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Economics is about gains from trade. Contracts are essential to realizing
these gains.

Competitive EquilibriumParadigm: Contracts are anonymous trades
with the market (auctioneer) at given prices:

• Spot contracts: Short-term

• Arrow-Debreu contracts: Long-term, contingent on resolution of un-
certainty).

The First Welfare Theorem establishes that a Competitive Equilibrium
with complete markets is Pareto optimal.

This paradigm ignores hazards of real-world contracting, and as a
result misses a lot of institutional detail. The ignored issues:

0.1 Trade with small numbers of agents

Even when we start with a large number of agents (competitive), after two
(or more) agents engage in a relationship and make relationship-specific in-
vestments they enter some sort of small-number bargaining situation. The
simplest example is given by bilateral monopoly bargaining. Example: reg-
ulation of cable franchise. Williamson’s “Fundamental Transformation”: Ex
ante perfect competition but ex post imperfect competition.
Does non-competitive contracting among small numbers of agents nec-

essarily give rise to inefficiency? As argued by Coase, the answer is “no”.
The Coase “Theorem” says that in the absence of “transaction costs,” the
outcome of private bargaining is Pareto efficient. The idea is that the parties
will always implement mutually beneficient exchanges. (We can think of the
Coase theorem as an analog of the First Welfare Theorem for small-numbers
situation.) This “theorem” can be viewed as a definition of “transaction
costs”. Numerous sources of “transaction costs” have been suggested, but
they can all be classified into two broad categories: incentives and bounded
rationality. Contract theory studies contracting under such “transaction
costs.”
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0.2 Incentives

Consider a state-contingent Arrow-Debreu delivery contract that obliges a
seller to deliver a high-quality good in those states in which his cost is low.
The contract may not be implementable when either the state of the world or
the quality of the delivered good is, while privately observed by the seller, not
contractible, e.g. because it is not observed by anybody else. This situation
is called asymmetric information. First, if the cost is only observed by the
seller, he may have the incentive to misrepresent the state - say that the cost
is high and not deliver even when the actual cost is low. When the quality of
the delivered good is only observed by the seller, he may have the incentive to
deliver a low quality good instead of a high quality good. Thus, asymmetric
information creates incentive problems of two kinds arise:

1. Hidden Information (Adverse Selection): Agents may not reveal the
state truthfully. A contract in these circumstances tries to elicit agents’
information. This will be Part I of the course.

2. Hidden Action (Moral Hazard): Agents may not deliver on their
promises due to imperfect monitoring. This will be the second part of
the course.

One remarkable achievement of the economics of asymmetric information
is that many different economic phenomena can be understood using the
same theoretical tools, as will be demonstrated throughout this text.
Examples of Asymmetric Information Problems:

• Taxation and Welfare Schemes: individuals may claim their ability to
produce is low, and may work less hard than socially optimal, so as to
reduce tax payments and/or increase welfare assistance

• Monopolistic Price Discrimination and Auctions: buyers may claim to
have a lower willingness to pay so as to pay a lower price

• Regulation of a natural monopoly: the monopoly may claim to have
high costs, or under-invest in cost reduction, so it can charge a high
price

• Employee compensation: employees may misrepresent their ability or
may engage in low effort
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• Financial Structure of Firms: managers may misrepresent their abili-
ties or their firm’s potentials, or fail to act in the interest of sharehold-
ers.

0.3 Bounded Rationality

One property of the Arrow-Debreu economy with complete markets is that
all trades can take place at date zero, and from then on the existing con-
tracts are executed but the markets need not reopen. The same is true in
contracting situations, even in the presence of asymmetric information. This
conclusion is unrealistic since the parties may be unable to foresee all possible
states (contingencies) far ahead and contract upon them. Thus, similarly to
“incomplete markets” models , we could have “incomplete contracts” mod-
els, in which not all contingent contracts can be written. Such incomplete
contracts should ideally be explained as optimal when the parties are bound-
edly rational, e.g. cannot foresee future states of the world, or cannot write
complex contracts. Unfortunately, there is no consensus on modeling such
bounded rationality, but some issues are discussed in the third part of the
course. These issues are believed to be important for understanding economic
institutions, more specifically firms.

0.4 Contracts, Mechanisms, Institutions

The three are to a large extent synonymous, meaning “rules of the game”.
Specifically, they describe what actions the parties can undertake, and what
outcomes these actions would entail. If we think about this, we see that
indeed almost all games observed in everyday life are not physical, but defined
by “institutions” - legal and social norms. Without such institutions, we
would be in the “natural state” - anarchy, and play physical games, e.g.
someone robs you in the street. Fortunately, in most cases the rules for
games are written by someone: the rules of chess, football, and even wars
(e.g. the Geneva convention) are written by someone to achieve “better”
outcomes.
Thus, Mechanism design = normative economics (relative to game the-

ory). Knowledge of game theory is important because it predicts how a given
game will be played by agents. Mechanism design goes one step back: given
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the physical environment and the constraints faced by the designer (incen-
tive constraints and bounded rationality constraints), what mechanisms are
feasible? What mechanisms are optimal?
The idea of Mechanism design can be traced back to market socialism.

It realized that the unfettered market is just one possible mechanism for the
economy. It is fairly efficient in many cases but not in all cases. Can we
improve upon it? Ask people: e.g. how many shoes do you want? Then plan
how many shoe factories are needed. This could be better than blind market
forces that may cause uncertain outcomes, resulting in a crises of over, or
under-production.
However, now we know that in designing mechanisms we must take into

account important incentive constraints (e.g. people may not report truth-
fully how many shoes they need if the price is not right) and bounded ratio-
nality constraints (think e.g. how many goods there are in the economy and
how difficult it is to collect all information and calculate the optimal plan).
Contract theory vs. Mechanism design. Mechanism design theory

has been mathematically elegant but has been unable to address the “big”
questions, such as “socialism vs. capitalism”. Instead it proved useful for
more manageable smaller questions, specifically business practices - contracts
among agents. In this reincarnation, as “Contract theory”, it has these
additional features:

• A contract is designed by (one of) the parties themselves

• Parties may refuse to participate ( ⇒ participation constraints).

• Parties may be able to renegotiate the contract later on.

• Theoretical shortcuts are taken, e.g. restricting attention to particu-
lar simple “incomplete” contracts (general optimal mechanisms often
predict unrealistically complicated contracts, e.g. infinitely lived con-
tracts)
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This part considers the design of contracts in which one or many agents
have private information. The agent who designs the contract will be called
the Principal, while the other agents will be simply called agents. For the
most part we will focus on the situation where the Principal has no private
information and the agents do. This framework is called screening, because
the principal will in general try to screen different types of agents by in-
ducing them to choose different bundles. The opposite situation, in which
the Principal has private information and the agents do not, is called signal-
ing, since the Principal could signal his type with the design of his contract.
This situation will be briefly considered in Section ??. (Of course, a general
contracting situation could involve elements of both signaling and screening).
Chapter 1 analyzes a static model with one agent, which is often called

the principal-agent model. Chapter 2 analyzes a static model with many
agents, and Chapter 2 analyzes a dynamic principal-agent model.



Chapter 1

The Principal-Agent Model

This chapter deals with a situation in which one Principal contracts with
one Agent who possesses private information. The best known application of
this model is where the Principal is a monopolistic seller and the Agent is a
buyer. The seller tries to screen buyers of different types, i.e., induce them to
select different consumption bundles. This situation is known asmonopolistic
screening, or second-degree price discrimination. For concreteness, we will
focus on this setting, and later we show how the same model can be applied
to many other settings.

1.1 Setup

1.1.1 Preferences

The Principal is a seller who may choose to sell some quantity x ∈ X ⊂ <+,
in exchange for a payment t ∈ <. The Principal’s profit is given by

t− c(x),

where c(·) is her cost function. The Agent is a buyer; if he consumes x ∈ X
and pays a transfer t ∈ <, his utility is given by

v(x, θ)− t

where θ ∈ Θ ⊂ < is the Agent’s “type”. We think of θ ∈ Θ as a random
variable whose realization is the Agent’s private (hidden) information. That

12
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is, θ is not observed by the Principal, and it is not contractible, i.e., a con-
tract cannot directly depend upon it. The principal has a prior probability
distribution over θ.

1.1.2 Contracting

We assume that the Principal has all the bargaining power in contracting;
i.e., he makes a take-it-or-leave-it offer to the agent. The Agent can accept or
reject the contract. If the agent rejects, the outcome is (x, t) = (0, 0). This is
the Agent’s reservation bundle. The Agent’s reservation utility is therefore
v(0, θ).
What kind of contracts can the Principal offer the Agent? One possibility

is to offer one bundle (x, t), and ensure that all types of agent accept it. This
outcome is called pooling (bunching). In general, however, the Principal will
do better by offering a contract in which different types of agent separate
themselves by choosing different bundles. For simplicity, we will consider
contracts that take the form of a tariff :

Definition 1 A tariff is a function T : X → <, which specifies the pay-
ments T (x) that the Agent has to make in order to receive different amounts
x ∈ X of the good.

Notice that disallowing a certain trade x is equivalent to setting T (x) =
+∞, and since the agent always has the option to reject the tariff, without
loss of generality we constrain the Principal to offer T (0) = 0, and assume
that the Agent always accepts. Thus, the contractual form of a tariff is quite
general, and as we will later see we lose nothing by restricting attention to
this form of a contract.

1.2 Single-Crossing and the Monotonicity of
Choice

Faced with a tariff T (·), the agent of type will θ will choose the quantity that
maximizes his utility, that is, he will select

x ∈ argmax
x∈X

[v(x, θ)− T (x)] .
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It turns out that the analysis of contracting is dramatically simplified when
the Agent’s types can be ordered so that higher types choose a higher con-
sumption when faced with any tariff. In this subsection we describe assump-
tions under which this is always the case. More generally, we identify when
solutions to the parametrized maximization program

max
x∈X

ϕ(x, θ)

are nondecreasing (or strictly increasing) in the parameter θ. In the case of an
agent choosing from a tariff, the objective function is ϕ(x, θ) = v(x, θ)−T (x);
however, the general results of this subsection will be applied to other settings
as well. This question is in the realm of a field called “monotone comparative
statics,” which investigates conditions under which equilibria (in our case,
maximizer) of a system respond to changes in parameter in a monotonic
way (i.e., the solution is always either nonincreasing or nondecreasing in the
parameter).
A key property to ensure monotone comparative statics is the following:

Definition 2 A function ϕ : X ×Θ→ <, where X,Θ ⊂ <, has the Single-
Crossing Property (SCP) if ϕx(x, θ) exists and is strictly increasing in
θ ∈ Θ for all x ∈ X.

The Single-Crossing Property was first suggested by Spence (1972) and
Mirrlees (1971), in application to the agent’s value function v(x, θ).1 Intu-
itively, v(x, θ) satisfies SCP when the marginal utility of consumption, vx,
is increasing in type θ, i.e., higher types always have “steeper” indifference
curves in the x− t space. SCP also implies that large increases in x are also
more valuable for higher parameters θ:

Definition 3 A function ϕ : X×Θ→ <, where X,Θ ⊂ <, has Increasing
Differences2 (ID) if ϕ(x00, θ)−ϕ(x0, θ) is strictly increasing in θ ∈ Θ for all
x00, x0 ∈ X such that x00 > x0.

1Spence and Mirrlees formulated a more general version of SCP that works for agent’s
utilities u(x, t, θ). This property is sometimes called the “sorting condition” or the
“Spence-Mirrlees condition”. Our definition is a simplified version for preferences that
are quasilinear in transfers t. Our SCP was introduced by Edlin and Shannon [1998]
under the name “increasing marginal returns”.

2This property is more precisely called strictly increasing differences, see e.g. Topkis
[1998].
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Lemma 1 If ϕ(x, θ) is continuously differentiable and satisfies SCP, and X
is an interval, then ϕ satisfies ID.

Proof. For θ00 > θ0,

ϕ(x00, θ00)− ϕ(x0, θ00) =

Z x00

x0
ϕx(x, θ

00)dx

>

Z x00

x0
ϕx(x, θ

0)dx

= ϕ(x00, θ0)− ϕ(x0, θ0).

Note that if the Agent’s value function v(x, θ) satisfies ID, then the indif-
ference curves for two different types of the Agent, θ0 and θ00 > θ0, can-
not intersect more than once. Indeed, if they intersected at two points
(x0, t0) , (x00, t00) with x00 > x0, this would mean that the benefit of increasing x
from x0 to x00 exactly equals t0−t00 for both types θ0 and θ00, which contradicts
ID. This observation justifies the name of “single-crossing property” (which
as we have just seen is stronger than ID).
A key result in monotone comparative statics says that when the objective

function satisfies ID, maximizers are nondecreasing in the parameter value
θ. Moreover, if SCP holds and maximizers are interior, they are strictly
increasing in the parameter. Formally,

Theorem 1 (Topkis, Edlin-Shannon) Let θ00 > θ0, x0 ∈ argmaxx∈X ϕ(x, θ0)
and x00 ∈ argmaxx∈X ϕ(x, θ00). Then

(a) If ϕ has ID, then x00 ≥ x0.

(b) If, moreover, ϕ has SCP, and either x0 or x00 is in the interior of X,
then x00 > x0.

Proof. (a) is proven by revealed preference. By construction

ϕ(x0, θ0) ≥ ϕ(x00, θ0)

ϕ(x00, θ00) ≥ ϕ(x0, θ00)

Adding up and rearranging terms, we have

ϕ(x00, θ00)− ϕ(x0, θ00) ≥ ϕ(x00, θ0)− ϕ(x0, θ0).
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By ID, this inequality is only possible when x00 ≥ x0.
For (b), suppose for definiteness that x0 is in the interior of X. Then the

following first-order condition must hold:

ϕx(x
0, θ0) = 0.

But then by SCP
ϕx(x

0, θ00) > ϕx(x
0, θ0) = 0,

and therefore x0 cannot be optimal for parameter value θ00 - a small increase
in x would increase ϕ. Since by (a) x00 ≥ x0, we must have x00 > x0. .

We can apply Theorem 1 to the agent’s problem of choosing from a tariff
T (·), assuming that the agent’s value v(x, θ) satisfies SCP. In this case, the
agent’s objective function

ϕ(x, θ) = v(x, θ)− T (x)

satisfies ID, since v(x, θ) satisfies ID T (x) trivially satisfies ID, and ID is
an additive property. Therefore, by Theorem 1(a) the agent’s consumption
choice from any tariff is nondecreasing in his type. This explains why SCP
is also known under the name “sorting condition”. However, this does not
rule out the possibility that the agent’s consumption is constant over some
interval of types, i.e., we have some pooling. Indeed, when the tariff T (·)
has a kink at some bx, we should expect consumption bx to be chosen by an
interval of types. In order to ensure full separation of types, we need to
assume that the tariff T (·) is differentiable. In this case, ϕ(x, θ) will satisfy
SCP, and Theorem 1(b) implies that consumption is strictly increasing in
type, i.e., we have full separation.

Figure Here

1.3 The Full Information Benchmark

As a benchmark, we consider the case in which the Principal observes the
Agent’s type θ. Given θ, she offers the bundle (x, t) to solve:

FB

(
max

(x,t)∈X×<
t− c(x)

s.t. v(x, θ)− t ≥ v(0, θ) (IR)
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(IR) is the Agent’s Individual Rationality or Participation Constraint, which
ensures that the agent prefers to accept the contract.3 Is is easy to see that
(IR) must bind at a solution – if it did not, the principal can raise profits
by raising t while still satisfying (IR). Expressing t from (IR), substituting
into the objective function, and discarding the constant v(0, θ), we see that
the Principal solves

max
x∈X

v(x, θ)− c(x).

This is exactly the total surplus-maximization problem, hence the result-
ing consumption level is socially optimal (also called first-best). Intuitively,
since the participation constraint binds regardless of the Agent’s type, the
Principal extracts all the surplus above the agent’s reservation utility, and
therefore has the incentive to maximize it. This situation is known as first-
degree price discrimination. It can be illustrated in a diagram that resembles
an Edgeworth-box in the (x, t) space (without actually limiting the size of
the box):

Figure Here

This setting offers the simplest possible demonstration of the Coase The-
orem, which says that private bargaining among parties in the absence of
“transaction costs” results in socially efficient outcomes. One view of the the-
orem is as a definition of “transaction costs” as everything that could prevent
the parties from achieving efficiency. We will see that private information
will indeed constitute a “transaction cost,” i.e., give rise to inefficiency.
In what follows, we will make some assumptions that will guarantee a

well behaved mathematical model of monopolistic screening. First, assume
that efficient consumption levels exist and are unique for each type:

A1: For each θ, argmaxx∈X [v(x, θ)− c(x)] = {x∗(θ)}.4

Next, using Theorem 1(b), we also formulate assumptions that ensure
that the first-best consumption is strictly increasing in type:

3The term “Individual Rationality” is obsolete, but, unfortunately, well-established.
4Uniqueness of efficient trades simplifies the exposition, but all results can be restated

for multiple efficient trades. Indeed, note that Theorem 1 holds with multiple maximizers,
for any selection of maximizers.
One way to ensure single-valuedness is by assuming that v(x, θ)−c(x) is strictly concave

in x, which is often done. We will not need concavity, but our graphical illustrations will
assume it.
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A2: v(x, θ) satisfies SCP.

A3: c(x) is differentiable in x.

A4: For each θ, x∗(θ) is in the interior of X.5

Assumptions A2 and A3 imply that the total surplus v(x, θ)−c(x) satisfies
SCP, which together with A4 allows us to use Theorem 1(b) to conclude that
the efficient consumption x∗(θ) is strictly increasing in θ.

1.4 The Revelation Principle

We now consider the contracting problem with private information. Sup-
pose the principal offers a tariff T : X → <, with T (0) = 0. Let x(θ) ∈
argmaxx∈X [v(x, θ)− T (x)] be the Agent’s choice from the tariff when his
type is θ, and let t(θ) = T (x(θ)). Then the following inequalities must hold:

v (x(θ), θ)− t(θ) ≥ v (0, θ) ∀θ ∈ Θ (IRθ)

v (x(θ), θ)− t(θ) ≥ v
³
x(bθ), θ´− t(bθ) ∀θ,bθ ∈ Θ (ICθbθ)

(IR) stands for the familiar Individual Rationality (or Participation) con-
straints. They inequalities (IR) reflect the fact that the agent of type θ has
the option of choosing x = 0, i.e., rejecting the tariff, but prefers to choose
x(θ). (IC) stands for incentive-compatibility. The inequalities (IC) reflect the
fact that the agent of type θ has the option of choosing x(bθ), the equilibrium
consumption of type bθ, but prefers to choose x(θ).
Now consider a different mechanism in which the principal asks the agent

to make an announcement bθ and then supplies the agent with the quantity
x(bθ) in exchange for the payment t(bθ). Since the inequalities (IC) are satis-
fied, each agent will prefer to announce his true type bθ = θ, rather than lying.
Since the inequalities (IR) are satisfied, each agent will accept this mecha-
nism. Therefore, the new mechanism will have an equilibrium in which the
consumption bundles of all types coincide with those in the original tariff.

5The role of the last two assumptions is to ensure strict comparative statics. Without
them, and replacing A2 with the weaker assumption that v(·, ·) satisfies ID, Theorem 1(a)
can still be used to show that x∗(θ) is nondecreasing in θ, but it may now be constant
over some region of types.
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A mechanism in which the Agent is asked to announce his type and
receives bundle

³
x(bθ), t(bθ)´, and which satisfies inequalities (IR) and (IC),

is called a Direct Revelation Contract. The above discussion establishes the
following result:

Proposition 1 (The Revelation Principle for Tariffs) Any tariff can be
replaced with a Direct Revelation Contract that has an equilibrium giving rise
to the same equilibrium consumption bundles for all types.

This is one the most important principles of mechanism design. It can be
established not only for tariffs, but for any other contract we can think of.
For example, the agent could announce his type bθ, receive a type-contingent
tariff T (x|bθ), and choose consumption. All such mechanisms can be replaced
with Direct Revelation mechanisms.??6 The Revelation Principle will later
be extended to multi-agent situations.
It turns out that every Direct Revelation Mechanism (x(θ), t(θ))θ∈Θ can

be replaced with a tariff

T (x) =

½
t(θ) if x = x(θ) for some θ ∈ Θ,
+∞ otherwise.

Thus, if every contract can be replaced with a direct revelation mecha-
nism, it can also be replaced with a tariff. This observation is known as
the “Taxation Principle,” by analogy with the Revelation Principle. In
real life, we observe tariffs more often than direct revelation mechanisms,
probably because the set of possible type spaces may be hard to describe
in reality. For most theoretical purposes, however, it is more convenient to
represent a contract as a direct revelation contract than as a tariff. The
taxation principle also implies that restricting attention to tariffs is without
loss.
The Principal’s problem for choosing the profit-maximizing Direct Reve-

lation Contract under private information can be written as:

⎧⎪⎨⎪⎩
max

x:Θ→X, t:Θ→<
Eθ [t(θ)− c(x(θ))]

s.t. v(x(θ), θ)− t(θ) ≥ v(x(θ̂), θ)− t(θ̂) ∀ θ, θ̂ (ICθbθ) ∀θ,bθ ∈ Θ
v(x(θ), θ)− t(θ) ≥ v(0, θ) ∀ θ (IRθ) ∀θ ∈ Θ

6We do not consider the possibility of randomization. Such randomization may some-
times be useful for the principal - see Section ?? below.
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This is called the Second-Best program, since, in contrast to the first-best
(full-information) program, the principal now has to honor the agent’s incen-
tive constraints.

1.5 Solution with Two Types

This subsection solves the second-best program in the case in which the agent
can have one of two possible types: Θ = {θL, θH}, with θH > θL. Type θH
will be called the “high type” and type θL the “low type”. The Principal’s
prior is given by Pr{θ = θL} = π ∈ (0, 1) and Pr{θ = θH} = 1 − π.
The Principal’s problem of choosing the optimal Direct Revelation Contract
h(x(θL), t(θL)) , (x(θH), t(θH))i = h(xL, tL) , (xH , tH)i can be written as:

(SB)

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

max
h(xL,tL),(xH ,tH)i

π[tL − c(xL)] + (1− π)[tH − c(xH)]

s.t. v(xL, θL)− tL ≥ v(0, θL) (IRL)
v(xH , θH)− tH ≥ v(0, θH) (IRH)
v(xL, θL)− tL ≥ v(xH , θL)− tH (ICLH)
v(xH,θH)− tH ≥ v(xL, θH)− tL (ICHL)

Note that if we ignored the ICs, the problem would break down into the
first-best problems for each type, and we would obtain the First-Best al-
location h(x∗(θL), t∗(θL)) , (x∗(θH), t∗(θH))i = h(x∗L, t∗L) , (x∗H , t∗H)i. However,
this allocation is not incentive-compatible, i.e., it violates the IC constraints.
To see this, recall that in the first-best allocation both types receive their
reservation utilities. However, if the θH type deviates and claims to be an θL
type, he achieves a positive surplus:

v(x∗L, θH)− v(0, θH)− t∗L > v(x∗L, θL)− v(0, θL)− t∗L = 0

by SCP whenever x∗L > 0. Intuitively, the high type is wiling to pay more
than the low type for an increase of trade from 0 to x∗L. Thus, the first-best
contract is not incentive-compatible when types are privately observed. This
suggests intuitively that it is the incentive constraint (ICHL) that will be
binding in the second-best problem. This intuition is confirmed formally in
the following Lemma, which characterizes which constraints bind and which
ones do not:
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Lemma 2 At the solution to (SB), constraints (IRL) and (ICHL) bind, whereas
constraints (IRH) and (ICLH) are redundant.

Proof.

IRH is redundant. We show that [(IRL) and (ICHL)] ⇒ (IRH):

v(xH , θH)− tH − v(0, θH)
(ICHL )
≥ v(xL, θH)− tL − v(0, θH)

SCP
≥ v(xL, θL)− tL − v(0, θL)

(IRL )
≥ 0

Thus, (IRH) can be discarded.

(IRL) binds. Otherwise increasing both tL and tH by a small ε > 0 would
preserve (IRL), not affect (ICHL) and (ICLH), and raise profits.

(ICHL) binds. Otherwise, increasing tH by a small ε > 0 would preserve
(ICHL), not affect (IRL), relax (ICLH), and raise profits.

(ICLH) is redundant: Assume not, and let {(x0H , t0H), (x0L, t0L)} be a solution
to the reduced problem subject to only (IRL) and (ICHL). If (ICLH)
is not redundant then this solution violates (ICLH): type θL strictly
prefers (x0H , t

0
H) to (x

0
L, t

0
L). If t

0
H − c(x0H) ≥ t0L − c(x0L), the principal

can raise profits by giving both types (xH , tH+ε) (recall that (IRH) can
be discarded). If t0H − c(x0H) < t0L − c(x0L), she can do better by giving
both types (xL, tL). Note that (IRL) is satisfied in both cases because
(xL, tL) satisfies it and (xH , tH) is strictly preferred by type θL. (ICHL)
is trivially satisfied in both cases. Thus, we have a contradiction, and
(ICLH) can be discarded.

Using Lemma 2, we can qualitatively characterize a solution to the pro-
gram (SB). First, we consider the two types’ rents, i.e., their utilities in excess
of the reservation utilities. Lemma 2 implies that:

S1: No rent for the low type: (IRL) binds.

From this we can calculate the low type’s payment as

tL = v(xL, θL)− v(0, θL).
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As for the high type, according to Lemma 2, we can calculate his rent from
the binding (ICHL):

v(xH , θH)− tH − v(0, θH) = v(xL, θH)− tL − v(0, θH)

= [v(xL, θH)− v(xL, θL)]− [v(0, θH)− v(0, θL)] ≥ 0

by SCP, and the inequality is strict when xL > 0. Thus, we have

S2: High type has a positive rent when xL > 0: (IRH) does not bind.

Intuitively, the high type can always get a positive rent just by choosing
the low type’s bundle, and this is exactly his rent in the optimal contract.
We call this his information rent because it is due to the agent’s hidden
information, more precisely, to the principal’s not knowing that she faces the
high type.
Expressing transfers from the binding constraints (IRL) and (ICHL), sub-

stituting them into the Principal’s objective function, and ignoring the terms
that do not depend on xL,xH , the Principal’s program can be written as

max
xH ,xL∈X

total expected surplusz }| {
π[v(xL, θL)− c(xL)] + (1− π)[v(xH , θH)− c(xH)]

−(1− π)[v(xL, θH)− v(xL, θL)]| {z }
information rent of high type

We see that the objective function is additively separable in xL and xH , hence
the program can be broken into two:

max
xH∈X

(1− π)[v(xH , θH)− c(xH)]

max
xL∈X

π[v(xL, θL)− c(xL)]− (1− π)[v(xL, θH)− v(xL, θL)]

From the first line we see that xH maximizes the total surplus for the high
type:

S3.: Efficiency at the top: xH = x∗H .

Graphical intuition: Since (ICLH) does not bind, we can move type H’s
bundle along his indifference curve to the tangency point.
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As for xL, let z ∈ [−1, 0] and consider the parametrized objective function

ϕ(xL, z) = π [v(xL, θL)− c(xL)] + z (1− π) [v(xL, θH)− v(xL, θL)].

Here z = 0 corresponds to surplus-maximization and z = −1 corresponds to
the Principal’s second-best problem. Note that

∂2ϕ(xL, z)

∂xL∂z
= (1− π) [vx(xL, θH)− vx(xL, θL)] > 0

since by SCP of the agent’s value function v(x, θH) the square bracket is
positive. Therefore, the function ϕ(xL, z) has the SCP in (xL, z). Since by
assumption x∗L is in the interior of X, Theorem 1(b) implies

S4: Downward distortion at the bottom: xL < x∗L.

Figure Here

Graphical intuition: Start at the optimal First-Best choices of x. A small
reduction xL results in a second-order reduction in total surplus for the
low type, but a first-order reduction on the high type’s rent through
relaxing the (ICHL) constraint and allowing the Principal to raise tH .

Conclusions S3-S4 imply that a monopolistic seller, in order to screen the
buyers of different types with lower information rents, enlarges the quantity
spectrum relative to the efficient quantity spectrum. This result is quite
general.

Remark 1 Here we have separation of the two types, since xL < x∗L < x∗H =
xH. However, as will be shown below, this finding does not always generalize
to more than two types - some pooling is possible.

Remark 2 With a different reservation bundle
¡bx,bt¢ 6= (0, 0), we could have

different binding constraints. For example, suppose maxX = bx, i.e., the
reservation trade is the maximum rather than minimum possible trade. We
can apply all the theory for y = x− x. All the arguments above are inverted,
and we have (IRH) and (ICLH) bind, xL = x∗L and xH > x∗H . For a reser-
vation bundle

¡bx,bt¢ that satisfies bx ∈ [x∗L, x∗H ] we even obtain the First-Best
solution (Check!).

Figure Here
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1.5.1 Many Discrete Types

This setup was explored by Maskin and Riley (1984). There are many types,
θ ∈ {θ1, θ2, ..., θn} which are ordered such that θi > θi−1 for all i > 2. Let
πi = Pr{θ = θi}, and assume that all types have the same reservation utility
normalized to 0. Then, the principal’s problem is:

max
{(ti,xi)}ni=1

nP
i=1

πi(ti − c(qi))

s.t. v(xi, θi)− ti ≥ 0 ∀ i (IR)
v(xi, θi)− ti ≥ v(xj, θi)− tj ∀ i 6= j (IC)

which is the straightforward extension of the two type case. This is, however,
a complicated problem, especially as n grows large: There are a total of n
(IR) constraints and another n(n− 1) (IC) constraints. It turns out that we
can reduce the problem here too, as before, in a very appealing way:

Proposition 3.1: (Maskin-Riley) The principal’s problem reduces to:

max
{(ti,xi)}ni=1

nP
i=1

πi(ti − c(xi))

s.t. v(q1, θ1)− t1 ≥ 0 (IR1)
v(xi, θi)− ti ≥ v(xi−1, θi)− ti−1 ∀ i = 2, ..., n (DIC)
xi ≥ xi−1 ∀ i = 2, ..., n (MON)

That is, there is one (IR) constraint, (n − 1) “Downward” (IC) con-
straints, and another (n − 1) “Monotonicity” constraints. These fea-
tures are features of the solution, that must hold for any solution under
the assumptions that we usually make. We do not prove this proposi-
tion, but it is interesting to go over the features of the solution:

1. Monotonicity: We have this as a constraint, but it turns out to be a
feature of the solution.

2. No rents for the low type: All other types will have some informa-
tion rents.

3. Efficiency at the top: xSBn = xFBn and xSBi < xFBi for all i = 1, ..., n−
1.
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4. “Bunching”:We may have two or more adjacent types that will get
the same (x, t). (This depends on the distribution of types. Separating
two adjacent types may give too much rents to a the higher type of the
two, and to all types that are higher. In such a case it may be better
to “pool” these two adjacent types and offer them the same contract.)

5. “Reversals”: Different reservations can cause switching of the results,
as we saw for the two type case.

1.6 Solution with a Continuum of Types

Now let the type space be continuous, Θ = [θ, θ], with the cumulative distri-
bution function F (·), and with a strictly positive density f(θ) = F 0(θ).
The principal’s problem is:⎧⎪⎪⎪⎨⎪⎪⎪⎩
max

hx(·),t(·)i

θR
θ

[t(θ)− c(x(θ))]f(θ)dθ

s.t. v(x(θ), θ)− t(θ) ≥ v(x(θ̂), θ)− t(θ̂) ∀ θ, θ̂ (ICθ,bθ) ∀θ,bθ ∈ Θ

v(x(θ), θ)− t(θ) ≥ v(0, θ) ∀ θ (IRθ) ∀θ ∈ Θ

For simplicity we only consider contracts hx(·), t(·)i that are piecewise con-
tinuously differentiable.7

Just as in the two-type case, out of all the participation constraints, only
the lowest type’s IR binds:

Lemma 3 At a solution (x(·), t(·)), all IRθ with θ > θ are not binding, IRθ

is binding.

Proof. As in the two-type case, by SCP, IRθ and ICθ,θ imply IRθ.
Now, if IRθ were not binding, we could increase t(θ) by ε > 0 for all

θ ∈ [θ, θ], which would preserve all incentive constraints and increase the
Principal’s profit.

As for the analysis of ICs, it appears very difficult, because with a contin-
uum of types there is a double continuum of incentive constraints. Mirrlees

7That is, there is a discrete number of points where the function is not differentiable,
and it is continuously differentiable everywhere else. This restriction is not necessary. In
fact, any incentive-compatible contract can be shown to be integrable, which suffices for
the subsequent derivation.
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in his Nobel prize - winning work suggested a way to reduce these constraints
to a much smaller number, by replacing them with the corresponding First-
Order Conditions. The argument is as follows: If we think of the agent’s
problem as choosing an announcement bθ ∈ Θ, where the parameter is his
true type θ ∈ Θ, then his maximization problem can be written as,

maxbθ∈Θ Φ(θ̂, θ) = v(x(θ̂), θ)− t(θ̂) ,

and the (IC) constraints can be written as,

θ ∈ argmax
θ̂∈Θ

Φ(θ̂, θ).

For all θ ∈
¡
θ, θ
¢
at which the objective function is differentiable (which

is by assumption almost everywhere), the following First-Order Condition
must therefore hold:

0 =
∂

∂θ̂
Φ(θ, θ) . (ICFOCθ)

That is, truth telling, or incentive compatibility, implies that the FOC of
Φ(θ̂, θ) is satisfied when θ̂ = θ.
Define the Agent’s equilibrium utility as U(θ) ≡ Φ(θ, θ), which depends

on θ in two ways – through the agent’s true type and through his announce-
ment. Differentiating with respect to θ, we have

U 0(θ) = Φθ(θ, θ) + Φθ̂(θ, θ).

Since the second term equals zero by (ICFOCθ), we have

U 0(θ) = Φθ(θ, θ) = vθ(x(θ), θ).

This is an equivalent representation of (ICFOCθ). The result is the Envelope
Theorem – the full derivative of the value of a maximization program with
respect to the parameter θ equals to the partial derivative (holding fixed the
maximizer - the agent’s announcement).
Notice that (ICFOCθ) incorporates local incentive constraints, i.e., the

Agent does not gain by misrepresenting θ around the neighborhood of θ.
By itself, it does not ensure that the Agent does not want to misrepresent
θ by a large amount. For example, (ICFOCθ) could be consistent with the
truthful announcement announcement bθ = θ being a local maximum, but
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not a global one. It is even conceivable that the truthful announcement is a
local minimum!
Fortunately, these situations can be easily ruled out. For this purpose, re-

call that by SCP, 1(b) establishes that the Agent’s consumption choices from
any tariff (and therefore in any incentive-compatible contract) are nonde-
creasing in type (implying that it is differentiable almost everywhere). Thus,
any piecewise differentiable IC contract must satisfy

x0(θ) ≥ 0 a.e. θ . (M)

It turns out that under SCP, ICFOC in conjunction with (M) do ensure
that truth-telling is a global maximum, i.e., all ICs are satisfied:

Proposition 2 (x(·), t(·)) is Incentive Compatible if and only if both of the
following hold:

(M) x0(θ) ≥ 0 for a.e. θ.

(ICFOC) vx(x(θ), θ)x0(θ)− t0(θ) = 0 for a.e. θ.

Proof. The “only if” part was established above. It remains to show that
monotonicity and local IC imply global IC. Note that

∂

∂θ̂
Φ(θ̂, θ) = vx(x(bθ), θ) · x0(bθ)− t0(bθ)

By (M) x0(bθ) ≥ 0. For bθ > θ, by SCP vx(x(bθ), θ) ≤ vx(x(bθ),bθ), thus the
above equality implies

∂

∂θ̂
Φ(θ̂, θ) ≤ vx(x(bθ),bθ) · x0(bθ)− t0(bθ) = ∂

∂θ̂
Φ(θ̂, θ̂) = 0

by ICFOC. Thus, the function Φ(θ̂, θ) is nonincreasing in θ̂ for bθ > θ. Simi-
larly, we show that Φ(θ̂, θ) is nondecreasing in θ̂ for bθ < θ.8 This implies
that θ ∈ argmaxθ̂∈ΘΦ(θ̂, θ).

8Such a function is called pseudoconcave in θ̂.
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1.6.1 The Relaxed Problem

From the analysis above we can rewrite the principal’s problem as⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
max
x(·),t(·)

θR
θ

[t(θ)− c(x(θ))]f(θ)dθ

s.t. x0(·) ≥ 0 (M)
vx(x(θ), θ)x

0(θ)− t0(θ) = 0 ∀ θ (ICFOC)
v(x(θ), θ)− t(θ) = v(0, θ) (IR)

To solve this program in general requires optimal control theory, but this
can sometimes be avoided by the following Shortcut: We solve the relaxed
program obtained by ignoring the monotonicity constraint (M). If it turns
out that the resulting solution satisfies (M), then we are done.
To solve the relaxed problem, ICFOCθ can equivalently be written as

U(θ) = U(θ) +

θZ
θ

vθ(x(s), s)ds, (1.1)

and the binding (IR) means U(θ) = v(0, θ), thus (ICFOCθ) and (IR) together
are equivalent to

U(θ) = v(0, θ) +

θZ
θ

vθ(x(s), s)ds. (1.2)

Thus, in equilibrium the information rent of a type θ Agent equals to
θR
θ

vθ(x(s), s)ds.

This implies that we can substitute transfers t(θ) = v(x, θ) − U(θ) into
the Principal’s objective function. Eliminating the constant term v(0, θ) , the
objective function takes the familiar form as the expected difference between
total surplus and the Agent’s information rent:

max
x(·)

θZ
θ

∙
v(x(θ), θ)− c(x(θ))| {z }

Total Surplus

−
θZ

θ

vθ(x(s), s)ds

⎤⎦
| {z }
Information rent of θ

f(θ)dθ (1.3)

We can rewrite the expected information rents using integration by parts:
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θZ
θ

θZ
θ

[vθ(x(s), s)ds]f(θ)dθ =

⎡⎣ θZ
θ

vθ(x(s), s)ds · F (θ)

¯̄̄̄
¯̄
θ

θ

−
θZ

θ

vθ(x(θ), θ)F (θ)dθ

=

θZ
θ

vθ(x(θ), θ)dθ −
θZ

θ

vθ(x(θ), θ)F (θ)dθ

=

θZ
θ

vθ(x(θ), θ)
1− F (θ)

f(θ)
f(θ)dθ (1.4)

where the second equality follows from F (θ) = 1, and F (θ) = 0, and the
third equality is obtained by multiplying each one of the integrands by f(θ)

f(θ)
.

With the expected information rents given as in (1.4) above, we can
rewrite the principal’s problem as,

max
x(·)

θZ
θ

∙
v(x(θ), θ)− c(x(θ))− vθ(x(θ), θ)

1− F (θ)

f(θ)

¸
| {z }

virtual surplus

f(θ)dθ. (1.5)

Thus, the Principal will maximize the expected value of the expression within
square brackets, which is called the virtual surplus. This expected value is
maximized by simultaneously maximizing the virtual surplus at (almost)
every state θ, i.e., by pointwise maximization which implies that for (almost)
all θ,

x(θ) ∈ argmax v(x, θ)− c(x)−
∙
1− F (θ)

f(θ)

¸
vθ(x, θ).

This implicitly gives us the consumption rule x(·) in the optimal contract
for the relaxed program. However, for this solution of the relaxed program
to be a solution to the original problem we need to check that this solution
satisfies the monotonicity constraint (M), i.e., that the resulting consumption
rule x(θ) is nondecreasing. We can check this using Theorem 1. Letting

ϕ(x, θ) ≡ v(x, θ)− c(x)−
∙
1− F (θ)

f(θ)

¸
vθ(x, θ)
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represent the objective function, and assuming that v(x, θ) is sufficiently
smooth, we have

∂2ϕ(x, θ)

∂x∂θ
= vxθ −

vxθθ
h(θ)

+ vxθ
h0(θ)

[h(θ)]2
.

where h(θ) ≡ f(θ)/ [1− F (θ)] > 0 is called the hazard rate of type θ.9

By Theorem 1, a sufficient condition for x(θ) to be nondecreasing is for
the cross-derivative to be positive, which under SCP (vxθ > 0) can be ensured
with the additional assumptions vxθθ ≤ 0 and h0(θ) > 0 (increasing hazard
rate). Thus, under the two added assumptions, any solution to the relaxed
problem (1.3) satisfies (M), and solves the full problem. Without the two
added assumptions, this may not be the case, i.e., constraint (M) may bind.
Assuming that the relaxed solution satisfies monotonicity, we can consider

the properties of the solution. In particular, consider the FOC of ϕ(x, θ) with
respect to x,

vx(x(θ), θ)− c0(x(θ))− 1

h(θ)
· vxθ(x(θ), θ) = 0 . (1.6)

Since at θ we have 1
h(θ)

= 0, we get the familiar efficiency at the top result:

vx(x(θ), θ) = c0(x(θ)). Furthermore, since 1
h(θ)

> 0 for all θ < θ, we also get

distortion everywhere else: vx(x(θ), θ) > c0(x(θ)) ∀ θ < θ. The intuition is
the same as for the two-type case we analyzed before. If we take x(θ) for
some θ < θ and increase it, we gain an increase in total surplus through type
θ, but we have to give higher information rents to all the types θ0 > θ. Using
the definition of h(·), we can rewrite (1.6) as,

f(θ) [vx(x(θ), θ)− c0(x(θ))] = (1− F (θ))vxθ(x(θ), θ) ,

which can be interpreted as follows: The left-hand side of the equation is the
total surplus generated when a type θ gets an infinitesimal increase in x(θ),
whereas the right-hand side of the equation is the sum of the rents that an
increase in x(θ) gives to all θ0 > θ (which have a total measure of (1−F (θ))
agents). The increase in surplus for type θ is what the monopolist can extract
from this type, but this is at the cost of paying informational rents to all the
“higher” type agents.

9The term comes from Actuary studies. Intuitively, if f(t) is the probability of dying
at time t, then h(t) is the probability of dying at time t conditional on not dying before
time t. In other words, it is just Bayes updating.
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1.6.2 What to do if monotonicity binds (technical)

Incorporating ICFOCθ and (IR) into the objective function of the principal,
the original program can be written as follows,

max
{x(·),μ(·)}

θR
θ

h
v(x(θ), θ)− c(x(θ))− vθ(x(θ), θ)

1
h(θ)

i
f(θ)dθ

s.t. x0(θ) = μ(θ) ∀ θ (MU)
μ(θ) ≥ 0 ∀ θ (M)

which now appears in the format of an optimal control problem in dynamic
optimization, with state variable x(·) and control variable μ(·). (See Kamien-
Schwartz part II, sections 17-18.) We solve this by applying known methods
from control theory.
The Hamiltonian is then

H(θ, x, μ, λ) = [v(x(θ), θ)− c(x(θ))− vθ(x(θ), θ))
1

h(θ)
]f(θ) + λ(θ)μ(θ) ,

where λ(·) is the multiplier of (MU). If at the solution x(·) we get x0(·) > 0,
then μ(θ) > 0 and λ(θ) = 0 so that the FOC is identical to the unconstrained
program. Finding the intervals over which x(·) is constant is trickier.
Let x∗(·) be the solution to the unconstrained program (1.5) above, and

let x(·) be the solution to the real constrained problem. The solution will
look like the following figure:

Figure Here

At the solution, there will be an interval, [θ1, θ2], (or more than one such
interval, depending on how many “humps” we get from x∗(·)) such that:

x(θ) =

⎧⎨⎩
x∗(θ) ∀θ ∈ [θ, θ1]
x∗(θ1) ∀θ ∈ [θ1, θ2]
x∗(θ) ∀θ ∈ [θ2, θ]

Similarly, t(·) will coincide with t∗(·) for θ /∈ (θ1, θ2) and will be constant
for θ ∈ (θ1, θ2). Salanie gives good “intuition” (math intuition) for why x∗(·)
and x(·) coincide over the areas where x(·) is strictly increases:
?????????????????????????
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1.7 Applications of the Model

1.7.1 Second Degree Price Discrimination

This is the example we investigated where x was quantity, and this was devel-
oped by Maskin-Riley (1984). They also generalize the Mussa-Rosen (1978)
model to address quality and quantity discrimination, and they develop the
discrete-type solution we discussed with n-types. They also demonstrate that
all the previous “sorting” models fit under the general framework of optimal
sorting mechanisms.

1.7.2 Vertical Differentiation: Quality

Amonopoly manufactures goods in 1-unit quantities each, but they can differ
in quality. Just take x to be quality of a unit of good, and c(x) to be the
cost of producing one unit at quality x, and we are back in the model we
analyzed. This model was analyzed byMussa-Rosen (1978) and they note the
connection to Mirrlees’ work but just apply it to this problem. (Examples:
train/plane classes, “olives” and “figs” restaurants in Charlestown, 486SX
and 486DX computer chips.)

1.7.3 Optimal Income Tax

This is the seminal hidden-information paper by Mirrlees (1971) that earned
him the Nobel Prize for 1996. A Government wishes to do some benevolent
act (e.g., raise taxes for public project, or redistribute consumption given
some social welfare function.) Each agent can produce output according to
the production function

y(c, θ) = θc ,

where c is labor and θ is the marginal product of the agent. We assume
that both c and θ are private information (not observed by the government)
while y is observable by the government. The utility of an individual from
consuming c units of the output good and working c units of labor is given
by v(c)−c. Let τ denote a tax that the government can impose on an agent’s
production. Then, given a production level y, the agent’s utility (given his
type) is:

v(x− τ(x))− x

θ
,
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or, using a monotonic transformation (multiply by θ),

u(x, τ , θ) = θv(x− τ)− x .

We can now redefine the variables so as to put this problem in the notation
of our original model. That is, let

x(θ) ≡ x(θ)− τ(θ),

t(θ) ≡ x(θ) .

Here, instead of the IR constraints (taxes are not voluntary!) we will have
an integral constraint for a balanced budget of the government. (See Salanie
or Mirrlees for a detailed account of this problem.)
Dual problem!!!

1.7.4 Regulating a (Natural) Monopolist

A natural monopolist has costs ψ(x, θ) where x is output produced (e.g.,
electricity) and θ is a private cost parameter measuring efficiency: ψx >
0, ψθ < 0, ψθx < 0 (higher θ implies more efficiency and lower marginal
costs). Given a subsidy s from the government, the firm maximizes profits:

π(x, θ, s) = p(x)x− ψ(x, θ) + s.

The government (regulator) maximizes social welfare:

B(x)− (1− λ)s+ s− ψ(x, θ) ,

where B(x) =
xR
0

p(x)dx is the social surplus from producing x, and λ > 0

is the “shadow cost” of distortionary taxes (taxes are needed to collect the
subsidy s). (Everything is common knowledge except θ.) The government
can offer the firm a menu: (x(θ), s(θ)) (or, using the taxation principle, the
government can offer a subsidy s(x) and the firm just chooses x) and the
firm’s profits are,

u(x, s, θ) = −ψ(x(θ), θ) + s(θ)

(That is, we can redefine the subsidy s to include the revenues that the
government can collect and transfer to the firm.) The government must
assure that u(x, s, θ) ≥ 0, which is the IR constraint, and must also respect
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the IC constraints of truthful revelation. We can now redefine the variables
so as to put this problem in the notation of our original model. That is, let

x(θ) ≡ x(θ)

t(θ) ≡ −s(θ)
v(x, θ) ≡ −[ψ(x, θ) + F ]

and assume that vθx = −ψθx > 0 (SC is satisfied). Letting c(x(θ)) ≡
ψ(x(θ), θ)−B(x(θ)), the government maximizes:

max
x(·),t(·)

θZ
θ

[λt(θ)− c(x(θ))]f(θ)dθ

subject to the standard IR and IC.
This model was initially introduced by Baron-Myerson (1982). It is inter-

esting that they don’t mention either Mirrlees or Mussa-Rosen. They take
the Mechanism-Design approach and basically show that this is an applica-
tion of it. (That is, a Bayesian Incentive Compatible mechanism with IR.)
We get the same features:

1. Highest type θ (lowest cost) produces efficiently (marginal costs equal
marginal benefits).

2. Lowest type θ (highest cost) gets no rents.

3. All θ > θ get informational rents.

4. All θ < θ produce less than the first-best production level.

Figure Here

Notes:

1. This problem is a common values problem: The government’s utility
depends on θ.

2. See Laffont-Tirole (1993) for an exhaustive analysis of regulation using
mechanism design.
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1.7.5 Optimal Labor Contracts

Consider the case where the manager-owner of a firm is risk neutral and the
employee is risk averse to the amount of labor input. That is, assume that
the worker’s utility is given by,

u(c, w, θ) = w − ψ(c, θ) ,

and the owner’s utility is given by,

π(c, w, θ) = θc− w

where θ is that marginal product of the worker, w is the wage the worker
receives, and c is the worker’s labor input. As in the Mirrlees taxation model,
c, θ are assumed to be private information of the worker, and the employer
only observes the output cθ. We can now redefine the variables so as to put
this problem in the notation of our original model. That is, let

x(θ) ≡ −cθ,
t(θ) ≡ −w(θ),

v(x, θ) ≡ −ψ(c, θ) = −ψ
µ
−x
θ
, θ

¶
,

which yields the exact same problem.
Notes:

1. Here again, like in the regulation example, we have common values.

2. This is different from Hart (1983) where firm is risk averse, workers
are risk neutral, and the firm observes a demand parameter. In Hart’s
model we get first-best employment at the “top” (best state of demand)
and under-employment for all other states of demand.

1.7.6 Monopolistic Insurance

Consider a simple monopolistic insurance market where there are two types of
individuals, low risk (L) and high risk (H), each with an endowment of ω =
(ωg, ωb) where ωs is the endowment of the private good in state s ∈ {g, b}.
The probability of a bad (b) state is pθ ∈ {pH , pL} where 1 > pH > pL > 0.

Figure Here
Here in general non-quasilinear utilities, the single-crossing property takes a
more general form.
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1.8 Extensions

1.8.1 Randomizations

1.8.2 Type-Dependent (IR) and Countervailing Incen-
tives

This was first investigate by Lewis and Sappington (1989).

• If IR is type dependent then we don’t know which IR binds (this was
discussed earlier).

• If the principal can endogenously set the different types’ outside option
(????????), maybe she will be better off: e.g., fixed costs negatively
correlated with MC will potentially have two effects:

1. A type with low MC will want to overestimate MC, but then he
gets low FC rebate,

2. A type with high MC will want to underestimate MC to get high
FC rebate

• These two effects may cancel out, so an incentive scheme will have
higher efficiency (less distortions). Also, with a continuum of types we
get pooling “in the middle.”

• This relates directly to what we saw earlier in the two-type model
with different reservation bundles: with low ones, we got our origi-
nal solution. With high ones, the inefficiencies were reversed. With
intermediate ones, we can get efficiency with asymmetric information.

1.8.3 Ex Ante Participation Constraint

Suppose Agent’s ex ante vNM utility is u(). (IR) constraints are replaced
with one ex ante (IR):

Eθ [u(v(x(θ), θ)− t(θ))] ≥ Eθ [v(0, θ)].
When agent is risk-neutral, get 1st-best. In the limiting case where agent

is infinitely risk-averse: Eθ [u(w(θ))] = minθ∈Θw(θ), and reservation utility
v(0, θ) = v does not depend on type, then ex ante are reduced ex post
participation constraints.
Developed in “Implicit labor contracts” literature - firm is risk-averse.
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1.8.4 Common Values

Example here.
The analysis of constraints that does not use the properties of P’s objec-

tive function is same as before. Among participation constraints, only the
lowest type’s binds. ICFOC holds. But qualitative difference is that the
likelihood of pooling may increase. For example pooling is now possible with
two types - the last argument in Lemma ?? does not go through.
Exercise with ex ante participation constraint.

1.8.5 Multidimensional Characteristics

• Analysis is much more complicated, not as “nice”

• Hard to get monotonicity (Matthews-Moore 1987)

• Bunching is a big problem (See references in Salanié)

1.8.6 Informed Principal (Maskin and Tirole 1990, 1992)

• Principal has private information too, e.g., a type λ

• Contract can be contingent on Principal’s announcements as well: {x(θ, λ), t(θ, λ)}

• We get a signalling model: The principal may signal his type with the
contract she offers

• In the private values case the principal can do as good as in the full
information case (where the principal’s type is public information) just
by offering the menu of second-best contracts for the full information
case. Generically, the principal can do better because IR need only
hold in expectations (using Bayesian Nash Equilibrium). (Note: in the
quasilinear case there are no gains from the principal’s private infor-
mation.)

• In the common values case it is not necessarily true that the principal
can do as well. (costly signalling).



Chapter 2

The Multi-Agent Model

2.1 General Setup

• Set of Agents, I = {1, 2, ...I} (like in Mas-Colell, Whinston and Green
use abuse of notation: I is used for both number of agents and for
denoting the set of agents)

• Set of Outcomes or Alternatives X

• Each agent i observes a private signal which determines his preferences
over alternatives x ∈ X, the signal for each i : θi ∈ Θi

• Each agentmaximizes expected utility with a vNMutility over outcomes
ui(x, θi). (also referred to as a Bernoulli utility function)

• Note: This is the private values case for which θi can represent some
signal of the agents “willingness to pay” for an object. There is also
the common values case in which utilities are given by ui(x, θ), and θ
consists of signals that reflect the true, or absolute value of an object.
(e.g., oil well site)

• The vector of types, θ = (θ1, θ2, ..., θI) ∈ Θ1 × Θ2 × ... × ΘI ≡ Θ is
drawn from a prior distribution with density φ(·) [can be probabilities
for finite Θ]. θ is also called the state of the world.

38
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• Information:

(1) θi is privately observed by agent i

(2) {ui(·, ·)}Ii=1 is common knowledge
(3) φ(·) is common knowledge

• Social Choice Function: f : Θ→ X

• Goals: Designer wants to implement f(·)

• Problem: Designer doesn’t know θ, and if asked directly agents may
misrepresent themselves given f(·) and their beliefs about what others
will announce.

Example 1.1: A public project can be built (k = 1) or not (k = 0) where
the cost of the project is 1 if built and 0 if not. Assume two agents
with type spaces Θ1 = [0, 1] and Θ2 = {34} (singleton), and utilities are
given by ui = θi · k − ti, where ti ∈ < is the payment to center. The
set of outcomes is

X = {(k, t1, t2) : k ∈ {0, 1}, ti ∈ <, t1 + t2 ≥ k · 1}

where the weak inequality implies that there is no outside funding.
Assume, for example, that the center wishes to maximize a socially
efficient, egalitarian (equal sharing) SCF

f(θ) = hk(θ), t1(θ), t2(θ)i

which is given by

k(θ) =

½
1 if θ1 > 1

4

0 otherwise

ti(θ) =

½
1
2
if θ1 > 1

4

0 otherwise

(Since agents have quasilinear utility functions then social efficiency is
achieved by the decision rule “build if and only if θ1 > 1

4
.) Will agent

1 reveal his true θ1? For θ1 ∈ [0, 14 ] ∪ [
1
2
, 1] the answer is yes, whereas

for θ1 ∈ (14 ,
1
2
) the answer is no! ¥
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• Question: Can the designer find some clever way to get the truth out
of the agents?

Definition 1.1: A Mechanism (or Game Form) Γ = (S1, S2, ..., SI , g(·)) is
a collection of I strategy sets (or message spaces) S1, S2, ..., SI and an
outcome function g : S1 × S2 × ...× SI → X .

• Each agent sends a message si ∈ Si to the center, and the outcome is
then determined according to g(·). A pure strategy for agent i will be
a function si : Θi → Si (We restrict attention to pure strategies. We
will later consider mixed strategies.)

• Since each agent only knows θi and the outcome of mechanism depends
on θ−i , then the elements Γ,Θ, φ(i) and {ui (·, ·)}Ii=1 define a Bayesian
Game of Incomplete Information, which is given in strategic form by

I, {Si}Ii=1, {ũi(·)}Ii=1,Θ, φ(·)
®

where
ũi(s1, ..., sI , θi) ≡ ui(g(s1, ..., sI), θi) for all i ∈ I.

• Let E(Γ, θ) ⊂ S1×S2× ...×SI denote the set of equilibria plays of the
game in state θ ∈ Θ.

Note: E(Γ, ·) depends on the equilibrium concept which we will later
define. Basically, given an equilibrium concept, then these are all the
equilibria for the state of the world θ.

• Two main concepts:

(1) ED(Γ, ·)− set of Dominant Strategy Equilibria plays
(2) EB(Γ, ·) - set of Bayesian Nash Equilibria plays

• Let g(E(Γ, θ)) ≡ set of equilibrium supported outcomes in state θ given
the mechanism Γ.

Definition 1.2: Amechanism Γ fully implements the SCF f(·) if g(E(Γ, θ)) =
f(θ) for all θ ∈ Θ.
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figure 1.1 here

• We can have Partial Implementation which is the case where there
exists θ such that:

(1) f(θ) ∈ g(E(Γ, θ)), and
(2) ∃ x ∈ g(E(Γ, θ)) such that x 6= f(θ). That is, we encounter the

problem of Multiple Equilibria.

Example 1.2: Majority voting: Consider I = 3,X = {a, b}, and the type
θi determines whether a %i b or b %i a. Suppose that θ1 = θ2 = θ3 = θ,
and that u(a, θ) > u(b, θ) (i.e., they all have the same preferences). Yet
all voting for b is a NE.

Notes:
(1) Using stronger equilibrium concept (undominated Nash) will help.
(2) Using social choice correspondence rather than function will help (the

designer is willing to accept one of several outcomes).
We won’t be concerned with multiple equilibria problems.

2.2 Dominant Strategy Implementation

2.2.1 Definition and the Revelation Principle

This is the strongest equilibrium requirement:

Definition 1.3: The strategy profile s∗(·) = (s∗1(·), ..., s∗I(·)) is a Dominant
Strategy Equilibrium of the mechanism Γ if for all i and for all θi ∈ Θi,

ui(g(s
∗
i (θ), s−i), θ) ≥ ui(g(s

0
i, s−i), θ)

for all s0i ∈ Si and for all s−i ∈ S−i.

That is, no matter what i thinks that the other players are doing, s∗i (θi)
is the best for him when he is θi, and this is true whatever his type is. The
beauty of this equilibrium concept is in the weak informational structure it
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imposes on the agents: Each player need not forecast what the others are
doing, or what their types are.
Note: Multiple equilibria is practically not a problem (it must come from

indifference between different strategies which is not a generic property).

BIG QUESTION: How do we know if f(·) is implementable in Domi-
nant Strategies?

That is, can we find a mechanism Γ that implements f(·) in dominant
strategies? (By implement we mean partial implementation in the sense that
we do not care about the multiple equilibria problem.) To answer this ques-
tion we first have to ask: Do we have to consider all (∞) mechanisms?
Let’s assume that we were “lucky” and for some f(·) we found a mech-

anism Γ that implements f(·). Recalling Figure 1.1 we can consider the im-
plementing equilibrium as one where each player figured out s∗i (·). Now let
each player i use a “computer” to compute his equilibrium message. That
is, the agent feeds the computer with θi ∈ Θi and the computer prints out
s∗i (θi).

figure 1.2 here

Question: Will the agent want to lie to the program?
Answer: No! The program is s∗i (·).
But Note: The designer knows that s∗i (·) is the equilibrium strategy since
she found Γ to implement f(·)!
Now we can consider the following alteration of the mechanism Γ made

by the designer: Let Γ∗ be a mechanism which calls for the agents to reveal
there types, that is, Si = Θi for all i. Let g∗(·) be the outcome function
of Γ∗ so that it incorporates the computer programs s∗i (·) for all i into the
mechanism Γ. That is, given announcements bθ1,bθ2, ...,bθI , g∗(bθ1,bθ2, ...,bθI) ≡
g(s∗1(

bθ1), s∗2(bθ2), ..., s∗I(bθI)). That is, one can view the new mechanism as one
that works in the following way: The agents report there types θi (they are
not restricted to tell the truth!) to the designer, the designer’s mechanism
Γ∗ first calculates the optimal strategies for Γ, and finally uses g(·) for the
choice of outcome.
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Claim: If Γ∗ is the mechanism, every agent will reveal θi truthfully to the
designer.

The proof is trivial by the construction of Γ∗, and by the assumption
that Γ implemented f(·) in dominant strategies. This is the idea behind the
Revelation Principle, a strong and beautiful result. First define:

Definition 1.4: Γ = (S1, ..., SI , g(·)) is a Direct Revelation Mechanism if
Si = Θi for all i ∈ I and if g(θ) = f(θ) for all θ ∈ Θ.

Definition 1.5: The SCF f(·) is Truthfully Implementable in Dominant
Strategies if for all θ, the direct revelationmechanism Γ = (Θ1, ...,ΘI , f(·))
has s∗i (θi) = θi for all i, and s∗ ∈ ED(Γ, θ). Equivalently, for all i and
for all θi ∈ Θi,

ui(f(θi, θ−i), θi) ≥ ui(f(θ̂i, θ−i), θi) for all θ̂i ∈ Θi and θ−i ∈ Θ−i .

That is, f(·) is truthfully implementable in dominant strategies if truth
telling is a dominant strategy in the direct revelation mechanism.
Note: Truthfully Implementable in Dominant Strategies is also called:
(i) dominant strategy incentive compatible
(ii) strategy proof
(iii) straightforward.

Proposition 1.1: (The Revelation Principle for Dominant Strategy Equi-
libria) f(·) is implementable in dominant strategies if and only if it is
truthfully implementable in dominant strategies.

proof: ⇐: by definition.

⇒: Suppose Γ = (S1, ..., SI , g(·) implements f(·) in dominant strategies.
This implies that there exists s∗(·) = (s∗1(·), ..., S∗I (·)) such that g(s∗(θ)) =
f(θ) for all θ ∈ Θ, and for all i and all θi ∈ Θi :

ui(g(s
∗
i (θi), s−i), θi) ≥ ui(g(s

0
i, s−i), θi) (2.1)

for all s0i ∈ Si and s−i ∈ S−i

In particular, for all θi ∈ Θi

ui(g(s
∗
i (θi), s

∗
−i(θ−i)), θi) ≥ ui(g(s

∗
i (θ̂), s

∗
−i(θ−i)), θi) (2.2)

for all θ̂i ∈ Θi, and θ−i ∈ Θ−i
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(That is, (2.2) is a special case of (2.1).) But g(s∗(θ)) = f(θ) for all
θ ∈ Θ implies that:

ui(f(θi, θ−i), θi) ≥ ui(f(θ̂i, θ−i), θi) for all θ̂i ∈ Θi, and θ−i ∈ Θ−i

which is the condition for f(·) to be truthfully implementable. Q.E.D.

Notes:

1. The Revelation Principle does not apply to full implementation: Di-
rect mechanisms may have multiple equilibria which can be eliminated
by more elaborate mechanisms.

2. The Revelation Principle does not apply without commitment. (We
will explore this in a dynamic setting.)

Conclusion: To check if f(·) is implementable in dominant strategies
we only need to check that f(·) is truthfully implementable in dominant
strategies. That is, checking that

ui(f(θi, θ−i), θi) ≥ ui(f(θ̂i, θ−i), θi) for all θ̂i ∈ Θi, and θ−i ∈ Θ−i

2.2.2 Universal Domain: the Gibbard-Satterthwaite
Theorem

Question: What SCF’s can we implement in DS?
Answer: Not much if we allow for any preferences over the alternatives,

or, if we allow for Universal Domain.
We first move “backward” from the utility function ui(·, θi) to the under-

lying preferences, denoted by the preference relation %i (θi). That is, a type
θi induces a preference relation %i (θi), which in turn can be represented by
the utility function ui(·, θi). Let

Ri = {%i: %i= %i (θi) for some θi ∈ Θi},

i.e. the set of all possible preference relations that are associated with
the possible types in Θi. Each preference relation Ri ∈ Ri is associated with
a particular type in Θi, and the following notation is commonly used:

for type θi : xRiy ⇔ x %i (θi) y ⇔ ui(x, θi) ≥ ui(y, θi),

or, for type θ0i : yR
0
ix⇔ y %i (θ

0
i) x⇔ ui(y, θ

0
i) ≥ ui(x, θ

0
i).
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The Universal Domain of preferences, denoted by P , is the set of all
possible strict rational preferences over X (this is the “Domain” on which
f(·) operates). Denote by f(Θ) the image of f(·). We say that the SCF
exhibits full range if f(Θ) = X. (That is, the range X is fully covered by f
when the domain is Θ.)

Definition 1.6: The SCF f(·) is DICTATORIAL if there is an agent i such
that for all θ ∈ Θ

f(θ) ∈ {x ∈ X : ui(x, θi) ≥ ui(y, θi) ∀ y ∈ X}

We call agent i a dictator if f(·) always chooses (one of) his most pre-
ferred alternative(s).

Proposition 1.2: (The Gibbard-Satterthwaite Theorem) Suppose that X is
finite, |X| > 2,Ri = P ∀i ∈ I and f(Θ) = X. Then, f(·) is truthfully
implementable in Dominant Strategies if and only if it is Dictatorial.

“proof”: ⇐ Trivial

⇒ Not trivial (Truthfully implementable ⇒ Monotonic; Monotonic + [
f(Θ) = X ]⇒ Paretian; Monotonic + Paretian⇒ Arrow’s Impossibil-
ity Theorem)

Bottom Line: In the most general case the result is very pessimistic.

Consolation: It turns out that in some “reasonable” economic environ-
ments we can obtain more optimistic results.

2.2.3 Quasilinear Environment

The Quasilinear general environment is given by the following ingredients:

• k ∈ K denotes the actual level of public choice parameter. (For now
K is as abstract as we want it to be, and we will assume for now that
K is finite.)

• ti ∈ < transfer to agent i.

• x = (k, t1, t2, ..., tI) is an alternative
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• ui(x, θi) = vi(k, θi) + ti (Quasilinear utility)

Suppose we have no outside sources for transfers. Then this setup defines
the set of alternatives as:

X = {(k, t1, ..., tI) : k ∈ K, ti ∈ < ∀ i ∈ I,
IX

i=1

ti ≤ 0}.

We will also assume (for now) that there are no wealth constraints. K can
have a “public” flavor or a “private” flavor. We have seen an example of a
Public Project described in Example 1.1 above, where the project was either
built or not, i.e., K = {0, 1}.

Example 1.3: Allocation of a Private good: Let yi denote the proba-
bility that agent i gets an indivisible good.

K = {(y1, y2, ..., yI) : yi ∈ {0, 1},
IX

i=1

yi = 1}

and vi(k, θi) = vi(yi, θi) = θiyi where θi is i’s valuation for the good.
(Note that yi is restricted to be either 1 or 0 to fit with our assumption
that K is finite. The more general case would have yi ∈ [0, 1].)¥

A SCF in the quasilinear environment takes the form of:

f(θ) = (k(θ), t1(θ), ..., tI(θ))

where k(θ) ∈ K and
IP

i=1

ti(θ) ≤ 0. (From the definition of X.)

Let k∗(θ) be the ex-post efficient choice of k given state-of-the-world θ (or
the “First-Best” choice of k). This implies that for all θ ∈ Θ we must have,

k∗(θ) ∈ argmax
k∈K

IX
i=1

vi(k, θi) ,

or,

IX
i=1

vi(k
∗(θ), θi) ≥

IX
i=1

vi(k, θi) for all k ∈ K .



CHAPTER 2. THE MULTI-AGENT MODEL 47

• Fact: It is trivial to see that any Pareto optimal SCF must have k(θ) =
k∗(θ). (Quasilinearity implies that we can do interpersonal transfers
through ti without affecting total social surplus.)

• Question: Can we find some transfer functions ti(·) such that the SCF
(k∗(·), t1(·), ..., tI(·)) can be implemented in Dominant Strategies?

• Answer: Use the Revelation Principle: each agent announces θ̂i ∈
Θi,which generates an announcement profile, θ̂ = (θ̂1, ..., θ̂I), and each
agent’s payoff is given by ui(x, θ) = vi(k

∗(θ̂i, θ̂−i), θi)+ti(θ̂i, θ̂−i), where
θ̂i is agent i’s announcement, θ̂−i are the announcements of all the other
agents, and θi is agent i’s true type. The question that needs to be
answered is, When will agents announce truthfully? The answer is, of
course, only if we can get each agent to choose θ̂i so that his own utility
is maximized when he tells the truth. In other words, we need to align
individual utilities with social welfare!

Groves-Clarke Mechanisms

Groves (1973) suggested the above by setting the functions ti(·) so that each
agent internalizes the externality that he imposes on the others:

Proposition 1.3: f(θ) = (k∗(θ), t1(θ), ..., tI(θ)) is truthfully implementable
in dominant strategies if for all i = 1, ..., I

ti(θ̂) =
X
j 6=i

vj(k
∗(θ̂), θ̂j) + hi(θ̂−i),

where hi(θ̂−i) is an arbitrary function of θ̂−i.

proof: Every i solves:

max
θ̂i∈Θi

vi(k
∗(θ̂i, θ̂−i), θi) +

X
j 6=i

vj(k
∗(θ̂i, θ̂−i), θ̂j) + hi(θ̂−i)

Note that hi(θ̂−i)does not affect i’s choice so i maximizes the sum above
by setting θ̂i = θi (this follows from the definition of k∗(·)). Q.E.D.
Notes:
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1. vj(k∗(θ̂i, θ−i), θ̂j), j 6= i, is the value that agent j gets from the project
were he (agent j) telling the truth. That is, the first part of agent i’s
transfer is calculated using the sum of the other agents’ valuations were
they to be truth-tellers.

2. From the above it follows that agent i’s payoff (through the transfer)
depends on θ̂i only through its effect on the choice k∗(·), and this is
exactly equal to his externality imposed on all the other agents (if they
were telling the truth).

Notice that there aremany hi(θ̂i) that work (as long as it is not a function
of θ̂i). Clarke (1971) suggested a particular Groves mechanism known as a
Clarke mechanism (or “Pivotal” mechanism). Define:

k∗−i(θ−i) ∈ argmax
k∈K

X
j 6=i

vj(k, θj),

which is just the optimal choice of k for the j 6= i agents when their types
are θ−j. Now let,

hi(θ̂−i) = −
X
j 6=i

vj(k
∗
−i(θ̂−i), θ̂j),

which implies that,

ti(θ̂i) =
X
j 6=i

vj(k
∗(θ̂i, θ̂−i), θ̂j)−

X
j 6=i

vj(k
∗
−i(θ̂−i), θ̂j)

Interpretation:

• Case 1: when k∗(θ̂i, θ̂−i) = k∗−i(θ̂−i). In this case agent i’s announce-
ment does not change what would have happened if he did not exist
and everyone was announcing the truth.

• Case 2: when k∗(θ̂i, θ̂−i) 6= k∗−i(θ̂−i). In this case agent i is “pivotal”;
he changes what would have happened without him, and he is taxed for
that exactly at the level of the externality that this change imposes on
the other agents.
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Example 1.4: Public Project: Simple application of the above: each
agent pays a transfer only if he is pivotal. (Note: Formally, we must
have c(k) divided between the agents so that v(·, ·) reflects net value;
if this is not the case, then we can have two agents who together value
the project at more that its cost, none of which is pivotal, and there is
no financing of the project. Another alternative is to have ti include a
share of the cost.)¥

Example 1.5: Allocation of one unit of a Private good: As before,
let

k = (y1, ..., yI), yi ∈ {0, 1} ∀ i ∈ I,
IX

i=1

yi = 1.

The First best allocation is to give the good to the agent with the
highest valuation, or simply choose k to maximize,

max
k

X
i=1

θiyi

Let i∗ be the agent with the highest valuation. Then k∗(·) sets yi∗ = 1
and yj = 0 for all j 6= i∗. If we apply the Clarke mechanism to this
setup:

ti(θ̂i, θ̂−i) =
X
j 6=i

vj(k
∗(θ̂i, θ̂−i), θ̂−i)| {z }

Ai

−
X
j 6=i

vj(k
∗
−i(θ̂−i), θ̂j)| {z }
Bi

,

and since θ̂i = θi is a DS for all i in a Groves-Clarke mechanism, then
Ai = Bi = θi∗ for all i 6= i∗, and for i∗, Ai∗ = 0, and Bi∗ = θj∗ ,
where j∗ denotes the agent with the second-highest valuation. Thus,
applying the Clarke Mechanism to the problem of allocating a private
good yields the same outcome as a second price sealed bid auction, also
known as a Vickrey Auction.¥

Remarks:

1. In much of the literature such mechanisms are known as Groves-
Clarkemechanisms, and sometimes are referred to asGroves-Clarke-
Vickrey mechanisms.
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2. When the set of v(·, ·) functions is “rich” (something like a “universal
domain” of the quasilinear set-up) only the Groves mechanisms can
be implemented in DS. (This result was proven by J. Green and J.J.
Laffont, and is restated as Proposition 23.C.5 in MWG).

Groves-Clarke & Balanced Budgets

The function k∗(·), as we defined it, is a necessary condition for ex-post
optimality, but it is not sufficient: we must also guarantee that there is a
Balanced Budget (no waste of resources, or, no money is being “burnt”):

IX
i=1

ti(θ) = 0 for all θ ∈ Θ (BB)

We can now state a second negative result: When the set of v(·, ·) functions
is “rich” then there is no SCF f(·) = (k∗(·), t1(·), ..., tI(·)) (where k∗(·) is
ex post optimal) that is truthfully implementable in DS, and that satisfies
(BB). A trivial (and not very interesting) case for which we can achieve full
ex post optimality is given in the following example:

Example 1.6: If there exists some agent i such that Θi = {θi} a singleton,
then we have no incentive problem for agent i, and we can set

ti(θ) = −
X
j 6=i

tj(θ) for all θ ∈ Θ .

This trivially guarantees a balanced budget. Note, however, that we are
forcing the agents to participate in this decision. If, for example, the
agent who “balances the budget” (agent i in this example) gets negative
utility, we may consider his ability to “walk out” on the project. This
will be thoroughly discussed in the next chapter of Adverse Selection.¥

Do example with nonbalanced budget?

2.3 Bayesian Implementation

Recall that Γ,Θ, φ(·) and {ui(·)}Ii=1 define a Bayesian Game of Incomplete
information.
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Definition 1.7: The strategy profile s∗(·) = (s∗1(·), ..., s∗I(·)) is a Bayesian
Nash Equilibrium (BNE) if ∀ i ∈ I and ∀ θi ∈ Θi,

Eθ−i [ui(g(s
∗
i (θi), s

∗
−i(θ−i)), θi)|θi]

≥ Eθ−i[ui(g, (s
0
i, s

∗
−i(θ−i)), θi)|θi] ∀ s0i ∈ Si

That is, if player i believes that other players are playing according to
s∗−i(θ−i) then he is best off by following the behavior prescribed by s∗i (θi).
Applying this as an equilibrium to mechanism design we have,

Definition 1.8: The mechanism Γ = (S1, ..., SI , g(·)) implements the SCF
f(·) in BNE if there is a BNE of Γ, s∗(·) = (s∗1(·), ..., s∗I(·)) s.t. g(s∗(θ)) =
f(θ) for all θ ∈ Θ.

Definition 1.9: The SCF f(·) is Truthfully Implementable in BNE (or, is
Bayesian Incentive Compatible) if for all θi ∈ Θi and i ∈ I, s∗i (θi) = θi
is a BNE of the direct revelation mechanism Γ = (Θ1, ...,Θi, f(·)), i.e.,
for all i :

Eθ−i [ui(f(θi, θ−i), θi)|θi] ≥ Eθ−i [ui(f(θ
0
i, θ−i), θi)|θi] ∀ θ0i ∈ Θi .

Note: Bayesian Nash is a weaker form of equilibria than Dominant Strategy
equilibria. Thus we should expect to be able to implement a larger set
of SCF’s.

Proposition 1.4: (The Revelation Principle for BNE) Suppose that there
exists a mechanism Γ = (S1, ..., SI , g(·)) that implements the SCF f(·)
in BNE. Then f(·) is truthfully implementable in BNE.

proof: Same idea as before: ∃ s∗(·) = (s∗1(·), ..., s∗I(·)) such that ∀ i and ∀θi ∈
Θi ,

Eθ−i [ui(g(s
∗
i (θi), s

∗
−i(θ−i)), θi)|θi] ≥ Eθ−i [ui(g(s

0
i, s

∗
−i(θ−i)), θi)|θi] ∀ s0i ∈ Si ,

in particular, ∀ i and ∀ θi ∈ Θi ,

Eθ−i [ui(g(s
∗
i (θi), s

∗
−i(θ−i)), θi)|θi] ≥ Eθ−i [ui(g(s

∗
i (θ

0
i), s

∗
−i(θ−i)), θi)|θi] ∀ θ0i ∈ Θi .

But since Γ implements f(·) then g(s∗(θ)) = f(θ) ∀ θ ∈ Θ ⇒ ∀ i and
∀ θi ∈ Θi

Eθ−i [ui(f(θi, θ−i), θi)|θi] ≥ Eθ−i [ui(f(θ
0
i, θ−i), θi)|θi] ∀ θ0i ∈ Θi .

Q.E.D.
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Intuition: Same story with the computers...

Notes:

1. Must have commitment on behalf of the planner as before.

2. Each agent maximizes expected utility taking the strategies of the oth-
ers as given. That is, each agent optimizes on average and not for any
s−i. This makes it easier to implement social choice functions as we will
see.

3. But, this requires more sophistication from the agents. (Beliefs must
be correct and φ(·) must be known).

2.3.1 Expected Externality Mechanisms

Consider now quasilinear environments. Suppose we want to implement the
ex post efficient SCF f(·) = (k∗(·), t1(·), ..., tI(·)) , where ∀ θ ∈ Θ,

IX
i=1

vi(k
∗(θ), θi) ≥

IX
i=1

vi(k, θi) ∀ k ∈ K

and there is a balanced budget,

IX
i=1

ti(θ) = 0 .

We saw that generally we cannot implement ex-post efficient SCF’s in
Dominant Strategies in quasilinear environments - could not balance the bud-
get. This will be possible however when we relax the equilibrium requirement
by choosing BNE as the equilibrium concept.
The mechanismwas developed independently by D’Aspermont and Gerard-

Varet (1979) and Arrow (1979) and are also called AGV mechanisms in the
literature. It turns out that we can get ex-post efficient implementation if
we assume the following:

Assumption 1.1: Types are distributed independently: φ(θ) = φ1(θ1) ×
φ2(θ2)× · · · × φI(θI), ∀ θ ∈ Θ.
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Now, extend Groves transfers as follows:

ti(bθ) = Eθ−i [
X
j 6=i

vj(k
∗(bθi, θ−i), θj)] + hi(bθ−i)

Note that unlike in Groves-Clarke mechanisms:

1. The first term only depends on bθi, i.e., on the announcement of agent
i.

2. The first term sums the expected benefits of agents j 6= i assuming that
they tell the truth and given that i announced bθi: it is not a function
of the actual announcements of agents j 6= i. This implies that ti(·) is
less “variable” (j’s announcements do not affect it), but on average it
causes i’s incentives to be well aligned with the social benefits.

To see that incentive compatibility is satisfied given that agents j 6= i
announce truthfully, we observe that agent i maximizes:

Maxbθi∈Θi

Eθ−i [vi(k(θ̂i, θ−i), θi) + ti(θ̂i, θ−i)]

= Eθ−i [
IP

j=1

vj(k(θ̂i, θ−i), θj)] +Eθ−i [hi(θ−i)]

We know that for each θ ∈ Θ this is maximized when θ̂i = θi by the
definition of k(·), which implies that θ̂i = θi maximizes this expectations
(since it is an expectations expression). Thus, incentive compatibility is
satisfied.

Note: It is not a dominant strategy to announce the truth: If the other
agents lie then the realized distribution of θ̂−i (the announcements)
differs from the prior distribution of types dictated by φ(·). This implies
that we cannot write the problem as written above if we consider bθ−i 6=
θ−i !

We see that we can implement k∗(·) in BNE, but to “improve” upon DS
implementation we now need to show that we can achieve a balanced budget
when BNE implementation is considered. It will be convenient to write the
transfer of each agent as the sum of two expressions. Denote:

ξi(θi) = Eθ−i [
X
j 6=i

vj(k
∗(θi, θ−i), θj)] ,
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so that each agent i that announces truthfully (which we showed is an equi-
librium) will receive a transfer of ti(θ) = ξi(θi) + hi(θ−i). Using this decom-
position we will show that we can use the h(·) function to “finance” the ξ(·)
functions in the following way: each agent j 6= i will pay (through his h(·)
function),

1

I − 1ξi(θi) ,

so each agent i will pay:

hi(θ−i) = −
X
j 6=i

1

I − 1ξj(θj) = −
1

I − 1
X
j 6=i

ξj(θj) ,

and summing this up over all agents yields,

IX
i=1

hi(θ−i) = −
1

I − 1

IX
i=1

X
j 6=i

ξj(θj) = −
I − 1
I − 1

IX
i=1

ξi(θi) = −
IX

i=1

ξi(θi) ,

which clearly implies that,

IX
i=1

ti(θ) =
IX

i=1

ξi(θi) +
IX

i=1

hi(θ−i) = 0.

Notes:

1. We are still ignoring participation constraints (i.e., participation is not
voluntary in this model).

2. Correlated types can help to implement social welfare functions. (A
paper by Cremer and McLean (Econometrica, 1985) shows that when
the realization of types is correlated across agents then the princi-
pal/designer can take advantage of this correlation and implement a
riches set of social choice functions.)

3. We cannot do the “trick” of financing as above in Dominant Strategy
implementation because ξj(bθj) in the Groves mechanism is ξj(bθj,bθ−j),
that is, it is a function of what the other agents announce because
we are not using expectations over the truthful announcements of the
other agents. This in turn implies that hi(bθ) would be a function of bθi
through the ξj’s of the other agents.
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2.4 Bayesian and Dominant Strategy Imple-
mentation: An Equivalence Result

Moving from dominant strategy implementation to Bayesian implementation
was crucial to get implementation with a budget balanced mechanism. Before
continuing with the imposition of other desirable properties on mechanisms,
it is useful to recognize an important relationship between dominant strategy
implementation and Bayesian implementation.
To do this, consider the quasilinear environment we have discussed above,

with agents i ∈ I, type sets Θi = [θi, θi] with distribution Fi(·), and public
choices k ∈ K. Given an allocation of a public choice and transfers, x =
(k, t1, ..., tI), agents’ utilities are given by ui(x, θi) = vi(k, θi) + ti. It will
be useful to distinguish between the mechanism, Γ = (k(·), t1(·), ..., tI(·)),
and the fundamentals of the economy, which include the types and their
distributions, the preferences (utility functions) and the set of public choices,
K.

2.4.1 The Equivalence Theorem

Recall that for the principal-agent model we introduced in chapter 1 there
was a very appealing structure for incentive compatible contracts that was
based on the envelope theorem. Namely, equation (1.1) demonstrated that in
equilibrium, the utility of every type is the utility of the lowest type, plus an
integral term that was a direct consequence of the envelope theorem. It turns
out that such a relationship will reappear for implementation with Bayesian
incentive compatibility, which will lead to a powerful result.
First, it is useful to define some notation. Let Γ = (k(·), t1(·), ..., tI(·)) be

a direct revelation mechanism, and consider an agent i who believes that all
the other agents are reporting truthfully. If i’s type is θi and he chooses to
report that his type is θ0i, then define his Expected Interim Valuation as,

vi(θ
0
i, θi) = Eθ−i [vi(k(θ

0
i, θ−i), θi)] ,

his Expected Interim Transfer as,

ti(θ
0
i) = Eθ−i [ti(θ

0
i, θ−i)] ,

his Expected Interim Utility as,

Φi(θ
0
i, θi) = vi(θ

0
i, θi) + ti(θ

0
i) .
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Finally, define his Equilibrium Expected Interim Utility as his interim ex-
pected utility from truth telling, and like in the principal agent model denote
this as,

Ui(θi) ≡ Φi(θi, θi) = vi(θi, θi) + ti(θi) .

Now notice that the mechanism is Bayesian incentive compatible if and
only if,

Φi(θi, θi) ≥ Φi(θ
0
i, θi) for all θ

0
i, θi ∈ Θi , (2.3)

and if we assume appropriate differentiability assumptions on the mecha-
nism’s transfer functions and on the utility functions, then (2.3) is equivalent
to the following first order condition for the agent when he is truth telling,

∂vi(θi, θi)

∂θ0i
+ t

0
i(θi) = 0 a.e. (2.4)

As it turns out, Bayesian incentive compatibility imposes very strong re-
strictions on the mechanism that will result in differentiability of the transfer
functions, and in turn the representation of (2.4), with weaker assumptions
as the following theorem claims:

Theorem 2 If the direct revelation mechanism Γ = (k(·), t1(·), ..., tI(·)) is
Bayesian Incentive Compatible (BIC), and if vi(θ0i, θi) is continuously differ-
entiable in (θ0i, θi) at all points θ

0
i = θi, then for any θ

0
i > θi,

Ui(θi) =

Z θ0i

θi

∂vi(r, r)

∂θi
dr .

Proof. Let θ0i = θi + ε, where ε > 0. BIC implies that,

Ui(θ
0
i) ≥ vi(θi, θ

0
i) + ti(θi),

= Ui(θi) + vi(θi, θ
0
i)− vi(θi, θi) ,

where the equality follows from adding and subtracting vi(θi, θi). This can
be rewritten as,

Ui(θ
0
i)− Ui(θi) ≥ vi(θi, θ

0
i)− vi(θi, θi) . (2.5)

Similarly, BIC implies that,

Ui(θi) ≥ vi(θ
0
i, θi) + ti(θ

0
i),

= Ui(θ
0
i) + vi(θ

0
i, θi)− vi(θ

0
i, θ

0
i) ,
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where the equality follows from adding and subtracting vi(θ
0
i, θ

0
i). This can

be rewritten as,

Ui(θ
0
i)− Ui(θi) ≤ vi(θ

0
i, θ

0
i)− vi(θ

0
i, θi) . (2.6)

After adding and subtracting vi(θi, θi) from the right side of (2.6), then()
and () together imply,

vi(θi + ε)− vi(θi)

ε
−vi(θi + ε, θi)− vi(θi, θi)

ε
≥ Ui(θ

0
i)− Ui(θi)

ε
≥ vi(θi, θi + ε)− vi(θi, θi)

ε
,

where vi(θi) ≡ vi(θi, θi). Taking limits on ε→ 0, we get by the definition of
the total and partial derivatives of vi(θi, θi),

dvi(θi)

dθi
− ∂vi(θi, θi)

∂θ0i
≥ U 0

i(θi) ≥
∂vi(θi, θi)

∂θi
.

but since dvi(θi)
dθi

= ∂vi(θi,θi)
∂θ0i

+ ∂vi(θi,θi)
∂θi

, we have U 0
i(θi) =

∂vi(θi,θi)
∂θi

.
As with the single agent case, this theorem is a consequence of the enve-

lope theorem. That is, since an agent i of type θi chooses θ
0
i to maximize,

max
θ0i∈Θi

Φi(θ
0
i, θi) = vi(θ

0
i, θi) + ti(θ

0
i) ,

then if vi(θ
0
i, θi) and ti(θ

0
i) were differentiable, we would get (2.4), and thus

the envelope theorem implies that

U 0
i(θi) =

∂vi(θi, θi)

∂θi
.

However, the proof above shows that this result holds without assuming
differentiability of the transfer function. This means that BIC itself implies
that the transfer functions must be differentiable, and they must satisfy,

ti(θi) = Ui(θi)− vi(θi)

= Ui(θi) +

Z θi

θi

∂vi(r, r)

∂θi
dr − vi(θi) .

Before stating the equivalence result, we need to define what it means for
two mechanisms to be equivalent:
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Definition 4 Let Γ = (k(·), t1(·), ..., tI(·)) and Γ0 = (k0(·), t01(·), ..., t0I(·)) be
two mechanisms. We say that Γ and Γ0 are equivalent if they implement
the same public choice, k(θ) = k0(θ) for all θ ∈ Θ, and give the same interim
expected utility to every agent, Ui(θi) is the same in both mechanisms for all
i ∈ I, and all θi ∈ Θi.

The following then, is a corollary of the envelope theorem proved above:

Corollary 1 Let Γ = (k(·), t1(·), ..., tI(·)) and Γ0 = (k0(·), t01(·), ..., t0I(·)) be
two BIC mechanisms with k(θ) = k0(θ). If both mechanisms give the same
interim expected utility Ui(θi) for the lowest type of each agent i, then they
are equivalent.

It is easy to see from this corollary that interim expected utilities are
uniquely determined up to a constant by the implications of BIC.

2.4.2 BIC and Groves Equivalence

Recall that any groves mechanism has two features. First, for any profile of
types θ, it implements the efficient public choice, and second, for announce-
ments (θ0i, θ

0
−i) it includes transfers only of the form,

ti(θ
0
i, θ

0
−i) =

X
j 6=i

vj(k(θ
0
i, θ

0
−i), θ

0
j) + hi(θ

0
−i) .

Define the basic groves mechanism as the groves mechanismwith hi(θ0−i) =
0 for all i. It is easy to see that at the interim stage, where types are privately
known, the interim expected utility of any groves mechanism can be replaced
with a basic groves mechanism plus some constant, yielding transfers,

ti(θ
0
i, θ

0
−i) =

X
j 6=i

vj(k(θ
0
i, θ

0
−i), θ

0
j) +mi ,

where mi = Eθ−i [hi(θ−i)] is the expectation of what i gets from hi(·) given
the truthful announcements of the other agents.
Now notice that any Groves mechanism is trivially a BIC mechanism

since dominant strategy incentive compatibility immediately implies BIC.
Since any Groves mechanism is efficient, we immediately have,
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Proposition 3 If a mechanism Γ is BIC and efficient, then it is equivalent
to some Groves mechanism.

This is a very powerful result, and as the discussion above indicates, it is
a direct consequence of the envelope theorem we have proved. It says that if
an efficient public choice can be implemented by some BIC mechanism, then
there is an efficient Groves mechanism that implements the same interim
expected utilities for all agent and all types.
this implies, for example, that if we take an expected externality (AGV)

mechanism that is efficient and ex post balances the budget, then the agents
would be equally happy with some Groves mechanism since there is one that
implements the same public choice outcomes, and the same interim (and
therefore ex ante) expected utilities. The twist is that the groves mechanisms
may not, and generally will not be balanced budget.

• Describe the history: Mookherjee and Reichelstein (1992), Williams
(1999), Krishna and Perry (2000) - and how the result extends to mul-
tidimensional types.

• ????derive Laffont-Maskin result on Groves-Clarke mechanisms (MWG
pp. 881-882)

2.4.3 An Application: Auctions

(to be added)
1. Revenue Equivalence
Revenue-maximizing auctions
2. Efficient and revenue-maximizing auctions can be equivalently done in

dominant strategies - as 2nd-price (Vickrey) auctions

2.5 Participation Constraints

Up until now we forced the agents to play, and got truthful implementation.
In other words, the “center’s” lack of knowledge had no social cost (in BNE
with quasilinear utilities).

Question: What happens if agents can “walk away” to some individual
status quo?
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This will cause further restrictions, so we should anticipate further “im-
plementation” problems. To consider this problem of adding a participation
constraint, we first must define when agents can withdraw from the mech-
anism, and what they can get. Let ui(θi) be the utility of agent i when he
withdraws from the mechanism.

Definition 5 The direct revelation mechanism Γ = (Θi, ...,ΘI , f(·)) is:

1. ex-post Individually Rational if it satisfies the ex-post participation
constraint: for all i,

ui(f(θi, θ−i), θi) ≥ ui(θi) for all (θi, θ−i) ∈ Θ.

2. Interim Individually Rational if it satisfies the interim participa-
tion constraint: for all i,

Ui(θi|f) ≡ Eθ−i [ui(f(θi, θ−i), θi)|θi] ≥ ui(θi) for all θi ∈ Θi .

3. ex-ante Individually Rational if it satisfies the ex-ante participation
constraint: for all i,

Ui(f) ≡ Eθi [Ui(θi|f)] ≥ Eθi [ui(θi)] .

First, with the ex-post participation constraint the agent can withdraw
after the announcement of the outcome by the central planner. This is the
hardest case to satisfy. Second, with the Interim participation constraint
the agent can withdraw after learning θi , but before participating in the
mechanism. That is, once the agent decides to participate then the outcome
can be imposed on him. This case is easier to satisfy. Finally, with the ex-
ante participation constraint the agent can commit to “playing” even before
his type is realized, and he can be bound to his commitment. This is the
easiest case to satisfy.
Will focus on INTERIM - explain.
As it turns out, when agents can voluntarily choose not to participate

in the mechanism, then the consequence of asymmetric information will be
loss in efficiency. Thus, voluntary participation can be described as putting
additional constraints on the mechanism designer, and these constraints will
have an influence on the mechanism’s desirable properties.
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2.5.1 Inefficient Trade: TheMyerson-Satterthwaite The-
orem

One of the most important results that follow from the imposition of partic-
ipation constraints is known as the Myerson-Satterthwaite theorem.
Consider a simple bilateral trade setting in which a seller owns a good that

he values at θs ∈ [θs, θs] and only he knows his value. There is a potential
buyer who values the good at θb ∈ [θb, θb] and similarly, only she knows her
value.
Efficient trade would entail that the buyer gets the good whenever θb >

θs, but private information will make this non-trivial, and thus we assume
that first, θs < θb, implying that trade is sometimes desirable, and that
[θb, θb] ∩ [θs, θs] 6= ∅, implying that trade is not always desirable. Thus,
for a mechanism to be efficient, it will have to elicit truthful revelation of
valuations. We will simplify here and assume that [θb, θb] = [θs, θs], though
the results hold in much more general settings (See Williams (1999) for the
generalized version of the proof below, which is based on Williams’s paper.)
An outcome of a direct revelation mechanismwill then be x = (k(θ), ts(θ), tb(θ))

where k = 1 is “trade”, k = 0 is “no trade”, and ti is the transfer received by
i. This mechanism will result in utilities for the seller and buyer as follows,

us(x, θs) = −kθs + ts ,

ub(x, θb) = kθb + tb .

A mechanism will be ex post efficient if it satisfies the following two
conditions,

(FB) The trade decision is first-best efficient:

k(θ) = 1⇐⇒ θb ≥ θs

(BB) The transfers are ex post budget balanced:

ts(θ) + tb(θ) = 0 for all θ ∈ [θb, θb]× [θs, θs]

Before we proceed to describe the main result, it is useful to revisit some
of the definitions we have provided above.
First, we introduce a weaker form of a budget balanced mechanism. We

say that a mechanism is ex ante budget balanced (EABB) if,
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(EABB) Eθ[ts(θ) + tb(θ)] ≤ 0,

which implies that the transfers can be financed by the two traders, and
surpluses that leave the relationship are allowed. Note that (BB) implies
(EABB), a relationship that we will use below.
Second, we revisit some notation from the previous section. Letting Ui(θi)

denote the interim expected utility of type θi, we know that,

Ui(θi) = vi(θi) + ti(θi) .

In this set-up, vs(k, θs) = −kθs, and vb(k, θb) = kθb. We can now rewrite
(EEAB) as,

(EABB) Eθ [[Ub(θb) + Us(θs)]− [vb(k(θb, θs), θb) + vs(k(θb, θs), θs)]] ≤ 0,

Finally, since we have normalize the “no trade - no transfers” decision
to yield utilities of zero for each agent, and since we will focus on interim
participation, we know that a mechanism will be interim individually rational
if and only if it satisfies,

(IIR) Ui(θi) ≥ 0 for all θi ∈ Θi, i ∈ {b, s}.

Theorem 3 (Myerson-Satterthwaite) In the bilateral trade setting there is
no BIC mechanism that satisfies (FB), (BB), and (IIR). That is, there is no
ex post efficient mechanism that satisfies interim participation.

Proof. Assume in negation that such a mechanism exists, which implies
that some Groves mechanism that satisfies (FB) exists that is equivalent to
it, and we call it the equivalent Groves mechanism. Consider first the “basic
Groves mechanism” we have defined in the previous section, which in this
set-up is ti(θ) = vj(k(θ), θj). The basic groves mechanism is then:

(k(θ), tBGs (θ), tBGb (θ)) =
(1, θb,−θs) if θb ≥ θs
(0, 0, 0) if θb < θs

.

The equivalent Groves mechanism can be given by

(k(θ), ts(θ), tb(θ)) = (k(θ), t
BG
s (θ)−ms, t

BG
b (θ)−mb),
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where ms and mb are the utility shifting constants. The ex ante expected
utilities of the buyer and the seller from participating in this mechanism are,

Eθb [Ub(θb)] = Eθ [vb(k(θb, θs), θb) + vs(k(θb, θs), θs)−mb] ,

= GT −mb ,

and,

Eθs [Us(θs)] = Eθ [vs(k(θb, θs), θs) + vb(k(θb, θs), θb)−ms] ,

= GT −ms ,

where GT denotes the expected gains from trade since these are realized only
upon trade. (BB) implies (EABB), which in turn implies that

Eθ [Ub(θb) + Us(θs)− (vb(k(θb, θs), θb) + vs(k(θb, θs), θs))] ≤ 0,

or,
GT −mb +GT −ms −GT ≤ 0

⇐⇒ GT ≤ mb +ms ,

and since by assumption GT > 0 it must be that mb +ms > 0. For (IIR) to
hold it must be that both types θs and θb are willing to participate. But for
these two types we have

vb(k(θb, θs), θb) + vs(k(θb, θs), θs) = 0 ∀θs
and

vs(k(θb, θs), θs) + vb(k(θb, θs), θb) = 0 ∀θb ,
which implies that for Ub(θb) ≥ 0 we must have mb ≤ 0, and for Us(θs) ≥ 0
we must have ms ≤ 0, contradicting that mb +ms > 0.
The interpretation of this theorem can be viewed through the celebrated

Coase theorem. Here, we have a violation of perfect information, and if we
interpret a mechanism as the most general form of unrestricted bargaining,
we see how the Coase theorem fails in the face of asymmetric information.

2.6 Mechanism Design: Summary and Com-
ments

I. Revelation Principle: makes life easy.
II. Dominant Strategies:
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• Universal Domain⇒ impossibility result (Gibbard-Satterthwaite The-
orem)

• Quasilinear preferences ⇒ get ex-post optimal choice implemented in
dominant strategies. BUT may need to burn money! (VCG mecha-
nisms)

III. BNE implementation:

• AGV-Arrow ⇒ get ex-post optimality including Balanced Budget in
BNE.

• Participation Constraints ⇒ adding interim IR causes impossibility of
ex-post efficient BIC mechanisms (Myerson-Satterthwaite Theorem).

Notes:

1. We only considered deterministic mechanisms. See discussion at the
end of Fudenberg-Tirole (ch. 7) for some points on randomized mecha-
nisms (doesn’t matter for the linear model because of risk neutrality).

2. Risk aversion: Makes things much more complicated, same flavor re-
mains, and for some cases the same type of analysis goes through with
“harder” math. (Maskin-Riley, Matthews - see Fudenberg-Tirole)

2.7 Appendix: the Linear Model

Here consider quasilinear model with many agents and social choice functions
of the form f(θ) = (k(θ), t1(θ), ..., tI(θ)), but now we take vi(·) to be of a
particular form:

vi(k, θi) = θivi(k) ,

which in turn implies that,

ui(x, θi) = θivi(k) + ti .

We assume that the type space is compact, θi ∈ Θi = [θi, θi] ⊂ <, θi < θi .
We also assume that types are distributed independently with full support,
that is, θi ∼ φi(·) and φi(θi) > 0 for all θi ∈ Θi .We will look for necessary
and sufficient conditions for f(·) to be Bayesian Incentive Compatible (BIC).
We first introduce some helpful notation:
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• ti(θ̂i) = Eθ−i [ti(θ̂i, θ−i)]; This is i’s expected transfer (including the h(·)
component).

• vi(θ̂i) = Eθ−i [vi(k(θ̂i, θ−i))]; This is i’s expected “benefit.” So, when i

is type θi and he announces θ̂i, his expected utility is:

θivi(θ̂i) + ti(θ̂i).

• Define Ui(θi) as i’s expected utility when he is type θi and he tells the
truth,

Ui(θi) = θivi(θi) + ti(θi) .

Proposition 4 The SCF f(·) is Bayesian Incentive Compatible if and only
if for all i ∈ I,

(I) vi(θ̂i) is non-decreasing in θ̂i , and,

(II) Ui(θi) = Ui(θi) +
θiR
θi

vi(s)ds for all θi ∈ Θi .

proof: ⇒ : Let θ0i > θi. If f(·) is BIC then a type θ0i should not want to lie,
in particular should not choose θi :

Ui(θ
0
i) ≥ θ0ivi(θi) + ti(θi)

= Ui(θi) + vi(θi)(θ
0
i − θi)

⇒ vi(θi) ≤
Ui(θ

0
i)− Ui(θi)

θ0i − θi
(2.7)

Also, type θi should not want to announce θ
0

i:

Ui(θi) ≥ θivi(θ
0
i) + ti(θ

0
i)

= Ui(θ
0
i)− vi(θ

0
i)(θ

0
i − θi)

⇒ vi(θ
0
i) ≥

Ui(θ
0
i)− Ui(θi)

θ0i − θi
(2.8)

Both (2.7) and (??) together imply that vi(θ0i) ≥ vi(θi), which is con-
dition (I) of the proposition. This formulation also allows us to write:

U 0
i(θi) = lim

θ0i→θi

Ui(θ
0
i)− Ui(θi)

θ0i − θi
= vi(θi) ((ET))
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⇒ Ui(θi) = Ui(θi) +

θiZ
θi

vi(s)ds for all θi ∈ Θi

⇐: Consider any pair θ0i 6= θi.We will show that if (I) and (II) are satisfied
then neither type will choose to announce the other. Without loss of
generality let θ0i > θi. We have,

Ui(θ
0
i)− Ui(θi) =

θ0iZ
θi

vi(s)ds ≥
θ0iZ

θi

vi(θi)ds = (θ
0
i − θi)vi(θi) ,

where the first equality follows from (II) and the inequality follows from
(I) since θi < s for all s ∈ (θi, θ0i] . But this can be rewritten as,

Ui(θ
0
i) ≥ Ui(θi) + vi(θi)(θ

0
i − θi) .

But this is just inequality (2.7) in the first part of the proof, which im-
plies that θ0i won’t imitate θi. Similarly we get inequality (??). Q.E.D.

Note that the result in equation (ET) that we obtained in the proof is
just the envelope theorem: Assume that all functions are differentiable. We
therefore have,

U(θi) = θivi(θi) + ti(θi) ,

⇒ U 0(θi) = vi(θi) + θi
dvi(θi)

dθi
+

dti(θi)

dθi
. (2.9)

Then, since the agent maximizes θivi(θ̂i) + ti(θ̂i) over θ̂i ∈ Θi , and we know
that truth telling implies that this is maximized at θ̂i = θi , then the following
is no other than the first-order necessary condition,

θi
dvi(θi)

dθi
+

dti(θi)

dθi
= 0 ,

which in turn implies that (2.9) reduces to U 0(θi) = vi(θi) . (This characteri-
zation of the problem is just like Mirrlees (1971) for the single agent case.)
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2.7.1 The Myerson-Satterthwaite Theorem

Consider a Seller (S) and Buyer (B) of an indivisible good. Each agent’s
(linear) valuation is θi ∈ Θi = [θi, θi] ⊂ <, where θi ∼ φi(·) are independent,
and φi(·) > 0 for all θi ∈ Θi. Finally, let θi < θi so that we are not in a
degenerate case. Let f(θ) = (y1(θ), y2(θ), t1(θ), t2(θ)) be a “trading rule”
(this is our SCF for this setting) where yi(θ) denotes the probability that
agent i gets the good, and ti(θ) is his transfer. Therefore, given θ, i’s expected
utility is θiyi(θ) + ti(θ). Now define:

y(θB, θS) =

⎧⎨⎩ 1 if θB > θS
1
2
if θB = θS

1 if θB < θS

It is easy to see that for any ex-post efficient trading rule we must have:
yB(θ) = y(θ), yS(θ) = 1− y(θ) and tS(θ) = −tB(θ).
We know from AGV that we can implement an ex-post efficient trading

rule in BNE. However, if we add Interim IR we get the following negative
result:

Proposition 5 (The Myerson-Satterthwaite Theorem) In the bilateral trade
setting above with ΘB ∩ ΘS 6= φ (there are expected gains from trade) there
is no BIC trading rule that is ex-post efficient and satisfies interim IR.

Proof: For the general proof where [θB, θB]∩ [θS, θS] 6= φ, see MWG p. 895.
Here take [θi.θi] = [0, 1], for both i ∈ {B,S}. From the Linear-Model
analysis we have:

Ui(θi) = Ui(θi) +

θiZ
0

vi(τ)dτ
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for this case, vi(k(θ)) = yi(θ), so we use yi(θ) instead of vi(θ)

yB(θB) =

1Z
0

y(θB, θS)φS(θS)| {z }
=1

dθS =

θBZ
0

1 · dθS +
1Z

θB

0 · dθS = θB

yS(θS) =

1Z
0

[1− y(θB, θS)]φB(φB)| {z }
=1

dθB

=

1Z
0

dθB −
θSZ
0

0 · dθB −
1Z

θS

1 · dθS = ·θS

We can now compute the expected ex-ante surplus for each agent. First,
given the buyer’s type, his expected utility is,

UB(θB) = UB(0) +

θBZ
0

τdτ = UB(0) +
θ2B
2
,

which implies that his expected ex-ante utility is,

EθB [UB(θB)] = UB(0) +

1Z
0

θ2B
2
φ(θB)dθB

= UB(0) +

∙
θ3B
6

¯̄̄̄1
0

= UB(0) +
1

6
.

Similarly (same y(·) function): EθS [US(θS)] = US(0) +
1
6
. So, total

ex-ante expected surplus from the mechanism that satisfies ex-post
efficiency, BIC and Interim IR must be,

E[TS] = UB(0)| {z }
>0

+ US(0)| {z }
>0

+
2

6
≥ 2
6
.

Now we can compute the expected gains from trade. Gains from trade
are realized (through trade) when θB > θS, and are equal to θB − θS.
If θB < θS no trade should happen and there are no gains from trade.
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Thus, expected gains from trade are,

E[GT ] =

1Z
0

1Z
0

(θB − θS) · y(θB, θS)dθSdθB =

=

1Z
0

θBZ
0

(θB − θS)dθSdθB =

1Z
0

⎡⎣ θBZ
0

θBdθS −
θBZ
0

θSdθS

⎤⎦ dθB
=

1Z
0

[θ2B −
θ2B
2
]dθS =

∙
θ3B
6

¯̄̄̄1
0

=
1

6

Thus, for the BIC mechanism to be ex-post efficient and satisfy interim
IR, we need to supply more expected surplus than we possibly have -
a contradiction. Q.E.D.

Intuition: To satisfy IC we may need to make some types worse off at
the interim stage. If we cannot do that, then to satisfy both IC and IR we
need more surplus than the efficient trading rule could produce.

• Cramton-Gibbons-Klemperer : use countervailing incentives

2.7.2 Provision of Public Goods

Add this???????
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Dynamic Contracts

3.1 The Problem of Commitment

Use Fudenberg-Tirole 7.6.4 and Salanie - dynamic mechanism can be replaced
with a static lottery - same in each period.
Consider again the two type linear utility model with:

u(x, t, θ) = θx− t,

where θ ∈ {θH , θL}, θH > θL, andPr{θ = θH} = μ. Let c(x) be the cost
of producing x, with c0 > 0 and c00 > 0. We know that ICH and IRL will
bind (and the other two constraints are redundant) so that the principal
maximizes,⎧⎪⎨⎪⎩

max
(tH ,xH)(tL,xL)

(1− μ)[tL − c(xL)] + μ[tH − c(xH)]

s.t. tL = θLxL (IRL)
tH = θLxL + θH(xH − xL) (ICHL)

and the solution is solved using the FOC’s as before:

c0(xH) = θH ,

c0(xSBL ) = θL −
μ

1− μ
(θH − θL) < θL .

These equations solve for the x’s, and we have xSBH = xFBH and xSBL < xFBL ,
and the transfers are given by,

tL = θLx
SB
L

tH = θHx
SB
H − xSBL (θH − θL)| {z }

information rents

70
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We now ask ourselves what happens if this buyer-seller relationship is
repeated twice? (or more...)

• Setup:

1. Relationship is repeated twice.

2. Buyer’s type is determined before the first period and does not
change over time.

3. What kind of contracts can the seller offer, and commit to? This
is a very important point that will later change the results of the
model. We begin by assuming that the seller can commit to a con-
tract ex-ante. That is, he can offer a menu {(tHτ , xHτ), (tLτ , xLτ )}2τ=1
where τ denotes the period. This menu is offered in advance, be-
fore transactions begin, and is “written in stone.”

4. Let δ > 0 be the discount factor between periods. In subsequent
parts of this section we will assume a rather uncommon assump-
tion on the values of δ, and distinguish between two cases: (1)
δ < 1 (which is the standard case in economics,) and (2) δ > 1
which is very unusual, but tries to capture the following idea:
The second period is more valuable, for example, it is “longer” in
terms of enjoying the good. (but θ is not changed!). This, in a
rough way, represents a model with more than one period, where
the contract distinguishes between the first period and all other
periods.

Under the above setup, we can use the Revelation Principle. This
follows from the fact that the principal can commit to the menu of contracts,
and this menu (which is a mechanism) is defined before players reveal their
types. Thus, the principal’s problem in the 2-period model is:

max
{(tLτ ,xLτ ),

(tHτ ,xHτ )}2τ=1

(1− μ)[tL1 + δtL2 − c(xL1)− δc(xL2)]
+μ[tH1 + δtH2 − c(xH1)− δc(xH2)]

s.t. θH(xH1 + δxH2)− tH1 − δtH2 ≥ 0 (IRH)
θL(xL1 + δxL2)− tL1 − δtL2 ≥ 0 (IRL)
θH(xH1 + δxH2)− tH1 − δtH2 ≥ θH(xL1 + δxL2)− tL1 − δtL2 (ICHL)
θL(xL1 + δxL2)− tL1 − δtL2 ≥ θL(xH1 + δxH2)− tH1 − δtH2 (ICLH)
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If we define,

x̃i = xi1 + δxi2 ,

t̃i = ti1 + δti2 ,

then the constraints of the two period problem reduce to those of a standard
static one-period problem. This implies that we get the same form of IR and
IC as before, in which case we know that only (IRL) and (ICHL) are relevant,
and will bind at a solution.
Constraint (IRL) binding yields,

tL1 + δtL2 = θL(xL1 + δxL2), (3.1)

and substituting this into (ICHL) yields,

tH1 + δtH2 = θH(xH1 + δxH2)− (xL1 + δxL2)(θH − θL) (3.2)

We now can substitute (3.1) and (3.2) into the objective function to solve for
(xSBH1 , x

SB
H2 , x

SB
L1 , x

SB
L2 ). The FOCs with respect to xH1 and xH2:

∂

∂xH1
= μ[θH − c0(xSBH1)] = 0

∂

∂xH2
= μ[δθH − δc0(xSBH2)} = 0

which together imply that

xSBH1 = xSBH2 = xSBH = xFBH .

Similarly, the FOCs with respect to xL1 and xL2 are,

∂
∂xL1

= (1− μ)[θL − c0(xSBL1 )− μ(θH − θL) = 0

⇔ c0(xSBL1 ) = θL − μ
1−μ(θH − θL) ,

∂
∂xL2

= (1− μ)[δθL − δc0(xSBL2 )]− μδ(θH − θL) = 0

⇔ c0(xSBL1 ) = θL − μ
1−μ(θH − θL) ,

which together imply that,

xSBL1 = xSBL2 = xSBL < xFBL .
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Note: This analysis implies that tiτ = ti, i ∈ {θH , θL}. That is, transfers are
the same as in the one-period model too.

We see that if the principal can commit ex ante to long-term contracts
then we get the second-best solution for the static model replicated in each
of the two periods. It is easy to see that this analysis extends to more than
two periods and we can conclude that in the case of commitment we could
use the Revelation Principle for any number of periods. In a T period model
with commitment we will get,

xSBiτ = xSBi ∀i ∈ {θL, θH}, for all τ = 1, ..., T.

If, however, the principal cannot commit to stick to the contract, then
we can expect the outcomes to vary. The focus of this section is to see what
are the consequences of lack of commitment on behalf of the principle, and
how this affects payoffs and welfare. In particular, two problems arise from
the lack of long-term commitment as follows:

Problem 1: What happens when the principal cannot commit to the trans-
fers above? (That is, transfers as functions of quantities, using the
taxation principle.) In other words, what happens if at τ = 2 the
principal can ignore the original contract?

Consider a high type who chooses (tSBH1 , x
FB
H ) at τ = 1, which is illustrated

by point A in figure XX below. (recall that the high type receives the FB
quantity in both periods.)

Figure Here

In this case, the principal knows that the buyer is θH , and in τ = 2 he can
extract all the surplus by reneging on (xFBH , tSBH2) (also point A) and offering
(xFBH , t̂H) instead (point B). Similarly, after a low type reveals himself by
choosing (xSBL1 , t

SB
L1 ) (point C), the principal can extract more surplus by

reneging on (xSBL2 , t
SB
L2 ) (also point C) and offering (x

FB
L , t̂L) instead (point

D). Since the nature of the game is common knowledge, the θH buyer will
anticipate this, choose (xSBL1 , t

SB
L1 ) which does not change his rents in the first

period (recall that (ICHL) binds), and then he will be offered a θL contract
(point D) which gives him further additional rents compared to the first
period outcome (since xFBL > xSBL1 ).
This problem is called the Rachet Effect. The informal idea was around

for quite some time: If a person reveals himself to value something very much,
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then in subsequent transactions he will be charged more for the same good,
assuming some monopoly is supplying the good. (An even better example is
in centrally planned economies, in which “target” incentives were “ratcheted
up” with dynamics. This can also apply to demands from civil servants, and
other such relationships.) The formal analysis was offered by Frexais et al
(1985), and Laffont and Tirole (1988).

Problem 2: What happens if the principal can commit not to change con-
tracts in τ = 2 unilaterally, but cannot commit not to renegotiate the
contract?

To see what happens we can look back at the Figure XX above. The
principal cannot change the high-type’s point from A to B, and the high-
type is served efficiently after revealing himself (as he was before). As for the
low-type, after revealing himself he is supposed to still be served inefficiently
in the second period (since xFBL > xSBL1 ). The principal can then offer him
the point D instead of point C and the low-type will accept. (In fact, the
low-type buyer will be indifferent between the new and old contract since
both lie on his zero-utility indifference curve. If we want the low-type buyer
to strictly prefer the change, the principal can offer ε less in the transfer.)
This point D gives the high type more rents than his (efficient) point A.
Thus, the high-type will anticipate this, claim to be a low-type, get the same
rents in τ = 1 (since (ICHL) binds) and higher rents in τ = 2. This is the
problem of renegotiation. (First introduced by Dewatripont (1988, 1989)).
Following the two problems described above, we will focus attention on

three cases of commitment power:

1. Full Commitment: The Revelation Principle works, since the prin-
cipal can commit to any contract ex-ante. In this case we get a simple
replication of the static model.

2. Long Term Renegotiable Contracts: The Revelation Principle
breaks down. The principal can commit not to make the agents worse
off (the long term contract binds the principal against unilateral devi-
ations). But after information is revealed, the principal can offer a new
contract which may ex-post benefit both parties. That is, a contract
that maximizes the extraction of surplus using ex-post inefficiencies is
not credible if it reveals these inefficiencies.
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3. No commitment: The Revelation Principle breaks down. The princi-
pal can change contracts unilaterally, which implies that after informa-
tion is revealed, the principal can offer a new contract which extracts
all the rents from the buyer. That is, if information is revealed, then a
contract that gives buyers some ex-post rents is not credible.

Note: Salanie mentions a fourth type of Short-Term commitment that
we won’t discuss.

How can we think about the inability to commit? Basically, this limits
the sets of contracts that the principal can offer ex-ante. With commit-
ment, the principal can choose any contract that is incentive compatible and
individually rational, even if it implies future inefficiencies or rents to the
different types of agents. In particular, if there is a contract that the princi-
pal can implement without some commitment power, then he can implement
the same contract with full commitment power. This implies that more con-
tracts can be implemented with commitment, which in turn implies that lack
of commitment can be viewed as a constraint on the set of contracts that the
principal can implement.
Thus, we can expect the inability to commit to impose ex-ante costs on

the principal, and reduce his ex-ante (expected) profits. It seems intuitive
that a complete lack of commitment is a stronger restriction on the set of
credible contracts relative to the inability to commit not to renegotiate. This
is in fact true, and hurts the principal more.

Question: How “fast” will high types reveal themselves truthfully?

That is, since the revelation of hidden information is at the heart of
commitment problems, will the principal choose to maximize the information
revelation at the beginning of the relationship? The formal analysis is fairly
complicated since we need to resort to Perfect-Bayesian Equilibrium (PBE)
with possibly different types of agents using mixed strategies.

3.2 A Simple Model of Information Revela-
tion

Consider a situation in which a monopolist can produce one unit of a good
in each period at zero cost. As in the previous subsection, assume that
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u(x, t, θ) = θx− t, where x is defined as the probability of having the good,
θ ∈ {θL, θH}, and μ = Pr{θ = θH}.
When considering the static model, this is a particular version of what

we had earlier. The constraints (ICHL) and (IRL) bind, which together yield
(we use (IRL) binding to rewrite (ICHL)),

tL = θLxL (IRL)
tH = θHxH − xL(θH − θL) (ICHL)

The monopolist therefore solves,

max
{(tL,xL),(tH ,xH)}

μtH + (1− μ)tL

tL = θLxL (IRL)
tH = θHxH − xL(θH − θL) (ICHL)

and substituting the binding constraints into the objective yields,

max
xL,xH

μθHxH + (θL − μθH)xL

Solving this trivially yields,

xH =

½
1 if μθH > 0
0 if μθH < 0

xL =

(
1 if μ < θL

θH

0 if μ > θL
θH

This is the typical “Bang-Bang” solution of a linear model with a fixed quan-
tity. Since μθH > 0 we must have that xH = 1.1 As for determining xL, we
have two cases:

1. μ > θL
θH
. In this case there are “enough” high types (high probability of

high type), so it is optimal to charge only a high price and only sell to
the high types (make a sale with probability μ).

2. μ < θL
θH
. In this case there are “too few” high types (low probability of

high type), so it is better selling to both types (sell with probability 1)
at a low price.

1Otherwise, either μ = 0, which means there is no uncertainty, or θH = 0, which again
is not “interesting” since θH > θL cannot be satisfied with positive valuations.



CHAPTER 3. DYNAMIC CONTRACTS 77

Using the Taxation Principle and assuming that in a static model type
θi rationally buys if and only if t 6 θi, the monopolist sets,

t∗(μ) =

(
θH if μ > θL

θH

θL if μ < θL
θH

(3.3)

3.2.1 Two Periods: Commitment With δ > 0

The monopolist’s objective function is,

max μ(tH1 + δtH2) + (1− μ)(tL1 + δtL2)

and the constraints are,

θi(xi1 + δxi2)− (ti1 + δti2) ≥ 0, i ∈ {θH , θL}
θi(xi1 + δxi2)− (ti1 + δti2) ≥ θi(xji + δxj2)− (tji + δtj2), i 6= j.

where the first represents the two IR constraints and the second the two
IC constraints. As before, redefine

x̃j ≡ xj1 + δxj2 ∈ [0, 1 + δ] ,

t̃j ≡ tj1 + δtj2 ,

and we are back to the same problem with the solution,

x̃H = 1 + δ ;

x̃L =

(
1 + δ if μ < θL

θH

0 if μ > θL
θH

where x̃j = 1 + δ is equivalent to xj1 = xj2 = 1. This implies that charging
a price of t∗(μ) (as defined in (3.3) above) in each period will be optimal.
From now we only consider μ > θL

θH
, since this is the “interesting” case,

(When μ < θL
θH
both types are served and no information is revealed in the

optimal commitment contract.) From the analysis above, if the principal can
commit then the optimal contract calls for the high type to reveal himself
immediately, and all the surplus is extracted from him in both periods.

Question: What happens if the principal cannot commit to the original
contract?
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There are clearly two cases:

1. If at τ = 1 the agent buys at t = θH , then he must be a high type so
that t2 = θH is optimal in the second period, and the high-type gets
no rents in either period.

2. If at τ = 1 the agent doesn’t buy, then he must be a low type, so the
principal is tempted to charge t2 = θL > 0, thus changing the contract.
Anticipating this, the high type prefers not to buy in period τ = 1,
and he will get positive rents equal to δ(θH − θL) in the second period
(from buying at a price θL.)

Question: Is this ratcheting or renegotiation failure?

It turns out that in this simple 2-period model we cannot distinguish
between them if δ < 1 (though, it looks more like a renegotiation problem).
To distinguish between the two cases we will use a trick of having δ < 1

and δ > 1. When δ > 1 there is a difference between Short-Term (ST)
contracts (no-commitment), and Long-Term (LT) renegotiable contracts.

3.2.2 The Case of No Commitment (ST contracts):

We solve the problem by looking for the principal’s preferred PBE in this
dynamic game of incomplete information. The game has two stages:

• At τ = 1 the principal offers t1, then the buyer chooses x1 ∈ [0, 1].

• Following the buyer’s choice, let μ2(x1, t1) ≡ Pr{θ = θH |x1, t1} denote
the posterior equilibrium belief of the principal that the agent is a high
type after x1 was chosen following an offer of t1. From the previous
analysis of the static model we can use backward induction and con-
clude that,

t2(x1, t1) =

⎧⎨⎩
θH if μ2(x1, t1) >

θL
θH

θL if μ2(x1, t1) <
θL
θH

To save on notation we will slightly abuse notation and use μ2(x1) and
t2(x1) since the principle always knows t1.
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Option 1: No Revelation of Information in Period 1.

In this case we have both types of buyers choosing the same action in the first
period, implying that in any such equilibrium, μ2(x1, t1) = μ. Observe that
once we restrict attention to equilibria with no revelation of information, it
can easily be established that we cannot have a PBE in which both types
do not buy at τ = 1. This follows because if the equilibrium path requires
both types not to buy at τ = 1, then μ2(x1 = 0, t1) = μ, in which case
t2 = θH , profits are achieved only in the second period, and ex ante expected
profits are μδθH . Also, in this situation sequential rationality implies that the
high type would be willing to buy in the first period at any price below θH .
(This follows since not buying will cause t2 = θH , whereas buying will cause
t2 6 θH , depending on beliefs.) But then, this strategy of the high type
implies that the principal is better off charging t1 = θH − ε, that will cause
the high type to buy in the first period (anticipating t2 = θH), and then the
principal’s profits are μ[(θH−ε)+δθH ]. Thus, we cannot have an equilibrium
in which both types do not buy in the first period.
Clearly, in any equilibrium that has both types buying in the first period,

we must have t1 ≤ θL . Thus, if this can be achieved as an equilibrium, the
following sequence of events must be true:

• Principal charges t1 = θL,and,

t2(x1) =

⎧⎨⎩
θH if μ2(x1) >

θL
θH

θL if μ2(x1) <
θL
θH

• Both types buys in period 1

• High type buys in period 2 if and only if t2 ≤ θH

Such an outcome would cause the principal’s expected profits to be,

π0 = θL + δμθH .

Thus, if this could be supported as a PBE, the low type buyer buys only
in the first period, and a high type buyer buys in both periods. There is
no revelation of information since both types pool their actions in the first
period.2

2For the example at hand this cannot be a PBE, and the next section will show why.
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Option 2: Full Revelation of Information in Period 1.

We saw that in the commitment case we get full revelation of information in
period 1. If we have full revelation then by Bayes rule we must have that
μ2(x1 = 0) = 0 and μ2(x1 = 1) = 1 since xH1 = 1 and xL1 = 0. This implies
that t2(x1 = 1) = θH , t2(x1 = 0) = θL. Then, we must have t1 < θH so
that the high type will have some rents and be willing to reveal himself. In
particular, the first period (ICH) will be,

θH − t1| {z }
buy at τ=1

+ δ(θH − θH)| {z }
no rents at τ=2

≥ 0|{z}
don’t buy at τ=1

+ δ(θH − θL)| {z }
rents at τ=2

,

or,
t1 ≤ (1− δ)θH + δθL (3.4)

If δ ∈ (0, 1) then(3.4) implies that t1 ∈ (θL, θH), while if δ > 1 then t1 < θL.
But then, low types will choose to buy in the first period and get (θL−t1) > 0
rather than not buy and get 0 in both periods. (Often called the “Take the
money and run” phenomenon.) Therefore, we cannot get full revelation of
information in the first period if δ > 1. The intuition in the model is simple.
When the future is more important, we need to give huge rents in period 1
for the high type to reveal himself, and these benefits actually make the low
type want to purchase, violating the separating incentives.
If δ < 1, we need to satisfy ICL in the first period τ = 1 :

0|{z}
don’t buy in τ=1

+ δ(θL − θL)| {z }
no rents

≥ θL − t1| {z }
buy at τ=1

+ 0|{z}
don’t buy at τ=2

(3.5)

or,
t1 ≥ θL .

Thus, for δ < 1 there is a continuum of t1 that satisfy both IC constraints
(3.4) and (3.5), but clearly the principal will set the highest t1 which is
calculated from (3.4) holding with equality:

t1 = (1− δ)θH + δθL ,

we will get full revelation, and profits are:

πF = μ[(1− δ)θH + δθL + δθH ] + (1− μ)δθL

= μθH + δθL
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Comparing this with the profits from no revelation we have,

πF − π0 = μθH + δθL − θL − δμθH

= (μθH − θL)(1− δ)

> 0

Therefore, if δ < 1 then full revelation can be supported as a PBE and it is
better than no revelation of information.3 Thus, even if no revelation could
be supported as a PBE, it would not be the principal’s preferred PBE.

Option 3: Partial Revelation of Information in Period 1.

In this scenario some type of agent will play a mixed strategy in period 1,
and this will prevent the principal from “learning” the true type of the agent
after the first period choice of purchase. There are three cases here:
Case 3.1: One type always buys at τ = 1, and the other type buys at

t = 1 with some positive probability ρ. In this case we must have t1 6 θL
(for both types to be willing to buy), and t2(x1) 6 θH regardless of x1. But
then, no revelation will strictly dominate this case (from the principal’s point
of view) for all ρ < 1, and full revelation will also dominate this case. Thus,
this type of partial revelation can never be the preferred equilibrium for the
principal.
Case 3.2: High types never buy at τ = 1, Low types buy at τ = 1 with

some positive probability. This implies that μ2(x1 = 1) = 0, and μ2(x1 =
0) > θL

θH
, which in turn implies that t2(x1 = 1) = θL, and t2(x1 = 0) = θH .

However, this situation will violate IC for the High types because in order
to get the Low types to buy at τ = 1 we need t1 ≤ θL, so that High-types
will get positive rents in each period from imitating Low-types. So, case 3.1
is ruled out as an equilibrium.
Case 3.3: Low types never buy at τ = 1, High types buy with positive

probability. This implies that μ2(x1 = 1) = 1, μ2(x1 = 0) ≥ θL
θH
, t1 =

θH , t2(x1 = 0) = t2(x1 = 1) = θH . In this case High types use a mixed

3The PBE is described as follows: The strategies in the first period for the low and
high types are given by the IC constraints. Namely, for the high type x1(t1) = 1 if and
only if t1 ≤ (1− δ)θH + δθL, and x1 = 0 otherwise, and for the low type x1(t1) = 1 if and
only if t1 ≤ θL, and x1 = 0 otherwise. The beliefs are well defined for any history. This
makes the principal act optimally in the second period, and choose t1 = (1− δ)θH + δθL
in the first.
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strategy in the first period: buy with probability ρ > 0, and don’t buy with
probability 1− ρ. Using Bayes rule,

μ2(x1 = 1) = 1,

μ2(x1 = 0) =
(1− ρ)μ

(1− ρ)μ+ (1− μ)

Notice that in equilibrium, we first we need μ2(x1 = 0) ≥ θL
θH
(so that the

principal will be willing to stick to t2 = θH , ) and second, the principal would
like to separate “as many” H-types as possible (i.e., have highest probability
of separation) in first period since this maximizes profits. Higher separation
in the first period implies lower μ2(x1 = 0), which means that in equilibrium
we must have,

μ2(x1 = 0) =
θL
θH

⇔ (1− ρ)μ

(1− ρ)μ+ (1− μ)
=

θL
θH

⇔ (1− ρ) =
(1− μ)θL
μ(θH − θL)

⇔ ρ =
μθH − θL
μ(θH − θL)

<
μθH − μθL
μ(θH − θL)

= 1

and indeed ρ < 1 is consistent with the case of partial revelation. Now the
principal’s profits are:

πP = μ[ρθH + δθH ]

When is this better than full revelation?

πP ≥ πF
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⇔ μρθH + μδθH ≥ μθH + δθL

⇔ μ(δ + ρ− 1) ≥ δ
θL
θH

⇔ μδ +
(1− μ)θL
θH − θL

≥ δ
θL
θH

⇔ μ(δθH − δθL + θL) ≥ θL

µ
1 + δ − δ

θL
θH

¶
⇔ μ ≥ θL

θH
·
∙
θH + δ(θH − θL)

θL + δ(θH − θL)

¸
| {z }

>1

>
θL
θH

Conclusion for ST contracts (no commitment):

1. If μ < θL
θH
then t1 = t2 = θL is best for principal, and we have no

inefficiencies and no revelation of information.

2. If θL
θH
≤ μ < θL

θH
· θH+δ(θH−θL)
θL+δ(θH−θL) then

t1 = (1− δ)θH + δθL,

t2 =

½
θH If x1 = 1
θL If x1 = 0

.

Furthermore, we get the following features of the equilibrium:

• If the buyer is a high type then he buys in both periods.
• If the buyer is a low type then he buys only in the second period.
Therefore, low types consume inefficiently in τ = 1.

• Full revelation of information in the first period.
• Not Possible for δ > 1!

3. If μ ≥ θL
θH
· θH+δ(θH−θL)
θL+δ(θH−θL) then t1 = t2 = θH . Furthermore, we get the

following features of the equilibrium:

• The high type buys in the first period with probability ρ = μθH−θL
μ(θH−θL) <

1, and buys for sure in the second period. Therefore, high types
consume inefficiently in first period (ρ < 1).

• A low type buyer never buys. Therefore, low types consume inef-
ficiently in both periods.

• We have “slow” revelation of information.
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3.2.3 Long Term Renegotiable Contracts

Now consider the case where the principal can commit to prices t2(x1 = 0)
and t2(x1 = 1), but cannot commit not to renegotiate:

Figure Here

Figure XX depicts the time line of a very simple “renegotiation game.”
We will look for the PBE of this game. A question one can ask is, will we
have renegotiation happening in equilibrium?

Definition 6 A Renegotiation-Proof (RNP) contract is one where there is
no renegotiation in equilibrium.

Turning back to the question of whether we have renegotiation in equilib-
rium, the following result (in the spirit of the revelation principle) is useful:

Proposition 6 (RNP Principle) If a contract is a PBE in which renegotia-
tion occurs in equilibrium, then there exists a RNP contract that implements
the same outcome.

The intuition is simple: We can think of the process of renegotiation as a
game on its own (or a mechanism) where renegotiation is part of the equilib-
rium. Thus, if we think of a contract as a “Grand Mechanism” that includes
a renegotiation mechanism as part of the equilibrium, then we can incorpo-
rate the outcome of the renegotiation mechanism into the grand mechanism.
That is, in equilibrium we anticipate the renegotiation, and replicate it by a
contract that “skips” the renegotiation and implements the anticipated out-
come. The implication is that we can think of the inability to commit not to
renegotiate as a constraint on the set of contracts: That is, contracts must
satisfy IC, IR and RNP.

Example 1 With full commitment above, t1 = t2(x1 = 0) = t2(x1 = 1) =
θH , but since μ2(0) = 0 then the principal will renegotiate to t

0
2 = θL, that

is, this contract is not RNP. However, the contract t1 = θH , t2(x1 = 0) =
t2(x1 = 1) = θL is RNP (and also IC and IR).

First, we wish to investigate what can be implemented using PBE that
are IC, IR and RNP.
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Claim: If a succession of Short-Term contracts is a PBE in the no-commitment
case, then there is a Long Term RNP contract that implements the
same outcome when the principal can commit to Long Term contracts
but cannot commit not to renegotiate.

proof: Trivial: Any succession of Short-Term contracts is a series of (con-
tingent) prices and probabilities of separation. Take such a series, and
specify all contingent prices in advance. Since this will be robust against
the principal’s unilateral deviations, and the principal has all the bar-
gaining power, it must be RNP. Q.E.D.

This claim implies that all of our analysis for the no-commitment case
follows through. That is, for δ < 1, full separation, no separation and partial
separation as given in the analysis of Short-Term contracts, are all Long-Term
RNP contracts where the prices t1, t2(x1) are specified ex ante. (Note that the
probability of separation, ρ, will be part of the equilibrium specification. e.g.,
t1 = θH , t2(1) = t2(0) = θH and ρ as before are a Long-Term RNP contract
with partial revelation of information.) Thus, for δ < 1 the conclusions of
the no-commitment case coincide with those of Long-Term RNP contracts
where the Long-Term contract is properly defined.

Note: For δ < 1 there are no Long-Term RNP contracts that make the
principal better off compared to the Short-Term contracts. This follows
from the fact that when μ > θL

θH
, then for all levels of separation, the

unilateral deviation of the principal that we tried to prevent in Short-
Term contracts is not to lower the price, which is exactly the same type
of deviation we worry about in the case when the principal is unable
to commit not to renegotiate.

We now turn to the case δ > 1. This “trick” is meant to capture a
relationship where the second period is more than one period.

Example 3.2: Assume that when the agent gets the good in the second
period then it lasts for two periods so at τ = 2 he gets θ + δθ, and
looking back at τ = 1 he gets (from consumption at time τ = 2):
δθ + δ2θ. For δ>̃0.62, (δ + δ2) > 1 so redefine δ̂ = (δ + δ2).

1. Of course, if this were the case then the principal can charge more
than θ at τ = 2. This is just an interpretation and not the true
way to capture a 3-period model.
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2. If we solved a 3-period model we would exactly see the differ-
ence between no-commitment Short-Term contracts and Long-
Term RNP contracts, but that would be at the cost of a long
and time consuming analysis.

Recall that for δ > 1 we could not have full revelation without commit-
ment since the principal could not commit to t2(x1 = 1) < θH . Note, how-
ever, that now she can commit to a “low” price in the second period, so we
can reconsider the incentive constraints for full separation where t1 = θH .
We will have to specify t2(x1 = 1) and t2(x1 = 0) ex-ante, and beliefs
μ2(x1 = 1) = 1 , μ2(x1 = 0) = 0 will ensure that the contract is RNP. For
simplicity of notation, redefine t2(1) ≡ t2(x1 = 1) and t2(0) ≡ t2(x1 = 0).
We begin with the high type’s incentive constraint. If the high type

chooses to purchase in both periods, his utility is θH − t1+ δ(θH − t2(1)) . In
contrast, if he does not buy then he gets zero in the first period, and after
“fooling” the principal he gets δ(θH− t2(0)). Thus, the high types IC is given
by,

θH − t1 + δ(θH − t2(1)) ≥ 0 + δ(θH − t2(0)) .

It is easy to see that any RNP contract that has μ2(x1 = 0) = 0 in equilib-
rium, must also have t2(0) = θL, so we can rewrite (ICHL) as,

t1 + δt2(1) ≤ θH + δθL

As for the low type, (ICLH) is the same as before:

t1 ≥ θL

Thus, to implement full revelation in the first period with the highest
possible price, t1 = θH , the unique Long-Term RNP, IC and IR contract is:

t1 = θH ,

t2(1) = t2(0) = θL.

Clearly, this is a Long-Term RNP contract even for δ > 1. So, if δ > 1
and θL

θH
≤ μ < θL

θH
· θH+δ(θH−θL)
θL+δ(θH−θL) the principal can induce full separation

which is the optimal Long-Term RNP contract. (get “faster” revelation than
no commitment). To see that this is indeed the optimal RNP contract.
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note that if the principal wants a Long-Term RNP contract with partial
separation, then it must be the same one as the no-commitment case. This
follows since if she wants to separate a larger ρ than that specified for the
Short-Term contract case, then the resulting beliefs after no purchase must
be μ2(0) <

θL
θH

, and the only RNP price is t2(0) = θL. But then the principal
should move to ρ = 1 which increases her profits, and this is the case of full
separation.

3.3 The Durable GoodsModel: Sales vs. Rent
Contracts

We could interpret the previous model as one with a durable good, and the
contracts are for the right to use the good for each period at a time, that
is, these were rental contracts. Assume that the principal can offer sales
contracts as follows:

Sales Contract: “pay sτ in period τ for the use of the good from period τ
until the end.”

Then, with Short-Term sales contracts the principal can get the same
outcome as with Long-Term RNP rent contracts as follows: At τ = 1, let
s1 = θH + δθL for use in both periods, and at τ = 2, let s2 = θL for those
who did not buy in τ = 1. It is easy to see that (ICHL) binds and (ICLH) does
not bind. This is true for all δ > 0 in the sales-game, and ex ante expected
profits are

π = μ[θH + δθL] + (1− μ)δθL

= μθH + δθL.

This and other issues are the focus of Hart-Tirole (1988).

Note: Hart-Tirole (1988) show that in durable good case, Long-Term RNP
rental contracts give the same outcome as Short-Term sales contracts
with no commitment. They also show:

1. This is a Coasian-Dynamics price path where price decreases over
time to the lowest valuation. (Gul-Sonneshein-Wilson 1988, Coase
1972).
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2. In the case of sales contracts, LT-RNP adds nothing to Short-Term
contracts with no commitment.

3. In the case of rental contracts, Short-Term contracts with no com-
mitment leads to a non-Coasian outcome price path (prices in-
crease) in which there is no initial separation, and then partial
separation occurs.

In summary, the paper is interesting but very complicated.

3.4 Concluding Remarks on Dynamics

I. No Commitment: the continuous type case:

In the static model with θ ∈ [θ, θ] we had full separation (for the types
being served, assuming that the solution to the reduced program resulted in
a monotonic choice function) and this follows through for the dynamic case
with commitment. However, when the principal cannot commit we have a
strong version of no separation:

Proposition 7 (Laffont-Tirole 1988) For any first period contract there ex-
ists no subinterval of

£
θ, θ
¤
with positive measure in which full separation

occurs.

We don’t provide a proof of this proposition, but the intuition is quite
straightforward. If a type θ ∈ [θ0, θ00] ⊆ [θ, θ] is fully revealed then he has
some first period rents and no second period rents. (This follows because
after his type is revealed, all future rents will be extracted by the principal.)
By not revealing truthfully, and by announcing θ̂ = θ− ε for ε close to zero,
there is only a second order loss on rents of the first period, and a first order
gain on the rents of the second period, so θ will not announce truthfully.
Laffont and Tirole continue to analyze the procurement set-up with quadratic

costs of effort, and they characterize “partition equilibria” in which the type
space is partitioned into a (countable) number of pooling subintervals. (Note
that their model has an effort parameter following their 1986 paper in the
JPE. This is, however, not really a different type of hidden information, be-
cause the choice is effort, and in equilibrium the principal knows what effort
was chosen.)
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II. No commitment and upward binding IC’s:

In a more smooth setting than the one we analyzed, (e.g., continuous
quantities or types,) we might have both low types and high types IC con-
straints binding: In our model this happened only for δ = 1 and full sep-
aration. For δ > 1 we could not fully separate precisely because ICL was
violated, what we termed the “Take-the-money-and-run” situation where
the L-type imitates the H-types in the first period, thus getting rents, and he
then declines to participate in second period. (This is one reason the general
analysis is very complicated.)

III. Long-Term RNP contracts: The continuous case

Proposition 8 If the principal is constrained to offer long term RNP con-
tracts then,

1. There exists an IC, IR and RNP contract (incentive scheme) that sep-
arates all types in the first period. The optimal contract in this class
yields the optimal static contract in the first period, and the first best
allocation in the second period.

2. A fully separating contract is never optimal for the principal.

This result is due to Laffont-Tirole in a succession of articles. For an
analysis of this problem the reader is referred to chapters 1, 9, & 10 in Laffont
and Tirole, 1993. Instead of proving this, we again resort to describing the
intuition of this result.
Consider a two-type setting as before, but let the quantity x be contin-

uous. For part (1) above, consider the case where in period 1 the optimal
static contract is offered, and in period 2 the optimal (first-best) choice of
quantity is offered with transfers that give all the rents to the agents. (The
principal gets 0 profits in the second period.) Laffont and Tirole refer to this
incentive scheme as the “sell-out contract.”

Figure Here

This is clearly IC because in period 2 it is IC (which follows from c00 > 0 and
θH > θL) and anticipating this, the static contract is IC in period 1. (We may
be able to find a Long-Term fully separating contract which takes some rents
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away from the agents and transfers these to the principal, keeping IC, IR
and RNP satisfied. For example, if in the sell-out contract IRL is slack, then
we can move to a second-period contract with the same first-best quantities,
and with larger transfers to the principal.)
More generally, we can separate a continuum of types in a RNP contract

(consider the types θH > θL to be two types from the continuum [θ, θ]. It is
easy to see that the above intuition of the sell-out contract will work with
a continuum of contracts, where each type θ chooses the point along the
monopolists zero-profit iso-profit curve where the tangent is equal to θ.)
Turning to part (2) of the proposition, first note that in any fully sepa-

rating equilibrium there is FB optimality in the second period. Given this,
the principal gets second best optimality ex-ante using the RNP constraint
and full separation. However, by adding some pooling in the first period, the
principal can create a new contract that generates second order losses in the
first period, and first order gains from extracting rents through inefficiencies
in the second period. That is, partial revelation will be optimal.
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Contracting with Externalities

Segal (1999)
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Part III

Hidden Action
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Chapter 5

The Principal-Agent Model

5.1 Setup

• 2 players: The principal, owner of the firm; and the agent, man-
ager/worker in the firm

• The principal hires the agent to perform a task

• The agent chooses an action, a ∈ A

• Each a ∈ A yields a distribution over payoffs (revenues) for the firm, q,
according to the function q = f(a, ε) where ε is some random variable
with known distribution (Note that the principal “owns” the rights to
the revenue q.)

• a ∈ A is not observable to the principal; q is observable and verifiable
(so q can be a basis for an enforceable contract)

Figure Here (time line)

Examples:
Principal Agent Action

1 Firm owner Manager choice of (risky) project
2 Employer/Manager employee/worker effort in job
3 Regulator Regulated firm cost reduction research
4 Insurer Insuree care effort

93
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Question: What makes the problem interesting?

A conflict of interest over a ∈ A between the principal and the agent.

5.1.1 Utilities

We assume that the principal is risk neutral, and the agent is risk averse.
This is the standard formulation of the P-A problem.

• Agent’s utility: The agent has a vNM utility function defined on his
action, a, and the income he receives, I,

U(a, I) = v(I)− g(a),

where v0 > 0, and v00 < 0 guarantee risk aversion. (As for g(·), we
assume that effort is costly, g0 > 0, and we usually assume that the
marginal cost of effort increases with effort, g00 > 0, which seems “rea-
sonable.”) Note that this utility function is additively separable. This
simplification is very helpful for the analysis and its implication is that
the agent’s preference over income lotteries is independent of his choice
of action Finally, assume that the agent’s reservation utility is given by
u (which is determined by some alternative option.)

• Principal’s utility: The principal’s utility is just revenue less costs,
and if we assume that the only cost is compensating the agent then
this is trivially given by q − I.

Question: Why is it reasonable to assume that the principal is risk neutral
while the agent is risk averse?

1. If the agent is risk neutral, and the agent has no limits on wealth, the
problem will be trivial (as we will later see why).

2. If both are risk averse the analysis is more complicated, but we get the
same general issues and results, so it is unnecessarily more complex.

3. An appealing rationale is that the principal is wealthy and has many
investments, so this firm is only a small fraction of his portfolio and risk
is idiosyncratic. (Caveat: usually shareholders don’t design incentive
schemes!)
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4. Another modelling possibility: Agent is risk neutral but has limited
wealth - say, in the form of limited liability - so that he cannot suffer
large losses. This gives a “kink” at an income level of zero, which gives
the necessary concavity of the agent’s utility function which yields the
same kind of results.

Further Assumptions

We begin our analysis by following the work of Grossman and Hart (1983)
(G-H hereafter), and later go back to the earlier formulations of the principal-
agent problem.

• q̃ (the random variable) is discrete: q ∈ {q1, q2, ..., qn}, and w.l.o.g.,
q1 < q2 < · · · < qn.

• A ⊂ <k is compact and non-empty.

• given a ∈ A, the mapping π : A → S maps actions into distributions

over outcomes, where S = {x ∈ <n : xi ≥ 0 ∀i and
nP
i=1

xi = 1} is
the n-dimensional simplex. πi(a) denotes the probability that qi will
be realized given that a ∈ A was chosen by the agent. As usual, we
assume that the distribution functions are common knowledge.

• v(·) is continuous, v0 > 0, v00 < 0, and v(·) is defined over (I,∞) ∈ <
where lim

I→I
v(I) = −∞ (This guarantees that we need not worry about

corner solutions.) For example: v(·) = ln(·), in which case I = 0. (This
is Assumption A1 in G-H.)

• g(·) is only assumed to be continuous.

5.2 First Best Benchmark: Verifiable Actions

Assume that a ∈ A is observable and verifiable so that the principal can
basically “choose” the best a ∈ A, and contract on it while promising the
agent some compensation. Assume that the principal has all the bargaining
power. (This is a standard simplification, which can be relaxed without
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affecting the qualitative results.) She then solves:

F.B.

⎧⎨⎩ max
a∈A
I∈<

nP
i=1

πi(a)qi − I

s.t. v(I)− g(a) ≥ u (IR)

where I ∈ < is the payoff to the agent. Note that we considered I to be
a fixed payoff, which brings us to the following question: Could a random
payment Ĩ be optimal? The answer is clearly no, which follows from the
agent’s risk aversion. We can replace any Ĩ with its Certainty Equivalent,
which will be less costly to principal since she is risk neutral.

Claim: (IR) binds at the solution

This claim is clearly trivial, for if (IR) would not bind we can reduce I,
and lower the principal’s costs.
We can define

CFB(a) ≡ v−1(u+ g(a))

to be the cost to the principal of compensating the agent for choosing a ∈ A.
This is the First-Best (FB) cost of implementing an action a, since risk is
optimally shared between the risk neutral principal and the risk averse agent.
Using this formalization, the principal solves:

max
a∈A

nX
i=1

πi(q)qi − CFB(a)

The First-Best Solution yields a FB action, a∗FB ∈ A (which may not
be unique), and this action is implemented by the FB contract: (a∗FB, I

∗
FB)

where I∗FB = CFB(a
∗
FB).

5.3 Second Best: non-observable action

Once the action is not observable, we can no longer offer contracts of the
form (a∗FB, I

∗
FB). One can then ask, if it is not enough just to offer I

∗
FB and

anticipate the agent to perform a∗FB ? The answer is no, since if I∗FB is
offered, then the agent will choose a ∈ A to minimize g(a), and it may not
be that “likely” that a∗FB will achieve the agent’s goal.



CHAPTER 5. THE PRINCIPAL-AGENT MODEL 97

Question: What can the principal do to implement an action a ∈ A?

The principal can resort to offering an Incentive Scheme which rewards
the agent according to the level of revenues, since these are assumed to
be observable and verifiable. That is, the agent’s compensation will be a
function, I(q).
By the finiteness of q̃, restrict attention to I ∈ {I1, ..., In}. The principal

will choose some a∗SB, together with an incentive scheme that implements
this action. (That is, an incentive scheme that causes the agent to choose
a∗SB as his “best response.”) Clearly, at the optimum it must be true that
a∗SB is implemented at the lowest possible cost to the principal. This implies
that we can decompose the principal’s problem to a two stage problem as
follows:

1. First, look at the lowest cost to implement any a ∈ A (i.e., for each
a ∈ A, find (I∗1(a), ..., I

∗
n(a)) which is the lowest cost incentive scheme

needed to implement a ∈ A)

2. Given {(I∗1(a), ..., I∗n(a))}a∈A choose a∗SB to maximize profits.

The Second Stage

If the principal has decided to implement a∗, then it must be implemented
at the lowest cost. That is, (I1, ..., In) must solve⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

min
I1,...,In

IP
i=1

πi(a
∗)Ii

s.t.
nP
i=1

πi(a
∗)v(Ii)− g(a∗) ≥ u (IR)

nP
i=1

πi(a
∗)v(Ii)− g(a∗) ≥

P
i

πi(a)v(Ii)− g(a) ∀a ∈ A (IC)

Note that we have a programwith a linear objective function, and concave
constraints. For mathematical convenience, we can transform the program
into one with a convex objective function and with linear constraints. To
do this, we work with “utils” instead of income: Let h(·) ≡ v−1(·) be the
inverse utility function with respect to the agent’s income, and consider the
principal’s choice of (v1, ..., vn), where Ii = h(vi). (The existence of such an
inverse function h(·) is guaranteed by G-H assumption A2.) We know that
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h(·) is convex since, v0 > 0 and v00 < 0 imply that h0 > 0 and h00 > 0, and
the assumption that lim

I→I
v(I) = −∞ implies that vi ∈ (−∞, v) where v can

be ∞. The program can therefore be written as,⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

min
v1,...,vn

IP
i=1

πi(a
∗)h(vi)

s.t.
nP
i=1

πi(a
∗)vi − g(a∗) ≥ u (IR)

nP
i=1

πi(a
∗)vi − g(a∗) ≥

P
i

πi(a)vi − g(a) ∀a ∈ A (IC)

(5.1)

which is a “well behaved” program. (If A is finite, we can use Kuhn-Tucker.)

Question: When will we have a solution?

If the constrained set is empty, we clearly won’t have one, so this is not an
interesting case. Assuming that the constrained set is non-empty, then if we
can show that it is closed and bounded, then a solution exists (Weirstrass).
The question is, therefore, when will it be true?

Assumption 4.1: (A3 in G-H) πi(a) > 0 for all i ∈ {1, ..., n} and for all
a ∈ A.

Proposition 4.1: Under the assumptions stated above, a solution is guar-
anteed.

Sketch of Proof: The idea is that we can bound the set of v’s, thus creating
a compact constrained set. Assume in negation that we cannot: ∃ an
unbounded sequence {vk1 , ..., vkn}∞k=1 such that some components go to
−∞. This implies that Iki will also be unbounded for some i where
Iki = h(vki ). Since πi(a) > 0 for all i, then if some vki → −∞ without
some vkj → +∞ then the agent’s utility will be going to −∞. So, if
vi ∈ (−∞, v), where v < ∞ we are done since we cannot have some
vkj → +∞. Assume, therefore, that vi ∈ (−∞,∞) so that we could
have some components going to −∞ and others going to +∞. Now
risk aversion will come into play: the variance of the incentive scheme
Ik goes to infinity, and to compensate the agent for this risk, the mean
must go to infinity as well. Thus, the principal’s expected payment to
agent goes to +∞, which is worse than not implementing the action
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at all. Therefore, we can put an upper bound on (−∞,∞), which is
calculated so that if payoffs reach the bound then the principal prefers
no action. But then we’re back in (−∞, v). ¤

Since we have guaranteed a solution, we can now state some facts about
the solution itself. Let CSB(a

∗) be the value function of the program, i.e.,
the second best cost of implementing a∗. This function is well defined, and
has the following features:

1. CSB(a
∗) can be +∞ for some a∗ ∈ A (if the constrained set is empty

for this a∗)

2. CSB(a
∗) is lower semi-continuous, which implies that it attains a mini-

mum in the constrained set. (A function f(·) is Lower Semi-Continuous
at x if lim infk→∞ f(xk) ≥ f(x).)

3. If v00 < 0 then CSB(a
∗) has a unique minimizer.

We also have the following straightforward result:

Lemma 4.1: At the optimum IR binds.

Proof: Assume not. Then, we can reduce all vi’s by ε > 0 such that (IR)
is still satisfied. Notice that this does not affect the incentive con-
straint, and thus still implements a∗ at a lower cost to the principal -
a contradiction. Q.E.D.

Notes:

1. If U(a, I) = v(I)g(a) (multiplicative separability) then (IR) still binds
at a solution.. (If not, scale vi’s down by some proportion α < 1 and
the same logic goes through.)

2. If U(a, I) = g(a) + v(I)k(a) then (IR) may not bind and we may have
the agents expected utility exceeding u. (We can’t use any of the above
arguments.) In this case we get some “efficiency wage.”
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The First Stage

After finding CSB(a) the principal solves:

max
a∈A

B(a)− CSB(a) (5.2)

whereB(a) ≡
nP
i=1

πi(a)qi is continuous and−CSB(a) is upper-semi-continuous

(because CSB(·) is lower semi-continuous). Thus, since A is compact, we have
a “well behaved” program. Let a∗SB solve (5.2) above, we call a

∗
SB the sec-

ond best optimal solution where {I∗i }ni=1 is given by the solution to the first
program, (5.1) above.

Question: When is the SB solution also the FB solution?

Each one of the following is a sufficient condition (from parts of Proposi-
tion 3 in G-H):

1. v00 = 0 and the agent has unlimited wealth. In this case the principal
and agent share the same risk-attitude, and the principal can “sell” the
project (or firm) to the agent. Since the agent would then maximize

max
a∈A

nX
i=1

πi(a)qi − v−1(g(a) + u) ,

which is the expected profits less the cost of effort (and less the outside
option), then the principal can ask for a price equal to the value of the
agent’s maximization program. This results in the principal getting the
same profits as in a FB situation, and a∗FB solves the agent’s problem
after he purchases the firm.

2. If a∗FB is also the solution to min
a∈A

g(a). In this case there is no “conflict

of interest” between the principal’s objectives and the agent’s cost-
minimizing action.

3. If A is finite, and there exists some a∗FB such that for some i, πi(a
∗
FB) =

0 and πi(a) > 0 for all a 6= a∗FB. In this case it happens to be that if a
∗
FB

is chosen, then there is some outcome qi that cannot occur, and if the
agent chooses any other a ∈ A, then qi can happen with some positive
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probability. Thus, by letting Ii = −∞ and Ij = v−i(g(a∗FB) + u)
for all j 6= i, we implement a∗FB at the FB cost of v

−i(g(a∗FB) + u).
This is called the case of “shifting support”, since the support of the
probability distribution changes with the chosen action.

In cases (1)-(3) above there is no trade-off between optimal risk-sharing
and giving the agent incentives to choose a∗FB. (There are 3 more cases in
proposition 3 of G-H). But in general, it turns out that we will have such a
trade-off, as the following result easily demonstrates, (part of proposition 3
in G-H)

Proposition 4.2: If πi(a) ≥ 0 for all i and for all a ∈ A, if v00(·) < 0, and
if g(a∗FB) > min

a∈A
g(a) for all a∗FB , then the principal’s profits in the SB

solution are lower than in FB solution.

Proof: CSB(a
∗
FB) > CFB(a

∗
FB) because we need incentives (Ii 6= Ij for some

i, j) for the agent to choose a∗FB 6= argmina∈A g(a). Therefore, we can-
not have optimal risk sharing, which implies that the solution to (5.2)
is worse than the FB solution. Q.E.D.

5.3.1 The Form of the Incentive Scheme

Assume for simplicity that A is finite and contains m elements, |A| = m, so
that the Lagrangian of program (5.1) (the cost-minimization program) is:

L =
nX
i=1

πi(a
∗)h(vi)

−
X
aj 6=a∗

μj

"
nX
i=1

πi(a
∗)vi − g(a∗)−

X
i

πi(aj)vi + g(aj)

#

−λ
"

nX
i=1

πi(a
∗)vi − g(a∗)− u

#
(Note that there arem−1 (IC) constraints and one (IR) constraint.) Assume
that the program is convex so that the FOCs are necessary & sufficient for a
solution, then we have,

πi(a
∗)h0(vi)−

X
aj 6=a∗

μj[πi(a
∗)− πi(aj)]− λπi(a

∗) = 0 ∀ i = 1, ..., n



CHAPTER 5. THE PRINCIPAL-AGENT MODEL 102

where μj ≥ 0 ∀ j 6= a∗ and λ ≥ 0 (where μj > 0 implies that ICj binds.)
Since Assumption 4.1 guarantees that πi(a∗) > 0, we can divide the FOC by
πi(a

∗) to obtain,

h0(vi) = λ+
X
aj 6=a∗

μj −
X
aj 6=a∗

μj
πi(aj)

πi(a∗)
∀ i = 1, ..., n

The following result is proposition 6 in G-H:

Proposition 4.3: If a∗SB /∈ argmin
a∈A

g(a) and if v00 < 0, then μj > 0 for some

j with g(aj) ≤ g(a∗SB).

Proof: Assume not, i.e., the agent strictly prefers a∗SB to all aj which satisfy
g(aj) ≤ g(a∗SB). Define the set

A0 = A\{aj : aj 6= a∗SB and g(aj) ≤ g(a∗SB)} ,

and solve the program for a ∈ A0. Since none of the elements in A\A0
were chosen when we solved for a ∈ A,we must still get a∗SB as the
solution when a ∈ A0. But observe that now a∗SB ∈ argmin

a∈A0
g(a), which

implies that I1 = I2 = · · · = In at the solution (full insurance). But
this is the case for the FB solution, which contradicts proposition 4.2
above. Q.E.D.

This proposition implies that the agent will be indifferent between choos-
ing a∗ and choosing some aj such that g(aj) ≤ g(a∗SB). That is, will be
indifferent between working “optimally” and working “less”, if higher costs
of effort are associated with higher levels of effort. Thus, the main point of
Proposition is that we must have some “downward” binding incentive con-
straints.

1. The proof depends on the finiteness of A. In the infinite case this result
holds only locally.

2. This result does not rule out some “upward” binding IC’s which
will be somewhat “problematic” as we will see shortly.

Recall that h0 > 0, and h00 > 0. Thus, we have,
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Corollary 4.1: If μj > 0 for only one aj 6= a∗SB then Ii > Ik if and only if
πi(a

∗
SB)

πi(aj)
>

πk(a
∗
SB)

πk(aj)
. That is, I is monotonic in the likelihood ratio.

This follows from the fact that h0(·) is increasing (h00 > 0) and from the
FOC:

h0(vi) = λ+ μj − μj
πi(aj)

πi(a∗SB)
. (5.3)

If πi(a
∗
SB)

πi(aj)
>

πk(a
∗
SB)

πk(aj)
, then clearly πi(aj)

πi(a∗SB)
<

πk(aj)

πk(a
∗
SB)

, which implies that for i,
the last term in (5.3) becomes less negative compared to k. This implies that
h0(vi) > h0(vk), which implies that vi > vk (since h00 > 0.)
We can relate this result to an appealing property of the probability

distributions induced by the different actions as follows:

Definition 4.1: Assume that πi(a) > 0 for all i ∈ {1, ..., n} and for all
a ∈ A. (This was assumption 4.1 above.) Themonotone likelihood ratio
condition (MLRC) is satisfied if ∀ a, a0 ∈ A such that g(a0) ≤ g(a), we
have πi(a)

πi(a0)
is nondecreasing in i.

Corollary 4.2: Assume MLRC. Then, Ii+1 ≥ Ii ∀ i = 1, ..., n− 1 if either,

1. μj > 0 for only one aj 6= a∗SB (⇒ g(aj) < g(a∗SB) from Proposition
4.3)

2. A = {aL, aH}, g(aL) < g(aH) and a∗SB = aH

Case (1) follows immediately from Corollary 4.1. Case (2) does as well
but it is worth mentioning since this is the “simple” 2-action case. We focus
on this kind of “monotonicity” since it seems realistic in the sense that higher
output leads to higher payments. We are therefore interested in exploring
under what assumptions this kind of result prevails.

1. The solution to the principal-agent problem seems to have a flavor of a
statistical-inference problem (the MLRC result). Note, however,
that this is not a statistical inference problem, but rather an equi-
librium model for which we found a subgame-perfect equilibrium.
In equilibrium the principal has correct beliefs as to what the agent
chooses and does not need to infer it from the outcome.
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2. MLRC⇒FOSD but FOSD;MLRC: Recall that the distribution
π(a∗) First Order Stochastically Dominates the distribution π(a)
if

kX
i=1

πi(a) ≥
kX
i=1

πi(a
∗) ∀ k = 1, ..., n

i.e., lower output is more likely under a than it is under a∗.(Don’t
go through the following in class.)

Claim: MLRC⇒FOSD. That is, πi(a∗)
πi(a)

increases (weakly) in i im-
plies that

kX
i=1

πi(a) ≥
kX
i=1

πi(a
∗) ∀ k = 1, ..., n

Proof: (I) we can’t have πi(a∗)
πi(a)

> 1 ∀ i. To see this, assume in
negation that πi(a∗)

πi(a)
> 1 ∀ i. ⇒

1 =
X

πi(a
∗) =

X πi(a
∗)

πi(a)
·πi(a) >

X
πi(a) = 1 a contradiction.

(II) Let k∗ = max{i = 1, ..., n | πi(a∗)
πi(a)

≤ 1}. Define

ϕk =

⎧⎨⎩
0 for k = 0
kP
i=1

πi(a)−
kP
i=1

πi(a
∗) for k = 1, ..., n

note that ϕ0 = ϕn = 0, for all k ≤ k∗ ϕk is increasing in k,

and for all k ≥ k∗ ϕk is decreasing in k.⇒
kP
i=1

πi(a)−
kP
i=1

πi(a
∗)

≥ 0∀k = 1, ..., n. Q.E.D.

Claim: FOSD ;MLRC.
Example: 3 outcomes: q1, q2, q3, two actions: a, a∗, with proba-

bilities
π1(a) = 0.4 π1(a

∗) = 0.2
π2(a) = 0.4 π2(a

∗) = 0.6
π3(a) = 0.2 π3(a

∗) = 0.2

Figure Here
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π(a∗) FOSD’s π(a) by taking some probability from q1 to q2
without changing the probability of q3. However, MLRC is
violated:

π1(a
∗)

π1(a)
=
1

2
<

π2(a
∗)

π2(a)
=
3

2
>

π3(a
∗)

π3(a)
= 1

(Again, this follows the intuition of an inference problem -
trying to verify that a∗ was chosen is by identifying which
outcome has a higher likelihood ratio.)

3. If μj > 0 for more than one j then MLRC is not enough for
monotonicity. In this case the IC’s can bind in different direc-
tions and this causes “trouble” in the analysis. G-H use the Span-
ning Condition as a sufficient condition for monotonicity (see G-H
proposition 7.)

4. Robustness of Monotonicity: Without MLRC or the Spanning
condition, G-H are still are able to show that some monotonicity
exists:

Proposition 5 (G-H): In the SB solution without MLRC and
without the Spanning condition, when the SB solution is worse
than the FB, then:

(i) ∃ i, 1 ≤ i < n such that Ii+1 > Ii ,
(ii) ∃ j, 1 ≤ j < n s.t. qj − Ij < qj+1 − Ij+1

Idea: (i) I is monotonic somewhere (that is, we can’t have “per-
verse” incentive schemes.) (ii) “I 0(·) < 1” somewhere: There
is some increase in output that induces an increase in the prin-
cipal’s share (again, can’t have “perverse” profit sharing).

5. Enriching the agent’s action space restricts the set of incentive
schemes:

(I) First, allowing for free disposal : implies that the slope of the
incentive scheme must be non-negative. That is, if the agent
can “destroy” output q, then we must have I 0(·) ≥ 1. This
implies monotonicity.

(II) Second, allowing the agent to borrow q with no restrictions
(from a third party, say a bank) implies that I 0(·) ≤ 1 (or
else, the agent will borrow, present a higher output to the
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principal, get more than his loan and repay the loan at a
profit, assuming negligible interest rates for very short loans.)
Therefore, the principal’s share must increase in i.

So, in remark 3 we saw that I 0(·) ≥ 0, and I 0(·) ≤ 1 must hold
somewhere, and with a realistic enrichment of the agent’s ac-
tion space we get these conditions holding everywhere.

6. Random incentive schemes don’t help. This is straightforward: If
Ĩi is the random income that the agent faces after qi is realized,
define ṽi = v(Ĩi) and vi = Eṽi so that Ii = h(vi) is the certainty
equivalent of Ĩi. Now have the principal offer {I1, ..., In} instead
of {Ĩ1, ..., Ĩn}. This contract has no effect on (IC) or (IR), and
since I i = h(vi) < Eh(ṽi) = EĨi , then the principal implements
the same action at a lower cost.

5.4 The Continuous Model

Let the utilities be specified as before, but now assume that a ∈ [a, a] is a
continuous, one-dimensional effort choice, and assume that q is continuous
with density f(q|a). (That is, the density function is conditional on the choice
of a.) The principal’s problem is now:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

max
a,I(·)

Z
q

[q − I(q)]f(q|a)dq

s.t.
Z
q

v(I(q))f(q, a)dq − g(a) ≥ u (IR)

a ∈ argmax

⎧⎨⎩
Z
q

v(I(q))f(q, a0)dq − g(a0), a0 ∈ A

⎫⎬⎭ (IC)

This is the general (and correct) way of writing the problem. However,
this is not a form that we can do much with. As we will see, there is a
simple way of reducing this problem to a “manageable” program, but this
will require some extra assumptions for the solution to be correct. We begin
by analyzing the first-best benchmark.
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5.4.1 First Best Benchmark: Verifiable Actions

As before, in this case we only have (IR), which will bind at a solution, so
the Lagrangian is,

L =
Z
q

[q − I(q) + λv(I(q))]f(q|a)dq − λg(a)− λu

Assuming interior solution, the (point-wise) FOC with respect to I(·) yields,

1

v0(I(q))
= λ ∀ q. (5.4)

Denote by fa ≡ ∂f(q|a)
∂a

, then the FOC with respect to a yields,Z
q

[q − I(q) + λv(I(q))]fa(q|a)dq = λg0(a) (5.5)

and the (IR) constraint will bind (the usual argument.)

1. The first FOC with respect to. I(·) is known as the Borch rule where
optimal risk sharing occurs. If the principal were not risk neutral
but would rather have some risk averse utility function u(·), then
the numerator of the LHS of the FOC (5.4) above would be u0(q−
I(q)].

2. Notice that the Borch rule is satisfied for all q and not on average
since this is what risk sharing is all about.

5.4.2 Second Best: non-observable action

The First Order Approach:

In the hidden information framework we saw that under some conditions we
can replace global incentive compatibility with local incentive compatibility.
The question is, can we restrict attention to local incentive compatibility in
the moral hazard framework?
This is known as the first order approach, an approach that was popular

in the 70’s until Mirrlees (1975) showed that it is flawed, unless we impose ad-
ditional restrictions on f(·|·). The first order approach simplifies the problem
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by replacing (IC) above with the agent’s FOC of his optimization problem,
that is, of choosing his optimal action a ∈ A. The agents FOC condition is,Z

q

v(I(q))fa(q|a)dq − g0(a) = 0 ((ICF ))

We proceed to solve the principal’s problem subject to (ICF ) and (IR),
and later we will check to see if the agents SOC is satisfied, that is, ifZ

q

v(I(q))faa(q|a)dq − g00(a) ≤ 0 .

Also, we will have to check for global IC, a condition for which the FOC and
SOC of the agent are neither necessary nor sufficient.
The Lagrangian of the principal’s problem is,

L =

Z
q

[q − I(q)]f(q|a)dq + λ

∙Z
v(I(q))f(q|a)dq − g(a)− u

¸

+μ

∙Z
v(I(q))fa(q|a)dq − g0(a)

¸
and maximizing with respect to I(·) point-wise yields the FOC,

1

v0(I(q))
= λ+ μ

fa(q|a)
f(q|a) a.e. (5.6)

Notice that this looks very similar to the FOC for the case of A being
finite, with only one (downward) binding IC. (This is also like the 2-action
case with a∗SB = aH .) In the previous formulation we had h0(·) = 1

v0(·) , and
fa
f

is “similar” to the continuous version of the likelihood ratio for small changes
in a, which is f(q|a+δ)

f(q|a) . This can be seen as follows: Notice that
f(q|a+δ)
f(q|a) − 1 is

a monotonic transformation of f(q|a+δ)
f(q|a) , and dividing this by δ is yet another

monotonic transformation, which then yields,

lim
δ→0

f(q|a+ δ)− f(q|a)
δf(q|a) =

fa(q|a)
f(q|a) .

Definition 4.2: f(q|a) satisfies MLRC if fa(q|a)
f(q|a) increases in q.
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Proposition 4.4: Assume that the first order approach is valid, that MLRC
is satisfied, and that μ > 0. Then I 0(q) ≥ 0.

Proof: Follows directly from the FOC (??) that we derived above and from
v00 < 0: As q increases, μfa

f
increases, ⇒ 1

v0 increases, ⇒ v0 decreases,
⇒ I(q) increases. Q.E.D.

Therefore, in addition to assuming MLRC, and that the first order ap-
proach is valid, we need to ask ourselves when is μ > 0 guaranteed? This is
answer is that if the first order approach is valid, then we must have μ > 0.
This is demonstrated in the following proposition (Holmstrom (1979) propo-
sition 1):

Proposition 4.5: If the first order approach is valid, then at the optimum,
μ > 0.

Proof: (i) Assume in negation that μ < 0. If the first order approach is
valid, then from the FOC (??) above, we get the solution I∗(q) which
is decreasing in fa

f
. Define bI = I(q) for those q which satisfy fa(q|a)

f(q|a) = 0.

That is, since I is a function of q, and given a each q determines fa(q|a)
f(q|a) ,

then we can think of I as a function of fa(q|a)
f(q|a) , s shown in the following

figure:
Figure Here

Now consider the first term of the agent’s FOC (ICF ) above:Z
q

v(I(q))fa(q|a)dq

=

Z
{q: fa≥0}

v(I(q))fa(q|a)dq +
Z

{q: fa<0}

v(I(q))fa(q|a)dq

<

Z
{q|fa≥0}

v(Î)fa(q|a)dq +
Z

{q: fa<0}

v(Î)fa(q|a)dq

= v(Î)

Z
q

fa(q|a)dq

= 0
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(The last equality follows from
R
q

f(q|a)dq = 1 ∀ a.) But this contra-

dicts Z
q

v(I(q))fa(q|a)dq = g0(a) > 0.

(ii) Assume in negation that μ = 0. From the FOC (??) above we get,

1

v0(I(q))
= λ ∀ q ,

which implies that the agent is not exposed to risk. This in turn implies
that the agent chooses his action to minimize his cost g(a), which is
generally not the solution to the principal’s program. Q.E.D.

Caveat: It turns out that we could have μ = 0 and the FB is almost
achieved. The following example is due to Mirrlees (1974):

Example 4.1: Assume that output is distributed according to q = a + ε,
where ε ∼ N(0, σ2). That is, for two distinct actions a1 < a2, we get
the distributions of q to “shift” as shown in the following figure:

Figure Here

Assume also that a ∈ [a, a], and that the agents utility is given by

U(I, a) = cnI − a .

This looks like a “well behaved” problem but it turns out that the
principal can achieve profits that are arbitrarily close to the FB profits:
Let a∗FB ∈ (a, a), and calculated I such that

cnI − a∗FB = u.

Set q to be “very” negative, and let the incentive scheme be

I(q) =

½
I > q
δ ≤ q

where δ is “very” small. Mirrlees showed that

lim
q→−∞

F (q) = lim
q→−∞

Pr{q < q} = 0,
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but that

lim
q→−∞

Fa(q) = lim
q→−∞

d

da
(Pr{q < q}) 6= 0,

which implies that the agent will not “slack,” his expected utility is
close to u, and he is almost not exposed to risk (To get (IR) satisfied,
we need to add ε to I , which measures the departure from FB costs
to the principal.) This example is a continuous approximation of the
“shifting support” discrete case.

1. Again, this looks like a statistical inference problem but it is not.
(Notice that fa

a
is the derivative of the log-likelihood function,

cnf(q, a), with respect to a. This turns out to be the gradient for
the Maximum Likelihood Estimator of a given q, which is the best
way to infer a from the “data” q, if this were a statistical inference
problem.)

2. Holmstrom (1979, section 6) shows that this approach is valid
when the agent has private information (i.e., a type) as in the
hidden-information models. The wage schedule will then be I(q, θ),
where θ ∈ Θ is the agent’s type. Now the multiplier will be μ(θ̂)
and it may be negative at a solution.

3. Intuitively we may think that a∗SB < a∗FB. This is not a generic
property.

Validity of the First Order Approach

Mirrlees (1974) observed that the solution to the “Relaxed program,” i.e.,
using the first order approach, may not be the true SB solution to the correct
unrelaxed program. The problem is more serious than the standard one, in
which case the FOC’s (of the principal’s program, not of the agent’s program)
being necessary but not sufficient. It turns out that the first order approach
suffers from a much deeper problem; it may be the case that when the first
order approach is used, then the principal’s FOC is not only insufficient, but
it may not be necessary.
This can be seen using the following graphical interpretation of incentive

schemes.

2 figures here
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Given I(·), the agent maximizes

EU(a|I) =
Z
q

v(I(q))f(q|a)dq − g(a) .

Then, using the first order approach, we maximize the principal’s profits
subject to the constraint,

dEU(a|I(·))
da

= 0 ,

that is, given an incentive scheme I(·), the agent’s FOC determines his choice
of a. But notice that EU(a|I(·)) need not be concave in a, which implies that
there may be more than one local maximizer to the agent’s problem (we
ignore the problem of no solutions.) To see the problem, imagine that we
can “order” the space of incentive schemes I(·) using the ordering “<”as
follows: Consider a scheme Ĩ such that for all schemes I < Ĩ, there is only
one local maximizer for Eu(a|I). Also consider a scheme Î such that for all
schemes I > Î there is only one local maximizer. Assume that Ĩ and Î have
one inflection point, (a point which is not a local maximizer or minimizer, but
has the FOC of the agent satisfied,) so that all schemes I such that Ĩ < I < Î
have two local maximizers, and one local minimizer. In particular, consider
some scheme I(·), Î(·) < I(·) < I , such that the agent is indifferent between
the two local maximizers a0 and a1, but the principal prefers a1. Then, it may
be optimal for principal to move to hI∗(·), a∗1i at which both the principal’s
and agent’s FOC’s are satisfied. But under I∗(·), the action a∗1 is a local
maximizer, while a∗0 is the global maximizer, in which case hI∗(·), a∗1i is not
implementable. When we solve the true program we maximize the principal’s
profits subject to the agents true choices, so given the graphical description,
I(·), a1

®
is the solution to the true program, and at this point the principal’s

FOC in the reduced first order approach program is not even satisfied.
There are two ways of dealing with this problem. The first, is to ignore

it and check if the solution to the first order approach is a true solution to
the SB problem, and if it is not, then the true problem needs to be solved.
The second, is to find cases for which the first order approach is valid. We
will explore two such cases:

Case 1: LDFC: Let a ∈ A = [0, 1]. We say that the Linear Distribution
Function Condition (LDFC) is satisfied if there exist two density func-
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tions, fH(q), and fL(q), such that

f(q|a) = afH(q) + (1− a)fL(q)

(this is also called the Spanning Condition - see G-H 1983.) In this
case

EU(a|I(·)) =
Z

v(I(q))f(q|a)dq − g(a)

= a

Z
v(I(q))fH(q)dq + (1− a)

Z
v(I(q))fL(q)dq − g(a)

= ak1 + (1− a)k2 − g(a)

where k1 and k2 are constants (given the incentive scheme I(·),)and
since g0 > 0 and g00 > 0, this is a well behaved concave function which
guarantees that there is no problem, and LDFC is a sufficient condition
for the first order approach to work.

Case 1: MLRC + CDFC:We say that the cumulative distribution func-
tion F (q|a) satisfies the Convexity of the Distribution Function Condi-
tion (CDFC) if it is convex in a; that is, for all λ ∈ [0, 1],

F (q|λa+ (1− λ)a0) ≤ λF (q|a) + (1− λ)F (q|a0) .

Recall that MLRC implies that fa(q|a)
f(q|a) increases in q. Take the agent’s

expected utility and integrate it by parts:

EU(a|I(·)) =
qZ
q

v(I(q))f(q|a)dq

= [v(I(q)) · F (q|a)|qq −
qZ
q

v0(I(q))I 0(q)F (q|a)dq

= v(I(q))−
qZ
q

v0(I(q))I 0(q)F (q|a)dq − g(a)

where the last equality follows from F (q|a) = 1 and F (q|a) = 0 (note
that q or q need not be bounded.) Now consider the second derivative
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of EU(a|I(·)) with respect to a:

[EU(a|I(·))]00 = −
qZ
q

v0(I(q))Faa(q|a)dq − g00(a) < 0

which follows from v0 > 0, I 0(q) > 0 (which is implied by MLRC,)
Faa > 0 (which is implied by CDFC,) and finally g00 > 0. Thus, MLRC
and CDFC together are sufficient for the first order approach to be
valid.

1. Recall that in our proof that MLRC⇒ I 0(·) > 0 we used the fact
that μ > 0. But this fact is true only if the first order approach
is valid. Thus, the proof we have given (for MLRC and CDFC
together to be sufficient for the first order approach to be valid)
contains a “circular” mistake. See Rogerson (1985) for a complete
and correct proof.

2. Jewitt (1988) provides alternative sufficient conditions for valid-
ity of the first order approach which avoids CDFC (CDFC turns
out to be very restrictive), and puts conditions on v(·), namely
that − v00(·)

[v0(·)]3 is non-decreasing, that is, risk aversion does not de-
crease too quickly. CARA is an example that works with various
“commonly used” distributions.

5.5 The Value of Information: The Sufficient-
Statistic Result

Assume now that there are more signals above and beyond q. For example,
let y denote some other parameter of the project (say, some intermediate
measure of success) and assume that q and y are jointly distributed given
the agent’s action a.

Question: When should y be part of the contract in addition to q?

This question was answered independently by Holmstrom (1979) and
Shavel (1979). Rewrite the Lagrangian (assuming that the first order ap-
proach is valid) by taking (q, y) to be the two-dimensional signal, and I(q, y)
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is the incentive scheme:

L =

Z
y

Z
q

[q − I(q, y)]f(q, y|a)dqdy

+λ

⎡⎣Z
y

Z
q

v(I(q, y))f(q, y|a)dqdy − g(a)− u

⎤⎦
+μ

⎡⎣Z
y

Z
q

v(I(q, y)fa(q, y|a)dqdy − g0(a)

⎤⎦
and the FOC with respect to (I·, ·) is:

1

v0(I(q, y))
= λ+ μ

fa(q, y|a)
f(q, y|a)

Now, to answer the question, we can modify it and ask, “When can we
ignore y?” The answer is clearly that we can ignore y and have I(q) if and
only if the first order condition is independent of y, which gives us the same
FOC as in our analysis without the y signal. This will be satisfied if fa(q,y|a)

f(q,y|a)
is independent of y.

Definition 4.3: q is a Sufficient Statistic for (q , y) with respect to a ∈ A if
and only if the conditional density of (q, y) is multiplicative separable
in y and a:

f(q, y|a) = g(q, y) · h(q|a) .
We say that y is informative about a if q is not a sufficient statistic as
defined above.

This is a statistical property which says that when we want to make an
inference about the random variable. ã, if q is a sufficient statistic as above
then we can ignore y. (Again, remember that here a is known in equilibrium,
but we have the same flavor of a statistical inference problem.) We thus have
the following proposition:

Proposition 4.6: Assume that the first order approach is valid. y should
be included in the incentive scheme if and only if y is informative about
a.
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Consider the case where q is a sufficient statistic for (q, y) as defined
above. We can interpret this result as follows. Given a choice a ∈ A, we can
think of q being a r.v. whose distribution is dependent on a, and then, once q
is realized (but maybe not yet revealed,) then y is a r.v. whose distribution is
dependent on q.This can be depicted using the following “causality” diagram,

a
eε→ q

eη→ y ,

that is, given a, some random shock eε determines q, and given the realized
value of q, some random shock eη, which is independent of a, determines y.
Thus, y is a noisier signal of a compared to q, or we say that y is a garbling
of q.

Corollary 4.3: If q is a sufficient statistic then, if the principal is restricted
to contract on one signal then I(q) is better than I(y) for the principal.

Corollary 4.4: Random compensation schemes are not optimal (for the sep-
arable utility case.)

The second corollary follows since a random incentive scheme eI(x) is a
payment based on a r.v. y which is independent of a, making q a sufficient
statistic. (If the agent’s utility isn’t separable in q and a, then the agent’s
risk attitude depends on a, and randomizations of the incentive scheme may
be beneficial for the principal.)

5.6 Incentives in Teams: Group Production

We now explore the situation in which several agents together produce some
output. The following model is based on section 2 in Holmstrom (1982a):

• Consider a group of n agents, each choosing an action ai ∈ Ai ⊂ <, for
i ∈ {1, 2, ..., n}.

• Output is given by x(a1, a2, ..., an, ε) ∈ <, where ε is some random
noise. For now we will perform the analysis with no noise, that is, set
ε = 0.We assume that ∂x

∂ai
> 0 ∀i, and ∀ai, that is, output is increasing

in each agent’s action (effort.) Finally, assume that x(·) is concave so
that we can restrict attention to interior solutions.
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• Agent’s utilities are given by ui(mi, ai) = mi− gi(ai) where mi denotes
monetary income, and gi(ai) is the private cost of effort, with g0i > 0,
and g00i > 0. (Note that agents are risk neutral in money.) Let ui be
outside option (which determines each agent’s IR).

5.6.1 First Best: The Planner’s Problem

Assume that there are no incentive problems, and that a planner can force
agents to choose a particular action (so we are also ignoring IR constraints.)
The first best solution maximizes total surplus, and solves,

max
a1,...,an

x(a1, ..., an)−
nX
i=1

gi(ai)

which yields the FOCs,

∂x(a)

∂ai
= g0i(ai) ∀ i = 1, ..., n . (5.7)

That is, the marginal benefit from agent i’s action equals the marginal private
cost of agent i.

5.6.2 Second Best: The “Partnership” Problem

Consider the partnership problem where the agents jointly own the output.
Assume that the actions are not contractible and the agents must resort to
an incentive scheme {si(x)}ni=1 under the restriction of a balanced budget
(“split-the-pie”) rule:

nX
i=1

si(x) = x ∀x , (5.8)

and we also impose a “limited liability” restriction,

si(x) ≥ 0 ∀x . (5.9)

(We will also assume that the si(x) functions are differentiable in x. This is
not necessary and we will comment on this later.)
We solve the partnership problem using Nash Equilibrium (NE), and it

is easy to see that given an incentive scheme {si(x)}ni=1 ,any NE must satisfy,

s0i(x) ·
∂x

∂ai
= g0i(ai)
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Question: Can the Partnership achieve FB.?

For the partnership to achieve FB efficiency, we must find an incentive
scheme for which the NE coincides with the FB solution. That is, from the
FOC of the FB problem, (5.7) above, we must have s0i(x) ≡ 1 ∀x, and ∀ i,
which implies that

nX
i=1

s0i(x) = n.

But from (5.8) we have
nX
i=1

s0i(x) = 1 ∀x ,

which implies that a budget balanced partnership cannot achieve FB effi-
ciency. The intuition is standard, and is related to the “Free riding” problem
common to such problems of externalities.

Question: How can we solve this? (in the deterministic case)

One solution is to violate the budget balanced constraint, (5.8) above, by
letting

P
si(x) < x for some levels of output x.

Example 4.1 Consider the following incentive scheme:

si(x) =

½
s∗i if x = x∗FB
0 if x 6= x∗FB

where s∗i is arbitrarily chosen to satisfy:
Pn

i=1 s
∗
i = x∗FB , and s∗i >

gi(a
∗
i ) ∀ i. (This can be done if we assume that ui = 0 ∀i .) It is easy

to see that this scheme will yield the FB as a NE for the case where
gi(0) = 0 ∀ i, x(0, ..., 0) = 0, and

Pn
i=1 g

0
i(0) <

Pn
i=1

∂x(0,...,0)
∂ai

. (these
are just Inada conditions that guarantee the solution.) ¤

1. One problem with the scheme above is that there are multiple NE.
For example, ai = 0 ∀ i is also a NE given the scheme above.

2. A second problem is that this scheme is not credible (or, more pre-
cisely, not renegotiation proof.) If one agent “slacks” and x < x∗

is realized, then all agents have an incentive to renegotiate. That
is, in the scheme above,

Pn
i=1 si < 0 is not ex-post efficient off the

equilibrium path. Thus, with renegotiation we cannot achieve FB
efficiency for partnerships.
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3. As mentioned above, we do not need si(x) to be differentiable in
x. See the appendix in Holmstrom 1982a. (That is, the inability
to achieve FB is more general.)

5.6.3 A solution: Budget-Breaker Principal

We now introduce a new, (n+1)th agent to the partnership who will play the
role of the “Budget-Breaker.” This is a theoretical foundation for the famous
paper by Alchian and Demsetz (1972). The idea in Alchian and Demsetz is
that if we introduce a monitor to the partnership problem, then this monitor
(or “principal”) will make sure that the agents do not free ride. The question
then is, who monitors the monitor? Alchian and Demsetz argue that if the
monitor has residual claims, then there will be no need to monitor him.
One should note, however, that there is no monitoring here in Holmstrom’s
model. This is just another case of an “unproductive” principal who helps
to solve the partnership problem.

Example 4.2: Consider a modification of Example 4.1 where we add a prin-
cipal (budget breaker), denoted by n + 1, and modify the incentive
scheme as follows:

si(x) =

½
s∗i if x ≥ x∗FB
0 if x < x∗FB

for i = 1, ..., n;

sn+1(x) =

½
x− x∗FB if x ≥ x∗

x if x < x∗

In equilibrium,
n+1X
i=1

si(x) = x∗FB,

and sn+1(x
∗
FB) = 0.¤

Add Uncertainty: ε 6= 0

If agents are risk neutral, then it is easy to extend the previous analysis
to see that a partnership cannot achieve FB efficiency in a NE. (As before,
we will get under-provision of effort in any NE.) It turns out that adding
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a Budget-Breaker will help achieve FB efficiency as the following analysis
shows. Denoted the principal by n+ 1, and consider the incentive scheme,

si(x) = x− k ∀ i = 1, ..., n
sn+1(x) = nk − (n− 1)x

where k is chosen so that

(n− 1)
Z
x

xf(x, a∗FB)dx = nk ,

which guarantees that at the FB solution, the (n+1)th agent breaks even in
expectation. Under this scheme, each agent i = 1, ..., n solves,

max
ai

E[x(a1, ..., an)]− k − g(ai) ,

which yields the FOC,

∂Ex(a1, ..., an)

∂ai
= g0i(ai) ,

which is precisely the FB solution.
The intuition is simple: This is exactly like a Groves Mechanism. Each

agent captures the full extent of the externality since the principal “sells”
the entire firm to each agent for the price k.

1. If the principal is risk-averse we cannot achieve FB efficiency as demon-
strated above in the case with uncertainty. This follows since the
principal will be exposed to some risk, and since he breaks even
in the sense of expected utility then there is a reduction in total
expected social surplus.

2. A problem in this setup is collusion: Agent i can go to the princi-
pal and say: “If I choose a∗i you get zero, so we can split x after I
choose ai = 0.” This is very different from the problem of renego-
tiation proofness in the partnership problem. For collusion to be
a problem we must have “secret” side-contracts between the prin-
cipal and some agent. These issues are dealt with in the collusion
literature.
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3. Legros-Matthews (1993) extended Holmstrom’s results, and they
established necessary and sufficient conditions for a Partnership
(with no budget-breaker) to achieve FB. Some interesting cases in
their analysis are:

Case 1: Ai finite and x(·) being a generic function. In this case
if only one agent deviates then it will be clear who it was,
so we can achieve FB without then problem of renegotiation.
For example, consider the incentive scheme (ignoring IR con-
straints,)

si(x) =

⎧⎨⎩
x
n

if x = x∗
1

n−1(F + x) if x 6= x∗ and j 6= i deviated
−F if x 6= x∗ and i deviated

(In fact, it is enough to know who didn’t deviate to do some-
thing similar.)

Case 2: Ai = [ai, ai] ⊂ < is compact, and a∗ ∈ (ai, ai) (i.e., an
interior FB solution). In this case we can have one agent, say
i, randomize between choosing a∗i with high probability and
some other action with low probability, and all other agents
will a∗j for sure. We can now achieve actions that are ar-
bitrarily close to the FB solution with appropriate schemes.
As Pr{ai = a∗i } → 1, we approach the FB solution. Note,
however, that there are two criticisms to this case: First, as
Pr{ai = a∗i }→ 1, we need fines for “bad” outcomes that ap-
proach −∞ to support the FB choice of actions, and second,
do we really think that agents randomize?

5.6.4 Relative Performance Evaluations

This is the second part of Holmstrom (1982a). The model is setup as follows:

• Risk neutral principal

• n risk averse agents, each with utility over income/action as before,
ui(mi, ai) = ui(mi)− gi(ai), with u0 > 0, u00 < 0, g0 > 0, and g00 > 0.

• y = (y1(a), y2(a), ..., ym(a)) is a vector of random variables (e.g., out-
puts, or other signals) which is dependent on the vector of actions,
a = (a1, a2, ..., an).
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• E(x|y, a) denotes the principal’s expected profit given the actions and
the signals. (Thus, we can think of y as signals which are interdepen-
dent through the ai’s and some noise, and x maybe part of y.)

• G(y, a) denotes the distribution of y as a function of a with g(y, a)
being the density.

The principal’s problem is therefore,⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

max
a,s1(y),...,sn(y)

Z
y

∙
E(x|y, a)−

nP
i=1

si(y)

¸
dG(y, a)

s.t.
Z
y

ui(si(y))dG(y, a)− gi(ai) ≥ ui ∀ i (IR)

ai ∈ arg max
a0i∈Ai

Z
y

ui(si(y))dG(y, (a
0
i, a−i))− gi(a

0
i) ∀ i (IC)

(Note that if x is part of y then E(x|y, a) ≡ x.)

Definition 4.4: A function Ti(y) is a sufficient statistic for y with respect
to ai if there exist functions hi(·) ≥ 0 and pi(·) ≥ 0 such that,

g(y, a) = hi(y, a−i)pi(Ti(y), a) ∀ (y, a) ∈ support(g(·, ·))

The vector T (y) = (T1(y), ..., Tn(y)) is sufficient for y with respect to a
if each Ti(y) is sufficient for y with respect to ai.

This is just an extended version of the sufficient statistic definition we
saw for the case of one agent. For example, if each Ti(y) is sufficient for y
with respect to ai, we can intuitively think of this situation as one where each
ai generates a random variable Ti(y), and y is just a garbling of the vector
of random variables, T (y) = (T1(y), ..., Tn(y)), or as the figure describes the
process,

a1
noise→ T1(y)

...
...

an
noise→ Tn(y)

⎫⎪⎬⎪⎭ noise→ y
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Proposition 4.7: (Holmstrom, Theorem 5) Assume T (y) = (T1(y), ..., Tn(y))
is sufficient for y with respect to a. Then, given any collection of incen-
tive schemes {si(y)}ni=1 , there exists a set of schemes {esi(Ti(y))}ni=1 ,
that weakly Pareto dominates {si(y)}ni=1

Proof: Let {si(y)}ni=1 implement the Nash equilibrium (a1, ..., an), and con-
sider changing i’s scheme from si(y) to s̃i(Ti) as defined by:

ui(s̃i(Ti)) ≡
Z

{y:Ti(y)=Ti}

ui(si(y))
1

pi(Ti, a)
· g(y, a)dy

=

Z
{y:Ti(y)=Ti}

ui(si(y))hi(y, a−i)dy

By definition, (ICi) and (IRi) are not changed since agent i’s expected
utility given his choice ai is unchanged. Also,

s̃i(Ti) ≤
Z

{y:Ti(y)=Ti

si(y) · hi(y, a−i)dy ,

because u00 < 0, and Ti is constant whereas si(y) is random given Ti.
Integrating over Ti :Z

y

s̃i(Ti(y))g(y, a)dy ≤
Z
y

si(y)g(y, a)dy .

This can be done for each i = 1, ..., n while setting the actions of j 6= i
as given (to preserve the NE solution), and by offering {s̃i(Ti)}ni=1 the
principal will implement (a1, ..., an) at a (weakly) lower cost. Q.E.D.

The intuition is the same as for single agent in Holmstrom (1979): The
collection (T1, ..., Tn) gives better information than y. Thus we can think of
y as a garbling (or even a mean-preserving spread) of the vector T (y).
Yet again, this looks like a statistical inference problem, but it is not;

it is an equilibrium problem. It turns out that the “mechanics” of optimal
incentives look like the mechanics of optimal inference. This is like “reverse
engineering”; we use to the statistical inference properties that a would cause
on T (y), and use incentive based on these properties to make sure that the
agents will choose the “correct” a.
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Application: Yardstick Competition

We return to the simple case of x = y, so that the signal is profits, but
consider the restricted case in which:

x(a, θ) =
nX
i=1

xi(ai, θi).

That is, total profits equal the sum of individual profits generated by each
agent individually, and each agent’s profits are a function of his effort and
some individual noise θi, where θi, θj may be correlated.

Proposition 4.8: If θi and θj are independent for all i 6= j, and xi is in-
creasing in θi, then {si(xi)}ni=1 is the optimal form of the incentive
schemes.

Proof: Let fi(xi, ai) be the density of xi given ai. Then define:

g(x, a) =
nY
j=i

fj(x1, a1) ,

pi(xi, a) = fi(xi, ai) ,

hi(x, a−i) =
Y
j 6=i

fj(xj, aj) ,

and apply Proposition 4.7. Q.E.D.

Now consider a different scenario: Let xi = ai + εi + η, where

εi ∼ N(0,
1

τ i
) ∀ i = 1, ..., n

is an idiosyncratic noise that is independent across the agents, and

η ∼ N(0,
1

τ 0
)

is some common shock. Therefore, we don’t have independence as in the
previous paragraph. (Note, we use the notion of precision, which is expressed
by the τ i’s. These are the inverse of variance, τ i ≡ 1

σ2i
; the more precision a

signal has, the less is its variance.)
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Proposition 4.9: Let

αi =
τ iPn
j=1 τ j

, ∀ i = 1, ..., n ,

x =
nX
i=1

αixi

then, in this scenario, si(xi, x) is the optimal form of the incentive
scheme.

Proof: We prove this using the sufficient statistic result. Since xi = ai+η+εi
then εi = xi − ai − η, and we can write:

F (x̂1, ..., x̂n, a) =

k

∞Z
−∞

⎡⎢⎢⎢⎢⎢⎣
x̂1−a1−ηZ
−∞

e−
1
2
τ1ε21dε1| {z }

·

I1

x̂2−a2−ηZ
−∞

e−
1
2
τ2ε22dε2...| {z }

I2

· · ·
x̂n−an−ηZ
−∞

e1
1
2
τnε2ndεn| {z }

In

⎤⎥⎥⎥⎥⎥⎦ e−
1
2
τ0η2dη

each of the inner integrals, Ii, can be written as:

Ii =

x̂iZ
−∞

e−
1
2
τ i(xi−ai−η)2dxi

To obtain f(x̂1, ..., x̂n, a) we need to partially differentiate F (·) with
respect to x̂i, for i = 1, ..., n sequentially, which yields:

f(x, a) =

∞Z
−∞

e−
1
2 [
Pn

j=1 τj(xj−aj−η)2+τ0η2]dη
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Let τ−i =
P
j 6=i

τ j and z−i =
P
j 6=i

τj
τ−i
(xj − aj) and note that:

nX
j=1

τ j(xj − aj − η)2

=
X
j 6=i

τ j[

Ajz }| {
(xj − aj − z−i) +

Bz }| {
(z−i − η)]2 + τ i(xi − ai − η)2

=
X
j 6=i

τ j(xj − aj − z−i)
2 +

X
j 6=i

τ j(z−i − η)2 + τ i(xi − ai − η)2 −

=0z }| {X
j 6=i

τ j2AjB

where the last term is equal to zero because B is independent of j so,P
j 6=i

τ j2AjB = 2B
P
j 6=i

τ jAj , and it is easy to check that
P
j 6=i

τ jAj = 0. So

we have,

f(x, a) =

∞Z
−∞

e
1
2
[
P
j 6=i
(xj−aj−z−i)2

· e
− 1
2
[
P
j 6=i
(z−i−η)2+τ i(xi−ai−η)2+τ0η2]

dη

= e
1
2
[
P
j 6=i
(xj−aj−z−i)2]

·| {z }
h(x,a−i)

∞Z
−∞

e
− 1
2
[
P
j 6=i
(z−i−η)2+τ i(xi−ai−η)2+τ0η2]

dη

| {z }
p̂i(z−i,xi,ai,η)

Letting τ ≡
nP

j=1

τ j , we can write,

z−i =
1

τ−i

X
j 6=i

τ jxj −
X
j 6=i

τ jaj
τ−j

=
τ

τ−i · τ

"Ã
nX

j=1

τ jxj

!
− τ ixi

#
−
X
j 6=i

τ jaj
τ−i

=
τ x− τ ixi

τ−i
−
X
j 6=i

τ jaj
τ−i

So we can rewrite p̂i(z−i, xi, ai, η) as pi(x, xi, a, η) and we can now apply
the sufficient statistic result from Proposition 4.7. Q.E.D.
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(Note: having the εi’s with mean is not crucial, we can have εi = μi+ ε0i ,
where ε0i ∼ N(0, 1

τ i
) which gives us any mean we wish.)

>From the two scenarios we saw, we can conclude that competition (via
rank-order tournaments, e.g., s(xi, x) as the incentive scheme) is not useful
per-se but only as a way of getting more information. With independent
shocks relative performance schedules only add noise and reduce the princi-
pal’s profits. Thus, if we believe that Mutual fund managers face some com-
mon shock as well as an idiosyncratic shock, then we should see “yardstick
competition.” In a firm, however, if two divisions have unrelated technol-
ogy (no common shock), then the division managers should not have relative
evaluation schemes.

1. There is a literature on tournaments, e.g., Lazear-Rosen (1981), which
showed that rank-order tournaments can increase effort [also, Green-
Stokey (1983), Nalebuff-Stiglitz (1983)]. However, from Holm-
strom we see that only under very restrictive conditions will rank-
order tournaments be optimal (for this, ordinal rankings need to
be a sufficient statistic.)

2. In all the multi-agent literature it is assumed that the princi-
pal chooses her “preferred” Nash Equilibrium if there are sev-
eral. Mookherjee RES 1984 demonstrated that there may be a
NE that is better for the agents. Consider the following exam-
ple: i ∈ {1, 2}, ai ∈ {aL, am, aH}, gi(aL) < gi(am) < gi(aH),
and xi = ai + η. (This is an “extreme” case of a common shock
with no individual shock.) Assume that (am, am) is FB optimal
choice for the principal. The principal can implement the FB with
a rank-order tournament:

si =

½
u−1i (gi(am) + u) if xi ≥ xj
u−1i (gi(aL) + u− δ) if xi < xj

It is easy to see that (am, am) is a NE implemented at the FB cost
(agent’s IR is binding). Notice, however, that (aL, aL) is also a
NE, and the agents strictly prefer this because then,

ui = gi(am) + u− gi(aL) > u .

(We can overcome this problem if we can find two payments,
swin > stie, such that

gi(am)− gi(aL) ≤ u−1i (swin)− u−1i (stie) ≤ gi(aH)− g(am)
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and we can use the scheme swin > stie > slose.)

3. Ma (1988) suggested a way of getting around the multiple NE
problem: use an indirect mechanism and employ subgame-perfect-
implementation (can also use Nash implementation with integer-
games à la Maskin):

Stage 1 : players choose (a1, a2) which is observable to them

but not to the principal

Stage 2 : player 1 can “protest” (p) or “not protest” (np)

Stage 3 : xi’s realized, si’s played to agents.

where,

si(x1, x2,np) =

⎧⎨⎩ u−1i (gi(am) + u+ γ) if xi > xj
u−1i (gi(am) + u) if xi = xj
u−1i (gi(aL) + u− δ) if xi < xj

s1(x1, x2, p) = s1(x1, x2,np) +

>0 iff a2=aHz }| {
α[x2 −E(x2|a2 = am)](α small)

s2(x1, x2, p) = u−12 (g2(aL) + u− β), (β large)

So, player 1’s best response (BR) to a2 ∈ {aL, am} is “NP”, and
a1 = am would be the BR ex-ante. Look at Normal Form, and it
is easy to see that ((am, “NP”), am) is the unique NE (also SPE).

figure here

Note: It is important that (a1, a2) are observable by (at least)
agent 1. If not, we can’t use the standard implementation ap-
proach and can’t get FB (see Ma).
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5.7 Dynamic Models

5.7.1 Long-Term Agency Relationship

In the Adverse-Selection (hidden information) models we saw that long-term
commitment contracts will do better than short-term contracts (or Long-
Term renegotiable contracts).
Stylized facts: Sequences of short-term contracts are common, e.g.,

piece-rates for laborers and sales commissions for sales representatives. That
is, many schemes pay for per period performance.

Question: When will Short-Term contracts be as good as Long-Term?

This question is addressed by Fudenberg-Holmstrom-Milgrom (1990) (FHM
hereafter.) We will outline a simplified version of FHM. Consider a 2-period
relationship. In each period t ∈ {1, 2} we have the sequence of events as
described by the following time line:

Figure here

The technology is given by the following distributions: In period t, the
agent exerts effort (action) at, and the output, xt, is distributed according to
x1 ∼ F1(x1|a1), and x2 ∼ F2(x2|a1, a2, x1, σ1), where σ1 is a signal observed
by the agent. That is, second period technology can depend on all previous
variables.

1. No discounting (no interest on money)

2. Agent has all the bargaining power. (Note that this will cause our
program to look different with respect to individual rationality,
but the essence of the moral hazard problem is unchanged, and
we still need an incentive constraint for the agent. Now, however,
the individual rationality constraint will be for the principal.)

Given the dynamic nature of the problem, let a = (a1, a2(a1, σ1, x1)) be
an action plan for the agent that has his second period action dependent on
all first period observables. (These are observables to him, not necessarily
to the principal.) Let c = (c1(σ1, x1), c2(a1, σ1, σ2, x1, x2)) be a (contingent)
consumption plan for the agent.

Assumption A1: xt and st are observable and verifiable (contractible)
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(This is also A1 in FHM.) Assumption A1 implies that a payment plan
(incentive scheme) will take the form s = (s1(x1), s2(x1, x2)).
We allow the agent’s utility function to take on the most general form,

U(a1, a2, c1, c2, σ1, σ2),

and the principal’s utility is given by (undiscounted) profits,

π = x1 − s1 + x2 − s2 .

A Long-Term-Contract (LTC) is a triplet, ∆ = (a, c, s), where (a, c) are
the agent’s “suggested” plans, and s is the payment plan. The agent’s ex-
pected utility, and the principal’s expected profits given a LTC ∆ are:

U(∆) = E[U(a, c, σ)|a]
π(∆) = E[x1 − s1(x1) + x2 − s2(x1, x2)|a]

Definition 4.5: We say that a LTC ∆ is:

1. Incentive Compatible (IC) if (a, c) ∈ argmax
â,ĉ

E[U(â, ĉ, σ)|â]

2. Efficient if it is (IC) and if there is no ∆̃ such that π(∆̃) ≥ π(∆)
and U(∆̃) ≥ U(∆) with at least one strict inequality.

3. Sequentially Incentive Compatible (SIC) if given any history of the
first period, the continuation of ∆ is IC in the second period.

4. Sequentially Efficient if it is (SIC), and, given any history of the
first period, the continuation of ∆ is efficient in the second period.

(Note: (3) and (4) in the definition above need to be formally defined
with continuation utilities and profits. This is done in FHM, but since the
idea is quite clear we will skip the formalities.)
We will now set up a series of assumptions that will guarantee that ST

contracts (to be defined) will do as well as LTC’s: (The numbering of the
assumptions are as in FHM).

Assumption A3: The agent and the principal have equal access to banks
between periods at the competitive market rate (δ = 1).
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Implication: the agent has a budget constraint:

c1 + c2 = s1(x1) + s2(x1, x2).

Assumption A4: At the beginning of each period t, there is common knowl-
edge of technology.

Implication: F (x2|a1, a2, x1, σ1) = F (x2|a2, x1), or, (x1, a2) is a sufficient
statistic for (x1, a2, a1, σ1) with respect to x2. That is, information provided
by x1 is sufficient to determine how a2 affects x2. A simple example of this
assumption is the common time-separable case: F2(x2|a2), which implies that
the periods are independent in technology.

Assumption A5: At the beginning of each period there is common knowl-
edge of the agent’s preferences over the continuation plans of any (a, c, s).

Implications:

1. U(a, c, σ) cannot depend on σ (that is, there is no hidden information,
or “types”, in period 2.)

2. The continuation plan at t = 2 cannot depend on a1.

3. The continuation plan at t = 2 cannot depend on c1, if c1 is not
observable to the principal.

For simplicity we will assume that the agents utility function is given by
(this satisfies A5):

U(·, ·) = v1(c1)− g1(a1) + v2(c2)− g2(a2)

with the standard signs of the derivatives, v
0
t > 0, v

00
t < 0, g

0
t > 0, and

g
00
t > 0. Thus, from now on we can ignore σ as if it did not exist (to satisfy
A4 and A5.)
The importance of A4 and A5 is that they guarantee no “adverse selec-

tion” at the negotiation stage in period t = 2. (That is, at the re-contracting
stage of any LTC.) We will later see examples of violations of these two
assumptions, and the problems that are caused by these violations.
Given any continuation of a SIC contract, let UPS(at, xt) denote the

utility possibility set given the history (at, xt). (For a0, x0 this is not history
dependent since there is no history before t = 1.) Let π = UPF (u|a1, x1)
denote the frontier of the UPS.
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Assumption A6: For every (at, xt), the function UPF (u|at, xt) is strictly
decreasing in u.

Implication: The full set of incentives can be provided by efficient con-
tracts (If the frontier were not strictly decreasing, we cannot keep the agent’s
utility fixed at u0 and move to an efficient point.)

2Figures here

We now turn to the analysis of LTC’s and STC’s.

Definition 4.6: We say that a LTC ∆ is optimal if it solves,⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
max
s,a,c

Ex1,x2 [v1(c1(x1))− g1(a1) + v2(c2(x1, x2))− g2(a2)|a]
s.t. (a, c) ∈ argmax

a1,a2,c1,c2

Ex1,x2 [v1(c1))− g1(a1) + v2(c2)− g2(a2)|a] (ICA)

s1(x1) + s2(x1, x2) = c1(x1) + c2(x1, x2) (BCA)
Ex1x2 [x1 − s1(x1) + x2 − s2(x1, x2)|a] = 0 (IRP )

Notes:

1. (IRP ) must bind because of A6 (downward sloping UPF)

2. A6 and (IRP ) binding imply that if the solution is optimal then it must
be efficient.

3. We restrict attention to choices as functions only of the xt’s, since we
ignore the σ’s to satisfy A4 and A5.

Short-Term Contracts

A sequence of short-term contracts (STC) will specify one contract, ∆1 =
(a1, c1(x1), s1(x1)), at t = 1, and given a realization of x1, the parties will
specify a second contract, ∆2 = (a2, c2(x2), s2(x2)), at t = 2.

Fact: Since ∆2 depends on the realization of x1, if the parties are rational,
and A4-A5 are satisfied, then parties can foresee the contract ∆2 for
every realization of x1.
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This fact is straightforward, and it implies that for convenience, we can
think of ∆ as a complete contingent plan, ∆ = (∆1,∆2), where,

∆1 = (a1, c1(x1), s1(x1)) ,

∆2 = (a2(x1), c2(x1, x2), s2(x1, x2)) .

Question: What is the difference between such a complete contingent plan
and a LTC?

The answer is that in a LTC, the agent can commit to∆2 ex-ante, whereas
with STC’s this is impossible. However, players can foresee ∆2 that will arise
in a sequence of STC’s.
To solve for the optimal sequence of STC’s we will work backward (i.e.,

use dynamic programming.) At t = 2, for every (x1, s1, c1) the agent finds
the optimal ∆∗2 by solving:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

max
{a2(x1),c2(x1,·)s2(x1,·)}

Ex2[v2(c2(x1, x2))− g2(a2(x1))|a2(x1)]

s.t. a2(x1), c2(x1, ·) ∈ argmax
a2,c2

Ex2[v2(c2)− g2(a2))|a2] (IC2A)
s1 + s2(x1, ·) = c1 + c2(x1, ·) (BCA)

Ex2[x2 − s2(x1, x2)|a2(x1)] = 0 (IR2P )

Since the agent has perfect foresight at date t = 1, then anticipating c2(x1, ·), a2(x1, ·)
correctly he finds the optimal ∆∗1 by solving:⎧⎪⎪⎨⎪⎪⎩

max
∆=(s,c,a)

Ex1,x2 [v1(c1(x1))− g1(a1) + v2(c2(x1, x2))− g2(a2(x1))|a]

s.t. (a1, c1(x1)) ∈ argmax
a1,c1

Ex1x2 [v1(c1)− g1(a1) + v2(c2(x1, x2))− g2(a2(x1))|a] (IC1A)
Ex1[x1 − s1(x1)|a1] = 0 (IR1p)

Notes:

1. The agent’s budget constraint, (BCA), is only relevant at t = 2.

2. (IR1P ) depends only on x1, s1(x1), since perfect foresight implies that
E[π2] = 0. (This need not hold for LTC’s since the principal must break
even over the whole relationship, andmay have positive expected profits
in one period for some histories, and negative expected profits in the
other cases.)
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3. Expectations about ∆∗2 are correct.

Proposition 4.10: (Theorem 2 in FHM) Under (A1) [verifiability], (A4)
and (A5) [common knowledge of technology and preferences] and (A6)
[decreasing UPF] any efficient LTC can be replaced by a sequentially
efficient LTC which provides the same initial expected utility and profit
levels.

Proof: Suppose ∆ is an efficient LTC that is not sequentially efficient.
⇒ ∃ x̂1 such that the continuation a2(x̂1), c2(x̂1, x2), s2(x̂1, x2) is not
efficient. ⇒ ∃ ∆0

2 (a different continuation contract) which Pareto dom-
inates ∆2 after x̂1. Now, (A6) ⇒ ∃ ∆0

2 that gives the same expected
continuation utility to the agent with a higher expected profit to the
principal.

Figure Here

Construct a new LTC e∆ s.t. e∆1 = ∆1, and,

∆̃2(x1) =

½
∆0
2(x1) if x1 = x̂1

∆2(x1) if x1 6= x1

i.e., the same as ∆, but with continuation ∆0 after x̂1. ⇒ the agent’s
continuation utilities are unchanged, ⇒(ICA) is preserved, and this is
common knowledge from (A4) and (A5). The principal strictly prefers
the new continuation contract so (IRP ) is preserved since the principal
is ex-ante weakly better off. (If she were strictly better off then∆ could
not have been efficient.) So, ∆̃ is sequentially efficient and gives the
same U0, π0. Q.E.D.

Intuition: Just like complete Arrow-Debreu contingent markets.

Note: The reason the principal is only weakly better off (i.e., indifferent) is
that the efficient LTC can be not sequentially efficient only for zero-
probability histories. (e.g., continuous output space with a finite num-
ber of such histories, or histories that are off the equilibrium path.)

Question: What is the difference between an optimal sequentially efficient
LTC and a series of optimal STC’s?
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In the series of optimal STC’s the principal’s rents are zero in every period,
regardless of the history, whereas along the “play” of an optimal sequentially
efficient LTC the principal may have different expected continuation profits
for different histories at times t 6= 1.

Definition 4.7: A sequentially efficient LTC which gives the principal zero
expected profits conditional on any history is called sequentially opti-
mal.

Observation: If ∆ is a sequentially optimal LTC, then its per-period con-
tinuation contracts constitute a sequence of optimal STC’s.

Proposition 4.11: (Theorem 3 in FHM) Under the assumptions of Propo-
sition 4.10, plus assumption A3 (equal access to banking,) then any
optimal LTC can be replaced by a sequence of optimal STC’s.

Proof: From Proposition 4.10 we know that there exists a sequentially effi-
cient LTC that replaces the optimal LTC, so we are left to construct
a sequentially efficient LTC with zero-expected profits for the princi-
pal at time 2, for any history of the first period. Given a sequentially
efficient contract ∆, define:

π2(x1) = Ex2 [x2 − s2(x1, x2)|a2(x2)]

and assume that for some histories π2(x1) 6= 0 (if π2(x1) = 0 for all x1,
then we are done.) Using A3, we can define a new contract b∆, such
that

ŝ1(x1) = s1(x1)− π2(x1),

ŝ2(x1, x2) = s2(x1, x2) + π2(x1) ∀ (x1, x2) ,

and leave ct(·)’s and a2(·) unchanged. By construction we have the
following four conditions:

1. (BCA) is satisfied (both for the LTC b∆ at t = 1, and for the
resulting STC’s at t = 2.)

2. For all x1 :

Ex2 [x2 − ŝ2(x1, x2)|a2(x1)] = Ex2 [x2 − s1(x1, x2)− π2(x1)|a2(x1)]
= π2(x1)− π2(x1)

= 0.



CHAPTER 5. THE PRINCIPAL-AGENT MODEL 136

3. The agent’s incentives are unchanged since the ct(·)’s are un-
changed. (And, they need not be changed since (BCA) is sat-
isfied.)

4. ex ante we have,

Ex1 [x1 − ŝ1(x1)|a1] = Ex1[x1 − s1(x1) + π2(x1)|a1]
= Ex1x2 [x1 − x1(x1) + x2 − s2(x1, x2)|a1, a2(x1)]

= 0

where the last equality follows from ∆ being an optimal sequen-
tially efficient LTC.

But notice that (1)-(4) above imply that b∆ is sequentially optimal. Q.E.D.

Violating the Assumptions:

Case 1: Consumption not observable. This violates A5, that is, there
is now no common knowledge of the agent’s preferences at t = 2. This
will cause a violation of Proposition 4.11, and an example is given in
FHM, example 2.

Case 2: Agent cannot access bank. This is the case in Rogerson (1985).
Restrict st ≡ ct, so that the agent cannot borrow or save. In this case
the agent would optimally like to “smooth” his consumption across
time, so the principal is performing two tasks: First, she is giving the
agent incentives in each period, and second, she is acting as a “bank”
to smooth the agent’s consumption. Rogerson looks at a stationary
model and shows that under these assumptions optimal LTC’s have
s2(x1, x2) and not s2(x2), that is, memory “matters”. The intuition
goes as follows: If for a larger x1 the principal wants to give larger com-
pensation, then both s1(x1) and s2(x1, ·) should rise. We need LTC’s
to commit to this incentives scheme, because with STC’s the principal
cannot commit to increase s2(·) when x1 is larger. Rogerson also looks
at consumption paths given different conditions on the agent’s utility
function.

Case 3: No common knowledge of tecnology. That is,

x2 ∼ F2(x2|x1, a1, a2)
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in which case the agent’s action in the first period affects the second
period’s technology. Consider the simple case where x1 = a2 ≡ 0, and
a1 ∈ {aL, aH} with g(aH) > g(aL).

Figure Here

Suppose that a1 = aH is the optimal second-best choice the principal
wants to implement, and at the time of negotiation 2 (or renegotiation,)
the principal does not observe a1. The optimal LTC is one in which
s(x2) has the agent exposed to some risk, so that he has incentives
to choose aH . Note, however, that the optimal sequence of STC’s is
as follows: At t = 1, s1 is a constant (there is nothing to condition
on). At t = 2, s2 must be a constant as well, which follows from the
fact that the effort was already taken, and efficiency dictates that the
principal should bear all the risk (ex-post efficient renegotiation.) This
implies that if renegotiation is possible after effort has been exerted, but
before outcome has been realized, then the only ex-post credible (RNP)
contract has s(x) being a constant, and no incentives are provided. This
is exactly what Fudenberg and Tirole (1990) analyze. The optimal LTC
of the standard second best scenario is not sequentially efficient, or, is
not RNP. This implies that with renegotiation we cannot have the agent
choosing aH with probability 1. The solution is as follows: The agent
chooses aH with probability pH < 1, and aL with probability 1 − pH .
At the renegotiation stage the principal plays the role of a monopolistic
insurer (à la Stiglitz), and a menu of contracts is offered so that it is
RNP ex-post (at the stage of negotiation 2 in the figure above). This
is demonstrated by the following figure:

Figure Here

Other Results on Renegotiation in Agency

Hermalin and Katz (1991) look at following case (and more...):

Figure Here

The optimal LTC without renegotiation is the standard second-best s(x).
Any sequence of STC’s has the same problem as Fudenberg and Tirole (1990).
Hermalin and Katz consider a combination of ex-ante LTC in which renegoti-
ation occurs on the equilibrium path. In the case where the agent’s action is
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observable and verifiable (in contrast to some signal, y, of the action a) then
FB is achieved with LTC and renegotiation. The procedure goes as follows:

1. At t = 0 the principal offers the agent a risky incentive scheme, s(x),
that implements a∗FB. That is, the solution to the first stage in the
Grossman-Hart decomposed process, which is not the SB standard con-
tract but rather the lowest cost contract to implement a∗FB.

2. Given any choice a ∈ A that the agent actually chose, at t = 2 the
principal offers the agent a constant ŝ that is the certainty-equivalent
of s(x). That is, she offers ŝ = E[v(s(x)|a], which implies that the
agent’s continuation utility is unchanged, so choosing a∗FB after t = 0
is still optimal, and there is no ex-post risk. Thus, the FB is achieved.

Hermalin and Katz (1991) also looks at a signal y 6= a being observable
and not verifiable. If y is a sufficient statistic for x with respect to a, then
we can implement s(y) in the same fashion and improve upon s(x).

Question: If renegotiation outside the contract helps, does this mean that
the RNP principal is not applicable here?

The answer is no. We can think of renegotiation as a bargaining game
where the principal makes take-it-or-leave-it offers. Then, this process can
be written into the contract as follows: The principal offers s(x) and the
agent accepts/rejects, then the principal offers ŝ and agent accepts/rejects.
Thus, we put renegotiation into the contract. (Note that we can alternatively
havemessage-game that replicates the process of renegotiation: after s(x) has
been offered, and a has been chosen, both the principal and agent announce â,
and if their announcements coincide then ŝ is awarded. If the announcements
are different, both parties are penalized.)

Other papers: Ma (1991)

Figure Here

can get a1 = aH with probability 1, but this may not be optimal...

Segal-Tadelis (1996):
Figure Here
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σ1 is a signal that is always observed by agent, while the principal may
choose to observe it at no cost, or commit not to observe it. In the optimal
contract the principal may choose not to observe the signal even if x2 is not
a sufficient statistic. (Intuition: create endogenous asymmetric information
at the renegotiation stage.)

Matthews (1995): Looks at renegotiation where the agent has all the
bargaining power and the action is unobservable. Using a forward induction
argument (note that agent makes the renegotiation offers, and we are thus
in a signalling game) the unique RNP contract is one where the principal
“sells” the firm to the agent.

5.7.2 Agency with lots of repetition

One might expect that as a relationship is repeated more often, then there
is room to achieve efficiency. Indeed, Radner (1981) and Rubinstein & Yaari
( ....) show that if an agency relationship is repeated for a long time then
we can arbitrarily approach the FB as T → ∞. The idea goes as follows:
Consider the agent’s utility as:

U =
TX
t=1

δt[v(st(x
t))− g(at)]

where xt = (x1, x2, ..., xt), and assume that the model is stationary with i.i.d.
shocks (this is the formulation in Radner(1981)). Then, as T → ∞ and
δ → 1 the principal can use a “counting scheme,” i.e., count the outcomes
and pay “well” if the distribution over x is commensurate with a∗FB, and
punish the agent otherwise. (The intuition is indeed simple, but the proof is
quite complicated.)

1. From Rogerson (1985) we know that if the agent has access to a bank
(lending and borrowing) then the FB is attainable without a prin-
cipal; the agent can insure himself across time as follows: choose
a∗FB in each period, consume x

∗ in each period, lend (or borrow if
negative) ct = xt − x∗ in each period, and

lim
T→∞

c1 + c2 + ...+ cT
T

= 0 a.s.

(We need to assure no bankruptcy; Yaari (....) deals with this
issue.)
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2. We need to ask ourselves if this kind of repetition, and the under-
lying conditions constitute a leading case? How interesting is this
result (i.e., FB achieved with or without a principal.) The answer
seems to be that these conditions are rather hard to justify which
puts these results in some doubt.

5.7.3 Complex Environments and Simple Contracts

What have we learned so far from agency theory with moral hazard? We
can roughly summarize it in two points: First, agency trades off risk with
incentives. This is a “nice” result since it allows us to understand better what
these relationships entail in terms of these trade-offs.. Second, we learned
that the form of an optimal SB contract can be anything. For example, even
a simple real-world observation like monotonicity is far from general. This
lesson, that the optimal SB contract may look very strange, is less attractive
as a result given its real world implications. Furthermore, in a very simple
example which seems to be “well behaved”, Mirrlees has shown that there is
no SB solution (recall from Example 4.1 above.)
If we try and perform a reality check, it is quite clear that strange con-

tracts (like that in Mirrlees’s example) are not observed, whereas simple
linear contracts seem to be common, where the linearity is applied to some
aggregate measure of output. For example,

1. Piece rate per week (not per hour);

2. Sales commission per week/month/quarter;

3. Stocks or options with clauses like “can’t sell before date t”, which is
similar to holding some percentage of the firm’s value at date t.

Holmstrom and Milgrom (1987) (H-M hereafter) make the point that
“strange” and complicated contracts are due to the simplistic nature of the
models. In reality, things are much more complex, and the agent has room
for manipulation. Thus, we would like to have incentive schemes that are
robust to these complexities. As H-M show, it turns out that linear incentive
schemes with respect to aggregates will be optimal in a complex environment
that has some realistic flavors to it, and are robust to small changes in the
environment.
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Simplified version of Holmstrom and Milgrom (1987)

Consider a principal-agent relationship that lasts for T periods:

Figure Here

We make the following assumptions:

1. Let xt ∼ ft(xt|at), which implies common knowledge of technology.

2. At time t, the agent observes past outcomes (x1, ..., xt−1), which implies
that he can “adjust” effort at, so that the choice of effort is a history
dependent strategy:

a1, a2(x1), ..., at(x1, x2, ..., xt−1), aT (x1, ..., xT−1)

3. Assume zero interest rate (no discounting). This implies that the agent
cares only about total payment, s(x1, x2, ..., xT ), since he can consume
at the end of the relationship.

4. Utilities are given as follows: For the principal, profits (utility) are:

π =
TX
t=1

xt − s(x1, ..., xT ) ,

and for the agent, utility is given by:

U = −e
−r[w+s−

TP
t=1

c(at)]
,

where c(at) denotes the cost of effort level at,and w denotes the agent’s
initial wealth. (Note that this is a Constant Absolute Risk Aversion
(CARA) utility function, which implies that both preferences and the
optimal compensation are independent of w. Therefore, w.l.o.g. assume
that w = 0.)

5. Agent has all the bargaining power. This is not how H-M ’87 proceed
(they have principal with all the bargaining power) but here we will
use the F-H-M ’90 results to simplify the analysis.

6. For simplicity, let xt ∈ {0, 1} for all t (e.g., “sale” or “no sale”).
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The following proposition is analogous to Theorem 5 in H-M.

Proposition 4.12: The optimal LTC takes on the form:

s(x1, ..., xT ) = α
TX
t=1

xt + β.

i.e., compensation is linear in aggregate output.

Proof: The assumptions of F-H-M (1990) are satisfied: (A1) x’s are verifi-
able; (A3) Same access to bank with 0 interest rate; (A4) xt ∼ ft(xt|at)
implies common knowledge of technology; (A5) in each period t the
agent’s utility is:

−e
−r[−

t−1P
τ=1

c(aτ )] · e
−r[s−

TP
τ=t

c(aτ )]
,

where the first term is a constant that is unknown to the principal, and
the second term is known to the principal. Thus, the agent’s preferences
are common knowledge; (A6) we clearly have a downward sloping UPF.
Now, using Proposition 4.11 (Theorem 3 in F-H-M), an optimal LTC
can be implemented with a sequence of STC’s:

{s1(x1), s2(x1, x2), ..., sT (x1, ..., xT )} ,

and we can just define s ≡
TP
t=1

st(·). To find the optimal sequence of
STC’s we solve backward: At t = T :

U = −e
−r
"
T−1P
t=1

(st(·)−ct(at))
#

| {z }
constant

· e−r[sT (·)−cT (aT )]

Thus, what happened in periods t = 1, ..., T − 1 is irrelevant, and the
agent solves the one-shot program:⎧⎪⎨⎪⎩

max
sT (·),aT

ExT [−e−r[sT (·)−c(aT )]|aT ]
s.t. aT ∈ argmax

a
ExT [−e−r(sT (·)−c(a)]|a]

E[xT − sT (·)|aT ] = 0
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and the solution is: ha∗, s∗(xT = 0), s∗(xT = 1)i . Now move back to
period T − 1, in which the agent’s utility is given by

U = −e
−r[

T−2P
t=1

(st−c(at))] · e−r[sT−1−c(aT−1)] · e−r[sT−c(aT )] .

When we solve the program the first term is constant, and being
forward-looking the agent maximizes:

max
sT−1,aT−1

ExT−1,xT [−e−r[sT−1−c(aT−1)] · e−r[s
∗(xT )−c(a∗)]|aT−1, aT = a∗] .

But since period T does not depend on the history (due to the sequence
of STC’s), the objective function can be rewritten as:

max
sT−1,aT−1

ExT−1[−e−r[sT−1−c(aT−1)]|aT−1] · ExT [e
−r[s∗(xT )−c(a∗)]|a∗]| {z }

constant

,

and again the agent solves a one-shot program, which is the same as
for T . Thus, aT−1 = a∗, sT−1 = s∗(xT−1). This procedure repeats itself
for all t and we get:

s(x1, ..., xT ) =
TX
t=1

st(xt)

= #{t : xt = 1} · s∗(1) + #{t : xt = 0} · s∗(0)

= (
TX
t=1

xt) · s∗(1) + (T −
TX
t=1

xt)s
∗(0)

= [s∗(1)− s∗(0)]| {z }
α

TX
t=1

xt + Ts∗(0)| {z }
β

Q.E.D.

Intuition of Linearity: Due to the CARA utility function of the agent, and
the separability, each period is like the “one shot” single period problem and
we have an optimal “slope” of the one-shot incentive scheme, s∗(1)− s∗(0),
which is constant and will give the agent incentives to choose a∗ which is
time/history independent.



CHAPTER 5. THE PRINCIPAL-AGENT MODEL 144

1. It turns out that the principal need not observe (x1, ..., xT ), but it is

enough for her to observe
TP
t=1

xt (and of course, this needs to be

verifiable). In Holmstrom-Milgrom this is the assumption. (That
is, the principal only observes aggregates, and these are verifiable.)
Two common examples are first, a Salesman, whose compensa-
tion only depends on total sales (not when they occurred over the
measurement period), and second, a Laborer, whose piece-rate
depends on the number of items produced per day/week, etc. (not
on when they were produced during the time period.)

2. With a non-linear scheme the following will occur. Since the agent
observes the past performance (and the principal does not) then
he can “calibrate” his next effort level:

Figure Here

If the past performance up to a certain time is relatively low, then
the agent will work harder to compensate for that past. Similarly,
if output is relatively high, then the agent will work less. However,
this is not optimal since a∗ in each period is optimal. (This is true
assuming a concave s(·) as in the figure above. If it were convex
then the reverse will happen.)

Question: What happens of we fix time, and let T →∞ ?

The idea goes as follows: Take a fixed time horizon and increase the num-
ber of periods while making the length of each period shorter, thus keeping
total time fixed.

Fact: From the Central Limit Theorem, the average of many independent
random variables will be normally distributed.

Notice, that by doing the above exercise, we are practically taking the
average of more and more i.i.d. random variables. (This intuitively follows
from the fact that each carries less “weight” since the time period for each
is shorter.)

Question: If for the situation described above, lim
T→∞

TP
t=1

xt is normally dis-

tributed, are we in the “Mirrlees example” case? i.e., can we approxi-
mate the FB?
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The answer is “yes” if the agent cannot observe x1, ..., xT but only
P

xt.
If, however, the agent observes all the xt’s the theorem we proved implies a
linear scheme and the answer is “no.” Thus, we can conclude that letting
the agent do “more” (namely, observe outcome and calibrate effort) gives us
a simple scheme, and a well defined SB solution.

The Brownian-Motion Approximation

Consider our simple model, xt ∈ {0, 1}, and at ∈ A affects the probability
distribution of xt. Then, fix the time length of the relationship to the interval
[0,1], and let T → ∞, with the length of each period, 1

T
, going to zero. In

the limit we will get a Brownian Motion (one dimensional) {x(t), t ∈ [0, 1]},
with

dx(t) = μ(t)dt+ σdB(t) ,

where μ(t) is the drift rate, σ is the standard deviation, and B(t) is the
standard Brownian motion (zero drift, unit variance) and x(t) is the “sum”
of all the changes up until time t.

Fact: If μ(t) = μ for all t, then x(1) ∼ N(μ, σ2).

That is, if the drift is constant and equal to μ, then the value of x when
t = 1 will be normally distributed with mean μ and variance σ2. So, we
can think of this as the continuous approximation of our earlier exercise,
and if agent does not observe x(t), for all t < 1 then we are “stuck” in a
Mirrlees case of no SB solution. But, if x(t) is observed by the agent then
the Holmstrom-Milgrom results hold, and we get a nice linear scheme in x(1),
since this normal distribution is the result of a dynamic stochastic process.
(The Mirrlees problem arises only in the static contract.)

Analysis of the Brownian-Motion Approximation

We assume that the Brownian Motion model is described as follows:

• The agent controls μ (the drift) by choice of a ∈ A where “a” stands for
the constant choice over the time length [0,1] at total cost c(a). This
implies that x(1) ∼ N(a, σ2). From now on we will consider x ≡ x(1).

• The principal offers the contracts (In this case the agent has CARA
utility, so that having the principal get all the surplus does not change
the optimal SB choice a∗; only the division of surplus is changed.)



CHAPTER 5. THE PRINCIPAL-AGENT MODEL 146

First Best: The agent will be fully insured, and the principal wants to
maximize the mean of x subject to the agent’s (IR). Assuming that u = 0
for the agent, the objective function is,

max
a

a− c(a)

and the FOC is, c0(a) = 1.
Second Best: We know from our previous analysis that the optimal

scheme is a linear scheme: s(x) = αx + β, where x ∼ N(a, σ2). The agent
maximizes:

max
a

Ex[e−r(αx+β−c(a))|a]

We can simplify this by having the agent maximize his certainty equivalent
instead of maximizing expected utility, that is, maximize

CE = αa+ β| {z }
mean

− r

2
α2σ2| {z }

risk premium

− c(a)

(Note: CARA⇒ the risk premium is independent of the agent’s income.)
Assume that c0(·) > 0, and c00(·) > 0, so that the first-order approach is

valid, and since the agent maximizes,

max
a

αa+ β − r

2
α2σ2 − c(a) ,

and the FOC is
c0(a) = α .

The principal will set the agent’s (IR) to bind, i.e., CE = 0:

αa+ β − r

2
α2σ2 − c(a) = 0

or,

β = c(a) +
r

2
α2σ2 − αa .

We can now substitute for β into the incentive scheme,

s(x) = αx+ β

= αx+ c(a) +
r

2
α2σ2 − αa,
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and the principal maximizes her expected profits, E[x − s(x)|a], subject to
the agent’s (IC). Since E[x] = a, the principal’s problem can be written as(

max
a,α

a− c(a)− r
2
α2σ2

s.t. c0(a) = α

By substituting c0(a) for α in the objective function, the principals necessary
(but not sufficient) FOC with respect to a becomes,

1 = c0(a) + rc0(a) · c00(a)σ2

Let’s assume that the SOC is satisfied, and we have a unique maximizer, in
which case we are done.

Example 4.2: A simple case is when c(a) = k
2
a2, and the principal’s FOC

is
ka+ rk2aσ2 = 1

which yields,

a =
1

k + rk2σ2
; α =

1

1 + rkσ2

and we get a nice closed form solution with “realistic” results as follows:

1. c0(a) < 1⇒ less effort in SB relative to FB.

2. 0 < α < 1⇒ a sharing rule that “makes sense.”

3. Appealing comparative statics: α ↓ and a ↓ if either: (i) r ↑ (more
risk aversion) or, (ii) σ2 ↑ (more exogenous variance) That is, more
risk implies less effort and a “flatter” (more insured) scheme.

Remark: A nice feature of the model is that if agent owns the firm he will
choose a = a∗FB but he will be exposed to risk (follows from CARA).

1. Complicated environment ⇒ simple optimal contracts

2. Nice tractable model, generalizes easily to x = (x1, ..., xn) and
a = (a1, ..., an) vectors.
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5.8 Nonverifiable Performance

5.8.1 Relational Contracts (Levin)

5.8.2 Market Pressure (Holmstrom)

5.9 Multitask Model

Holmstrom-Milgrom (1991) analyze a model in which the agent has multiple
tasks, for example, he produces some output using a machine, and at the
same time needs to care for the machine’s long-term quality. Using their
model, H-M ’91address the following questions:

1. Why are many incentive schemes “low powered?” (i.e., “flat” wages
that do not depend on some measure of output.)

2. Why are certain verifiable signals left out of the contract? (assuming
that the ones left in are not sufficient statistics.)

3. Should tasks be performed “in house” or rather purchased through the
market?

Using the multitask model, H-M ’91 show that incentive schemes not
only create risk and incentives, but also allocate the agent’s efforts among
the various tasks he performs.

5.9.1 The Basic Model

• A risk averse agent chooses an effort vector t = (t1, ..., tn) ≥ 0 at cost
c(t) ≥ 0, where c(y) is strictly convex.

• Expected gross benefits to principal is B(t). (The principal is risk
neutral.)

• The agent’s effort t also generates a vector of information signals: x ∈
<k given by,

x = μ(t) + ε ,

where, μ : <n
+ → <k is concave, and the noise is multi-normal, ε ∼

N(0,Σ), 0 ∈ <k is the vector of zeros, and Σ is a k × k covariance
matrix.



CHAPTER 5. THE PRINCIPAL-AGENT MODEL 149

• Given wage w and action t, the agent has exponential CARA utility
given by,

u(w, t) = e−r[w−c(t)]

• Following Holmstrom-Milgrom (1987) we assume that this is a final
stage of a Brownian Motion model, so that the optimal scheme is linear,
and given by,

w(x) = αTx+ β ,

αTx =
kX

n=1

αnxn ,

and the agent’s expected utility is equal to the certainty equivalent,

CE = αTμ(t) + β − r2

2
αTΣα− c(t)

(where αTΣα is the variance of αTε.)
First Best: The principal ignores (IC) and only need to compensate the

agent for his effort, so the principal’s program is,

max
t

B(t)− c(t) .

Second Best: The principal maximizes,⎧⎪⎨⎪⎩
max

t
B(t)− αTμ(t)− β

s.t. t ∈ argmaxαTμ(t)− c(t) (IC)
αTμ(t) + β − r2

2
αTΣα− c(t) ≥ 0 (IR)

As before (in H-M ’87) (IR) binding gives β as a function of (α, t), so we
can substitute this into the objective function, and get,(

max
t

B(t)− c(t)− r2

2
αTΣα

s.t. t ∈ argmaxαTμ(t)− c(t). (IC)

(Note: B(t) need not be part of x. For example, B(t) can be a private benefit
of the principal, or due to inaccurate accounting, we can have x being an
inaccurate signal of true output.)
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We can introduce the following simplification: μ(t) = t. This implies that
x ∈ <n (one interpretation is that there is one signal per task.) This is
the case of full dimensionality. (Note that this is not really a special case:
If μ(t) ∈ <m, m > n, then we can “reduce” the dimensionality by some
combination of signals, and if m < n then we can add signals with variance
of infinity.)
>From this simplification:

CE = αT t+ β − r

2
αTΣα− c(t)

and the agent’s FOC’s are (we assume that we get an interior solution with
t >> 0):

αi = ci(t) ∀ i = 1, ..., n
Following the first-order approach, we can substitute these FOC’s into the

principal’s objective function where we use these FOCs as (IC) constraints.
First, note that from the agent’s FOCs we have (in vector notation):

α(t) = ∇c(t)

which implies that ∇α(t) = [cij] which is the n × n matrix of the second
derivatives of c(t). Using the Inverse Function Theorem we get ∇t(α) =
[cij]

−1 which we use later to perform comparative statics on t(·).
The principal maximizes,

max
t

B(t)− c(t)− r

2
α(t)TΣα(t)

and since α(t) = ∇c(t) from the agent’s FOC, we can write αi(t) = ci(t) for
each i = 1, ...n (where ci(t) = ∂c

∂ti
,) and we get the principal’s FOCs with

respect to t,

Bi(t) = αi(t) + r
nX

k=1

nX
j=1

αj(t)δjkCki(t) ∀ i = 1, ..., n

or in vector form:
∇B(t) = [I + r[cij]Σ]α ,

where I is the identity matrix, and thus we have,

α = [I + r[cij]Σ]
−1∇B(t) . (5.10)

Assuming that∇c(t)TΣ∇c(t) is a convex function of t will give sufficiency
of the FOCs.
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Benchmark: Stochastic and Technological Independence

To simplify we assume stochastic and technological independence which is
given by,

• Σ is diagonal⇒ σij = 0 if i 6= j, (errors are stochastically independent.)

• [cij] is diagonal ⇒ cij = 0 if i 6= j, (technologies of the different tasks
are independent.)

under these assumptions the solution to (5.10) yields,

αi =
Bi

1 + rciiσ2i
∀ i = 1, ..., n (5.11)

Observe that this solution implies:

1. “commissions” for the different tasks are independent (not surprising
given the independence assumptions.)

2. αi decreases in risk (higher r or higher σ2)

3. αi decreases in cii (if cii is larger, then the agent is less responsive to
incentives for task i.)

A Special Case

Consider the case where n = 2, and only action t1 can be measured:

xi = ti + εi ,

where var(ε2) = ∞, and 0 < var(ε1) < ∞ , that is, 0 < σ21 < ∞ , σ22 =
∞, and σ12 = σ21 = 0.
>From the FOC (5.11) above we have that α2 = 0, and (assuming an

interior solution t1, t2 > 0, )

α1 =
B1 − B2C12

C22

1 + rσ21(C11 −
C212
C22
)

(5.12)

We can now ask what happens if t1, t2 are complements (c12 < 0) or
substitutes (c12 > 0)? (i.e., via the agents cost function.) To answer this we
can look at (5.12) above, and start with c12 = 0. As we change to c12 > 0 we
see that α1 decreases, and as we change to c12 < 0, α1 increases.
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Caveat: This is a local argument since C12 is a function of (t1, t2), which are
in turn functions of α1 through the incentives.

We can explain the intuition for the two directions above as follows:

1. Making C12 positive is making the tasks substitutes in costs for the
agent. If we want both t1 and t2 to be performed, and we can only give
incentives to t1 through α1, then increasing α1 “kills” incentives for t2
and increases incentives for t1. This may be undesirable. (In fact, it is
undesirable around C12 = 0.)

2. With C12 negative, the reverse happens: an increase in α increases
t1and reduces c2 so that t2 increases. Thus, α1 gives incentives to both
tasks. This result is actually global and does not depend on the local
analysis performed above.

5.9.2 Application: Effort Allocation

Consider the case in which the agent’s cost of efforts is a function of the
sum of all efforts. This is a special case in which we assume that the efforts
are extreme substitutes: The agent is indifferent between which tasks he
performs, as long as his total effort is unchanged. We simplify by assuming
that there are only two tasks, and further restrict attention t the following
special case:

1. c(t1, t2) = c(t1 + t2)

2. There exists t > 0 such that c0(t) = 0, c00(t) > 0 ∀ t.

Figure Here

The idea behind assumption (2) above is that people will work t without
incentives, not caring how t is allocated, as long as t1+ t2 = t. However, pro-
viding incentives will affect the choice of effort. Note that this is a somewhat
unorthodox assumption, however it is not extremely unrealistic. One way to
think about this is that an agent will perform some minimal amount of per-
formance either due to the prospect of getting fired, or due to the alternative
of boredom..
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Missing Incentives

Now assume that we cannot measure the effort for the first task. For example,
the agent can be a contractor that is remodelling the principal’s house, and
t1 can be courtesy, or attention to detail. On the other hand, we assume that
t2 is (imperfectly) measurable. Using the contractor example, t2 can be time
to completion, or how close the original plan was followed.
To formalize this assume that μ(t1, t2) = μ(t2) ∈ <, a one dimensional

effect of both tasks, and following the previous notation, let the measurable
(verifiable) signal be given by,

x = μ(t2) + ε ,

and the linear compensation scheme be

s(x) = α2x+ β

Assumption: B(t1, t2) > 0 and increasing in both components, andB(0, t2) =
0 ∀ t2 (t1 is “essential” for the project to have value.)

Proposition 4.13: In the above set-up, α2 = 0 is optimal (even if the agent
is risk neutral.)

Proof: With α2 = 0 (α1 = 0 since t1 is not measurable) then principal
maximizes: B(t1, t − t1) and due to his indifference, the agent will
accommodate any solution. In this case there is no risk, and total
surplus is

S∗ = B(t∗1, t− t∗1)− c(t).

If α2 > 0, then the agent’s choices are t1 = 0, t2 = t̂2 6= t, and social
surplus is

0z }| {
B(0, t̂2)−

>c(t)z}|{
c(t̂) −

≥0z }| {
r

2
α22σ

2 < S∗.

If α2 < 0, then t2 = 0, and t1 < t (since c0(t1) < 0 = c0(t)), and total
surplus is

<B(t,0)z }| {
B(t1, 0)−

>c(t)z}|{
c(t1)−

≥0z }| {
r

2
α2σ2 < S∗

Q.E.D.
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1. It is important that B(·, ·) is a “private benefit,”or else principal
can “sell” the project to the agent. The house contracting example
is a very nice one, as is the example of a teacher having incentives
to teach children both skills of succeeding in tests (measurable),
and of creative thinking (not measurable) where the parents (or
local government) have a private benefit from the children’s’ edu-
cation.

2. This result is not “robust”: it relies both on B(0, t2) = 0 and
C(t1, t2) = C(t1 + t2). But, the intuition is very appealing..

Low powered incentives in firms

Williamson (1985) observed that inside firms incentives are “low-powered”
(e.g., wages to workers) compared to “high-powered” incentives offered to
independent contractors. Also, employees work with the principal’s assets
while contractors work with their own assets. Using a variant of the previous
set-up, this can be explained by multi-tasking.
Assume that,

B(t1, t2) = B(t1) + v(t2) ,

with B0 > 0, v0 > 0, B00 < 0, v00 < 0 and B(0) = v(0) = 0. We can interpret
B(t1) to be the current expected profit from activity t1, e.g., effort in pro-
duction, while v(t2) is the future value of the “assets” from activity t2, e.g.
preventive maintenance, etc.
Now let t1 be measurable with the signal

x = μ(t1) + εx.

Let the change in the asset’s value be v(t2) + εv, and it is important to
assume that the actual value accrues to the owner of the asset (for example,
there can be some private benefit, imperfect markets, etc.) We finally assume
that εx and εv are independent shocks.
As before, the incentive scheme will be linear, and given by

s(x) = αx+ β .

We now consider two alternatives for the relationship: Either the principal
and agent enter a contracting relationship, in which case the agent owns asset,
or they enter an employment relationship, in which case the principal owns
the asset.
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Define,

π1 = max
t1

B(t1)− C(t1) ,

π2 = max
t2

v(t2)− C(t2) ,

π12 = max
t1

B(t1) + v(t− t1)− C(t) .

That is, π1 is maximal total surplus when only t1 can vary, π2 is maximal
total surplus when only t2 can vary, and π12 is maximal total surplus when
we can choose t1 subject to t1 + t2 = t. We have the following proposition:

1. If π12 > max{π1, π2} then the optimal employment contract has α = 0.
2. If contracting is optimal then α > 0.

3. There exist (r, σ2v, σ
2
ε) for which employment is optimal and other

parameters for which contracting is optimal.

4. If employment is optimal for some (r, σ2v, σ
2
ε), it is also optimal for

larger values. The reverse for contracting.

1. If v(t2) accrues to the principal then α > 0⇒ t2 = 0, c
0(t1) = α,

and total surplus is

B(t1)− c(t1)−
r

2
α2σ2x < π1 ≤ π12

whereas π12 can be achieved with α = 0.

2. Idea: with no incentives, agent will not care about t1 but rather
only about t2.With α > 0, agent still chooses the same t2 because
he gets v(t2).⇒ α > 0 is optimal.

3. This is just to say that the π’s can be ordered in any way depend-
ing on the parameters.

4. Intuition: if employment is optimal thenmore risk aversion implies
that there is a stronger case for no risk in contract, so employment
must still be optimal.

In chapter 5 we will discuss some theories of ownership, and this is an
interesting model tat has implication to these issues.
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5.9.3 Limits on outside activities

The following observation has been made by xxx: Some employees (usually
high level) have more freedom to engage in “personal business” than others
(e.g., private telephone conversations, undefined lunch breaks, etc.) This is
another observation to which the multitask model adds some insight. To
analyze this issue consider the following modifications to the model:

• Tasks: there are k + 1 tasks, (t, t1, ..., tk) ∈ <k+1
+ , where only the first

task, t, benefits the principal:

B(t, t1, ..., tk) = p · t

(e.g., some market price for an output.)

• Agent’s costs:

c(t, t1, ..., tk) = c(t+
kX
i=1

ti)−
kX
i=1

vi(ti)

where vi(ti) is the agent’s private benefit from task i, with v0 > 0, and
v00 < 0. (e.g., having access to non pecuniary tasks like outside phone lines,
long breaks, taking care of errands during work hours, etc.)

• Every personal task can be either completely excluded or completely
allowed in the contract, but no personal task can be restricted to a
level (i.e., “all-or-nothing”.)

• x = μ(t) + ε is the signal, s(x) = αx+ β is the incentive scheme.

• The principal can choose a contract that includes A ⊂ {1, ..., k} of
“allowable” personal tasks, and α, β for the incentive scheme.

To solve for the optimal contract we consider a two stage solution process
which is similar in spirit to the two stage program of Grossman and Hart
(1983): For every α, find A(α) that is optimal, then given A(α) choose α
optimally.
Assume that an interior solution exists, so that given (α,A) the agent’s

FOC’s yield:
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α = c0(t+
kX
i=1

ti) ,

α = v0(ti) ∀ i ∈ A

Given α, use the following “cost-benefit” argument to determine the tasks
that should not be excluded:

A = {i : vi(ti(α)) > p · ti(α)}

Figure Here

To understand the idea, look at figure above. For each task i, there exists
some t̂i such that for ti < t̂i the private benefit to the agent is larger than
p · ti and for ti > t̂ the reverse holds. From a social-surplus point of view, if
ti(α) < t̂i, it is better to have the agent exert ti(α) into his private benefit
vi(ti) rather than in the principal’s private benefit p · ti(α). Thus, in figure,
task 1 should be allowed and task 2 should not.
We can also see that an increase in α will (weakly) cause an increase in

the set A. We also get:

Proposition 4.14: Assume t(α) is optimal then:

1. α = p
1+rσ2dt/dα

,

2. If measurement is easier (σ2 decreases), or if the agent is less risk
averse (r decreases), then α and A(α) will be larger.

3. tasks that are excluded in the FB contract are also excluded in
the SB contract, but for high rσ2 some tasks that are included in
a FB contract will be excluded in a SB contract.

(For a proof see the paper.)
The part of the proposition that is most interesting is part (2): The set

A gets smaller (and incentives weaker) when we have measurement problems
over t. A nice application is that without measurement problems, an outside
sales force (independent contractors with no exclusions) is optimal, whereas
with measurement problems an inside sales force is optimal (e.g., can’t sell
competitor’s products, etc.)
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5.9.4 Allocating tasks between two agents:

This is the last section of H-M ’91. The results are:

1. It is never optimal to assign two agents to the same task.

2. The principal wants “information homogeneity”: the hard-to-measure
tasks go to one agent and the easy-to-measure tasks go to the other.

The intuition goes as follows: (1) we don’t have “team” problem if agents
are assigned to different tasks; (2) We avoid the multitask problems men-
tioned earlier; The agent with hard-to-measure tasks gets low incentives
(“insider”) and the other gets high incentives (“outsider”).
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5.10 Overview

• We discussed optimal contracts between agents and principals.

• We said nothing about whether these parties are in the same firm or
two firms. Why do we have firms? What determines their boundaries?

5.10.1 Neoclassical Theory

The neoclassical theory of the firm vies the firm as a “black box” associated
with a technology. That is, there is a clear relationship between inputs and
outputs, say, according to some cost function.

Figure Here

The firms problem is given by the profit maximization program:

max
q

p · q − C(q)

This program will (sometimes) give us the minimum efficiency scale
(MES), that is, that quantity for which average costs are minimized. Also,
we get a supply function, q(p) from the solution to the profit maximization
problem.
The standard assumptions in the neoclassical approach are that average

costs decrease at first (due to some economies of scale, e.g., fixed costs,) but
later, average costs increase (e.g., scarce managerial talent.) Thus, the firm’s
size is determined by either q(p), or by the MES (the later is the prediction
for the case of free entry).
There are, clearly, some straightforward problems with this simplistic

approach. First, it says nothing about the internal organization of the firm,
or about agency problems, incentives, etc. Second, consider any of the two
predictions regarding the size of the firm, q(p) or MES. The natural question
that arises is, why can’t two different firms belong to the same “outfit,” i.e.,
why can a single firm have two plants? Taking this to the extreme, why can’t
all the production in the world be one giant, single entity owned firm? (e.g.,
like a planned economy.)
The most reasonable conclusion is that this seems like a theory of plant

size given technology, and not a theory of the firm. That is, it does not
determine the boundaries of the firm, as we understand firms to be defined
(mostly through ownership.)
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5.10.2 Agency theory

As mentioned earlier throughout the analysis of chapters 3 and 4, these the-
ories analyze and describe how parties should contract, or set incentives, but
not if these relationships are inside the firm or between separate firms. Thus,
to some extent it can shed some light on the internal organization of firms, in
the sense of optimal incentives, flows of information, and contracting between
parties that interact together. Note, however, that these theories say nothing
about when firms should merge, or when we should see vertical integration
(e.g., the buyer “buys” the seller’s firm). Thus, the same main criticism that
applies to the neoclassical theory of the firm applies to most of agency theory
as well. One important exception is the multitasking literature. Holmstrom
and Milgrom (1994) take these ideas further to explore the question of when
should we have vertical integration and when not depending on the charac-
teristics of the multitasking arrangement. We will discuss this later in this
chapter.

5.10.3 Transaction Cost Economics

This theory was first developed by Coase in his seminal paper (1937). Coase
made the following two claims:

1. the “boundaries” of firms may depend on technology, but this alone
cannot determine them. We should think about “transaction costs”,
defined by the costs of performing productive activities. (In the terms
of our previous chapters, these costs can be considered as losses with
respect to the FB outcome.)

2. Transaction costs may differ if the transactions are carried out within
a firm or across firms. This comparison determines the boundaries of
firms. Owners and market forces will impose the organizational design
with the lowest transaction costs.

Sources of Transaction Costs

Bounded Rationality The ideas of Bounded Rationality are most com-
monly attributed to Simon. The main idea is that economic agents may not
be able to fully understand the consequences of their actions, or may not have
correct beliefs about the future, or that legal courts cannot “understand” the
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descriptions of contracts. The implications of such assumptions are that it
will be hard to write contracts across firms (through the market,) and there
will rise a need to do things “inside” a firm, with an authority structure that
overcomes the costly decisions that would otherwise be needed using a price
(market) mechanism. Simon (1951) analyzes a very simple and insightful
model of such a problem.
A principal hires agent in the following setup:

• x ∈ X is a decision to be made (e.g., a certain task to be performed,
etc.)

• Agent’s utility: t− c(x) (t is the transfer, or wage from the principal)

• Principal’s utility: R(x)− t

• FB: max
x∈X

R(x)− C(x).

It is interesting to note that the model, and analysis offered by Simon
were presented before the idea of Arrow-Debreu contingent commodities.
The interesting “limitations” that drive Simon’s model are the following:

1. the FB x ∈ X is not known in advance. Furthermore, there is no
common set of “beliefs” so that we cannot perform expected-utility
contacting as we did in the previous chapters. For example, X may be
“hard” to describe in a contract ex ante. (This assumption would now
be regarded as one of bounded rationality due to the Arrow-Debreu
framework that we use now, and that was not an available tool when
Simon wrote his model.)

2. Ex post bargaining may be very costly (over which x ∈ X should be
done).

The solution offered by Simon is the use of authority over a set X ⊂ X as
follows: The agent gets a fixed wage t at date 1 (before the task is needed,)
and at date 2 (when the decision needs to be made) the principal tells agent
which x ∈ X to perform. If the principal asks the agent to perform some
x ∈ X\X, then the agent can “quit.” If c(x) is not “too variable” over x ∈ X
then the principal will choose

x ∈ argmax
x∈X

R(x)
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which is “close” to FB.
According to Simon, a firm is defined by an authority (or, employment)

relationship, in contrast to a market-price relationships, in which a certain
task or action, x ∈ X is pre-specified, and a certain price is fixed.
The most common criticism of Simon’s approach is that this is indeed a

nice theory of authority, but this does not “define” a firm. That is, given a
certain set of authority based, and market based relationships, which subsets
of agents will belong to the same firm? (This criticism is offered by Alchian
and Demsetz (1972) and by Hart (1995).)

Monitoring Costs In chapters 3and 4 we developed and analyzed models
of asymmetric information. If the principal could invest in “reducing” these
asymmetries, we can think of such monitoring costs as the costs of asym-
metric information compared to a FB world. Alchian and Demsetz (1972)
claim that the task of managers is to monitor employees, and this monitoring
produces incentives for employees to work. Alchian and Demsetz (A-D here-
after) claim that it must be harder to monitor agents that are outside the firm
(e.g., independent contractor), and thus A-D conclude that the boundaries
of the firm affect the incentives that can be provided.
A natural question that arises as a critique of this theory is, what is the

“magic” solution that creating a firm offers, so that monitoring costs are
lower in the firm? Furthermore, as for the case of the neoclassical firm, why
don’t we see one huge firm? (which would be the organizational form with
the lowest monitoring costs.) Thus, there is no foundation to this claim of A-
D, and the predictions are not too appealing in the sense of what determines
the boundaries of firms.

Bounded Rationality & Opportunism Williamson (1975, 1985) dis-
cussed the important consequences of three ingredients of bilateral relation-
ships. The three ingredients are:

1. Bounded rationality: If agents are boundedly rational, then we can-
not have complete contracts (in the sense of a complete set of contin-
gencies specified in advance.)

2. Opportunism: Economic agents will do what is best for them selfishly.
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3. Relationship Specific Investments: Both parties can invest indi-
vidually, at some cost, to improve the social surplus from their rela-
tionship.

Williamson concludes that (1)+(2)+(3) ⇒ the Hold-up problem.

Example: Consider a buyer with valuation v, and a seller with cost c, so
that total surplus from trade is given by

S = v − c

and this can be shared between the two parties. Assume that the two
parties share any gains from trade according to a 50:50 equal sharing
rule (e.g., Nash Bargaining with zero as the outside option.) Assume
that the seller can incur a private fixed cost a > 0 to reduce his cost
from c to c0 < c, and assume that

a >
c− c0

2
.

The assumption of bounded rationality (in this case it is enough to
assume that only courts are boundedly rational and the agents are
completely rational) implies that the parties cannot contract on a. We
can perform the analysis of this example: If the seller does not incur
the investment a, he gets an ex-post utility of

u0 =
v − c

2
.

which is also his ex-ante utility. If, however, he incurs a, he gets an
ex-post utility of

ua =
v − c0

2
,

but his ex-ante utility will be ua − a, and thus the difference between
these options is,

∆u = (ua − a)− u0

=
v − c0

2
− a− v − c

2

=
c− c0

2
− a < 0
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Thus, the socially efficient investment will not take place. ¥
This is a simple example of the celebrated hold up problem: the inability

to contract on ex ante investments, together with ex post opportunism, will
cause under-investment by the parties involved, so that FB efficiency is not
achieved.
Solution to Hold-up: Vertical Integration. That is, if the same owner

gets both rents then efficient investments will be performed. So the hold up
problem is alleviated inside the firm. This highlights the benefit to verti-
cal integration. the costs to vertical integration are considered to be added
bureaucratic (unproductive) activities, costs of information processing, etc.
[Klein- Crawford-Alchian also look at this idea]. This trade-off will determine
the boundaries of firms.
Criticism: We may have hold-up problems inside firms as well as across

firms. Williamson is not clear on exactly how this hold-up problem is affected
by integration.

5.10.4 The Property Rights Approach

Grossman-Hart (1986) and Hart-Moore (1990) define a firm by the non-
human assets that it owns or controls (loosely speaking). Thus, a firm is
defined using the notion of residual control rights. This definition of a firm is
one of the important contributions of the G-H paper, which to a large extent
sets the ideological foundations for the property rights approach. To begin,
we differentiate between two different contracting assumptions:

1. The world of complete contracts is the one that we analyzed in chap-
ters 2-4. (Hart (1995) refers to this as “comprehensive” contracts, in
order to distinguish this setup of asymmetric information in which con-
tracts are by definition “incomplete” due to lack of verifiability for some
important variables, from the setup of first-best complete contracts.)
In the complete contracts setting, the notion of “ownership” does not
matter since we can specify what will be done with the assets, and
how payoffs will be distributed, contingent on all possible states of the
world. That is, there are no “gaps” or missing provisions (if something
is missing, it must be unimportant). Also, we never need to renegotiate
(following the RNP principle). In fact, the possibility to renegotiate is,
as we saw, a burden rather than a benefit.
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2. The world of Incomplete contracts is one in which we cannot right
contracts on all possible contingencies or actions. Ownership will de-
termine who has the property rights over the asset in contingencies that
were not specified by the contract. That is, the ability to exclude oth-
ers from using the asset and/or decide how it should be used. In such
a case, the ability to renegotiate is crucial to achieve ex-post efficiency
in these unspecified states.

We can start with an extreme case of contractual incompleteness: Imagine
that we cannot describe the future states ex-ante, in which case the only
“contracts” that can be written are those which determine the allocation of
ownership. Now, add the following ingredients:

1. ex-post (after private investments and uncertainty) parties have sym-
metric information.

2. ex-post parties can “renegotiate” (decide how to use assets.)

3. Parties have “unlimited wealth” (so that any gains from trade can be
realized.)

4. Parties can engage in relationship specific (private) investments after
the allocation of ownership, but before uncertainty resolved.

This set of assumptions yields the following set of results:

A. Always get ex-post efficiency (follows from 1, 2, and 3 above)

B. We will generally get ex-ante inefficiency (which follows from the con-
tractual incompleteness, and 1, 2, and 4 above.)

C. Ownership affects the ex-post “bargaining game”, which implies that
ownership affects the ex-ante inefficiencies.

These results are the important message of the property rights approach.
They imply that we will choose the ownership structure (boundaries of the
firms) so as to minimize ex-ante inefficiencies (deviations from FB.) Thus,
there is a clear force that creates optimal boundaries of firms: residual rights
of control and renegotiation to ex post optimal outcomes.
Note that this has a flavor of the “Fundamental Transformation” of

Williamson; there is ex-ante competition, but ex-post there is bilateral monopoly
because of relationship specific investments.
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5.11 Incomplete Contracts, Hold Up, and Prop-
erty Rights

In this chapter we will build a deeper understanding of the underlying model
that is commonly used to explore the hold up problem, and form the basic
building blocks for the property rights approach.

5.11.1 A Simple Formal Model

Consider two assets, a1 and a2 and two managers, M1 and M2. Only Mi can
enhance his productivity using ai and he can operate it ex-post. M2 then has
the option, using a2 to supply a “widget” to M1 who uses a1 to transform
the widget into a final product.

Figure Here

The timing is as follows:

Figure Here

We can simplify the model by assuming first that there is no uncertainty
in costs or benefits but only in the “efficient” trade. That is, we can think of
a parameter of trade, say the type of widget, that can vary and will determine
the value from trade.

Assumption 5.1: Due to incomplete contracts we cannot specify in advance
which widget should be traded, or how assets should be used.

The idea is simple: Assume that there are N states of nature, for each
state a different “type” of widget should be supplied (for efficient trade) and
all others are worthless. As N → ∞, with c > 0 cost per “clause” in a
contract, no contract is “optimal.”

Assumption 5.2: Parties have rational expectations with respect to future
payoffs in each state, i.e., they can do Dynamic Reprogramming.

Remark: This assumption has some “tension” with the assumption of in-
complete contracts. It means that the “Bounded Rationality” is on the
part of courts and the legal system. Maskin and Tirole (1998) show
that if this is the case the parties can write “message-game” contracts
and achieve FB.
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Ownership Structures: The only “contracts” that we allow the parties
to write are ownership contracts. Namely, at the beginning, the allocation of
the assets can be determined. We denote by A the assets owned by M1, and
by B the assets owned byM2, where A,B ⊆ {a1, a2}∪∅, and A = {{a1, a2}∪
∅}\B. We will distinguish between 3 possible ownership structures:

A owned by M1 B owned by M2(B)
No integration a1 a2

Type 1 integration a1, a2 ∅
Type 2 integration ∅ a1, a2

Due to incomplete contracts, the ex-ante ownership structure will be im-
portant in determining incentives for investments.
Investments: Each manager has an investment as follows:

• M2 invests e to reduce production costs. We assume that the personal
cost to M2 of investing e is equal to e.

• M1 invests i to enhance benefit from widget. We assume that the
personal cost to M1 of investing i is equal to i.

Trade: We assume that ex post there is no asymmetric information as
follows:

Assumption 5.3: Investments i and e are ex-post observable but not veri-
fiable. Also, all preferences are common knowledge.

An immediate implication is that, if M1 and M2 decide to trade ex post
then they will trade efficiently due to the Coase Theorem being satisfied ex-
post (this follows from the parties having symmetric information at the ex
post bargaining stage.) If the parties trade efficiently at a price p then ex
post utilities (ignoring the “sunk costs” of investments) are:

πi = R(i)− p

π2 = p− C(e)

and total surplus is,
S = R(i)− C(e) .

We make the standard assumptions to get a “well behaved” problem, R0(i) >
0, R00(i) 6 0, C 0(e) < 0, C 00(e) > 0.
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Note: We can see in what way the renegotiation is important for this model;
the parties could achieve ex-post efficiency only if they can renegotiate
freely.

An important question is what determines p? To answer this question
we need to specify a bargaining process. We will use Nash Bargaining, which
requires us to specify the “disagreement point” which is a reference point for
the renegotiation. For this we describe the case of “no trade” which is the
natural disagreement point for this setup.
No Trade: If M1 and M2 do not trade they can both go to a “general”

widget market and trade there. The price of the general widget is set at p
and the utilities (profits) of each party transacting in the general market are:

π1 = r(i, A)− p

π2 = p− c(e,B)

Note that utilities depend on investments and on which assets are owned.
For this to be “consistent,” the investment must be in some form of human
capital since we assume that it has an effect on utilities even when A = ∅
for M1, or when B = ∅ for M2. (Similarly investments should have an effect
when either a1 /∈ A, or a2 /∈ B.) The total ex-post surplus when the parties
choose no trade is:

S = r(i, A)− c(e,B).

Assumption 5.4: Total surplus under trade is always higher than that un-
der no trade:

R(i)− C(i) > r(i, A)− c(e,B)∀A,B, i.e.

This assumption captures the ideas of Williamson that the investments i
and e are relationship specific, i.e., worth more inside the relationship than
outside. We will also assume relationship specificity in the marginal sense:

Assumption 5.5:

R0(i) > r0(i, {a1, a2}) ≥ r0(i, {a1}) ≥ r0(i, ∅) ∀ i ,

|C 0(i)| > |c0(e, {a1, a2})| ≥ |c0(e, {a2})| ≥ |c0(e, ∅)| ∀ e .



170

1. The idea of investment in human capital is seen by the first inequality
being strict. If M1 works with all the assets, but we are in a no
trade situation (i.e., M2 will not be the one who “operates” a2,)
then R0 > r0. Otherwise we allow for weak inequalities.

2. If we only have absolute specificity, R − C > r − c, but we do
not have marginal relationship specificity, then the results will be
different. (See Baker, Gibbons and Murphy (1997) for more on
this.)

3. It is important to remember that for ex post efficiency we are as-
suming that all the functions, R, r,C, and c, and both investments,
i and e, are observable but not verifiable so that they cannot enter
into a contract.

4. We need to add some technical assumption to guarantee a “nice”
interior solution: R0(0) > 2, R0(∞) < 1, C 0(0) < −2, C 00(∞) >
−1.

First Best Investment Levels

In a FB world we allow the agents to contract on all variables, so that the
optimal investments must maximize ex ante total surplus,

max
i,e

R(i)− C(e)− i− e

The FOCs are,

R0(i∗) = 1 ,

C 0(e∗) = −1.

(or, |C 0(e∗)| = 1) and FB investments are denoted by i∗ and e∗.

Second Best Investment Levels

Recall that symmetric information and ex-post renegotiation must imply that
ex-post the parties will always choose to trade. The question is, therefore,
what is then the role of r(·) and c(·)? The answer is that these two values must
be used to determine the disagreement point. IfM1 owns A ⊂ {a1, a2}∪∅ and
M2 owns B = {{a1, a2}∪∅}\A, then Nash Bargaining implies that they will
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split the gains from trade compared to no-trade equally between themselves.
Thus, profits are:

π1 = r(i, A)− p+
1

2
[(R(i)− C(e))− (r(i, A)− c(e,B))]− i

π2 = p− c(e,B) +
1

2
[(R(i)− C(e))− (r(i, A)− c(e,B))]− e

Note: Earlier we described the profits from trade forM1 to be π1 = R(i)−p,
which means that we can now get the expression for the trade price,

p = p+
1

2
[(R− r)− (c− C)] .

Now, given π1 and π2 above, we will getM1 maximizing π1, and the FOC
is:

1

2
R0(i) +

1

2
r0(i, A) = 1 ,

and similarly for M2,

1

2
|C 0(e)|+ 1

2
|c0(e,B)| = 1

Proposition 5.1: Under any ownership structure, second best investments
are strictly less than FB investments i∗, e∗.

Proof: Follows immediately from assumptions on the marginal specificity:

R0(i) >
1

2
R0(i) +

1

2
r0(i, A) = 1 ∀A ,

which together with R00 < 0 implies that i < i∗. The same is true for e.
Q.E.D.

The intuition is simple: There is ex post expropriation of rents which
leads to a “free rider” problem: costs are absorbed in full ex ante, but gains
are split 50:50 ex post.

Lemma 5.1: Transferring assets from Mi to Mj, j 6= i, weakly increases
the investment of Mj and reduces the investment of Mi.
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Proof: Consider w.l.o.g. transferring an asset to M1 from M2. ⇒ A ⊂ Ã
and B̃ ⊂ B. Consider M1, whose FOC implies that under assets A,

1

2
R0(i) +

1

2
r0(i, A) = 1 , (5.13)

and under assets eA,
1

2
R0(ei) + 1

2
r(ei, eA) = 1 . (5.14)

>From Assumption 5.5,

1

2
R0(i) +

1

2
r0(i, A) ≤ 1

2
R0(i) +

1

2
r0(i, eA),

which together with (5.13) and (5.14) imply that

1

2
R0(ei) + 1

2
r(ei, eA) ≤ 1

2
R0(i) +

1

2
r0(i, eA) .

Since R00 < 0, and r00 ≤ 0 then it must be that i ≤ ĩ. A similar argument
works for e. Q.E.D.
The conclusion is clear: Ownership matters. It is important to note that

ownership does not mater because it potentially affects the decision of trade
or no trade, but rather because it affects the disagreement point, which in
turn affects incentives through the ex post Nash Bargaining solution.
We can now answer the important question regarding the boundaries of

firms, when forms are defined by the allocation of assets which are owned
by the same person (or entity): How should ex-ante ownership be allocated?
The answer is clearly to maximize ex-ante expected surplus. We have the
following cases:

Case 1: Inelastic investment decisions: (Definition 1 in Hart (1995), p. 44.)
The rough idea is that the marginal effect of investments by one party
are “mostly” independent of the allocation of assets, or more formally,

R0(i) ∼= r0(i, A) ∀ i, A .

(This is the case where M1 has inel;astic investments, so that M1’s
investment decision is almost constant.) If this were the case then
Type 2 integration is optimal. (A similar but reverse argument applies
if M2’s investment is inelastic.)
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Case 2: Unimportant investment: The rough idea is that if, for example,
C(e) + e is “very small” relative to R(i)− i then,

S = R(i)− C(e)− i− e

= R(i)− i− (C(e)− e)
∼= R(i)− i

in which case Type 1 integration is optimal. Thus, we don’t give assets
to an “unimportant” party. (A similar but reverse argument applies
if M1’s investment is unimportant.)(A similar but reverse argument
applies if M2’s investment is inelastic.)

Case 3: Independent Assets: This is the case where

r0(i, {a1, a2}) ≡ r0(i, a1)

and
c0(e, {a1, a2}) = c0(e, a2)

and in this case No Integration is optimal. The intuition is as follows:
Start from any type of integration, Ii, and change the allocation of
assets so that we give aj to Mj. This does not affect Mi, but it gives
MJ better incentives.

Case 4: Complimentary Assets: (We consider the case of strictly comple-
mentary assets.) This is the case where either

r0(i, a1) ≡ r0(i, ∅) , (5.15)

in which case type 2 integration is optimal, or,

c0(e, a2) ≡ c0(e, ∅) , (5.16)

in which case type 1 integration is optimal. Again, to see the intuition
start from No Integration, if (5.15) holds then M1’s incentives are not
reduced if a2 goes to M2, and M2’s incentives are (weakly) increased
when this transfer occurs. (similarly for a1 to M1.)

Case 5: Essential Human Capital: We say that M1 is essential if

c0(e, {a1, a2}) ≡ c0(e, ∅) ,



174

and we say that M2 is essential if

r0(i, {a1, a2}) ≡ r0(i, ∅) .

The idea is that if a certain manager is essential, then the assets them-
selves don’t enhance incentives, but only the “presence” of the essential
party does. Thus, ifM1 is essential then Type 1 Integration is optimal.
The intuition is that assets do not helpM2 without the presence ofM1,
so M1 might as well get all the assets. (Similarly for M2.) A conclu-
sion is that if both M1 and M2 are essential then all three ownership
structures are equally good. This follows from the fact that if both are
essential, neither’s incentives are affected by asset ownership, but only
by the presence of the other party.

(All the cases above are summarized in Proposition 2 in Hart (1995 p.
45).)

Corollary: Joint ownership is never optimal.

This follows from the argument of strict complementarity. If both parties
own a1, then neither party can use it independently if there is no trade (this
assume that joint ownership takes the form of veto power over the use of
the assets in case of a disagreement.) If we were able to “split” a1 into two
separate assets, that are worthless independently, then these two are strictly
complementary parts, and from Case 4 above they should both be owned by
either M1 or M2.

1. If both can use a1 when there is no trade (e.g., a patent) then joint
ownership may be optimal (See Aghion and Tirole (1994).)

2. In a repeated setting or “reputation” setting, joint ownership can
cause severe punishments off the equilibrium path, so it may give
better incentives on the equilibrium path (See Halonen (1997).)

3. We ignore stochastic ownership but this may actually be optimal
(e.g., M1 owns a1 and a2 is owned by M1 with probability p, and
by M2 with probability 1− p.)
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Taking the Theory to Reality

1. Strictly complementary assets are usually owned by one party. This
is documented by Klein-Crawford-Alchian (1978) in the famous GM-
Fisher Body case. Joskow (1985) demonstrates that for electricity
plants and coal mines, a situation that would imply that there are
geographic complementarities, there is a lot of vertical integration. (Or
LT contracts.)

2. Independent assets are usually owned separately. Thus, we can think
of the disintegration wave of the 1990’s as a situation in which disinte-
gration doesn’t affect incentives, and we may reduce transaction costs
and information processing costs by doing this.

Criticisms

1. Oversimplifies internal structure of the firm. First, most agents get
their incentives not through ownership. Second, what is the role of
management or hierarchy? (One can argue that managers are more
“essential” but why?) Third, we do see joint ownership, why? (e.g.,
professional services.)

2. Lack of theoretical foundations: Why property rights and not some-
thing else? (Tirole (1997) (and Maskin and Tirole(1998)) discuss some
sort of “inconsistency” in the theory.)

5.11.2 Incomplete Contracts and Hold-up

We saw that incomplete contracts leads to the hold-up problem. A question
that is of theoretical interest is, how much “incompleteness” is necessary to
get hold-up? That is, if people can specify some characteristics of trade in
advance, even if this characterization is not optimal (say, it is not optimal
with probability 1,) will the hold-up problem persist?

Noncontingent Contracts

(Based on Edlin and Reichelstein, AER 1996)

• A buyer (B) and seller (S) can transact ex-post and transfer any quan-
tity q ∈ [0, 1] from S to B.
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• Both can invest in relationship specific investments, and ex post utilities
for each party are given by,

uB = R(i, θ) · q − t
uS = t− c(e, θ) · q

where θ is some random variable which represents the ex post uncer-
tainty, and as in the previous section the ex-ante cost of i is i, and of
e is e. Given a choice of quantity q, and a realization of uncertainty θ,
total ex post surplus is given by:

S = [R(i, θ)− c(e, θ)] · q ,

which implies that ex post either q = 0 or q = 1 is optimal, but ex ante
we don’t know which is since the uncertainty is not yet resolved..

Assumption: R, c, θ, i, and e are ex-post observable but not verifiable. (Like
in the Grossman-Hart-Moore setting.)

We allow the parties to write “specific performance” contracts, i.e., con-
tracts that specify (q, t) in advance, and each party can unilaterally ask for
(q, t) to be enforced. That is, (q, t) is verifiable, and both parties are legally
bound to follow the contract unless they choose to nullify it by renegotiating
it to another contract. Note, however, that for any q ∈ (0, 1), the probability
of (q, t) being ex-post efficient is zero.
We allow the parties to renegotiate as follows:

• Given (q, t) , parties can and will use unrestricted renegotiation to get
to an ex-post efficient outcome.

• Gains from renegotiation are split 50:50 (Nash)

Thus, the role of (q, t) is to set the disagreement point for a reference point
at the renegotiation stage. This is identical to the role of asset ownership in
the Grossman-Hart-Moore setup.

Assumption: The parties’ costs and benefits from trade are additively sep-
arable in investments and uncertainty:

R(i, θ) = r(i) + er(θ)
c(e, θ) = c(e) + ec(θ)



177

First Best To solve for the first best outcome, assume that i and e are
contractible, and we solve,

max
i,e

Eθ[max{[(r(i) + er(θ)− c(e)− ec(θ)], 0}]− i− e ,

and the FOC with respect to i is,

∂

∂i
(Eθ max{r(i) + er(θ)− c(e)− ec(θ), 0})| {z }

D

− 1 = 0 ,

where D = r0(i) if trade occurs, and D = 0 if no trade occurs. (Recall that
trade will occur if and only if it is efficient to trade.) Thus, we can rewrite
the FOC as,

r0(i) · Pr{r(i)− c(e) + er(θ)− ec(θ) > 0} = 1
Similarly, the FOC with respect to e is,

−c0(e) · Pr{trade} = 1.

Second Best

Proposition : There exists q ∈ [0, 1] such that a specific performance con-
tract (q, t) achieves FB investments

Proof:: Consider the buyer who maximizes, given (q, t) :

max
i

Eθ{[r(i) + er(θ)]q − t

+
1

2
[max{(r(i) + er(θ)− c(e)− ec(θ)), 0}
−[r(i) + er(θ)− c(e)− ec(θ)]q]}− i

and the FOC is:

1

2
r0(i) · q + 1

2
r0(i) · Pr{r(i) + er(θ)− c(e)− ec(θ) > 0} = 1 .

>From the FB. program we saw that the two FOC’s in that program
with respect to i and e will solve for FB investments i∗, e∗. Now let,

q = Pr{r(i∗) + er(θ)− c(e∗)− ec(θ) > 0} .
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It is easy to see that i∗ will be a solution to the buyer’s FOC if he
believes that seller chooses e∗. Similarly, we can easily show that the
same q will cause the seller to choose e∗ when he believes that the buyer
chooses i∗.⇒ i∗, e∗ is a Nash Equilibrium. Q.E.D.

The conclusion of the Edlin-Reichelstein model is that under the assump-
tions of their model, hold-up and specific performance have opposing forces
on investments. The idea of their solution is given by:

• For values of θ such that q∗ = 0, the buyer (seller) gets an “invest-
ment subsidy” (“tax”) when q > 0. i.e., this gives him a “positive”
disagreement point for renegotiation and there is an over-incentive to
invest.

• For values of θ such that q∗ = 1 the reverse is true.

⇒ on average the FB. investment is attainable.

Relation to Literature

• Hart-Moore (EMA 1988): Similar framework but do not allow specific
contracts or any contracts (“at-will contracts” maximum incomplete-
ness). ⇒ get underinvestment always.

• Aghion-Dewatripont-Rey (EMA 1994): Different approach to “play-
ing” with ex-post renegotiation. Idea: We can design the renegotiation
game using simple rules like (i) allocating all the bargaining power to
one party, and (ii) specify default options in case that renegotiation
falls (e.g., Financial hostages, per-diem penalties).

• Che-Hausch (AER forthcoming)...

• Segal-Whinston (1998 mimeo)...

Conclusion: observability and non-verifiability is not enough to explain
hold-up.



179

Foundations for “maximum incompleteness:”

• In Edlin-Reichelstein, parties knew what good should be traded but
not if trade should occur. (i.e., level)

• What does it mean not to know “what should be traded?”

1. Rational Approach: Parties have diffused priors over which type of
many types of “widgets” will be the optimal one to trade.

2. Courts have Bounded Rationality: Parties can understand what
will be optimal in every future state but cannot describe this to courts
ex ante.

3. Unforeseen Contingencies: Parties have a form of bounded ratio-
nality; They cannot foresee the future states (suffer from informational
“ignorance”).

Rational Approach: (Based on Segal, RES forthcoming)

• N different types of widgets, ex-ante indistinguishable ex-post only one
is the optimal-efficient one to trade.

• Buyer’s valuation: R(i) cost of investment: i
Seller’s cost: c(e) cost of investment: e

• Contract: specify a fixed trade, e.g., widget #17, and a monetary
transfer t.

This setup implies that the disagreement point is independent of the
optimal widget.
Starting point: all widgets except the optimal one are worthless and

costless - “cheap imitations” - and exhibit R = c = 0.
The Buyer’s ex-ante problem is:

max
i

uB =
1

N
[R(i)− t] +

N − 1
N

· 1
2
· [(R(i)− c(e))− 0]

where the first term follows from the fact that given a contract, there is a
probability of 1

N
that this ex-ante contract is optimal and there will be no

renegotiation, and the second term follows from the fact that with probability
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N−1
N
the contract will not be optimal, and we will have renegotiation in which

the gains from renegotiation are split equally.. The FOC with respect to i is,µ
1

N
+

N − 1
2N

¶
R0(i) −→

N→∞

1

2
R0(i) .

That is, as N →∞, we converge to an “at-will trade” (no contract) outcome,
i.e., complete hold-up due to “maximum incompleteness.” The intuition is
simple: The disagreement point is independent of the optimal widget, and
does not depend on observable but not-verifiable information (unlike in the
Edlin-Reichelstein model.) Thus, the conclusion is that we can improve over
the no-contract case if the disagreement point will be made sensitive to non-
verifiable information.
How can this be done? We can resort to a “message game” as follows:

• after investments and uncertainty, Buyer chooses which widget should
be traded, i.e., give Buyer authority. This will cause the optimal widget
to be chosen, and the FB outcome is achieved. (Full incentives ti the
parties.)

What do we need to revive hold-up?

Assumption: Some of the N − 1 non-optimal widgets are worthless as be-
fore, and some are “very expensive” regardless of investments: For some
widgets, R = C = A >> 0 (“gold” widgets) A > R(i)− t.

In this case, if we use Buyer authority, the buyer will always choose a
“gold” widget, and then they will renegotiate from there. Does this guarantee
that we get holdup? Not necessarily:

Example: For any givenN , let g(N) ≡ # of gold widgets, and this is known
to the court. We can use the following message game: First, the Seller
can “veto” g(N) widgets. Second, the buyer chooses one remaining
widget. This will lead to FB investments.

What is needed to get hold-up? Either (1) Courts don’t know g(N) ⇒
resort to general message games, or (2) Courts know g(N) but only finitely
many widgets can be described.
Related: Hart-Moore (1998), Maskin-Tirole (1998).


