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Notes for Section: Week 3

Notes prepared by Paul Riskind (pnr@stanford.edu). Let me know if you
spot errors or have questions about these notes.

1 Questions and Comments

You're always welcome to ask questions in section, during my office hours, or by
email. If you want to talk but can’t attend my office hours, you're welcome to
schedule an appointment at another time. If I don’t know the answer to your
question off the top of my head, I'll try to figure it out and get back to you.

Help me improve my teaching by offering feedback. If you have suggestions
for improving section, you may talk to me, email me, or leave an anonymous
note in my mailbox in the economics department (on the second floor, near the
stairwell).

2 Symmetric Games Can Have Asymmetric Equi-
libria

In office hours (and apparently in answers to problem set 2) several students
suggested that Nash equilibria of games with symmetric payoff functions must
be symmetric. You've already seen an example, however, of a game with
symmetric payoff functions and asymmetric Nash equilibria: the game of "split
the sushi" in problem set 2. Moreover, even the weaker statement that games
with symmetric payoffs always have a symmetric equilibrium is false. We can
provide a counter-example by modifying "split the sushi" to rule out symmetric
equilibria.

Bottom line: Since games with symmetric payoff functions can have asym-
metric equilibria, you should not assume symmetric solutions for such games.



3 Mixed Strategy Using Undominated Pure Strate-
gies Can Be Strictly Dominated

Suppose o; is a mixed strategy that assigns positive probability to some strategy,
8;, that’s strictly dominated by 8;. It’s easy to show that o is strictly dominated
by the mixed strategy ; obtained by modifying o; so that 4 plays 3; whenever
o; would have i play s;. So any mixed strategy in which you play a strictly
dominated strategy with positive probability is strictly dominated.

What if instead, the support of o; contains only strategies that aren’t (weakly
or strictly) dominated? Can we say that o; isn’t dominated, either? Surpris-
ingly, the answer is NO.

The following game (from Fudenberg and Tirole, p. 7) shows that a mixed
strategy can be strictly dominated even if none of the strategies in its support
is even weakly dominated.

You
L R
vl 1,3 | 2,0
Your Dog M | —2,0 | 1,3
D | 0,1 0,1

As usual, denote mixed strategies by vectors of probabilities. Clearly, nei-
ther U nor M is a strictly or weakly dominated strategy for your dog. Nonethe-
less, D strictly dominates the mixed strategy op = (1/2,1/2,0), in which your
dog only plays undominated strategies!

In this game, a pure strategy dominates a (nontrivially) mixed strategy.
We'll see examples later of mixed strategies that dominate pure strategies.

4 Mixed Strategies Can Change The Set of Ra-
tionalizable Strategies

Recall the idea behind rationalizability: A strategy is rationalizable if it’s a
best response given a reasonable belief you have about how the other players
will play. We can derive the set of rationalizable strategies in a game by
iteratively removing any strategies that cannot be best responses to any profiles
of the other players’ remaining strategies.

I want to highlight a point made at the end of Tuesday’s class. A pure strat-
egy may be a best response to some mixed strategies even though it was never
a best response to any pure strategy. Thus, allowing mixed strategies may
change the set of rationalizable strategies. (Of course, mixed strategies
can contract as well as expand the set of rationalizable strategies.) Here’s an
example to illustrate this point:

You
L M R
Your Dog T | 4,6 | 0,0 | 2,5
B|10,0| 4,6 | 2,5




Your R strategy isn’t a best response to either of your dog’s pure strategies
— L is better against T', and M is better against B. Accordingly, R cannot
be rationalizable if only pure strategies are allowed in this game. But against
many mixed strategies, including op = (0.5,0.5), R is your best response. And
since you make your dog indifferent between his pure strategies when you play
R, your dog is willing to use mixed strategies because either 7" or B is a best
response for him. Thus, the strategy profile (o p, R) is a Nash equilibrium, and
since all Nash equilibrium strategies are rationalizable, R must be rationalizable.
When we allow mixed strategies, R is a best response to mixed strategies that
your dog could rationally play. We cannot rule out R using rationalizability as
we could when we only allowed pure strategies.

In our next example, we’ll see that mixed strategies also can change the set
of strategies that survive IESDS.

5 Finding Nash Equilibrium With Mixed Strate-
gies

In the next two examples, we’ll use two common tricks for finding Nash equilibria
in mixed strategies.

5.1 Example 1: Using Strict Dominance

Let’s find all Nash equilibria — including equilibria in mixed strategies — of the
following game (adapted from Watson, p. 107):
You
L M R
U|83]| 35 1|6,3
Your Dog C | 3,3 | 5,5 | 4,8
D |52 37149
Finding all mixed strategy equilibria of a 3x3 game would be tedious without
a shortcut. Fortunately, we can use iterated elimination of strictly dominated
strategies (IESDS) to simplify the game. We can use IESDS when finding Nash
equilibria in mixed strategies because the pure strategies eliminated by ITESDS
can never be played with any positive probability in a Nash equilibrium. If
at some stage of IESDS, s; strictly dominates s;, then in a Nash equilibrium
we can never place any positive probability on §; because player i has some
strategy remaining that always generates a higher payoff than s;. Player ¢
could increase her payoff by never playing s; and increasing the probability
with which she plays s; or some other strategy that always beats s;.
In the first round of IESDS, we eliminate your L strategy since M strictly
dominates L. The game becomes:




You

M R

Ul 351]6,3

Your Dog C | 5,5 | 4,8
D] 3,714,9

The second round of IESDS is harder. None of the remaining pure strategies
for either player strictly dominates any of the others. We can, however, use
mixed strategies to eliminate your dog’s D strategy. Suppose your dog plays
both U and C' with strictly positive probability, but not D, so his mixed strategy
takes the form op = (p, 1—p,0), where p € (0,1). His payoffs from this strategy
are:

up(op,M) = 3p+5(1—p)=5-2p>3=up(D,M)
up(op,R) = 6p+4(1—p)=4+2p>4=up(D,R)

Thus, the mixed strategy op strictly dominates D and we can eliminate D.
The game becomes:

You
M R
Your Dog U | 3,5 | 6,3
C| 55|48

We can no longer eliminate strategies using IESDS. Note that adding mixed
strategies has changed the set of strategy profiles that survive IESDS. Without
mixed strategies, we could not have eliminated your dog’s D strategy as we just
did.

We next check for Nash equilibria in pure strategies, and find none.

We now look for equilibria in mixed strategies that use only the remaining
pure strategies with positive probability. Suppose your dog plays op = (p, 1 —
p), and you play oy = (q,1 — q), where p,q € (0,1). We need to find the value
of p that makes you indifferent between playing M and R, and the value of ¢
that makes your dog indifferent between playing U and C.

The payoffs for your remaining pure strategies are:

uy (O’D, M) = 5
uy(op,R) = 3p+8(1—p)=8—"5p
The payoffs to M and R are equal and you’re indifferent between the two when

p=0.6.
The payoffs to your dog’s remaining pure strategies are:

up(U,oy) = 3q¢+6(1—-q)=6-3q
up(C,oy) = 5¢+4(1—q)=4+¢q

The payoffs to U and C' are equal when ¢ = 0.5.



We conclude that the only Nash equilibrium for the original game is the pair
of mixed strategies op = (0.6,0.4,0), oy = (0,0.5,0.5).

Two lessons to draw from this example: (1) mixed strategies can
change the outcome of IESDS; and (2) dominance by a mixed strategy
can greatly simplify our hunt for Nash equilibria.

5.2 Example 2: Finding Best Responses Graphically

Now, we’'ll find all Nash equilibria for the following game (taken from Osborne,
p. 141):
You
L M R
Your Dog T | 2,2 0,3 | 1,3
B{32]1,1/{0,2
Unfortunately, we can’t eliminate any strategies using strict dominance. We
can quickly spot two Nash equilibria in pure strategies: (B, L) and (T, R).
Next, we have to hunt for equilibria in mixed strategies. It would be great
to know what these equilibria look like. For example, will you play all your
pure strategies with positive probability, or only some of them? We can get
some intuition by graphing the payoffs to your pure strategies as functions of
your dog’s mixed strategy.
As usual, we denote mixed strategies with vectors of probabilities. Suppose
your dog plays op = (p,1 — p), with p € [0,1]. The payoffs for your pure
strategies are:

UY(O'D,L) = 2
uy (op, M) 3p+(1—p)=1+2p
uy(op, R) 3p+2(1—p)=2+p



If we graph these payoffs as functions of p, we get:

Payoffs to Your Pure Strategies as Functions of
Your Dog's Mixed Strategy
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The graph demonstrates that L, R, and any mixed strategy including only
L and R in its support are all best responses when p =0. When p =1, M, R,
and any mixed strategy including only these pure strategies in its support are all
best responses. When p € (0,1), only R is a best response. So in equilibrium,
you can never play all three of your strategies with positive probability. We
also observe that you're only indifferent between pure strategies — and therefore
willing to play a mixed strategy — when your dog plays a pure strategy. In
equilibrium, your dog can never play a mixed strategy. Why? In any Nash
equilibrium where your dog mixes, you must play R, but your dog is not willing
to mix if you play R, because then he strictly prefers T to B.

We’ve found two possible classes of equilibria in mixed strategies: (1) you
mix between L and R and your dog plays B; and (2) you mix between M and R
and your dog plays 7. To finish solving for the equilibria in mixed strategies,
we need to find out which of your mixed strategies will make your dog willing
to play the appropriate pure strategy.

Start with the case where you play only L and R with positive probability,
so your strategy takes the form oy = (¢,0,1 — q), where ¢ € [0,1]. Your dog’s
payoffs for his pure strategies are:

up(T,oy) = 2q+(1—q)=1+¢q
uD(B)JY> = 3(]

We said you’d only be willing to mix between L and R if your dog plays B. Your
dog will be willing to play B so long as up(B,oy) > up(T,oy), or 3¢ > 1+gq.



Thus, he’ll play B if ¢ > 1/2. (Note that we only need to make sure your dog
doesn’t strictly prefer T" to B. We don’t need to check whether he’d prefer
some mixed strategy to B because if he weakly prefers B to T, then he also
weakly prefers B to any mix between T and B. So we’ve shown your dog is
playing a best response.) We conclude that there’s one Nash equilibrium in
mixed strategies where your dog plays B and you play oy = (¢,0,1 — q), with
q €[0.5,1].

In the second possible case, you play only M and R with positive probability,
so your strategy takes the form oy = (0,7,1 —r), where r € [0,1]. Your dog’s
payoffs for his pure strategies are:

up(T,oy) = 1—r
up(B,oy) = r

We said you’d only be willing to mix between M and R if your dog plays
T. Your dog will be willing to play T so long as up(T,0y) > up(B,oy), or
1—7r >r. Thus, he'll play T if » < 1/2. (Note again that we only need
to make sure your dog doesn’t like some other pure strategy better than T'; in
doing so, we also show he wouldn’t strictly prefer any mixed strategy. Again,
we’ve shown your dog is playing a best response in this strategy profile.) So
there’s a second Nash equilibrium in mixed strategies where your dog plays T
and you play oy = (0,7,1 —r), with r € [0,0.5].

No other Nash equilibria in mixed strategies are possible because we’ve ruled
out all other cases.

The main lesson to take away from this example is that when you’re solv-
ing for an equilibrium in mixed strategies, graphing payoffs can be
an easy way to rule out some types of mixed strategies and thereby
simplify the problem. But if the graph is complicated, you should confirm
your graphical analysis algebraically.



