in that case the coordination problem has already 
been solved by prior communication. 
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strategies out of an infinite set of strategies. In fact, a collusion game generally has an infinite 
number of possible equilibrium outcomes, which can generally each be supported by an infinite 
number of strategies. Though it may be surprising that many of the older experimental studies 
on collusion have shown the emergence of tacit collusion, it has now become apparent that these 
results arise from the great simplicity of the constituent one period stage games that were 
studied.  
 
In virtually all of the studies that find some significant collusive effects there are only two players 
who have only two actions available (see, e.g., Camera and Cassari, 2009). It is not too surprising 
that such settings encourage players to deviate from competitive behavior simply because there 
are always enough other players who try the “collusive” action. Individuals then get enough 
experience of jointly trying the collusive action to learn that it is jointly profitable. However, even 
in this setting one of the most careful studies by Dal Bo and Frechette (2011) has demonstrated 
that collusion is not easy to obtain. Unless players are extremely patient and collusion incentives 
are very large, players do not play the collusive outcome even where it is incentive compatible.  
 
More recent research has debunked the notion that the collusive results from two by two games 
carry over to any setting that even remotely resembles reality. The first clear result on the effect 
of larger numbers of participants in oligopoly settings was established by Huck et al. (2004). They 
showed that in experimental duopoly Cournot (quantity-setting) games with perfect information 
output is reduced by about 10% below the one-shot Nash-Cournot prediction. But with 3 and 4 
players no statistically significant deviation from the one-shot Nash-Cournot equilibrium can be 
detected, and for more players, repeated interaction led to even higher production levels. This is 
consistent with the theoretical result obtained by Vega Redondo (1996) regarding how 
individuals learn from how to play the Cournot game from observing the performance of others.  
 
Fonseca and Normann (2011) run similar experiments for a simple Bertrand (price-setting) game 
where buyers have a constant valuation of 100 for the product. In the two-player game the 
experimental firms manage to set prices at 50 on average. But with 3 players the average prices 
drop to 6.3, and from that point onwards, prices correspond to no more than the typical noise in 
experimental behavior consistent with the competitive outcome. 
 
But even such results have to be interpreted carefully since they assume that the non-collusive 
behavior would be well predicted by the Nash equilibrium of a one-shot game without repetition 
with the same players. It turns out that in Bertrand and Bertrand-Edgeworth games, players do 
not play as aggressively as the theory predicts.  In ongoing work, Kühn and Normann (in progress) 
have conducted experiments aimed at studying the coordinated effects of mergers in a Bertrand-
Edgeworth setting. While the behavior with repeated interactions in a symmetric triopoly is on 
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average slightly above the prices one should observe in a one-shot game theoretically, the 
average price (and the distribution of prices) is indistinguishable from that of experiments for the 
same game played without repetition between the same individuals. No collusion effect and 
therefore no implicit coordination could be detected. This was even true for duopoly 
experiments. 
 
It is important to note that these results, which show the difficulty in achieving tacit collusion in 
experimental settings, have all been shown in a context in which there is full transparency of 
market conditions. Every action that is taken by a competitor is seen by the other participants 
and can be reacted to in the next period. “Signaling” of pricing is just as much a possibility as 
“punishment” of a competitor who sets a low price. The games are often long. Even in games 
with more than 50 periods (followed by random ending of the game) tacit collusion is not 
reached. The spontaneous coordination on collusive prices and punishments for deviations 
therefore does not appear to arise in experimental settings outside some extreme over-simplified 
cases. In the real world, where the levels of complexity are high and algorithms have no direct 
insight into the ways in which their competitor algorithms are coded, getting to a collusive 
outcome would be significantly more challenging. 
 
2.3 Short response times to price cuts of rivals do not lead to collusive outcomes 
 
It is often argued that tacit collusion becomes easy when competitors can react to each other 
very quickly, which is emphasized in the arguments set forth by Ezrachi and Stucke (2015, 2016). 
The idea is that undercutting of a collusive price only generates a very short period of benefits 
because the reaction of the rival leads to punishment that will be relatively swift and, hence, the 
punishment outweighs the benefits. But as argued earlier, this intuition applies to the incentive 
condition for sustaining collusion. It is not clear that in the absence of a coordination mechanism 
the frequency of interaction plays any role at all in increasing the likelihood of collusion arising in 
the first place. 
 
It is also worth noting that the experimental literature described in Section 2.2 above suggests 
that rapid interaction does not lead to collusive outcomes. The papers cited have extremely short 
reaction times of no more than 2 minutes because otherwise experiments with a sufficient 
number of repetitions could not be played within a reasonable amount of time. Furthermore, the 
experimental repeated games have minimal complexity in the market environment, which means 
that no time is needed to infer whether participants have deviated from collusive behavior. Even 
under these extreme conditions tacit collusion hardly arises spontaneously although the 
interaction is both rapid and the actions of players are perfectly observable. 
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But the lab settings are possibly not what those who believe that tacit collusion is easy in real 
markets have in mind. In these settings, participants in the experiments who represent firms set 
their prices simultaneously in every period. But many believe that “price leadership” would be 
extremely effective in resolving the coordination problem, so allowing players to play 
asynchronously may be important in helping sustain collusive outcomes. In fact, sequential 
moves are typical in markets in which there is rapid interaction of players. So the natural question 
is whether a setting with sequential move orders allows for tacit collusion that previous 
experimental studies overlook. Perhaps there is a simple indirect coordination mechanism 
through sequential price setting that supports collusive outcomes. 
 
The gasoline retailing industry offers an excellent field setting in which to shed light on these 
questions. Over the years, there has been considerable concern that gasoline retailing might be 
highly collusive due to the ability to rapidly respond to price cuts and the high transparency of 
prices at the pump. Indeed, Ezrachi and Stucke (2017) have recently claimed that in gasoline 
markets with their rapid responses, increases in transparency have increased prices and margins 
in Chile, Germany, and Australia. Unfortunately, their discussion of gasoline pricing ignores much 
of the literature on the subject and relies exclusively on unpublished working papers that have 
yet to undergo peer review. The accumulated published literature from Canada, the US, and 
other countries overwhelmingly does not show increased prices and margins in gasoline markets 
that have rapid responses and are highly transparent. 
 
There is now a large empirical literature on gasoline pricing. In this literature, it has become 
apparent that there is a fundamental difference between markets that exhibit asymmetric price 
cycles and those that either have fairly rigid prices or follow gasoline wholesale prices at fairly 
constant margins. Price cycles involve sharply increasing prices after which firms tend to undercut 
each other until prices get close to marginal cost, after which a new price jump is triggered. Some 
competition policy agencies and courts have sometimes interpreted price cycles as indications of 
tacitly collusive behavior.9 
 
However, the view of price cycles being evidence of collusive behavior has come to be firmly 
rejected by the accumulated empirical evidence. Following Eckert (2002, 2003), Noel (2007a,b) 
was the first to show that price cycles occur in particularly fragmented and competitive markets 
and that average margins are particularly low in cycling markets. Further evidence that exploits 
natural experiments has shown that after short run supply shocks prices fall much faster in cycling 
markets due to the higher competition (Lewis 2009, Noel 2015), that cost pass through is higher 

 
9 See final report Bundeskartellamt, “Sektoruntersuchung Kraftstoffe – Abschlussbericht” of the German Federal 
Cartel Office into gasoline retailing in Germany. The claims in that report are not consistent with the economic 
literature. 
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in markets with cycles (Lewis and Noel 2010), and that customers mostly buy at the bottom of 
the cycle (Lewis and Wolak, 2017). 
 
While many of these studies have been applied to U.S. and Canadian markets, there is similar 
evidence from many countries across the world. In Germany, for example, the evidence at the 
time of the sector inquiry of the Federal Cartel Office was that the pricing cycle length was no 
longer than a day and that cycling behavior had rapidly increased over time, which is expected if 
markets become more competitive. This implied that price revisions were faster than the changes 
in the wholesale prices faced by the gasoline stations. Being concerned about the price cycles as 
an indication of collusive price increases, the German Federal Cartel Office believed it could 
“improve” competition by making prices more transparent to consumers. Since the introduction 
of this increase in market transparency of unknown size (the market was highly transparent even 
before this), the frequency of cycles appears to have further increased.10  
 
It is striking to note that the markets with the highest frequency of price cycling consistently 
experience the lowest margins and the highest responsiveness to supply shocks. The empirical 
studies therefore do not bear out the proposition that collusion is easier to achieve with a higher 
frequency of interaction. 
 
The claims that the highly cyclical markets exhibit collusive behavior is also not plausible 
theoretically because it is known that collusion is much more difficult to sustain when the 
colluding firms are expecting declining prices (Haltiwanger and Harrington 1991). Hence, if the 
price increases were collusive, they would be particularly difficult to achieve because of the 
downward part of the cycle that immediately follows the price rise. Collusion would be much 
more easily sustainable if prices were kept constant and deviations punished by dramatic price 
decreases. Regular price cycles would be the least effective way to collude that we are aware of. 
It is therefore neither theoretically nor empirically plausible that gasoline retail markets are an 
example for rapid price setting and high transparency leading to tacitly collusive outcomes. 
 
Note also that there are non-collusive theories that explain cyclical pricing in these markets from 
short term rigidities in price setting and unilateral market power. In particular, Maskin and Tirole 
(1988) have predicted in a duopoly setting the basic type of cycling that we see in gasoline 

 
10  Ezrachi and Stucke (2017) cite some papers selectively that suggest an increase in prices in gasoline markets in 
which transparency was increased. These papers seem to use the “difference in difference” technique to estimate 
the changes. However, the standard “common trends” assumption needed for identifying causal relationships 
using the difference-in-differences technique do not seem to match the setting in which these are applied given 
the very different trends in gasoline pricing that are due to local economic conditions in different European 
countries. In contrast, the literature we cite above from leading journals is extremely careful in showing what 
variation in the data identifies the claims of the authors.  
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markets.11 While these equilibria sometimes generate very significant margins (unlike the 
experience in gasoline retailing), these equilibria are still the most competitive ones that can be 
generated in the setting with short time rigidities in price revision. What is important, though, is 
that neither increased transparency nor increased frequency in price setting increases average 
prices and margins in these settings. Neither does collusion emerge in these markets as a result 
of sequential price setting, nor do price setting rigidities generate higher prices under frequent 
price revision and high transparency settings. The claims in Ezrachi and Stucke (2017) basically 
contradict both theory and the empirical evidence from gasoline markets.12 
 
 
2.4 Is strategic algorithmic price setting different? 
 
We have shown based on both experimental and empirical literatures that overwhelming 
evidence points in the direction that tacit collusion is rare and difficult to achieve. There is a good 
theoretical reason for it: achieving a full common understanding of play is part and parcel of 
coordination, but coordination over infinite strategy spaces is not easily signaled through market 
behavior or obvious in terms of profit maximizing behavior.  Indeed, the empirical evidence to 
date does not support the notion that quick responses lead to effective collusion, which 
undermines the basic premise of the arguments that tacit collusion is easy and therefore also 
easily achievable by algorithms. Rapid interaction and high market transparency do not resolve 
the coordination problem.  
 
Since the evidence shows that rapid response is not what makes collusion easier, then the 
question becomes, what is it about artificially-intelligent algorithms that would make them more 
effective than humans as strategic players? (We discuss the challenges of non-strategic learning 
algorithms in section There is no reason to believe that algorithms are able to create focal points 
that are obvious to all players, including algorithmic ones. The basic issue is therefore that, acting 
through the lens of standard non-cooperative game theory, an algorithm has to change the 
beliefs of another algorithm (or many other algorithms) about its pricing strategy. The question 
is how an algorithm can simply through its pricing on the market signal a contingent strategy in 
an infinite dimensional space to another algorithm? Fundamentally, an algorithm cannot produce 
signals about the reaction to pricing events of a competitor if the competitor never uses those 
prices. However, the beauty of “cheap talk,” i.e., conversations, is that hypothetical situations 

 
11 See Noel (2008) for extensions to triopoly, varying marginal costs, and other robustness analyses. 
12 The one theoretical paper we are aware of that claims collusive price outcomes due to quick responses is Bhaskar 
(1989). The paper attempts to formalize the intuition that quick responses lead to no competition by modelling the 
price setting game as a possibility of changing prices rapidly before any sales can occur. The crucial piece in this paper 
is that price adjustments stop as soon as one of the players does not change the price anymore. In that setting with 
no sales until price adjustments stop, the monopoly price is the only equilibrium outcome. This essentially imposes 
a commitment power to monopoly pricing that is not present in real markets. Essentially, Bhaskar (1989) models 
negotiation over the price charged and imposes that the agreement is implemented without the availability of a 
punishment mechanism. But these assumptions effectively introduce both a coordination mechanism and an 
enforcement mechanism as part of the model.  
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that matter for behavior but (almost) never arise can be taken account of in an agreement. This 
fundamental issue makes direct communication beyond price setting an extremely important 
instrument to achieve coordinated outcomes, which is discussed in the next section. 
 

3. The Role of Communication for Coordination 
 

As we demonstrated above, a series of experimental research papers provides robust evidence 
that tacit collusion appears almost impossible to generate in laboratory settings outside of 
classes of very simple stage games that do not capture even the most mundane complexities that 
characterizes real markets. We also described the evidence that argues against collusive 
arrangements in gasoline markets which have been thought by some to be subject to tacit 
collusion due to market transparency and rapid price changes. Coordination on collusive 
outcomes is therefore hard to achieve spontaneously in the absence of explicit agreements. 
 
The recent research based on laboratory experiments has, however, also shown that the barriers 
to parties colluding on coordinated outcomes appear to collapse once communication is 
introduced. In Huck and Normann (2011), for example, once the parties are allowed to 
communicate then price setting with two players leads on average to above 90% of the monopoly 
price, almost the perfect collusive outcome. In the same settings, prices on average reach almost 
80% of the monopoly price with four players, and exceed 50% with 8 players – a dramatic 
difference from the behavior without communication. Collusion theory appears to perform well 
when coordination through communication can take place – in sharp contrast to situations in 
which coordinating communication is not allowed. 
 
The role of communication has been studied in more detail by Cooper and Kühn (2014), who 
have carefully evaluated the type of communication that is effective for collusion to be 
successful. They show that agreements on the collusive price are not decisive. Most of the time, 
experimental subjects who can talk, quite easily coordinate on the best collusive price when they 
can talk. However, what is central to collusion is that subjects have a clear view of how other 
parties to the agreement will react to possible cheating. 
 
There are two mechanisms by which communication is effective in Cooper and Kühn (2014). First, 
the most reliable factor to achieve collusive outcomes is communication in which clear 
punishments are threatened when the explicit agreement on price is violated. It turns out that 
such agreements are only concluded after longer conversations in which it is clarified how the 
other party thinks about the problem and whether they actually really mean to punish deviating 
behavior. This fact shows how difficult it is even in regular language (which is in itself developed 
to resolve coordination problems) to ensure a common understanding of how players are 
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expected to coordinate their behavior. But this observation is critical -- simple agreements just 
on the price to be set tend to be cheated on with high frequency. 
 
The second mechanism that very strongly supports collusion is repeated conversation and 
feedback about past behavior. In particular, there is frequent and intense verbal punishment by 
players who complain about the cheating by their counterparts. The fact that such verbal 
expression is associated with much more collusion suggests a high degree of norm driven 
behavior and the effectiveness—in a large part of the experimental population—to react very 
strongly to social disapproval and approval. This responsiveness and social reaction to deviating 
behavior is much more powerful because it occurs without too much explanation about the 
actual punishment mechanism. Social punishments and rewards appear to be understood easily 
and are easily transferred to the collusion setting. These are clearly behavioral responses that 
make coordination through communication extremely successful in Kühn and Cooper (2014). 
 
It should be noted that this result contradicts the conjecture in Ezrachi and Stucke (2017) that 
algorithms collude more effectively because they are not subject to human biases. The results 
reported above imply that the opposite is the case. It is precisely human biases that facilitate 
collusion in the experiments that have studied collusive behavior in the lab. 
 
If it is so difficult for humans in real market and as experimental subjects to coordinate on 
collusive play spontaneously and without communication, what makes algorithms so different? 
Do they need to communicate about a common collusive norm to achieve coordinated outcomes 
or do they have other means to identify focal points (in the language of Schelling) that are not 
available to humans? How do algorithms reproduce the affect against cheating that appears to 
stabilize collusion in experimental settings? These questions seem even more salient because 
experimental subjects are often modeled to behave as if they were some form of adaptive 
learners in the lab. The reason is that they clearly need time to learn how to play the game, and 
their learning behavior appears to be adaptive. Of course, by their nature, algorithms are 
adaptive agents, and human players do have some form of a cognitive algorithm that they follow. 
Why, then, with behavior in the lab that is far from collusive, would automated algorithms be 
expected to automatically converge to some collusive outcome?  
 
We show in the next section that the assertions by Ezrachi and Stucke (2015) and other authors 
in the law literature appear to rely on a misunderstanding or misinterpretation of how algorithms 
function and learn. 
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4. Challenges to Collusive Algorithms 
 
As explained in the previous section, the conditions needed for tacit collusion to successfully be 
executed require not only sophisticated players that are protected from entry, but market 
conditions that are somewhat pristine in that there is minimal complexity in a stable and 
unchanging environment. But even in stable environments, rigorous theoretical research shows 
that adaptive behavior that is aimed at profit maximization will not easily – if at all – lead to 
collusive outcomes. In this section, we describe some of the most relevant theoretical models 
that bring to bear on the question of tacit collusion in pricing games. 
 
4.1 Profit maximizing learning algorithms do not easily lead to collusion 
 
Pricing algorithms are by their nature adaptive mechanisms that take as input the history of past 
outcomes and then devise best responses to these histories, either through hard-coded 
contingency plans, or using a variety of machine learning models. In order to predict whether 
adaptive mechanisms will result in collusive or competitive outcomes, it is paramount to 
understand how the nature of the game might cause adaptive mechanisms to perform. 
 
In an extremely influential paper, Milgrom and Roberts (1990) study how adaptive behavior will 
lead to outcomes in an important class of games called “supermodular games.” These are games 
that share an interesting and economically meaningful feature, namely, that each player’s best 
response is increasing in the actions taken by its rivals. To see how this general idea applies to 
pricing games, if firms A and B are competitors, and firm B’s raises its price (i.e., increases its 
action) then the best response of firm A is also to raise its price (its best response increases). 
Hence, a canonical price-competition game, often referred to as a “Bertrand competition game,” 
falls neatly into the class of games that Milgrom and Roberts (1990) study. 
 
Their study focuses on how outcomes will evolve from a wide class of adaptive learning 
mechanisms, which range from more naïve adaptive procedures to more sophisticated ones.13 
What their study reveals is that in supermodular games, these adaptive processes must lead to 
outcomes that, loosely speaking, are contained within the set of outcomes that can be justified 
by players playing a Nash equilibrium of the static game, as if it were not repeated. In particular, 
for a wide class of common demand functions (including linear, logit, or constant-elasticity of 
substitution specifications), they show that only one pure strategy Nash equilibrium in the 

 
13 These include (1) “best response dynamics” where each player in each round expects his competitors to do the 
same thing they did at the last round, (2) “fictitious play,” where players assume their competitors play mixed 
strategies that coincide with the historical empirical distribution of the past play, and (3) “Bayesian learning,” 
considered to be in the paradigm of rational learning.  
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(possibly asymmetric) Bertrand pricing game can be the outcome of an adaptive process. 
Furthermore, they show that any adaptive dynamic process leads to behavior that converges 
from any starting point to the unique equilibrium. These results provide a very strong foundation 
for adaptive processes leading to a non-cooperative equilibrium. 
 
The approach taken by Milgrom and Roberts (1990) was to explore whether short run rational 
behavior (profit maximization while believing that everybody can be assumed to be a profit 
maximizer) as postulated in game theory could be learned by repeated play of the game by 
boundedly rational individuals.  
 
One possibility of how such learning could be thrown off would be by one of the most well-known 
results in the literature on repeated games and collusion: the celebrated “Folk Theorem.” It 
states that many different outcomes, with competitive pricing at one extreme to monopolistic 
pricing at the other, can be supported as equilibrium outcomes if players are patient enough and 
value future profits. This plethora of possibilities was a challenge to theory, because it implied 
that it had little predictive power. Instead, it was a “possibility” theory, which basically said that 
many things can happen when players are engaged in repeated play. In fact, the theory allows 
such a wide range of equilibria partly because players are assumed to be able to coordinate their 
expectations over an infinite future horizon and take infinite past histories of play into account.  
 
Milgrom and Roberts (1990) restrict attention to more realistic modes of adaptive behavior than 
those studied in the classic collusion theory. They take seriously the limitations of adaptive 
learning that algorithmic pricing would have to abide by. Namely, algorithms result in prices 
adapting over time in a way that responds to the evolution of history, and they cannot create 
strategic replies to infinitely long histories (a limitation explored in Complexity Theory). For these 
reasons, the Milgrom and Roberts (1990) model provides an excellent framework through which 
to explore the workings of algorithms. 
 
In summary, the important results derived by Milgrom and Roberts (1990) strongly suggest that 
an algorithm, which is basically playing adaptive dynamics of one sort or another, and is unable 
to create strategic reliance on infinitely long histories, would actually not converge to a collusive 
outcome and instead will converge to a non-collusive equilibrium outcome. Hence, much more 
restrictive environments, or strategic play that goes beyond adaptive procedures, are needed for 
algorithms to be able to converge to an outcome that is collusive. 
 
4.2 Algorithmic collusion requires significant communication  
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A recent attempt to put rigorous structure to the conjecture that pricing algorithms will lead to 
collusive agreements was made by Salcedo (2015), who develops a model of competition 
between two competitors in continuous time, in which the two firms use algorithms (modeled as 
finite automata) to set prices over time. The paper follows a long tradition in economic theory 
that is aimed at uncovering the necessary assumptions needed to support a result of interest. 
Although the paper is written as an attempt to show that conditions exist under which a collusive 
agreement is inevitable, a careful consideration of the conditions needed to guarantee the 
collusive outcome shows how implausible these conditions are, and hence, how unlikely it is that 
tacit collusion would be the predicted outcome of algorithmic pricing. 
 
In the model developed by Salcedo (2015), pricing algorithms respond to demand conditions and 
to a rival’s prices. Importantly, at some exogenous and unpredictable times, the current pricing 
algorithm of each firm becomes completely apparent to the other firm. Shy of literally exchanging 
code, this assumption alone makes any serious consideration of the practicality of the result a 
futile exercise. Even the most sophisticated machine learning algorithms lack the ability to 
explore all possible contingencies.  
 
Furthermore, there is a particular sequence of timing and events needed in the model for the 
result to be established. Namely, it is critical that firms take longer to learn about their rival’s 
algorithms than the arrival of stochastic shocks to the demand from consumers. However, to 
learn about demand may itself be challenging, especially in an environment with demand 
uncertainty. For example, if demand follows a random process that is influenced by consumer 
tastes, income shocks, and the introduction of other products, the time to learn demand may or 
may not be shorter than the time it would take to learn about a rival’s algorithm.14 
 
One of the key insights from Salcedo (2015) is that it is in each firm’s best interest to make its 
algorithm transparent to its rival so that it can be decoded easily and as quickly as possible, which 
helps the firms to coordinate on collusive outcomes. Each firm also has an incentive to create 
some commitment to their own algorithm and not be able to revise it too quickly, as this creates 
a form of market power in the game between the rivals. This implies that the best way for firms 
to create collusive agreements is for them to be completely transparent and share their code, 
while at the same time create some frictions in their abilities to revise their codes. The latter is a 
consequence of the needed assumption noted above that it is critical for firms to take longer to 
learn about their rival’s algorithms than the arrival of stochastic shocks to the demand from 
consumers. 

 
14 It is important to note that in environments with stochastic demand, which is the realistic assumption to make, 
tacit collusion becomes significantly more difficult and price wars are inevitable. See the seminal work by Green 
and Porter (1984).   
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The need for complete and transparent code sharing suggests that current competition policy 
has significant bite. There is currently consensus that the private exchange of information about 
future pricing is a violation of antitrust law both in the U.S. and in Europe. If not treated as a 
cartel, it would generally be treated as either per se illegal or as an infringement by object (in the 
European context). The communication of an algorithm to a competitor would arguably fall under 
such a prohibition. Sharing algorithms does not just share plans about future pricing, but even 
shares the rules by which every possible future price change can be inferred. Sharing a pricing 
algorithm with a competitor therefore would logically fall a fortiori under such a rule.  
 
In cases where algorithms are programmed to explicitly collude, or collusion is facilitated through 
a third-party algorithm provider (i.e., hub-and-spoke), collusion can be expected to be even 
easier to detect than before. Creating explicit programming in an algorithm will be known by a 
larger number of individuals than the key account managers that are privately involved in many 
cartels. The likelihood for information leakages is therefore high and the evidence for 
programmed cartel behavior relatively easy to verify. 
 
To be successful, algorithmic collusion would still involve illicit communication, a “meeting of the 
minds” on final strategy, and the algorithms would need to be designed to send signals and to 
enforce these agreements in automated ways; invariably involving more people, greater 
resources, and a longer “paper trail” than non-algorithmic collusion.  In fact, competition 
enforcers have already successfully detected and prosecuted price fixing agreements that were 
enforced through the use of algorithms.15  
 
In fact, the difficulties in achieving coordination in the presence of algorithms is nicely illustrated 
by a recent case at the Competition and Markets Authority (CMA) in the UK.16 The case concerns 
an agreement between Trod Ltd and GB eye Ltd not to undercut each on licensed sports and 
entertainment posters and frames on the UK version of Amazon Marketplace. The decision 
describes the difficulties in implementing this agreement for the parties. In fact, the parties found 
it hard to figure out whether the other party was cheating on the price matching agreement or 
whether problems with the software and their implementation of the agreement were to blame 
for deviations from the rule of not undercutting each other. The technicians literally had to 
communicate extensively about how their algorithms worked in order to generate a workable 

 
15 This is what happened in the case brought in 2015 by the U.S. DOJ against Topkins for colluding on prices of 
posters sold online. Topkins and its co-conspirators designed and shared their pricing algorithms, which were 
programmed to collude on prices according to their agreement. https://perma.cc/QMT6-ZQMN  
16 The decision on “Online sale of posters and  frames, Case  50223” can be found at 
https://assets.publishing.service.gov.uk/media/57ee7c2740f0b606dc000018/case-50223-final-non-confidential-
infringement-decision.pdf 
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collusive outcome. Exchanging information about the pricing rule and the algorithm was required 
to come to an understanding. The problem was exactly what one would expect based on theory. 
The pricing patterns observed cannot be inverted to find the underlying price setting strategies 
or infer the workings of the algorithm. A meta-language beyond price as a signaling device is 
necessary for coordination, i.e., a language that allows communication about the algorithms (i.e., 
the strategy itself) in order for coordination to work. 
 
Some of the legal literature has speculated that in the future, AI could simply develop such a 
meta language without external human intervention because these algorithms can “learn.” While 
this may be a theoretical possibility, it requires a multitude of steps. First, a language has to be 
developed, shared and coordinated between AI agents in order to fulfill a coordination function. 
Second, any firm would have to activate communication capabilities in its price setting tools, 
which is as such hard to justify as a function of a pricing tool. Alternatively, the use of an AI agent 
would have to be justified by, essentially, delegating large proportions of management functions 
that may require legitimate communications with competitors.  
 
But note that the use of AI agents in such functions would not necessarily generate a problem for 
antitrust enforcement in principle. Communication can still be detected through a 
communications record between AI agents and there is no reason why a firm would not be liable 
and accountable for the actions and communications of AI agents just as much as they are for 
the collusive activities of an employee. The fundamentals of collusion enforcement are not 
changed by the fact that transparency is high and communication rapid. Current antitrust regimes 
have the adequacy to deal with AI agents that communicate in order to facilitate collusion.  
 
4.3  Simple price matching algorithms  
 
It turns out that collusive dangers that may arise from algorithms are not necessarily tied to the 
speed and sophistication of algorithmic prices. On the contrary: some concerns arise from the 
ability of hard-coded algorithms to commit to very simple rules that specifically do not learn from 
the past and do not adapt to the changing environment. The economic literature has shown that 
such commitments to simple response algorithms can indeed lead to collusive outcomes. We 
explain in this subsection, that the assumed ability to commit to simple rules is not a credible 
assumption in real world settings in general, and in ecommerce in particular. 
 
The seminal work of Axelrod (1984) showed how simple imitation algorithms can lead to 
cooperation in the Prisoner’s dilemma. In particular, if each of the two players adopts a “tit-for-
tat” strategy in which each just copies what the former did in the last period, then these 
strategies are “stable” from an evolutionary perspective and they support the coordinated 
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outcome that is best for the two players. Applying the logic from Axelrod’s arguments to pricing 
games, one may wonder whether a simple tit-for-tat variation on prices may lead to the collusive 
outcome in which the firms split monopoly profits. And more importantly, one should wonder 
whether algorithms would learn to converge on the collusive outcome even if the simple tit-for-
tat strategy is not hard wired into the algorithm. 
 
We first consider a natural variant of tit-for-tat: each firm charges the monopoly price and if it 
detects any firm charging less, then it will revert to undercut the rival firm’s last price until it 
reaches its marginal cost. In this case, any deviation from a pre-specified price, e.g., the monopoly 
price, would lead to a price war that ends in marginal cost pricing and stays there forever. If the 
firms happen to agree on a pre-specified price, and if the environment is stable, then they can 
indeed collude on the pre-specified price. However, any slight deviation due to some error, or to 
some changing circumstances, would immediately cause a downward spiral to the competitive 
price. This is precisely the type of problem that the colluding firms in the Trod/CB eye case 
discussed in the previous section encountered. If they did not carefully intervene in setting the 
starting point for the algorithm then price undercutting continued to occur. 
 
Three things are worth noting. First, as in any collusive outcome firms would still have to agree 
on the price (and the penalty scheme) to achieve a collusive outcome. This would require 
communication that would violate current antitrust laws. Second, any entry by another firm 
would disrupt the equilibrium. Last, with more than two competitors, a “tremble” that causes a 
downward spiral of prices becomes ever more likely. 
 
A second variant of tit-for-tat is one in which competing firms adopt a price-matching strategy as 
follows: each firm monitors its competitors, and matches the lowest price. Like the undercutting 
tit-for-tat strategies described above, the market price supported by such strategies is 
indeterminate, and firms would need to communicate in order to agree on the pre-specified 
price. Now imagine that somehow the firms managed to coordinate on a price ex ante. If in some 
period one particular firm charges a lower price, all other firms will immediately match it, 
resulting in a new market price that is lower. But if one firm raises its price then others will not 
follow, unless there are only 2 firms. That is, if there are only two firms then if one raises its price 
the other follows, and the new market price is higher. But with more than 2 firms there is no 
natural price leader, and there is no mechanism to raise prices. Hence, with more than two firms 
any profitable price can be supported by these strategies, and if there are some trembles, then 
like before, the market will likely converge to the competitive price.  
 
In a game with at least three players, the only way to coordinate monopoly pricing is if the price-
matching “graph” is fully connected: Imagine 6-players. If they are split into disjoint price-
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matching groups of 3 where A and B say “we’ll match C’s price” and D and E say “we’ll match F’s 
price” then the Nash-Bertrand (competitive price) is an equilibrium because C and F still need to 
coordinate. But if, for example, everyone but F says “we’ll match F’s price” then F has monopoly 
pricing incentives. This type of coordinated outcome is highly unlikely to occur by chance, but 
would rather require relatively sophisticated (and illegal) agreements. In this case, the only 
equilibrium is for all players to match the lowest price.  
 
Note that the arguments laid out above make some very strong assumptions. First, they assume 
undifferentiated goods. When this assumption is dropped and there is some local monopoly 
power, this is less straightforward. Second, with different cost structures and randomly changing 
costs, the adoption of such schemes will surely violate the changing incentive constraints that 
firms face when their costs change, and profit maximization itself will be hampered by sticking to 
these simple algorithms.  
 
Things may seem more manageable when there are only two firms. Imagine a variant of tit-for-
tat where each firm just says that it will match the price of its competitor and, more importantly, 
each firm knows this about its competitor. In this case each firm knows that if it raises its price, 
then its competitor will match it. If the firms are symmetric in every way then this would lead to 
the monopoly price. No learning or AI is necessary, just a simple matching algorithm. However, 
several real-world issues undermine to naïve logic behind this simple example. First, demand and 
costs fluctuate randomly adding noise that undermines such coordination. Second, entry by a 
third firm would steal market share and unless there is some way to add the entrant to the 
collusive cartel, the algorithms would not be able to sustain collusion.  
 
Last but not least, important issues of brand perception kick in. For example, take the well-known 
tag line “Walmart's Every Day Low Prices” which is the company’s commitment to be perceived 
as a low-cost retailer. If the company would engage in such a price creeping algorithm with its 
competitors, and entry would occur, then years of building a low-cost brand would be destroyed, 
which in turn will cause customer trust and loyalty to be lost.  
 
It is important to note that for a company that wishes to build and maintain an every-day-low-
price brand, simple monitoring price algorithms can actually help achieve this goal and help 
sustain competition. Imagine a retailer like Walmart that wants to adopt a low profit margin 
pricing strategy in order to sustain a low-price image and build brand loyalty around it. A simple 
algorithm can be used to do this as follows: (i) choose a mark-up rule for each product 𝑗, which 
given the product’s cost will result in a price 𝑝!"#$; (ii) Monitor the prices of competitors and pick 
the lowest competing price, 𝑝%&"'. (iii) if 𝑝!"#$ > 𝑝%&"' then charge 𝑝%&"' and otherwise charge 
𝑝!"#$. This simple algorithm allows the retailer to commit never to charge more than its low-cost 
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price 𝑝!"#$ as long as others are charging no less than this level, and if any competitor charges 
less, the retailer will match the lowest competing price.17  
 
On a final note, simple algorithms can also be used to engage in price signaling. Namely, a price 
leader can adopt an algorithm that makes public announcements about future pricing strategies 
in an attempt to signal price hikes to rivals who may then match the higher prices. However, 
algorithms offer no advantage over human actions along these lines, and are subject to the same 
regulatory controls that have been used to clamp down on this behavior.  
 
4.4 Machines and Complexity 
 
The focus of our analysis so far has drawn from the economics and game theory literatures, and 
draws from the basic theoretical frameworks and the empirical evidence from lab and field 
studies. But because we are concerned with computer algorithms, it is important to point to a 
large body of work in computer science that explores the limitations of algorithms in terms of the 
complexity they can actually handle and solve for within a practical time frame.  
 
A large literature in theoretical computer science investigates whether certain problems can be 
solved relatively “fast” in polynomial time, or whether they are harder problems that cannot. 
This is the focus of complexity theory. About two decades ago, several computer scientists 
showed an interest in exploring the level of complexity needed in order to solve for equilibria in 
games. In an important paper, Daskalakis et al. (2009) showed that algorithms have real 
challenges in solving Nash equilibria even of simple static games. The upshot is that if solving for 
equilibria in simple finite one shot games is difficult, then solving for equilibria in complex 
environments like dynamic play in real world markets is obviously not computable in any 
reasonable amount of time. In a recent paper, Gal (2017) discusses the role that algorithms can 
play to facilitate joint profit maximization among competitors. The computer science literature 
strongly suggests that such endeavors, which require algorithms to compute equilibria of very 
complex games, is not likely to be solvable in the time that would make them beneficial for the 
companies that are trying to use them.  
 
It is also important to note that another strand of literature in theoretical computer science sheds 
lots of doubt on the ability of computer algorithms and AI agents to solve problems that are 
complex and that change constantly with changes in the environment. Wolpert and Macready 
(2005) discuss the celebrated “no free lunch theorems” in computer science that, broadly 
speaking, demonstrate that if an algorithm performs well on a certain class of problems then it 

 
17 Of course, the retailer can add a price-floor in order to minimize losses in case a competing price is too low to 
justify matching.  
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necessarily will have degraded performance on the set of all remaining problems. That is, 
algorithms may solve one problem fine, but as the problem morphs with changes in the 
environment, the algorithm will not perform well and a new algorithm will be needed to adapt 
to the new environment. Hence, AI algorithms are a lot more limited than the lay person might 
infer from the public discussion.  
 

5. Policy Implications 
 
We have already discussed in section 2 that the typical check list criteria for the ease of sustaining 
collusive outcomes do not indicate that internet and e-commerce companies to be high on the 
list of industries in which collusion is likely. First, retailers are very asymmetric both in firm sizes, 
technologies used, and in variety of business models and cost structures. The multi-sided 
business models with very different degrees of integration of different activities makes it 
particularly hard to align incentives. As a result, the most robust criteria for the effectiveness of 
collusion (when an explicit agreement can be obtained) is not satisfied for making collusion 
stable. 
 
Even if one argues that entry into online retail and internet services is generally difficult, the 
arguments above suggest that these industries are not particularly likely to generate collusion in 
the first place. That said, entry has become exceedingly easy given the advancements in 
information technology and web-based services, which have dramatically reduced the cost of 
setting up and operating a new business. With cloud computing, for example, new firms no longer 
have to invest in physical data storage or processing infrastructure. What used to be expensive 
upfront capital expenditure is now ongoing operating expenditure, and new entrants can flexibly 
pay to “ramp up” computing and data storage capacity as and when it is needed. Customer 
relations management, customer service, recruiting, and a variety of other functions that in the 
past required significant investment can now be scaled almost linearly given the plethora of web-
based and outsourced services that are offered. 
 
However, even ignoring the increased ease of entry and high asymmetry between players in 
electronic retail, we have demonstrated in this paper that algorithms do not magically overcome 
the most fundamental barrier to collusion: solving the coordination problem. Market 
transparency and rapid interactions do not solve the coordination problem. Algorithms also do 
not get to a collusive outcome simply if their objective is to maximize profits (if that is even 
possible given the complexity of the maximization problem). This is not really surprising. The 
Game Theory literature has shown that rationality, and even common knowledge of rationality, 
does not solve the coordination problem. There is more that algorithms would need to do to 
converge on collusive outcomes.  
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First, even the development of focal points requires a fundamental property that is not obvious 
AIs will have in the near future: a theory of mind regarding the solutions that stick out as obvious 
to other algorithms. In Schelling’s discussion of focal points, social conventions used in other 
contexts and knowledge about the thinking and adherence to conventions of others in other 
contexts are critical to develop focal points. It is questionable whether this type of reasoning by 
analogy from other contexts can be expected from AI algorthms in the near future or whether 
the algorithmic tools used in pricing would have that type of experience of other algorithms. 
 
Second, the experimental work by Cooper and Kühn (2014) has made clear that social context 
and social reaction are extremely important in supporting collusive outcomes. They appear to be 
more effective in generating collusion than the basic theoretical incentive mechanism. Such 
social context is missing for algorithms. Hence, the lack of human irrationality will hinder rather 
than help the establishment of collusive outcomes for AI agents 
 
Third, even in situations where social context helps in coordination and where social rewards 
play an important role to incentivize cooperation, coordination without explicit communication 
about the required actions has been proven over and over again to be extremely difficult if not 
impossible. This means that to really be able to collude effectively, AI agents would need to 
develop a common language to come to an agreement in the sense of having a common 
understanding of expected behavior and reactions to deviations from expected behavior by the 
other algorithms. They would need to coordinate on “carrot and stick” strategies that can 
become complex in ways that algorithms cannot solve within a manageable time period. 
 
The implementation of algorithms that eventually lead to collusion requires that the 
communications protocol would have to be programmed into the algorithm, which requires 
coordination on language, or coordination on developing communication capability and thus the 
ability to develop a language for an activity (pricing) that does not need communication to be 
performed. Humans, in contrast, have already coordinated on language and can therefore use a 
knowledge of terms and protocols on how to assure each other of reaching an agreement from 
other contexts. A pricing algorithm would need to develop a common language with other 
algorithms. This requires some facility, as well as the expectation that this happens 
simultaneously with at least some of the other hundreds of algorithms that are used by diverse 
competitors. Even to just learn about the feasibility of collusion, algorithms would need a device 
to correlate their strategies to learn about joint changes in prices in order to able to even evaluate 
such scenarios. For that, algorithms would need to understand when their counterparts are 
performing a joint experiment and when they are instead responding to changes in market 



 30 

conditions. As actual cases of algorithmic collusion in real life show, this is an enormous hurdle 
to take. 
 
Nothing in this paper should be misread as claiming that collusion cannot be achieved. Instead, 
the claim is that the measures that need to be taken to prevent algorithmic collusion are virtually 
identical to the instruments currently used in competition policy practice to detect collusion and 
enforce anti cartel policy.  
 
Cartel enforcement relies critically on the detection and punishment of behavior that could be 
part of coordinating activities. It appears that coordination between algorithms and even AI 
agents will require the disclosure, and even joint design, of algorithms between competitors. 
Coordinated programming efforts would be required to ensure the ability of algorithms to 
perform a handshake or include some fixed built in coordination agreement in order to achieve 
coordination. These are all activities that are no more easily concealable than a traditional cartel 
that works with meetings at freeway rest stops, phone calls, and e-mails, if not harder. There 
would be many computer engineers involved and these engineers would have to obtain the 
necessary knowledge about the algorithms of competing firms. Such evidence is just as 
detectable as that of meetings on price discussion. In fact, the programming of the algorithm 
would leave a digital trail and a track record of such activities in itself. 
 
Anything that would constitute coordination in the writing of pricing algorithms or in the efforts 
to make pricing algorithms “compatible” would amount to coordination of prices. Whether a 
concrete price for a given period is agreed or a programmed pricing strategy is agreed makes no 
difference and appears to be well covered by the laws. The definitions in the law do not even 
seem to need stretching for these behaviors to be covered under standard cartel enforcement.  
 
The same is true for conversations about the specific pricing algorithms used by competitors. 
Since firms are not allowed to communicate about prices they are planning to set under current 
antitrust rules, it should follow immediately that communication of the algorithm or about its 
design and workings with competitors violates current laws. We believe that this is basically 
covered by the prohibition of exchanges on future planned prices a fortiori. The algorithm, after 
all, is a rule that explicitly maps market conditions into planned prices. Hence, the exchange of 
the algorithm precisely specifies the planned pricing under all future circumstances that the 
algorithm can distinguish and therefore must be illegal under current antitrust rules. 
 
We have also discussed that even where AI agents develop language, communicate, coordinate, 
and collude, this situation would not be at all different from current antitrust rules regarding 
antitrust compliance by firms. A firm is liable for any collusive behavior of its managers or decision 
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makers. An AI agent would just as much be a decision maker that the firm is responsible for. If it 
decided to collude with another AI agent from another firm, there seems to be no question that 
a firm can be fined just as surely as when lower level managers colluded without the knowledge 
of top management. The evidence of a communications trail would still be there. This would be 
the case also because AI agents would not be exempt from requirements of documenting their 
communications and firms’ compliance activities would monitor for contacts with competitors in 
exactly the same way as with humans. 
 
We also see economically no fundamentally new phenomenon when coordination is achieved by 
a firm that writes algorithms for collusion and then sells them to competitors. The value of the 
algorithm is then generated specifically by the collusion programmed into it and therefore the 
sale of such an algorithm to competitors would be done with the intent to achieve coordinated 
pricing. It is another question whether this is a realistic scenario because there are many vendors 
of algorithms and coordination will only be achieved if there is common usage.  
 
However, we believe that making explicit that all these types of coordination activities between 
algorithms fall squarely into the current prohibitions of agreements and potentially 
anticompetitive information exchange about future pricing would provide much needed legal 
certainty in the ecommerce sector and clarify what steps firms might want to take to assure 
antitrust compliance. Probably no firm would want to endow its pricing algorithms with the 
ability to talk to the competition in any case and thus preventive actions will be easy. Most 
companies would also not want to share their algorithms. It is precisely what many firms view as 
their competitive business advantage. But once it is clear that exchanges of and about 
implemented algorithms would trigger a cartel case, it is also clear that coordination between 
algorithms will be a very unlikely event.  
 
Our policies therefore appear to be quite a robust for a long time to come because even self-
aware algorithms will need to solve the coordination problem. We should however get 
concerned when they can use time travel to hide their communications. 
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Nate:  

1. Won’t make public statements when you have thousands of products. If you have a 
handful of products then you don’t need algorithms.   

2. Colleen: what if everyone says we’re all matching Amazon. Nate: need thousands of 
companies, and if they all make th same statement then they should be sued.  

3. Summary: even in the unlikely if you look at the conditions where it could happen it seems 
that algos are not likely to be in play and algos are used when there are thousands of 
products  


