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Repeated Games and the Folk Theorem

In the previous chapter we saw what can happen when players play different games

over time, andmore importantly, how they can use conditional strategies to support

behavior that would not be optimal in a static setting. Namely, when there is a

future, there may be the possibility of using reward-and-punishment strategies to

sustain behavior that is better than the short-run self-interested behavior.

A special case of multistage games has received a lot of attention over the years,

and that is the case of repeated games. A repeated game is a special case of a

multistage game in which the same stage game is being played at every stage.

These games have been studied for two primary reasons. First, it is natural to view

the repeated game as a depiction of many realistic settings such as firms competing

in the same market day after day, politicians engaging in pork-barrelling session

after session, and workers in a team production line who perform some joint task

day after day.

Second, it turns out that having a game that is repeated time and time again will

often result in a very appealing mathematical structure that makes the analysis

somewhat simple and elegant. As rigorous social scientists, elegance is an extra

bonus when it appears. In this section we will get a glimpse of the analysis of these
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games, and see the extreme limits of what we can do with reward-and-punishment

strategies.

15.1 Finitely Repeated Games

A finitely repeated game is, as its name suggests, a stage game that is repeated

a finite number of times. Given that we have defined a multistage game in the

previous section, we can easily define a finitely repeated game as follows:

Definition 28 Given a stage-game G, G(T, δ) denotes the finitely repeated game

in which the stage game G is played T consecutive times, and δ is the common

discount factor.

As an example, consider the 2-stage repeated game in which the following game

is repeated twice with a discount factor of δ = 1:

M F R

M 4, 4 −1, 5 0, 0

F 5,−1 1, 1 0, 0

R 0, 0 0, 0 3, 3

As the matrix shows, there are two pure strategy Nash equilibria, and they are

Pareto ranked, that is, (R,R) is better than (F,F ) for both players. Thus, we have

a “carrot” and a “stick” to use in an attempt to discipline first period behavior as

was shown in the analysis of multistage games. This implies that for a high enough

discount factors we may be able to support SPE behavior in the first stage that is

not a Nash equilibrium of the first period stage game.

Indeed, you should be able to convince yourself that for a discount factor δ ≥ 1

2

the following strategy played by each player will be a SPE:

• Play M in the first stage. If (M,M ) was played then play R in the second

stage, and if (M,M ) was not played then play F in the second stage.1

1 In case you had trouble convincing yourself, here is the argument: In the second stage the players are clearly

playing a Nash equilibrium. To check that this is a SPE we need to check that players would not want to

deviate from M in the first stage of the game. Consider player 1 and observe that, u1(M,s2) = 4 + 3 · δ and

u1(F, s2) = 5 + 1 · δ, which implies that M is a best response if and only if −1 ≥ −2δ, or, δ ≥ 1

2
.
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In fact, the players ability to provide “reward and punishment” strategies in this

game are very similar to that in the Prisoner-Revenge game we analyzed in the

previous section. Here, both players can lose 2 in the second period by deviating

away from the proposed path of play, and the temptation to deviate from (M,M) is

from the added payoff of 1 in the first period. The difference is that in this example

the same game is repeated twice, and it’s multiplicity of equilibria is giving us the

leverage to impose conditional strategies of the reward-and-punishment type.

The conclusion is that we need multiple continuation Nash equilibria to be able

to support behavior that is not a Nash equilibrium of the stage game in earlier

stages. This immediately implies the following result (stated for multistage games,

which immediately applies to any repeated game):

Proposition 11 If a finite multistage game consists of stage games that each have

a unique Nash equilibrium, then the multistage game has a unique Subgame

perfect equilibrium.

The proof of this simple observation follows immediately from backward induc-

tion. In the last stage the players must play the unique Nash equilibrium of that

game. In the stage before last they cannot condition future (last stage) behavior on

current stage outcomes, so here again they must play the unique Nash equilibrium

of the stage game continues by the Nash equilibrium of the last stage game, and

this induction argument continues till the first stage of the game.

What are the consequences of this proposition? It immediately applies to a

finitely repeated game like the Prisoner’s dilemma or like any of the simultaneous

move market games (Cournot and Bertrand competition) that we analyzed. If such

a game is played T times in a row as a finitely repeated game, then there will be a

unique SPE that is the repetition of the static non-cooperative Nash equilibrium

play in every stage.

This result may seem rather disturbing, but it follows from the essence of cred-

ibility and sequential rationality. If two players play the Prisoner’s dilemma for,

say, 500 times in a row, then we would be tempted to think that they can use the

future to discipline behavior and try to cooperate by playing M , and deviations

would be punished by a move to F . However, the “unravelling” that proves Propo-

sition X.X will apply to this finitely repeated Prisoner’s dilemma as follows: the
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players must play fink in the last stage since it is the unique Nash equilibrium.

In the stage before last we cannot provide reward and punishment incentives, so

here again the players must play fink. This argument will continue, thus proving

that we cannot support a Subgame Perfect equilibrium in which the players can

cooperate in early stages of the game.

For many readers this argument is rather counter-intuitive at first, since we re-

alize that the players have a long future ahead of them, and this should intuitively

be enough to provide the players with tools, i.e., equilibrium strategies, that offer

them incentives to cooperate. The twist is that the provision of such incentives rely

crucially on the ability to choose reward and punishment continuation equilibrium

strategies, and these strategies themselves rely on multiple equilibria in the con-

tinuation of play. As we will now see, taking the idea of a future in a somewhat

different interpretation will restore our intuition, but will open the discussion in a

rather surprising way.

15.2 Infinitely Repeated Games

The problem we identified with the finitely repeated Prisoner’s dilemma was due

to the finiteness of the game. Once a game is finite, this implies that there is a

last period T from which the “Nash unravelling” of the static Nash equilibrium

followed. The players must play the unique Nash equilibrium in the last stage,

implying that no “reward-and-punishment” strategies are available. This in turn

dictates their behavior in the stage before hand, and the game unravels accordingly.

What would happen if we eliminate this problem from its root by assuming that

the game does not have a final period? That is, whatever stage the players are at,

and whatever they had played, there is always a “long” future ahead of the players

upon which they can condition their behavior. As we will now see, this will indeed

cause the ability to support play that is not a static Nash equilibrium of the stage

game. Most interestingly, we have a lot of freedom in supporting play that is not a

static Nash equilibrium. First, we need to define payoffs for an infinitely repeated

game.
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15.2.1 Payoffs

Let G be the stage game, and denote by G(δ) the infinitely repeated game with

discount factor δ. The natural extension of the present value notion from the

previous section is,

Definition 29 Given the discount factor δ < 1, the present value of an infinite

sequence of payoffs {ut

i
}∞
t=1

for player i is:

ui = u
1

i
+ δu

2

i
+ δ

2
u
3

i
+ · · · + δ

t−1
u

t

i
+ · · ·

=

∞∑

t=1

δ
t−1

u
t

i
.

Notice that unlike the case of a finitely repeated game (or finite multistage game)

we must have a discount factor that is less than 1 for this expression to be well-

defined. This follows because for δ = 1 this summay not be well defined if there are

infinitely many positive stage-payoffs. In such a case this sum may equal infinity. If

the payoffs ut

i
are bounded, i.e., all stage payoffs ut

i
are less than some (potentially

large) number, then with a discount factor δ < 1 this sum is well defined.2

As we argued for multistage games, this discounting is a natural economic as-

sumption for a sequence of payoffs. The question is, however, whether it is reason-

able to assume that players will engage in a infinite sequence of play. Arguably, a

sensible answer is that they won’t. Fortunately, we can give a reasonable motiva-

tion for this idea if instead of using the interest rate interpretation of discounting,

we consider the alternative interpretation of an uncertain future.

Imagine that the players are playing this stage game today, and with some

probability δ < 1 they will play the game again tomorrow, and with probability 1−δ

they end the relationship. If the relationship continues then again with probability

δ < 1 they continue for another period, and so on.

Now imagine that in the event that these players would continue playing the

game, the payoffs of player i are given by the sequence {ui

t
}∞
t=1

. If there is no

2To see this, assume that there exists some bound b > 0 such that ut

i
< b for all t. First observe that

ui =

∞∑

t=1

δt−1ut

i
<

∞∑

t=1

δt−1b. We are left to show that B =
∞∑

t=1

δ
t−1

b is finite. We can write B(1− δ) = b because

limt→∞ δ
t−1

b = 0, which in turn implies that B =
b

1−δ
<∞.
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additional discounting,3 we can think of the expected payoff from this sequence as,

Eu = u
1

i
+ δu

2

i
+ (1− δ) · 0 + δ

2
u
3

i
+ δ(1− δ) · 0 + δ

3
u
4

i
+ δ

2(1− δ) · 0 + · · ·

=
∞∑

t=1

δ
t−1

u
i

t
.

That is, we can think of the present value of the payoffs as the the expected

value from playing this game with this payoff sequence. There is something rather

appealing about this interpretation of δ < 1 as the probability that the players

do not break their ongoing relationship. Namely, what is the probability that the

players will play this game infinitely many times? The answer is clearly δ∞ = 0!

That is, the game will end in finite time with probability 1, but the potential future

is always infinite.

To drive the point home, consider a very high probability of continuation, say

δ = 0.97. For this case the probability of playing for at least 100 periods is 0.97100 =

0.0475, and for at least 500 periods is 0.97500 = 2.4315× 10
−7 (less than one in four

million!). Nonetheless, this will give our players a lot of leverage as we will shortly

see. Thus, we need not literally imagine that these players will play infinitely many

games, but just have a chance to continue the play after every stage.

Before continuing with the analysis of infinitely repeated games, it is useful to

introduce the following definition:

Definition 30 Given δ < 1, the average payoff of an infinite sequence of

payoffs {ut

i
}∞
t=1

is:

ui = (1− δ)
∞∑

t=1

δ
t−1

u
t

i
.

That is, the average payoff from a sequence is a normalization of the net present

value: we are scaling down the net present value by a factor of 1 − δ. This is

3 If there were discounting in addition to an uncertain future, then let δ < 1 be the probability of continuation,

and let ρ < 1 be the discount factor. Then, the effective discount factor would just be δρ, and the expected

discounted payoff would be given by

Eu = u1
i
+ δρu2

i
+ (1− δ) · 0 + (δρ)2u3

i
+ δ(1− δ) · 0 + (δρ)3u4

i
+ δ2(1− δ) · 0 + · · ·

=
∞∑

t=1

(δρ)t−1ui

t .
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convenient because of the following mathematical property. Consider a player that

gets a finite sequence of fixed payments v in each period t ∈ {1, 2, ...., T}. His net

present value is then the sum,

s(v, δ, T ) = v + δv + δ2v + · · · + δ
T−2

v + δ
T−1

v . (15.1)

Consider this sum multiplied by δ, that is,

δs(v, δ, T ) = δv + δ2v + δ3v + · · · + δT−1v + δT v , (15.2)

and notice that from (15.1) and (15.2) we obtain that s(v, δ)− δs(v, δ) = v− δTv,

implying that

s(v, δ, T ) =
v − δTv

1− δ
.

Now if we take the limit of this expression when T goes to infinity (the game is

infinitely repeated) then we get,

s(v, δ) = lim
T→∞

s(v, δ, T ) =
v

1− δ
.

How does this relate to the average payoff? If we look at the net present value

of a stream of fixed payoffs v, then by definition the average payoff is,

v = (1− δ)s(v, δ) = v ,

which is very convenient. Namely, the average payoff of an infinite stream of some

value v is itself v. As we will shortly see, this will help us identify what outcomes, as

defined by the obtained average payoffs, can be supported as a SPE of a repeated

game.

15.2.2 Strategies

If we think of the extensive form representation of an infinitely repeated game

then we imagine a tree with a root, and it just continues from there to expand

both in “length”—because of the added stages—and in “width” —because more and

more information sets are created in each period. This implies that there will be

an infinite number of information sets! Since a player’s strategy is a complete
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contingent plan that tells the player what to do in each information set, it may

seem that defining strategies for players in an infinitely repeated game will be quite

demanding.

It turns out that there is a convenient and rather natural way to describe strate-

gies in this setup. Notice that every information set of each player is identified by

a unique path of play or history, that was played in the previous sequences. For ex-

ample, if we consider the infinitely repeated Prisoner’s dilemma, then in the fourth

stage each player has 64 information sets (43 since there are 4 possible outcomes

in each stage). Each of these 64 information sets corresponds to a unique path of

play, or history, in the first three stages. For example, the players playing (M,M)

in each of the three previous stages is one such history. Any other combinations of

three plays will be identified with a different and unique history.

This observation implies that there is a one-to-one relationship between infor-

mation sets and histories of play. From now we use the word history to describe a

particular sequence of action profiles that the players have chosen up till the stage

that is under consideration (for which past play is indeed the history). To make

things precise, we introduce histories, and history contingent strategies as follows:

Definition 31 Let Ht denote the set of all possible histories of length t, ht ∈

Ht , and let H = ∪
∞

t=1
Ht be the set of all possible histories (the union over t

of all the sets Ht). A pure strategy for player i is a mapping si : H → Si that

maps histories into actions of the stage game. (Similarly, a behavioral strategy

of player i maps histories into random choices of actions in each stage.)

The interpretation of a strategy is basically the same as what we had for mul-

tistage games, which was clearly demonstrated by the Prisoner-Revenge game we

had analyzed. Namely, if the actions in stage 2 are contingent on what happened in

period 1, then this is precisely a case of history dependent strategies. Since, as we

have demonstrated above, every information set is identified with a unique history,

this is a complete definition of a strategy that is very intuitive to perceive.
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15.2.3 Subgame Perfect Equilibria

Now that we have identified a concise way to write down strategies for the players

in an infinitely repeated game, it is straightforward to define a SPE:

Definition 32 A profile of (pure) strategies si : H → Si, for all i ∈ N, is a

Subgame Perfect Equilibrium if the restriction of (s1(·), s2(·), ..., sn(·)) is a

Nash equilibrium in every subgame. That is, for any history of the game ht, the

continuation play dictated by (s1(·), s2(·), ..., sn(·)) is a Nash equilibrium.

As with the case of strategies, this may at first seem like an impossible concept

to implement. How could we check that a profile of strategies is a Nash equilibrium

for any history, especially since each strategy is a mapping that works on any one

of the infinitely many histories? As it turns out, one familiar result can be stated:

Proposition 12 Let G(δ) be an infinitely repeated game, and let (σ∗

1
, σ∗

2
, ..., σ∗

n
) be

a (static) Nash equilibrium strategy profile of the stage game G. Define the repeated

game strategy for each player i to be the unconditional Nash strategy, σ∗

i
(h) = σ∗

i

for all h ∈ H. Then (s∗
1
(h), ..., s∗

n
(h)) is a Subgame Perfect equilibrium in the

repeated game for any δ < 1.

The proof is quite straightforward, and basically mimics the ideas of the proof of

proposition X.X for finite multistage games. If player i believes that his opponents’

behavior is unconditional of the history then there can be no role to consider how

current play affects future play. Then, if he believes that his opponents’ current

play coincides with their play in the static Nash equilibrium of the stage game, then

by definition his best response must be to choose his part of the Nash equilibrium.

This proposition demonstrated that for the infinitely repeated Prisoner’s dilemma,

playing fink unconditionally in every period by each player is a SPE. Since again,

the question is whether or not we can support other types of behavior as part of

a SPE. In particular, can we have the players choose mum for a significant period

of time in equilibrium? The answer is yes, and in many ways the intuition rests

on similar arguments to the “rewards and punishments” strategies we saw in the

Prisoner-Revenge game analyzed earlier.

Before discussing some general results, however, we start with an example of the

infinitely repeated Prisoner’s dilemma with discount factor δ < 1 and the stage
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game as follows:

Player 1

Player 2

M F

M

F

4,4 −1,5

5,−1 1, 1

Recall the players’ average payoffs as defined in Definition X.X and consider the

two players receiving average payoffs of (u1, u2) = (4, 4), which would result from

both playing playingM in every period. Can this be supported as a SPE? Clearly,

the unconditional strategies of “play M regardless of the history” cannot be a

SPE: following a deviation of player 1, player 2 will continue to play M , making

the deviation profitable for player 1. This implies that if we can support (M,M)

in each period then we need to “punish” deviations.

From the Prisoner-Revenge game we analyzed, it is quite clear what we need

in order to support any “good” behavior: we need some “carrot” continuation

equilibrium and some “stick” continuation equilibrium, and a high enough discount

factor. A clear candidate for a “stick” continuation is the repeated play of the (F,F )

static Nash which gives each player and average payoff of 1. What then, can be

the “carrot” continuation equilibrium?

This is where things get tricky, yet in a very ingenious way. Recall that we are

trying to support the play (M,M ) in every period as a SPE. If we can indeed do

this, it means that playing (M,M ) forever would be part of a SPE with appropri-

ately defined strategies. If this were possible, then continuing with (M,M ) would

be a natural candidate for the “carrot” continuation play. This is indeed what

we will do. Assuming that (M,M) can be the “carrot”, will (F,F ) be a sufficient

“stick”? Consider the following strategy for each player:

• In the first stage play s
1

i
= M . For any stage t > 1, play s

t

i
(ht−1) = M

if and only if the history is a sequence that consists only of (M,M ), that

is, if and only if ht−1 = {(M,M), (M,M ), ..., (M,M )}. Otherwise, if some

player ever player F , that is, if ht−1 �= {(M,M ), (M,M ), ..., (M,M )} then

play st

i
(ht−1) = F .

Before checking if this pair of strategies is a SPE, it is worth making sure that

they are clearly defined. We have to define the players’ actions for any history. We
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have done this as follows: in the first stage they both intend to cooperate. Then,

at any stage they look back at history and ask: was there ever a deviation in any

previous stage from always playing mum? If the answer is no, meaning that both

players always cooperated and played mum, then in the next stage each player

chooses mum.

If, however, there was any deviation from cooperation in the past, be it once or

more often, be it by one player or both, the players will revert to playing fink, and

by definition, stick to fink thereafter. For this reason, each of these strategies is

commonly referred to as “grim trigger” strategies. They include a natural trigger:

once someone deviates from mum, this is the trigger that causes the players to

revert their behavior to fink forever. It is quite clear why the trigger is grim!

To verify that the grim trigger strategy pair is a SPE we need to check that there

is no profitable deviation in any subgame! This task, however, is not that tedious

as you may have expected given the one-stage deviation principle we discussed

earlier for multistage games. Indeed, we have the following proposition:

Proposition 13 On an infinitely repeated game G(δ) a profile of strategies s =

(s1, ..., sn) is a subgame perfect equilibrium if and only if there is no player i and

no single history ht−1 for which player i would gain from deviating from si(ht−1).

proof: The “only if” part follows from the definition of a SPE. Indeed, if there

were such a deviation then s could not have been a SPE. We are left to show

that if it is not a SPE then there must be a one-stage deviation. (TO BE

COMPLETED)

The one-stage deviation principle implies that all we have to do to confirm that

a profile of strategies is a SPE is to check that no player has a history from which

he would want to unilaterally deviate. Applying this to our repeated Prisoner’s

dilemma may not seem helpful because there are still an infinite number of histories.

Nonetheless, the task is not a hard one because even though there are an infinite

number of histories, they fall into one of two relevant classes: either there was no

deviation and the players intend to play M , or there was some previous decision

and the players intend to play F .
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Consider first the latter class of histories that are not consecutive sequences of

only (M,M ). Notice that these histories are off the equilibrium path since following

the proposed strategies would result in (M,M) being played forever. Thus, in any

subgame that is off the equilibrium path, the proposed strategies recommend that

each player play F in this period, and at any subsequent period since a deviation

from M has occurred in the past. Clearly, no player would want to choose M

instead of F since given her belief that her opponent will play F this will cause

her a loss of −2 (getting −1 instead of 1) in this stage, and no gains in subsequent

stages. Thus, in any subgame that is off the equilibrium path no player would ever

want to unilaterally deviate.

Now consider the other class of histories that are consecutive sequences of

(M,M), which are all the histories that are on the equilibrium path. If a player

chooses to play M , his current payoff is 4, and his continuation payoff from the

pair of strategies is an infinite sequence of 4’s starting in the next period. Therefore

his utility from following the strategy and not deviating will be

u∗
i
= 4 + δ4 + δ

2
4 + · · ·

= 4 + δ
4

1 − δ
.

The distinction of the player’s payoff into today’s payoff (4) and the continuation

payoff from following his strategy (δ 4

1−δ
) is useful. It recognizes the idea that a

players actions have two effects: The first is on his immediate payoffs today. The

second is the effect on his continuation equilibrium payoff, which results from the

way in which the equilibrium continues to unfold.

If the player deviates from M and chooses F instead then he gets 5 in the

immediate stage, followed by his continuation payoff that is an infinite sequence

of 1’s. Indeed, we had already established that in the continuation game following

a deviation, every player will stick to playing F since his opponent is expected to

do so forever. Therefore his utility from deviating from the proposed strategy will

be

u
′

i
= 5 + δ1 + δ

2
1 + · · ·

= 5 + δ
1

1 − δ
.



15.2 Infinitely Repeated Games 147

Thus, we see what the trade-off boils down to: a deviation will yield an immediate

gain of 1 since the player gets 5 instead of 4. However, the continuation payoff will

then drop from δ
4

1−δ
to δ

1

1−δ
. We conclude that he will not want to deviate if

u∗

i > u′

i, or

4 + δ
4

1− δ
≥ 5 + δ

1

1 − δ
,

which is equivalent to

δ ≥
1

4
.

Once again, we see the value of patience. If the players are sufficiently patient,

so that the future carries a fair amount of weight in their preferences, then there

is a “reward and punishment” strategy that will allow them to cooperate forever.

The loss from continuation payoffs will more than offset the gains from immediate

defection, and this will keep the players on the cooperative path of play.

Using the probabilistic interpretation of δ, these strategies will credibly allow

the players to cooperate as long as the game is likely enough to be played again. In

a way it is reminiscent of the old saying “what comes around goes around” to the

extent that if the players are likely to meet again, good behavior can be rewarded

and bad behavior can be punished. If the future does not offer that possibility,

there can be no credible commitment to cooperation.

To relate this to the section on two-period multistage games, think of the re-

peated game as having two stages: “today”, which is the current stage, and “to-

morrow”, which is the infinite sequence of play after this stage is over. For such

multistage games we realized that there are two necessary conditions that fol-

low if we could support non-Nash behavior in the first stage: multiple equilibria

in the second stage, and sufficient patience on behalf of the players. Clearly, the

inequality δ ≥ 0.25 is the “sufficient patience” condition. But where are the mul-

tiple equilibria coming from? This is where the infinite repetition creates “magic”:

from the unique equilibrium of the stage game we get multiple equilibria of the

repeated game. This so called magic is so string, that many types of behavior can

be supported in a SPE as the next chapter demonstrates.
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15.3 The Folk Theorem: Anything Goes♠

In this subsection we describe, in a somewhat formal way, one of the key insights

about infinitely repeated games. This insight goes to the heart of the “magic” that

when a stage game with a unique Nash equilibrium is repeated infinitely often,

multiple SPE arise. To do this we introduce some more mathematical concepts

that are needed for this section.

Definition 33 Consider two vectors u = (u1, u2, ..., un) and u
′ = (u′

1
, u

′

2
, ..., u

′

n
)

in R
n. We say that the vector ũ = (ũ1, ũ2, ..., ũn) is a convex combination of u

and u
′ if there exists some number α ∈ [0, 1] such that ũ = αu + (1 − α)u′, or,

ũi = αui + (1− α)u′

i
for all i ∈ {1, ..., n}.

To think of this intuitively, consider two payoff vectors in the prisoners dilemma,

say, (4, 4) and (5,−1). If a line is drawn to connect between these in the plane R2,

then any point on this line will be a convex combination of these two payoff vectors.

For example, if we take α = 0.3 then the vector 0.3(4, 4) + 0.7(5,−1) = (4.7, 0.5)

is on that line. Another way to think of a convex combination is as a weighted

average, where each point gets a (potentially) different weight. In this example,

(4.7, 0.5) puts a weight of 0.3 on the vector (4,4) and a weight of 0.7 on the vector

(5,−1).

Definition 34 Given a set of vectors Z = {u1, u2, ..., uk} in Rn, the convex hull

of Z is,

CoHull(Z) =

{
u ∈ R

n : ∃ (α1, ..., αk) ∈ R
k

+,

k∑

j=1

αj = 1 such that u =

k∑

j=1

αju
j

}

We will apply this definition to the set of payoffs in a game. In a stage game

with n players and finite strategy sets, the set of payoff vectors will be a finite set

of vectors in Rn, playing the role of Z in the definition. Then, we can think of

all the convex combinations between all these payoff vectors. These together will

define the convex hull of Z. For example, in the Prisoner’s dilemma given by the

matrix
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FIGURE 15.1.

M F

M 4,4 −1, 5

F 5,−1 1, 1

the set of payoff vectors is Z = {(4,4), (5,−1), (−1, 5), (1, 1)}, and the convex hull

is given by the shaded area in figure 15.1.

At this stage you should suspect that there is a relationship between this convex

hull and the set of average payoffs in the infinitely repeated game. Indeed, for a

high enough discount factor we can obtain any vector in the convex hull as an

average payoff in the repeated game. To prove this is not immediate, but the idea

behind this fact is rather intuitive. Since any point in convex hull of payoffs is

a weighted average of the stage game payoffs, we can achieve the appropriate

weighting by repeating some sequence of the games payoffs that will imitate the

required weights.

For this reason we call the convex hull of a game’s payoffs the feasible payoffs,

since they can be achieved in the infinitely repeated game. It turns out that many

feasible payoffs can be obtained as a SPE of the repeated game. Legend says that

the intuition for this result was floating around and is impossible to trace to a

single contributor, hence it is referred to as the Folk Theorem. However, one of the

earliest publications of such a result was written by James Friedman (1971), and

we state a result in that spirit:
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Theorem 14 (The Folk Theorem) Let G be a finite, simultaneous move game

of complete information, let (u∗
1
, ..., u∗

n
) denote the payoffs from a Nash equilibrium

of G, and let (u1, ...., un) be a feasible payoff of G. If ui > ei,∀i ∈ N and if δ is

sufficiently close to 1, then there exists a SPE of the infinitely repeated game G(δ)

that achieves an average payoff arbitrarily close to (u1, ...., un).
L11

As with other important theorems, we will refrain from proving it but provide

some intuition for it. Recall the idea behind SPE in multistage games: if we can

find credible “reward and punishment” strategies then we can support behavior in

an early stage that is not a Nash equilibrium of that stage. What we are doing

here is choosing a path of play that yields strictly higher payoffs than a Nash

equilibrium, and supporting it with the credible threat of reverting to the Nash

equilibrium that is worse for all players. Since the game never ends, this threat

does not hit an “unravelling” boundary that is a consequences of a last period.

An example is called for here. Recall the Prisoner’s dilemma above, and consider

the average payoffs of (2,2). We will show that for a discount factor δ that is close

enough to 1, we can get average payoffs (u1, u2) that are arbitrarily close to (2, 2).

Take the following strategies:

• Player 1:

— in period 1 play F

— in every even period play M if and only if the pattern of play was

(F,M), (M,F ), (F,M)...; otherwise play F

— in every odd period after period 1 play F

• Player 2:

— in period 1 play M

— in every even period play F

— in every odd period after period 1, play M if and only if the pattern

was (F,M), (M,F ), (F,M )...; otherwise play F
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FIGURE 15.2.

As figure 15.2 demonstrates, these strategies will cause the payoff realizations

to alternate between (5,−1) and (−1, 5), resulting in the following average payoffs

for the two players:

u1 = (1 − δ)
∞∑

t=1

u
1

t

= (1 − δ)[5 + δ (−1) + δ2(5) + δ3(−1) + · · ·

= (1 − δ)[5(1 + δ2 + δ4 + · · ·) + (−1)(δ + δ3 + δ5 + · · ·)

= (1 − δ)

�
5 ·

1

1− δ2
+ (−1) ·

δ

1 − δ2

]

=
5 − δ

1 + δ
,

and similarly for player 2,

u2 = (1− δ)[(−1) + δ (5) + δ
2(−1) + δ

3(5) + · · ·

=
−1 + 5δ

1 + δ
.

Now notice that

lim
δ→1

u1 = 2 = lim
δ→1

u2
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so that average payoffs arbitrarily close to (2,2) can be obtained for δ close enough

to 1.4

Are these strategies SPE? As before, we need to check that no player would want

to unilaterally deviate at any stage of the game, and the fact that every subgame

is the same infinitely repeated game is very helpful. It suffices to check for 3 types

of deviations:

1. If there was a deviation and we enter the punishment phase (F forever), no

player will want to deviate since this guarantees a loss of −2 in the deviation

period with no gains (like in the example we did earlier).

2. Does player 1 (player 2) want to deviate in an odd (even) period? If she does

not deviate then she obtains an average payoff of u1. If she deviates, she

will get 4 instead of 5 in the deviating period, but in subsequent periods the

players will play (F,F ) forever, giving a stream of 1’s in each period instead

of alternating between (−1) and 5, so this deviation yields an average payoff

of

u′

1
= (1− δ)[4 + δ · 1 + δ

2
· 1 + · · ·] = (1− δ)4 + δ .

It is easy to see that for high δ close to 1 the value of u′

1
will be itself just above

1, and u1 is close to 2, implying that this deviation is not profitable. More

precisely, the player will not want to deviate if and only if 5−δ

1+δ
≥ (1− δ)4+ δ,

which holds for all δ ∈ [0,1].

3. Does Player 1 (player 2) want to deviate in any even (odd) period? If she

does not deviate then she obtains an average payoff of −1+5δ
1+δ

. If she deviates,

she will get 1 instead of (−1) in the deviating period, but in subsequent

periods the players will play (F, F ) forever, giving a stream of 1’s in each

4 (Technical point:) In fact, we can play with the strategies to get the average payoff closer to (2,2) without

increasing δ. To see this, imagine that δ = 0.99 so that the strategies above give us average payoffs of u1 = 2.

015 1 and u2 = 1. 984 9. Now imagine that we keep these strategies except for one modification: in period 595,

which is an odd period, have player 1 play M instead of F and have player 2 play F instead of M. This means

that in period 595 player 1 gets (−1) instead of 5, and the opposite is true for player 2. This means that player 1’s

(2’s) average payoff decreases (increases) by (0.99)595 × 6 = 0.01 5174. Thus, the average payoffs would be u1 =

1.9999 and u2 = 2.0001. We can continue fine tuning the payoffs to actually achieve (2,2)!
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FIGURE 15.3.

period instead of alternating between (−1) and 5, so this deviation yields an

average payoff of

u
′′

1
= (1− δ)[1 + δ · 1 + δ

2
· 1 + · · ·] = 1 .

Thus, she will not deviate if −1+5δ
1+δ

≥ 1, which holds if and only if δ ≥ 1

2
.

Thus, we have concluded that the payoffs of (2,2) can (nearly) be achieved by the

pair of strategies that we have specified when the discount factor is high enough.

The infinite repetition introduced the ability to include “reward and punishment”

strategies, which are intuitive incentive schemes to use when people interact often,

and believe that every interaction is likely to be followed by another one.

15.4 Additional Material:

• Repeated game theory essentially explains the whole cross-hatched area,

based on beliefs. There are a lot of applications for this, e.g. explaining tran-

sition economies versus developed economics, both at equilibriums but where

one is at a higher state than the other.

• Interpret different equilibria with different beliefs, i.e., Norms (Greif)
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FIGURE 15.4.


