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Mixed Strategies

The basic idea of Nash equilibria, that is, pairs of actions where each player is

choosing a particular one of his possible actions, is an appealing one. Of course,

we would like to put it to test: how will it fair with respect to our criteria of

evaluating a solution concept?

Consider the following classic “zero sum” game called “Matching Pennies”.1

Players 1 and 2 both put a penny on a table simultaneously. If the two pennies

come up the same (heads or tails) then player 1 gets both, otherwise player 2 does.

We can represent this in the following matrix:

Player 1

Player 2

H T

H

T

1,−1 −1,1

−1, 1 1,−1

Clearly, the method we introduced above to find a pure strategy Nash equilibrium

does not work — given a belief that player 1 has, he always wants to match it, and

1A zero sum game is one in which the gains of one player are the losses of another, hence their payoffs sum to

zero. The class of zero sum games was the main subject of analysis before Nash introduced his solution concept in

the 1950’s. These games have some very nice mathematical properties that we will not go into. An approachable

reference to this older, yet mathematically appealing literature is ...
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given a belief that player 2 has, he would like to choose the opposite orientation

for his penny. Does this mean that a Nash equilibrium fails to exist? Not if we

consider a richer set of possible behaviors, as we will soon see.

Matching pennies is not the only simple game that fails to have a pure-strategy

Nash equilibrium. Consider the famous child’s game “Rock-Paper-Scissors”. Recall

that rock beats scissors, scissors beats paper, and paper beats rock. If winning gives

the player a payoff of 1 and the loser a payoff of −1, we can describe this game by

the following matrix:

R P S

R 0,0 -1,1 1,-1

P 1,-1 0,0 -1,1

S -1,1 1,-1 0,0

It is possible to write down, for example, the best response for player when he

believes that player 2 will play one of his pure strategies as:

s1(s2) =




P, when s2 = R

S, when s2 = P

R, when s2 = S

and a similar (symmetric) list would be the best response of player 2. What is

the conclusion? There is no pure strategy equilibrium, just like in the matching

pennies game.

9.1 Strategies and Beliefs

In what follows, we introduce the concept of mixed strategies, which captures the

very plausible idea that there is uncertainty about the behavior of players, since

they may choose to randomly select one of their pure strategies. This will give us

flexibility in forming a much richer set of beliefs, and allowing players to choose

from a richer set of strategies. This section will rely on you having some past

experience with the ideas of randomness and probabilities over random events.

That said, I will try to offer a decent amount of refreshing so that the notation

and ideas will almost be self contained.
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Definition 11 Let Si be i’s pure strategy set. Define �Si as the simplex of Si

or, the set of probability distributions over Si. A mixed strategy for player i is

an element σi ∈ �Si, so that σi is a probability distribution over Si. We denote by

σi(si) the probability that player i plays si.

This definition of a mixed strategy can best be explained by a few simple exam-

ples. In the case of Matching Pennies, Si = {H,T}, and the simplex of this two

element strategy set can be represented by a single number σ ∈ [0, 1], where σ is

the probability that player i plays H, and 1 − σ is the probability that player i

plays L. A more cumbersome, but maybe more revealing way of writing this can

be as follows:

�Si = {(σ(H), σ(T )) : σ(H) ≥ 0, σ(T ) ≥ 0, σ(H) + σ(T ) = 1}.

The meaning of this notation is that the set of mixed strategies is the set of all

pairs (σ(H), σ(T )) such that both are non-negative numbers, and they both sum

up to one.2 We use the notation σ(H) to represent the probability that player i

plays H, and σ(T ) as the probability that player i plays T .

In the example of Rock-Paper-Scissors, Si = {R,P, S} (for rock, paper and

scissors respectively), and we can define

�Si = {(σ(R), σ(P ), σ(S)) : σ(R), σ(P ), σ(S) ≥ 0, σ(R) + σ(P ) + σ(S) = 1}

which is now three numbers, each defining the probability that the player plays

one of his pure strategies.

Notice that a pure strategy is just a special case of a mixed strategy. For example,

in the rock-paper-scissors game, we can represent the pure strategy of playing R

with the mixed strategy, σ(R) = 1, σ(P ) = σ(S) = 0.

In general, a finite probability distribution p(·) is a function on a finite state

space. A finite state space has a finite number of events, and the probability dis-

tribution function p(·) determines the probability that any particular event in the

2This follows from the definition of a probability distribution over a two element set. This is why a single number

p is enough to define a probability distribution over two actions. In general, the simplex of a k-dimensional strategy

set (one with k pure strategies) will be in a k− 1 dimensional spaces, where each of the k − 1 numbers is in [0,1],

and represent the probability of the first k − 1 pure strategies. All sum up to a number equal to or less than one

so that the remainder is the probability of the k-th pure strategy.
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state space occurs. For example, the state space may be the possible weather con-

ditions, say, “rain” (R) “hail” (H) or “clear” (C), so the space is S = {R,H,C}.

The probability of each event, or state of nature will be given by the associated

probability function. In our case of a game, the finite state space is the finite

strategy set of a player Si.

Any probability distribution over a finite state space, in our case Si, must satisfies

two conditions:3

1. p(si) ≥ 0 for all si ∈ Si, and

2.
∑

si∈Si
p(si) = 1.

That is, the probability of every any event happening must be non negative, and

the sum of the probabilities of all the possible events must add up to one.

If we have such a finite state space with a probability distributionp(·), we will

say that an event is in the support of p(·) if it occurs with positive probability. For

example, for the game of rock-paper-scissors, a player can choose rock or paper,

each with equal probability, so that σ(R) = σ(P ) = 0.5 and σ(S) = 0. We will

then say that R and P are in the support of σ(·), but S is not.

As we have seen with the Cournot and Bertrand duopoly examples, the strategy

spaces need not be finite. In this case a mixed strategy will be given by a cumulative

distribution function (CDF). A CDF replaces the role of a probability distribution

function as a representation of randomness over a continuous state space.

For example, assume that there is a capacity constraint of 100 units of production

in the Cournot duopoly game. Then the strategy space for each firm is Si = [0, 100],

which will represent our continuous state space. In this case, we define a cumulative

distribution function, F : [0, 100]→ [0, 1] as follows,

F (x) = Probability{si < x}

that is, F (x) would represent the probability that the actual chosen quantity is

less than x.

3
The notation

∑
si∈Si

p(si) means the sum of p(si) over all the si ∈ Si.
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If the CDF F (·) has a derivative f (·) = F ′(·), then for the case where x ∈ [0, 100]

we can rewrite the CDF as F (x) =
∫
x

0
f(x)dx. The derivative of a CDF is called a

density function, and in loose terms represents the likelihood of an event.

When we have such a continuum of choices, then a mixed strategy will be rep-

resented by either a CDF F (·) or its density function f(·). We will say that a

particular action is in the support of such a continuous mixed strategy if the den-

sity at that action is positive, that is, x is in the support of F (·) if f(x) > 0. This

is analogous to the definition of a support for a finite mixed strategy.4

Treating a player’s strategy set as such a state space, and introducing probability

distributions over the strategy sets, lets us enrich the actions that players can take.

For example, in the matching pennies game, a player is no longer restricted to

choose between heads or tails, but he can flip the coin and thus choose a probability

distribution over heads and tails. If the coin is a “fair” one, then by flipping it the

probability of each side coming up is 0.5. However, using some play-clay on different

sides of the coin the player can possibly choose other distributions.5

Interestingly, introducing probability distributions not only enriches the set of

actions that a player can choose from pure to mixed strategies, but allows us to

enrich the beliefs that players have in a natural way. Consider, for example, player

i who plays against opponents −i. It may be that player i is uncertain about the

behavior of his opponents for many reasons. For example, he may believe that his

opponents are indeed choosing mixed strategies, which immediately implies that

their behavior is not fixed but rather random. Maybe, more convincing is the case

where player i is playing a game against an opponent that he does not know, and

his opponent’s background will determine how she will play. This interpretation

will be revisited later, and is a very appealing justification for beliefs that are

random, and behavior that justifies these beliefs. We introduce this idea formally

4The reason this is indeed loose is that for a continuous random variable, the probability that any particular

event will occur is zero. If these terms are foreign, a short pause to read up on probability would be quite necessary.

A good reference, for example, is...
5There will be many other ways to choose other distributions. For example, with a fair coin you can toss the

coin twice, thus creating four events, (HH,HT, TH, TT ), where each event (combination of two draws) occurs

with probability 0.25. If you choose Heads if it ever appears, then you choose heads with probability 0.75 because

heads will come up at least once in three of the four events. You can even be more creative.
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Definition 12 A belief for player i is given by a probability distribution πi ∈

�S
−i over the strategies of his opponents.

Thus, a belief for player i is a probability distribution over the actions of

his opponents. Notice that the belief of player i lies in the same set that rep-

resents the profiles of mixed strategies of player i’s opponents. For example, in

the rock-paper-scissors game, we can represent the beliefs of player 1 as a triplet,

(π1(R), π1(P ), π1(S)) where by definition, π1(R), π1(P ), π1(S) ≥ 0, and π1(R) +

π1(P ) + π1(S) = 1. The interpretation of π1(s2) is the probability that player 1

assigns to player 2 playing some particular s2 ∈ S2. Recall that the strategy of

player 2 is a triplet σ2(R), σ2(P ), σ2(S) ≥ 0, with σ2(R) + σ2(P ) + σ2(S) = 1, so

we can clearly see the analogy between π and σ.

This completes the enrichment of both the strategies that players can choose,

and the corresponding beliefs that they will hold about their opponents’ behavior.

Now we have to address the issue of how players will evaluate their payoffs from

playing a mixed strategy, as well as the effect of random behavior of their opponents

on their own payoffs. For this, we resort to the well established ideas of utility over

random payoffs.

9.2 Expected Utility

Consider the matching pennies game described above, and assume for the moment

that player 2 chose to randomize when she plays. In particular, assume she has a

device that plays H with probability 1

3
and T with probability 2

3
. If player 1 plays

H for sure, he will win with probability 1

3
while he will lose with probability 2

3
. If,

however, he plays T then with probability 2

3
he will win and with probability 1

3
he

will lose. It is quite intuitive that the second option, playing T , should be more

attractive. But how much should each option be “worth” in terms of payoffs for

player 1?

If we think of the choice of H or T for player 1, it is like choosing between

two lotteries, where a lottery is exactly a random payoff. Indeed, if we think of

the outcomes of games as the payoffs that they imply, then when some players

are playing mixed strategies, the players’ payoffs are random variables. When the
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lotteries are as simple as the one we just described, then the choice seems obvious:

winning with a higher probability must be better. However, when the lotteries are

not as simple, say winning and losing have different final payoffs in the different

lotteries, then a more thoughtful approach is needed.

There is a well developed methodology to evaluate how much a lottery is worth

for a player, and how different lotteries compare to others, and to “sure” payoffs.

This methodology, evaluating expected utility, is the framework we will adopt and

use throughout this text. First, we introduce the following definition:

Definition 13 Let ui(x) be player i’s utility function over monetary payoffs x ∈

X. If X = {x1, x2, ..., xL} is finite, and p = (p1, p2, ...pL) is a lottery over mon-

etary payoffs such that pk = Pr{x = xk} then we define i’s expected utility

as

E[u(x)] =
L∑

k=1

pk · u(xk) .

If X is a continuous space with a lottery given by the cumulative distribution F (x),

with density f(x) = F ′(x), then we define i’s expected utility as:6

E[u(x)] =

∫
x∈X

u(x)f(x)dx

The idea of expected utility is quite intuitive: if we interpret a lottery as a list of

“weights” on monetary values, so that numbers that appear with higher probability

have more weight, then the expected utility of that lottery is nothing other than

the weighted average of utilities for each realization of the lottery. It turns out that

there are some important foundations that make such a definition valid, and they

were developed by John von-Neuman and Oscar Morgenstern, two of the founding

fathers of game theory. These foundations are beyond the scope of this text, and

a nice treatment of the subject appears in Kreps (1990), chapter 3.

What does it mean for player i to have a utility function over monetary payoffs?

This can be best explained with an example: Suppose that a player i has a utility

from money that is increasing in the amount of money he has, but at a diminishing

6More generally, if there are continuous distributions that do not have a density because F (·) is not differen-

tiable, then the expected utility is given by E[u(x)] =
∫

x∈X

u(x)dF (x) .
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rate. Arguably, this is a rather reasonable assumption which means that he values

the first thousand dollars more than the second thousand, and so on. Suppose, for

example, that the utility is given by the function u(x) = 2
√
x , which is increasing

(u′(x) = 1√
x
> 0) and concave (u′′(x) = −

1

2x
√
x
< 0).7 The concavity of u(x)

represents the diminishing marginal value of money: the increase of utility is smaller

for each additional dollar.

Now assume that this player is offered a lottery X that can take one of two

values, x ∈ {4, 9}, with Pr{x = 4} = 1

3
, that is, with probability 1

3
the outcome

is 4, while with probability 2

3
it is 9. The expected utility of this agent is then, by

definition,

E[u(x)] =
1

3
· 2
√
4 +

2

3
· 2
√
9 = 5

1

3
.

We now ask, what is the most that this player would be willing to pay for this

lottery? The answer must come from the utility of the player: how much money, c,

gives him a utility of 5 1

3
? The answer comes from solving the equation 2

√
c = 5

1

3
,

which yields c = 7
1

9
. That is, if this player follows the rules of expected utility as

we defined them above, then he should be indifferent between a sure amount of 71

9

and the proposed lottery X.8

Notice that this sure amount is smaller than the expected amount of money that

this lottery promises, which is E(x) = 1

3
· 4 + 2

3
· 9 = 71

3
. The fact that the sure

amount c is smaller than the expected payment of X is a consequence of the shape

of u(·), which in this case is concave. The concavity of u(·) implies that for any

lottery, the player would be willing to accept less than the mean of the lottery

instead of the lottery, a property we know as risk aversion.9 This implies that to

be able to say how much a lottery is worth for a player, we need to know something

about his risk preferences.

7A function f(x) is said to be concave over an interval (a, b) if for every pair x, y ∈ (a, b) and every λ ∈ [0, 1],

f(λx+ (1− λ)y) ≥ λf(x) + (1− λ)f(y)

and is strictly concave if for every λ ∈ (0, 1) this inequality is strict.
8 In the economics literature this certain amount c is called the certainty equivalent to the lottery X. Think of

it as the highest amount the player will pay to get the lottery X , or the lowest amount the player will accept to

give X up.
9This property is often referred to as Jensen’s inequality. In its most general formalization, it says that if f(·)

is concave and X is a random variable, then E[f(X)] � f(E[X]), where E[·] is the expectations operator.
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However, we will circumvent this problem in a rather nifty way. When we write

down a game, we do not write down the payoffs in their monetary terms, but

rather we write them in some abstract way as “utils”. Namely, in the example

above replace the payoffs of the lottery {x1, x2} = {4, 9} with the associated utils

{u(x1), u(x2)} = {4, 6}, so that the expected utility is immediately given by its

definition of the weighted sum of utils,

E[u] =
1

3
· 4 +

2

3
· 6 = 5

1

3
.

This implies that when we have the payoffs of a game determined in utils, we can

calculate his expected utility from a lottery over outcomes as the expectation over

his payoffs from the outcomes. That is, the payoffs of a game are not defined as

monetary payoffs but instead are defined as the utility values from the outcomes of

play. This allows us to define the expected payoff of a player from mixed strategies

as follows:

Definition 14 The expected payoff of player i when he chooses si ∈ Si and his

opponents play the mixed strategy σ
−i ∈ ∆S

−i is

ui(si, σ−i) =
∑

s
−i∈S−i

probability
︷ ︸︸ ︷

σ
−i(s−i) ·

utils

︷ ︸︸ ︷

ui(si, s−i)

Similarly, the expected payoff of player i when he chooses σi ∈ ∆Si and his oppo-

nents play the mixed strategy σ
−i ∈ ∆S−i is

u1(σi, σ−i) =
∑

si∈Si

σi(si) · ui(si, σ−i) =
∑

si∈Si


 ∑

s
−i∈S−i

σi(si) · σ
−i(s−i) · ui(si, s−i)




Example: Rock-Paper-Scissors

Recall the rock-paper-scissors example above,

R P S

R 0,0 −1, 1 1,−1

P 1,−1 0, 0 −1,1

S −1, 1 1,−1 0, 0
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and assume that player 2 plays: σ2(R) = σ2(P ) = 1

2
; σ2(S) = 0. We can now

calculate the expected payoff for player 1 from any of his pure strategies,

u1(R,σ2) =
1

2
· 0 +

1

2
· (−1) + 0 · 1 = −

1

2

u1(P,σ2) =
1

2
· 1 +

1

2
· 0 + 0 · (−1) =

1

2

u1(S,σ2) =
1

2
· (−1) +

1

2
· 1 + 0 · 0 = 0

It is easy to see that player 1 has a unique best response to this mixed strategy

of player 2: if he plays P , he wins or ties with equal probability, while his other

two pure strategies are worse: with R he either loses or ties and with S he either

loses or wins.

Example: Bidding for a Dollar

Imagine the following game in which two players can bid for a dollar. Each can

submit a bid that is a real number, so that Si = [0,∞), i ∈ {1, 2}. The person

with the highest bid gets the dollar, but the twist is that both bidders have to pay

their bids. If there is a tie then both pay and the dollar is awarded to each player

with an equal probability of 0.5. Thus, if player i bids si and player j �= i bids sj

then player i’s payoff is

ui(si, s−i) =




−si if si < sj

1

2
− si if si = sj

1− si if si > sj

.

Now imagine that player 2 is playing a mixed strategy in which he is uniformly

choosing a bid between 0 and 1. That is, player 2’s mixed strategy σ2 is a uniform

random variable between 0 and 1, which has a CDF F (x) = x and a density

f(x) = 1 for all x ∈ [0,1]. The expected payoff of player 1 from offering a bid

si > 1 is 1 − si < 0 since he will win for sure, but this would not be wise. The



9.3 Mixed Strategy Nash Equilibrium 67

expected payoff from bidding si < 1 is

Eu1(s1, σ2) = Pr{s1 < s2} · (−s1) + Pr{s1 = s2} · (
1

2
− s1) + Pr{s1 > s2} · (1 − s1)

= (1 − F (s1)) · (−s1) + 0 · (
1

2
− s1) + F (s1) · (1− s1)

= 0

Thus, when player 2 is using a uniform distribution between 0 and 1 for his bid,

then player 1 cannot get any positive expected payoff from any bid he offers: any

bid less than one offers an expected payoff of 0, and any bid above 1 guarantees

getting the dollar at an inflated price. This cute game is one to which we will return

later, since it has several interesting features and twists.

9.3 Mixed Strategy Nash Equilibrium

Now that we are equipped with a richer strategy space for our players, we are

ready to restate the definition of a Nash equilibrium—which we have already in-

troduced in pure strategies—to this more general setup where players can choose

mixed strategies:

Definition 15 The mixed strategy profile σ
∗

= (σ∗
1
, σ

∗

2
, ..., σ

∗

n
) is a Nash Equilib-

rium if for each player σ∗
i
is a best response to σ

∗

−i
. That is, for all i ∈ N,

ui(σ
∗

i
, σ∗

−i
) ≥ ui(σi, σ

∗

−i
) ∀ σi ∈ ∆Si.

This definition is the natural generalization of what we defined previously. We

require that each player is choosing a strategy σ∗
i
∈ ∆Si that is the best thing he

can do when his opponents are choosing some profile σ∗
−i
∈ ∆S

−i.

There is another interesting interpretation of the definition of Nash equilibrium.

We can think of σ∗
−i

as the belief of player i about his opponents, πi,which captures

the idea that player i is uncertain of his opponents’ behavior. The profile of mixed

strategies σ∗
−i

thus captures this uncertain belief over all of the pure strategies

that player i’s opponents can play. Clearly, rationality requires that a player play

a best response given his beliefs (which now extends the notion of rationalizability
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to allow for uncertain beliefs). A Nash equilibrium requires that these beliefs be

correct.

Turning back to the explicit interpretation of a player actually mixing between

several pure strategies, the following definition is useful:

Definition 16 Let σi be a mixed strategy played by player i. We say that the pure

strategy si ∈ Si is in the support of σi if σi(si) > 0, that is, if si is played with

positive probability.

That is, we will say that a pure strategy siis in the support of σi if when playing

σi, player i chooses si with some positive probability σi(si) > 0.

Now imagine that in the Nash equilibrium profile σ∗, the support of i’s mixed

strategy σ∗

i
contains more than one pure strategy, say si and s′

i
are both in the

support of σ∗

i
. What must we conclude about player i if σ∗

i
is indeed part of a

Nash equilibrium (σ∗

i
, σ∗

−i
)? By definition, σ∗

i
is a best response against σ∗

−i
, which

means that given σ∗

−i
, player i cannot do better than to randomize between more

than one of his pure strategies, in this case, si and s′
i
. But, when would a player

be willing to randomize between two alternative pure strategies?

Proposition 7 If σ∗ is a Nash equilibrium, and both si and s
′

i
are in the support

of σ∗

i
, then

ui(si, σ
∗

−i
) = ui(s

′

i
, σ

∗

−i
) = ui(σ

∗

i
, σ

∗

−i
) .

The proof is quite straightforward and follows from the observation that if a

player is randomizing between two alternatives, then he must be indifferent between

them. If this were not the case, say ui(si, σ
∗

−i
) > ui(s

′

i
, σ∗

−i
) with both si and s

′

i

in the support of σ∗

i
, then by reducing the probability of playing s′

i
from σ∗

i
(s′

i
)

to zero, and increasing the probability of playing si from σ∗

i
(si) to σ∗

i
(si) + σ∗

i
(s′

i
),

player i’s expected utility must go up, implying that σ∗
i
could not have been a best

response to σ∗
−i
.

This simple observation will play an important role for finding mixed strategy

Nash equilibria. In particular, we know that is a player is playing a mixed strategy,

he must be indifferent between the actions he is choosing with positive probability,

that is, the actions that are in the support of his mixed strategy. One player’s

indifference will impose restrictions on the behavior of other players, and these
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restrictions will help us find the mixed strategy Nash equilibrium. An example will

be helpful.

Example: Matching Pennies

Consider the matching pennies game,

H T

H

T

1,-1 −1, 1

−1,1 1,-1

and recall that we showed that this game does not have a pure strategy Nash

equilibrium. We now ask, does it have a mixed strategy Nash equilibrium? To

answer this, we have to find mixed strategies for both players that are mutual best

responses.

Define mixed strategies for players 1 and 2 as follows: Let p be the probability

that player 1 plays H and 1− p the probability that he plays T . Similarly, let q be

the probability that player 2 plays H and 1− q the probability that he plays T .

Using the formulae for expected utility in this game, we can write player 1’s

expected utility from each of his two pure actions as follows:

u1(H, q) = q · (1) + (1 − q) · (−1) = 2q − 1 (9.1)

u1(T, q) = q · (−1) + (1− q) · 1 = 1− 2q

With these equalities in hand, we can calculate the best response of player 1 for any

choice q of player 2. In particular, playing H will be strictly better than playing

T for player 1 if and only if u1(H,q) > u1(T, q), and using (9.1) above this will be

true if and only if

2q − 1 > 1− 2q,

which is equivalent to q > 1

2
. Similarly, playing T will be strictly better than

playing H for player 1if and only if q < 1

2
. Finally, when q = 1

2
player 1 will be
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indifferent between playing H or T . This simple analysis gives us the best response

correspondence10 of player 1, which is:

BR1(q) =




p = 0 if q < 1

2

p ∈ [0,1] if q = 1

2

p = 1 if q > 1

2

.

It may be insightful to graph the expected utility of player 1 from choosing either

H or T as a function of q, the choice of player 2, as shown in figure 2.2.

Expected utility in the Matching Pennies game

The expected utility of player 1 fromplayingH was given by the function u1(H, q) =

2q − 1 as described in (9.1) above. This is the rising linear function in the figure.

Similarly, u1(T, q) = 1 − 2q is the declining function. Now, it is easy to see where

the best response of player 1 is coming from. The “upper envelope” of the graph

will show the highest utility that player 1 can achieve when player 2 plays q. When

q < 1

2
this is achieved by playing T , when q > 1

2
this is achieved by playing H, and

when q = 1

2
both H and T are equally good for player one.

In a similar way we can calculate the utilities of player 2 given a mixed strategy

p of player 1 to be,

10Unlike a function, which maps each value from the domain onto a unique value in the range, a correspondence

can map values in the domain to several values in the range. Here. for example, when the domain value is q = 1

2
,

then the correspondence maps this into a set, BR( 1
2
) = [0, 1].



9.3 Mixed Strategy Nash Equilibrium 71

u2(p,H) = p · (−1) + (1 − p) · 1 = 1 − 2p

u2(p,T ) = p · 1 + (1−) · (−1) = 2p− 1

and this implies that 2’s best response is,

BR2(p) =




q = 1 if p < 1

2

q ∈ [0, 1] if p = 1

2

q = 0 if p > 1

2

.

We know from the proposition above that when player 1 is mixing between H

and T , both with positive probability, then his payoff from H and from T must

be identical. This, it turns out, imposes a restriction on the behavior of player 2,

given by the choice of q. Namely, player 1 is willing to mix between H and T if

and only if

u1(H,q) = u1(T, q) ,

which is true, from our analysis above, only when q = 1

2
. This is the way in which

the indifference of player 1 imposes a restriction on player 2: only when player

2 is playing q = 1

2
, will player 1 be willing to mix between his actions H and

T . Similarly, player 2 is willing to mix between H and T only when u2(p,H) =

u2(p, T ), which is true only when p = 1

2
.

At this stage we have come to the conclusion of our quest for a Nash equilibrium

in this game. We can see that there is indeed a pair of mixed strategies that form

a Nash Equilibrium, and these are precisely when (p, q) = (1
2
, 1
2
).

We return now to observe that the best response correspondence for each player

is a function the other player’s strategy, which in this case is a probability between

0 and 1, namely, the opponent’s mixed strategy (probability of playing H). Thus,

we can graph the best response correspondence of each player in a similar way that

we did for the Cournot duopoly game since each strategy belongs to a well defined

interval, [0,1]. For the matching pennies example, player 2’s best response q(p) can

be graphed in figure X.X. (q(p) is on the x-axis, as a function of p on the y-axis.)

Similarly, we can graph player 1’s best response, p(q), and these two correspon-

dences will indeed intersect only at one point: (p, q) = (1
2
, 1
2
). By definition, when

these two correspondences meet, the point of intersection is a Nash equilibrium.
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Best Response correspondences in the Matching Pennies game

–––––––––

There is a simple logic that we can derive from the Matching Pennies example

that is behind the general way of finding mixed strategy equilibria in games. The

logic relies on a fact that we had already discussed, which says that if a player is

mixing between several strategies then he must be indifferent between them. What

a particular player i is willing to do depends on the strategies of his opponents.

Therefore, to find out when player i is willing to mix between some of his pure

strategies, we must find strategies of his opponents, −i, that make him indifferent

between some of his pure actions.

For the matching pennies game this can be easily illustrated as follows. First, we

ask which strategy of player 2 will make player 1 indifferent between playingH and

T . The answer to this question (assuming it is unique) must be player 2’s strategy

in equilibrium. The reason is simple: if player 1 is to mix in equilibrium, then

player 2 must be playing a strategy for which player 1’s best response is mixing,

and this strategy is the one that makes player 1 indifferent between playing H

and T . Similarly, we ask which strategy of player 1 will make player 2 indifferent

between playing H and T , and this must be player 1’s equilibrium strategy.

When we have games with more than 2 strategies for each player, then coming

up with quick ways to solve mixed strategy equilibria is not as straightforward,

and will usually involve more tedious algebra that solves several equations with
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several unknowns. If we take the game of rock-paper-scissors, for example, then

there are many mixing combinations for each player, and we can’t simply check

things the way we did for the matching pennies game. We can try to see if there is,

however, an equilibrium in which each player mixes between all of his strategies.

This is done in the appendix of this chapter, and is simply a solution to a system

of linear equations. There are computer algorithms that have been developed to

solve for all the Nash equilibria of games, and some are quite successful. L6

Example: Advertising Game

Imagine that a current market segment is monopolized by one incumbent firm.

All is well until a potential entrant is considering entry into the market. The firms

are now playing a game, in which each must simultaneously decide their business

strategy. The potential entrant must commit to set up for entry or to forgo the

option of entry, and the incumbent must decide on a possible advertising campaign

that will affect the potential gains of a threatening entrant. This kind of interaction

is not uncommon, and the question of course is whether we can shed light on the

outcomes we expect to see.

The story can be translated into a game once we formalize the actions that each

player can choose, and assigns payoffs to the different outcomes. Assume that the

incumbent firm (player 1) currently monopolizes the market, and that this market

offers a net value of 15 to the sellers in it. The entrant (player 2) must commit to

one of two actions:

• Enter (E), which costs 7

• Stay out (O), which costs 0

The incumbent firm can try to deter entry by choosing one of three ad campaign

strategies:

• No ad (N), which costs 0

• Low level ad (L), which costs 2

• High level ad (H), which costs 4
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Assume that if the entrant does not enter and stays out, then all the market

value of 15 will accrue to the incumbent. If, however, the entrant enters the market,

then the two firms will split the market value of 15 according to the ad campaign

that the incumbent chose as follows:

• If 1 chose N then 2 gets all the market

• If 1 chose L then 2 gets 0.6 of the market

• if 1 chose H then 2 gets 0.4 of the market

Now that we have taken the informal story and formalized it with some assump-

tions on the actions and the associated payoffs, we can write this game down in

the following matrix form,

Player 1

Player 2

E O

H

L

N

5,−1 11, 0

4, 2 13, 0

0, 8 15, 0

First note that there is no pure strategy Nash equilibrium of this game, which

implies that we need to look for a mixed strategy Nash equilibrium. To do this,

it is easier to start with finding which strategies of player 2 would make player

1 indifferent between some of his actions. The reason is that player 2’s mixed

strategy can be represented by a single probability (say of playing E), which is a

consequence of player 2 having only two pure strategies. In contrast, we need two

probabilities to fully represent a mixed strategy for player 1.

Let q be the probability that player 2 plays E. Given any choice of q ∈ [0, 1], the

expected payoff of player 1 from each of his three pure strategies can be written

as follows:

u1(H, q) = q · 5 + (1 − q) · 11 = 11 − 6q

u1(L, q) = q · 4 + (1 − q) · 13 = 13 − 9q

u1(N, q) = q · 0 + (1 − q) · 15 = 15 − 15q
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FIGURE 9.1.

As with the matching pennies game, we will use these expected utility values to

find the best response correspondence of player 1. Playing H will dominate L if

and only if u1(H, q) > u1(L, q), which is true when 11 − 6q > 13 − 9q, or q > 2

3
.

Playing H will dominate N if and only if u1(H, q) > u1(N, q), which is true when

11 − 6q > 15 − 15q, or q > 4

9
. Thus, from these two observations we know that H

is the unique best response if q > 2

3
.

From the analysis above we already know that playing L will dominate H if and

only if q < 2

3
. Playing L will dominate N if and only if u1(L, q) > u1(N, q), which is

true when 13−9q > 15−15q, or q > 1

3
. Thus, from these two observations we know

that L is the unique best response if 2

3
> q > 1

3
. Finally, from these observations

and the ones above we know that N is the unique best response if q < 1

3
.

If we draw these expected utilities, u1(H,q), u1(L, q) and u1(N, q) as a function

of q, we can see the graphical representation of each region of q to find the best

response correspondence of of player 1 as a function of q.

From the graph we can see that for q < q1 =
1

3
(low probability of entry) player 1

prefers no ad (N ), for q > q2 =
2

3
(high probabilities of entry) player 1 prefers high



76 9. Mixed Strategies

ad (H), and for q ∈ (q1, q2) (intermediate probabilities of entry) player 1 prefers

low ad (L).

It should be now be evident that when q = q1, player 1 would be willing to mix

between N and L, while when q = q2, player 1 would be willing to mix between

H and L. Furthermore, player 1 would not be willing to mix between N and H

because for the value of q for which u1(N, q) = u1(H, q), we can see that playing

L yields a higher utility.11

It follows that player 1’s best response is,

BR1(q) =




N if q � 1

3

L if q ∈ [1
3
, 2
3
]

H if q ≥ 2

3

.

By writing the best response in this way it follows that for q = 1

3
, player 1 has two

pure strategy best responses, N and L, which means that any mixture between

them is also a best response. Similarly for L and H when q = 2

3
.

Since we have already established by looking at the matrix that there is no pure

strategy Nash equilibrium, it must be the case that player 2 must also be mixing in

equilibrium. Thus, there can be two candidates for a Nash equilibrium as follows:

1. player 1 will mix between N and L and player 2 plays q = 1

3
;

2. player 1 will mix between H and L and player 2 plays q = 2

3

To check if either of the above can be a mixed strategy equilibrium, we need to

look at two separate cases. First, see if we can find a mixed strategy for player 1

consisting of N and L with positive probability that makes player 2 indifferent,

so that he in turn is willing to play q = 1

3
. Second, see if we can find a mixed

strategy for player 1 consisting of L and H with positive probability that would

make player 2 indifferent, so that he can play q = 2

3
.

11To see this in a graph the graph has to be carefully drawn and accurate. It is safer to check for the possible

mixing using math as we did above. To see what combinations of mixtures are possible, we need to first calculate

the q that makes two strategies equally good, and then check that the third strategy is not better for that q. If we

have more than three strategies then the idea is the same, but we need to check all the other strategies against

the two indifferent ones.
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However, if we are observant and look back at this particular game then we

can notice a shortcut. If player 2 chooses q = 1

3
as part of a mixed strategy Nash

equilibrium, then player 1 will play a mixed strategy of N and L but not H.

cannot be part of a Nash equilibrium. However, if player 1 is not playing H and

only mixing between N and L then effectively the players are playing the following

game:

E O

L

N

4, 2 13, 0

0, 8 15, 0

Notice now that in this game player 2 has a dominant strategy, which is E, and

therefore we will not be able to find any mixing of player 1 between N and L that

would make player 2 indifferent between E and O, so he would not be willing to

mix and choose q = 1

3
. This implies that candidate 1 above is inconsistent with the

requirement of Nash equilibrium, and we can now check for candidate 2.

Since for this candidate equilibrium player 1 is not playing N and only mixing

between H and L, then effectively the players are playing the following game:

E O

H

L

5,−1 11,0

4, 2 13,0

Consider the case where player 1 mixes between L and H, and let player 1

play H with probability p and L with probability 1 − p. We will skip the process

of finding the best response for player 2 (which would be a good exercise) and

proceed directly to find the mixed strategy Nash equilibrium of this reduced game.

We need to find the value of p for which player 2 is indifferent between E and O,

that is, we solve for u2(E, p) = u2(O, p), or,

p · (−1) + (1− p) · 2 = 0

and this yields p = 2

3
. Thus, if player 2 mixes with q = 2

3
then player 1 is willing

to mix between H and L, and if player 1 mixes with p = 2

3
then player 2 will be

willing to mix between E and O. Thus the unique Nash equilibrium is,
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• Player 1 chooses (σ1(H), σ1(L), σ1(N)) = (2
3
, 1
3
, 0)

• Player 2 chooses (σ2(E), σ2(O)) = (2
3
, 1
3
)

–––––––––

9.4 IESDS in Mixed Strategies♠

As we have seen above, by introducing mixed strategies we offered two advance-

ments: First, players can have richer beliefs, and second, players can choose a richer

set of actions. This second advancement can be useful when we reconsider the idea

of IESDS. In particular, we can now offer the following definition:

Definition 17 Let σi ∈ ∆Si and s
′

i
∈ Si be feasible strategies for player i. We say

that s′

i
is strictly dominated by σi if

ui(σi, s−i) > ui(s
′

i
, s−i) ∀s−i ∈ S

−i.

That is, to consider a strategy as strictly dominated, we no longer require that

some other pure strategy dominate it, but allow for mixtures to dominate it as well.

It turns out that this allows IESDS to have more bite. For example, consider the

following game,

L C R

U 5,1 1,4 1,0

M 3,2 0,0 3,5

D 4,3 4,4 0,3

player 2’s payoff
=⇒

from mixing C and R

“1

2
C + 1

2
R”

2

2.5

3.5

and denote mixed strategies for players 1 and 2 as triplets, (σ1(U ), σ1(M), σ1(D))

and (σ2(L), σ2(C), σ2(R)) respectively. It is easy to see that no pure strategy is

strictly dominated by another pure strategy for any player. However, we can do

the following sequence of IESDS with mixed strategies:

1. (0, 1
2
, 1
2
) �2 L

2. in the resulting game, (0, 1
2
, 1
2
) �1 U
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Thus, after two stages of IESDS we have reduced the game above to,

C R

M 0,0 3,5

D 4,4 0,3

How can we find these dominated strategies? Well, a good eye for the numbers is

what it takes, short of a computer program or brute force. Also, notice that there

are other mixed strategies that would work because strict dominance implies that

if we add a small ε > 0 to one of the probabilities, and subtract it from another,

then the resulting expected utility from the new mixed strategies can be made

arbitrarily close to that of the original one, thus it too would dominate.

9.5 Multiple Equilibria: Pure and Mixed

When we have games with multiple pure strategy Nash equilibria, it turns out that

they will often have other Nash equilibria in mixed strategies. Let us consider the

2x2 game,

C R

M 0,0 3,5

D 4,4 0,3

It is easy to check that (M,R) and (D,C) are both pure strategy Nash equilibria.

It turns out that in cases like this, when there are two distinct pure strategy Nash

equilibria, there will generally be a third one in mixed strategies. For this game, let

p be player 1’s mixed strategy where p = σ1(M ), and let q be player 2’s strategy

where q = σ2(C).

Player 1 will mix when u1(M, q) = u1(D, q), or,

q · 0 + (1 − q) · 3 = q · 4 + (1− q) · 0⇒ q =
3

7
,

and player 2 will mix when u2(p,C) = u2(p,R), or,

‘p · 0 + (1 − p) · 4 = p · 5 + (1− p) · 3⇒ p =
1

6
.

This yields our third Nash equilibrium: (p, q) = (1
6
, 3
7
).
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FIGURE 9.2.

It is interesting to see that all three equilibria would show up in a careful drawing

of the best response functions. Using the utility functions u1(M, q) and u1(D, q)

we have,

BR1(q) =




p = 1 if q < 3

7

p ∈ [0,1] if q = 3

7

p = 0 if q > 3

7

.

Similarly, using the utility functions u2(p,C) and u2(p,R) we have,

BR2(p) =




q = 1 if p < 1

6

q ∈ [0, 1] if p = 1

6

q = 0 if p > 1

6

.

We can draw these two best response correspondences, which appear in figure

X.X,

and the three Nash equilibria are revealed: (p, q) ∈ {(1,0), (1
6
, 3
7
), (0, 1)} are

Nash equilibria, where (p, q) = (1, 0) corresponds to the pure strategy (M,C), and

(p, q) = (0,1) corresponds to the pure strategy (D,R).

Remark 6 It may be interesting to know that there are generically (a form of

“almost always”) an odd number of equilibria. To prove this one must resort to

rather heavy techniques.
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FIGURE 9.3.

9.6 Existence: Nash’s Theorem
♠♠

What can we say about Nash equilibrium? Unlike IESDS for example, the Bertrand

game with different marginal costs did not give rise to a well defined best response,

which in turn failed to give a Nash equilibrium. In his seminal dissertation, Nash

offered conditions under which this pathology does not arise, and as the Bertrand

example suggested, it has to do with continuity of the payoff functions. We now

state Nash’s theorem:

Theorem 8 (Nash’s Theorem) If Γ is an n-player game with finite strategy

spaces Si,and continuous utility function ui : S → �, i ∈ N , then there exists a

Nash Equilibrium in mixed strategies.

Proving this theorem iswell beyond the scope of this text, but it is illuminating to

provide some intuition. The idea of Nash’s proof builds on a Fixed-Point Theorem.

Consider a function f : [0, 1] → [0, 1]. Brauer’s Fixed-Point Theorem states that

if f is continuous then there exists some x∗

∈ [0, 1] that satisfies f(x∗) = x∗. The

intuition for this theorem can be captured by the graph in figure X.X

How does this relate to game theory? Nash showed that if the utility functions

are continuous, then something like continuity is satisfied for the best response

correspondence of each player. That is, if we have a sequence of strategies {σk
−i
}∞
k=1

for i’s opponents that converges to σ̂
−i, then there is a converging subsequence of

player i’s best response BRi(σ
k

−i
) that converges to an element of his best response

BRi(σ̂−i).
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We can then proceed by considering the collection of best response correspon-

dences, BR ≡ BR1 × BR2 × · · · × BRn, which operates from ∆S to itself. That

is, BR : ∆S ⇒ ∆S takes every element σ′
∈ ∆S, and converts it into a subset

BR(σ′) ⊂ ∆S. Since ∆Si is a simplex, it must be compact (closed and bounded,

just like [0,1]).

Nash then applied a more powerful extension of Brauer’s theorem, called Kaku-

tani’s fixed point theorem, that says that under these conditions, there exists some

σ
∗ such that σ∗ ∈ BR(σ∗), that is, BR : ∆S ⇒ ∆S has a fixed point. This

precisely means that there is some σ∗ for which the operator of the collection of

best response correspondences, when operating on σ∗, includes σ∗. This fixed point

means that for every i, σ∗

i
is a best response to σ∗

−i
, which is the definition of a

Nash equilibrium.

L7


