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Sequential Rationality with Incomplete

Information

To understand the role of proper subgames and their use for subgame perfect

equilibrium, it is illuminating to consider the following entry game of complete

information as follows. Player 1 is a potential entrant to an industry that has a

monopolist incumbent, player 2. If player 1 stays “out” (O), then the incumbent

earns a profit of 2, while the potential entrant gets 0. The entrant’s other option is

to “enter” (E), which gives the incumbent a chance to respond. If the incumbent

chooses to “accommodate entry” (A), then the entrant gets 1 while the incumbent

gets 0. The incumbent’s other option is to “fight entry” (F ), in which case the

payoff for each player is −1. The extensive form of this game is described in figure

5.1.

To find the Nash equilibria of this game it is useful to look at the matrix (normal

form) game that describes the entry game:

F A

O

E

0, 2 0, 2

−1,−1 1, 0

A quick observation reveals that the game has two pure strategy Nash equilib-

ria, which are (O,F ) and (E,A). If, however, we consider the Subgame perfect
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FIGURE 20.1.

equilibrium concept, backward induction clearly implies that upon entry player

2 will strictly prefer to accommodate entry, and therefore player 1 should enter

anticipating a payoff of 1 rather than staying out and getting 0. Thus, Subgame

perfection implies sequential rationality and picks only one of the two Nash equi-

libria as the unique Subgame Perfect equilibrium, (E,A), where form 1 enters and

form 2 accommodates entry.

Now consider a straightforward variant of this game that includes incomplete

information. In particular, imagine that the entrant may have a technology that is

superior to that of the incumbent, in which case he would gain a lot by entering,

and the incumbent would lose a lot from this entry. However, the entrant may

have an inferior technology, in which case he would not gain by entering, and the

incumbent would lose only a little if entry occurred. A particular case of this story

can be captured by the following sequence of events:

1. Nature choose the entrant’s type which can be “weak” or “strong” with equal

probability. That is, t1 ∈ {w,s}, and Pr{t1 = s} = 0.5. The entrant knows

his type but the incumbent only knows that Pr{t1 = s} = 0.5.

2. The Entrant chooses between E andO as before, and the incumbent observes

the entrant’s choice.
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3. After observing the action of the entrant, and if the entrant enters, the in-

cumbent can choose between A and F as before.

The payoffs are different for each of the realization of player 1’s type, and are

given in the extensive form of the game that is depicted in Figure 5.2.

When considering the normal form of this game, player 1 has four pure strategies

that follow from the fact that a strategy for player 1 is a type-dependent action,

and there are two types and two actions. We define a strategy for player 1 as ss
1
sw
1
,

where st
1
∈ {O,E} is what a type t of player 1 chooses. Thus, the pure strategy

set of player 1 is:

ss
1
sw
1
∈ S1 = {OO,OE,EO,EE} .

For example, ss
1
sw
1
= OE means that player 1 chooses O when his type is s, and

he chooses E when his type is w. Since player 2 has only one information set

that follows entry, and two actions in that information set, then he has two pure

strategies, s2 ∈ {A,F}.

To convert this extensive form game to a Normal form matrix game, we need to

compute the expected payoffs from each pair of pure strategies, where expectations

are over the randomizations caused by nature. Since player 1 has four pure strate-

gies and player 2 has two, there will be eight entries into the normal form matrix.

For example, consider the pair of strategies (ss
1
sw
1
, s2) = (OE,A). The payoffs of

the game will be determined by one of the following two outcomes:



212 20. Sequential Rationality with Incomplete Information

1. Nature’s choice of t1 = s, in which case player 1 plays O and the payoffs are

(0, 2). This happens with probability Pr{t1 = s} = 0.5.

2. Nature’s choice of t1 = w, in which case player 1 plays E and player 2 playsA.

The payoffs for this outcome are (−1,−1), and this happens with probability

Pr{t1 = w} = 0.5.

From these two possible outcomes we can compute the expected payoff for players

1 and 2 as follows:

Eu1 = 0.5 · 0 + 0.5 · (−1) = −0.5

and

Eu2 = 0.5 · 2 + 0.5 · (−1) = 0.5.

Similarly, if the strategies are (ss
1
sw
1
, s2) = (EE,F ) then the expected payoff for

players 1 and 2 are Eu1 = 0.5·(−1)+0.5·(−2) = −1.5, andEu2 = 0.5·(−1)+0.5·0 =

−0.5.

In this way we can complete the matrix and obtain the following representation

for this Bayesian game of incomplete information as follows:

F A

OO 0, 2 0, 2

OE −1,1 −

1

2
, 3
2

EO −

1

2
, 1
2

1

2
, 1

EE −

3

2
,− 1

2
0, 1

2

Now it is easy to find the pure strategy Bayesian Nash equilibria: every Nash

equilibrium of the Bayesian game matrix we have just calculated is a Bayesian

Nash equilibrium of the Bayesian game of incomplete information. Therefore, both

(OO,F ) and (EO,A) are pure strategy Bayesian Nash equilibria of the Bayesian

game.1

1Notice that for player 1 OE is strictly dominated by OO and EE is strictly dominated by EO. Notice also that

there are a continuum of mixed strategy Bayesian Nash equilibria where the incumbent plays F with probability

p ≥ 1

2
and the entrant plays OO. There cannot be a mixed strategy Bayesian Nash equilibrium where the entrant

mixes between OO and EO because then the incumbent’s best response is A, in which case the entrant would

strictly prefer to play EO over OO.
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Interestingly, these two Bayesian Nash equilibria are tightly related to the two

Nash equilibria of the complete information game that we analyzed earlier. The

equilibrium (OO,F ) is one where the incumbent “threatens” to fight, which causes

the entrant to stay out regardless of his type, similar to the (O,F ) equilibrium in

the game of complete information in figure 5.1. The equilibrium (EO,A) is one

where the incumbent accommodates entry, which causes the strong entrant to enter

(getting 1 instead of 0), and the weak entrant to stay out (getting 0 instead of −1),

similar to the (E,A) equilibrium in the game of complete information.

Not only are the equilibria similar, but there is a similar problem of credibility

with the equilibrium (OO,F ): player 2 threatens to fight, but if he finds himself

in the information set that follows entry, he has a strict best response which is to

accommodate entry. Thus, the Bayesian Nash equilibrium (OO,F ) involves non-

credible behavior of player 2.

Now we can ask, which of these two equilibria survive as a Subgame Perfect

equilibrium in the extensive form game? Recall that the definition of a SPE is that

in every proper subgame, the restriction of the strategies to that subgame must

be a Nash equilibrium in the subgame. This, as we saw in chapter 3, means that

players are playing mutual best responses both on and off the equilibrium path.

However, looking at the extensive form game in figure 5.2, it is easy to see that

there is only one proper subgame which is the complete game. Therefore, both,

(OO,F ) and (EO,A) survive as subgame perfect equilibria!

This example shows us that the very appealing concept of Subgame perfect

equilibrium has no bite for some games of incomplete information. At first, this

may seem somewhat puzzling. However, the problem is that SPE restricts attention

to best responses within subgames, but when there is incomplete information, the

induced information sets over types of other players often cause the only proper

subgame to be the complete game.

The reason is that in the modified entry game we analyzed, even though player

2 observes the actions of player 1, the fact that player 1 has several types implies

that there is no proper subgame that starts with player 2 making a move. This

means that there are no proper subgames except for the whole game. Indeed, this

problem of action nodes being linked through information sets that represent the
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uncertainty players have over the types of their opponents will carry over to many

games of incomplete information.

In order to extend the “logic” of SPE to dynamic games of incomplete informa-

tion, we need to impose more rigorous structure on our solution concepts in order

for sequential rationality to be well defined. Our goal is to identify a structure of

analysis that will cause the elimination of equilibria that involve such non-credible

threats as in the modified entry game, and this is done in the next section. L15
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Perfect Bayesian Equilibrium

To deal with the problem demonstrated above, we need to be able and identify a

way to express the fact that following entry, it cannot be sequentially rational for

player 2 to play fight. How can this be done? We need to make statements about

the behavior of player 2 within his information set even though it is not itself

the node of a proper subgame. This will essentially allow us to say something like

“in this information set player 2 is not playing a best response, and therefore his

behavior is not sequentially rational.”

This is precisely what was missing from the definition of subgame perfect equi-

librium — we were not able to asolate player 2 in his information set. However,

to talk about the best response of player within his information set, we will have

to ask what player 2 is playing a best response to. The answer follows from the

definition of what a best response is: we have to add beliefs into the picture, so

that we can talk about the beliefs of player 2, and then naturally talk about his

best response to these beliefs.

More generally, to introduce sequential rationality at information sets that are

not singletons, we need to endow players with beliefs in every part of the game.

These will include information sets that are reached through the proposed actions

of the players (the profile of strategies that we are scrutinizing as equilibrium



216 21. Perfect Bayesian Equilibrium

behavior). However, these will also include information sets that are not reached

given the proposed strategy profile, and have the players play best responses to

these beliefs.

At this stage you may recall the notion of being on or off the equilibrium path,

which we used when we discussed subgame perfect equilibrium. Here, we introduce

the idea more formally as follows:

Definition: Let s
∗

= (s∗
1
, ..., s

∗

n
) be a Bayesian Nash equilibrium profile of strate-

gies in a game of incomplete information. We say that an information set is

on the equilibrium path if given s
∗ and the distribution of types, it is reached

with positive probability. We say that an information set is off the equilib-

rium path if given s
∗ and the distribution of types it is reached with zero

probability.

Notice that an important part of being on or off the equilibrium path is having

an equilibrium profile of strategies to start with. This is why the definition includes

a proposed equilibrium profile, s∗, from which we can discuss the information sets

that are on the equilibrium path given s
∗, and those that are not on the equilibrium

path given s
∗. To illustrate this point consider the entry game above illustrated

again in figure 5.3, but now assume the more general formalization in which player

1’s type is “strong” with probability p (not necessarily p = 0.5).

Assume that player 1 chooses the strategy EO, implying that he enters if he is

strong and stays out when he is weak. In this case, all information sets are reached

with positive probability: both information sets of player 1 are reached (with prob-

ability p and 1 − p respectively), and the information set of player 2 is reached

after nature chooses a strong player 1, meaning that it is reached with probability

p. Now, assume that player 1 chooses the strategy OO, implying that he never

enters. In this case the information set of player 2 is not reached with positive

probability. This suggests a more general fact about games of incomplete informa-

tion: the actions of the player with private information will have an affect on which

information sets of the uninformed player are reached with positive probability.

As we alluded to earlier, to talk about the optimal behavior of players in infor-

mation sets, both on and off the equilibrium path, we need to refer to the beliefs

that players have in their information sets. For this we add the following definition:
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Definition: A system of beliefs µ of an extensive form game is a probability

distribution over decision nodes for every information set. That is, for every

decision node x, µ(x) ∈ [0,1] satisfies:
∑

x
′∈h(x)

µ(x′) = 1 .

For example, in the game above a belief for player 2 is a probability distribution

over nodes in his information set, where, say, µ is his belief that he is at the node

corresponding to player 1 being Strong (s) and playing E, and 1 − µ is his belief

that he is at the node corresponding to player 1 being Weak (W ) and playing E.

This allows us to lay out our first requirement of sequential rationality:

Requirement R1: In each information set the player moving in that information

set will have a well defined belief over where he is. That is, the game will

have a system of belief.

Now that we have established the need to have a system of beliefs, we need to

ask the following question: how will the beliefs in a belief system be determined?
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That is, can players have any beliefs they want to have, or should the beliefs be

restricted by some elements that are not controlled by the player himself?

Just like we required the beliefs of players to be correct about the strategies

of their opponents for games of complete information, here too we will add a

very similar requirement. Opponents’ behavior, however, is just one part of the

constraints on beliefs, one that we can consider as an endogenous constraint on

beliefs. It is endogenous in the sense that it is determined by the strategies of

players, which are the “variables” that the players control. The second constraint

on beliefs comes from the choices of nature through the distribution of types.

This is an exogenous constraint on beliefs. It is exogenous in the sense that it is

determined by nature, which is not something that the players control, but rather

part of the environment.

To illustrate this consider the entry game above. By R1, we define player 2’s

belief in his information set as

µ = Pr{player 1 is “strong” | Enter}

and 1− µ is defined accordingly (that is all we need for a system of beliefs in this

game). But what probability should player 2 assign for µ? Let’s say that player 2

believes that player 1 is using the strategy EO, so that he enters of he is strong

and stays out of he is weak. What should player 2 believe if his information set is

reached? The only consistent belief would be that payer 1 is strong, and therefore

it must be that µ = 1. This follows because with probability p Nature chooses

a strong type for player 1, and with the strategy EO a strong player 1 always

enters. The probability of reaching the node “weak followed by entry” inside the

information set of player 2 is 0 because with probability 1 − p Nature chooses a

weak type for player 1, and with the strategy EO a weak player 1 never enters.

Any other belief would not be consistent with the belief that player 1 is playing

EO.

Following this argument, we are ready to state our second requirement for se-

quential rationality. Namely, given a conjectured profile of strategies, and given

nature’s choices, we want players’ beliefs to be “correct” in information sets that

are on the equilibrium path. Formally,
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Requirement R2: Let s
∗

= (s∗
1
, ..., s

∗

n
) be a Bayesian Nash equilibrium profile

of strategies. We require that in all information sets on the equilibrium path

beliefs are consistent with Bayes Rule.

This is precisely how constraints on beliefs are formed, which include both the

exogenous constraints that follow from Nature’s probability distribution, and the

endogenous constraints that follow from the beliefs about the other players’ strate-

gies from s
∗

= (s∗
1
, ..., s

∗

n
).

To see how this works more generally, consider the entry game in figure 5.3, and

consider the strategy IO for player 1. As we discussed, the probability of reaching

the node “strong followed by entry” inside the information set of player 2 is p.

What should the belief µ be for any strategy of player 1? By definition, µ is the

belief that player 2 assigns to “strong conditional on entry”. Assume that player 1

is playing the following strategy: if ti = s then he plays E with probability σs and

O with probability 1 − σs. Similarly, if ti = w then he plays E with probability

σw and O with probability 1 − σw. Now, since Nature chooses Pr{ti = s} = p, by

Bayes rule we must have,

µ = Pr{player 1 is “strong” | Enter}

=
Pr{strong & entry}

Pr{strong & entry}+ Pr{weak & entry}

=
p · σs

p · σs + (1− p) · σw

The pure strategy EO is just a special case of this mixed (behavioral) strategy

that has σs = 1 and σw = 0.

Now consider the pure strategy OO (or σs = σw = 0). The probability of

reaching player 2’s information set is not positive since there is no way in which it

is reached. That is, no type of player 1 plays E, and this implies that E is never

chosen. If player 2 believes that player 1 chooses OO, and suddenly finds himself

in his information set that follows entry, then Bayes formula above does not apply

because given the suggested strategy, both the numerator and denominator are

zero, and thus µ is not well defined. What then should determine µ? In other

words, if we cannot apply Bayes rule because of the beliefs over strategies, what

will we use to determine beliefs? For this we introduce the third requirement.
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Requirement R3: At information sets that are off the equilibrium path any belief

can be assigned where Bayes rule does not apply.

This means that when the moves of nature combined with the belief over the

strategies of the other players do not impose constraints on beliefs, then indeed

beliefs could be whatever we choose them to be. Looking back at the case where

player 1 chooses the pure strategyOO in the entry game, then µ can be any number

in the interval [0, 1] since it is not constrained by Bayes rule.

Remark 12 On a technical note it is worth pointing out that the more accurate

requirement R3 is that beliefs can be anything off the equilibrium path unless they

are somehow constrained by Bayes rule. How can it be that Bayes rule has bite

when an information set is not reached? Consider the following example that does

not have Nature, but by definition can have beliefs assigned to each information

set, and thus can accommodate requirement R3:

1

4
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-1

1
0

F A

3

4
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-1

1
0

F A
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2

In this game, imagine that a profile of strategies has player 1 playing L, player

2 playing a mixed strategy σA = Pr{A}, and player 3 playing a mixed strategy

σC = Pr{C}. If these are the beliefs of player 4, then in this case the information

set following player 2 is reached with probability 1, and the belief must be µA = σA.



21. Perfect Bayesian Equilibrium 221

However, the information set following player 3 is not reached with positive prob-

ability, and R3 as stated above allows for any beliefs in this information set. A

more careful scrutiny would imply the following logic: if player 4 realizes that his

information set following player 3 was reached, then he must assume that player 1

deviated from his strategy of playing L. But why should he believe that player 3 too

deviated from his strategy σc? Indeed, a natural belief would be that only player 1

deviated, and therefore we must have µ
C
= σC . This is the meaning of the more

accurate statement of requirement R3 that sometimes information sets that are

reached with zero probability can still have constraints on beliefs. We will not deal

with games like in this example, but rather with games that are in the spirit of the

entry game. Namely, if an information set is not reached then any beliefs can be

formed since they will not be determined by some other players’ strategies. �

All of the first three requirements were imposed to introduce well defined beliefs

for every player at each of his information sets. Now we come to the final require-

ment of sequential rationality, which imposes constraints on behavior given the

system of beliefs. Since we are interested in sequential rationality, then we want

players to play a best response to their beliefs at every stage in the game. That is,

Requirement R4: Given their beliefs, players’ strategies must be sequentially

rational. That is, in every information set players will play a best response

to there beliefs about where they are in the information set, and to their

opponents’ strategies.

We can now incorporate requirements R1-R4 to see that the non-credible equi-

librium in the entry game with incomplete information is fragile. To see this, notice

that once we specify a belief µ for player 2, then for any µ ∈ [0, 1], it is a best

response for player 2 to play A. This means that once we endow player 2 with a

well defined belief (R1) then despite the fact that these beliefs are not restricted

if player 1 chooses OO (by R3) the Bayesian Nash equilibrium (OO,F ) has player

2 not playing a best response to any belief, which violates R4.

To write down R4 formally, consider player i with beliefs over information sets

derived from the belief system µ, and with beliefs σ
−i about his opponents’ strate-

gies. Then, R4 requires that if h is an information set for player i, it must be true
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that he is playing a strategy si that satisfies,

E[ui(si, σ−i, ti)|h, µ] ≥ E[ui(s
′

i
, σ−i, ti)|h, µ] for all s′

i
∈ Si,

where expectations are given over the random beliefs of player i through µ.

Now that we have defined beliefs, and given beliefs the motion of sequential

rationality, we need to combine all these together to define a coherent equilibrium

concept:

Definition: A profile of strategies s
∗

= (s∗
1
, ..., s

∗

n
), together with a system of

beliefs µ, constitute a Perfect Bayesian Equilibrium (PBE) for an n player

game if they satisfy requirements 1 through 4 above.

This definition puts together our four requirements in a way that will guarantee

sequential rationality. The next obvious question is, how do we find PBE for a

game? The following fact is useful:

Fact: If s
∗

= (s∗
1
, ..., s

∗

n
) together with a system of beliefs µ, constitute a PBE for

an n player game, then s∗ = (s∗
1
, ..., s∗

n
) is a BNE for that game.

The proof is quite straightforward. If this were not true, then it means that some

player i has a better response against s∗
−i
, which means that in some information

set he can change his action and get a higher payoff than from following s∗
i
. But

this will contradict the fact that s∗ is a PBE because in that information set i is

not playing a best response (this goes against requirement 4).

What this fact implies is that if we first find all the profiles of strategies in

the Bayesian game that are Bayesian Nash equilibria of the game, then we can

systematically check for each Bayesian Nash equilibrium to see whether we can find

a system of beliefs so that together they constitute a Perfect Bayesian equilibrium.

A first step in this process is the following observation. If a game has a BNE

that has all the information sets being on the equilibrium path (all information

sets are reached with positive probability), then we will get unique beliefs pinned

down by Bayes rule due to requirement 2. This observation leads to the following

result:
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Proposition 20 If a profile of (possibly mixed) strategies σ
∗

= (σ∗

1
, ..., σ

∗

n
) is a

BNE of an n person game Γ, and if σ∗ has all the information sets reached with

positive probability, then σ
∗, together with the belief system µ uniquely derived

from σ
∗ by requirement 2, constitute a PBE for Γ.

Proof: The logic of the proof is simple. Assume that the proposition was incorrect,

that is, σ∗ is a BNE but (σ∗, µ) is not a PBE. This implies that for some

player i, playing according to σ∗

i
is not a best response in (at least) one of

his information sets, say hi, against the beliefs derived from µ, and in that

information set he has some better response σ
′

i
that is identical to σ∗

i
except

for the information set hi. But since µ is derived from σ∗, then σ
′

i
will also

be better than σ∗

i
against σ∗

−i
, contradicting the fact that σ∗ is a BNE. �

We now turn to some nice applications of the Perfect Bayesian equilibrium con-

cept. L16
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Signaling Games

“Signalling games” is the terminology used for a wide class of games whose origins

come from the Nobel winning contribution developed by Michael Spence in his

Ph.D. thesis, which investigated the role of education as an instrument that sends

information to potential employers about a person’s intrinsic abilities, and not

necessarily what they have learned.

These games share the following structure:

• Nature chooses a type for player 1 that player 2 does not know, but care’s

about (common values).

• Player one has a rich action set in the sense that there are at least as many

actions as there are types.

• Player one chooses an action first, and player 2 then responds after observing

player 1’s choice.

• Given player 2’s belief about player 1’s strategy, player 2 updates his prior

after observing player 1’s choice.

The reason these games are called signaling games is because of the potential

role that player 1’s actions can play. Namely, if in equilibrium each type of player
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1 is playing a different choice then in equilibrium, the action of player 1 will reveal

player 1’s type to player 2 through the system of beliefs. Because of the signal-

ing potential of player 1’s strategies, these games have two important classes of

equilibria:

1. Pooling Equilibria: These are equilibria in which all the types of player 1

choose the same action, thus revealing nothing to player 2. Player 2’s beliefs

must be derived from Bayes rule only in the information set that is reached

with probability 1, and all other information sets are reached with probability

0. In those information sets, player 2 must hold beliefs that support his

strategy, and the strategy of player 2 that is sequentially rational given his

beliefs is what keeps player 1 from deviating from his “pooling” strategy.

2. Separating Equilibria: These are equilibria in which each type of player 1

chooses a different action, thus revealing himself in equilibrium to player 2.

Player 2’s beliefs are thus well defined by Bayes rule in all the information

sets that are reached. If there are more actions than types for player 1, then

player 2 has to have beliefs for the information sets that are not reached (the

actions that no type of player 1 chooses), which in turn must support the

strategy of player 2, and player 2’s strategy supports the strategy of player

1.

The choice of words is not coincidental. In a pooling equilibrium all the types

of player 1 pool together in the action set, and thus player 2 can learn nothing from

the action of player 1. That is, his posterior belief after player 1 moves must be

equal to is prior belief that comes immediately from the distribution of Nature’s

choices of types for player 1. In a separating equilibrium each types of player 1

separates from the others by choosing a unique action that no other type chooses.

Thus, after observing what player 1 did, player 2 can infer exactly what type player

1 is.1

1There is a third class of equilibria called hybrid equilibria. In these, different types choose different mixed

strategies, and the same information set (action) can be reached by different types. Thus, by Bayes rule, player

2 can learn something about player 1, but cannot infer exactly which type he is. These are more technically

demanding in nature and are beyond the scope of this text. See Fudenberg and Tirole (1990), Chapter X for more

on this.
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The incomplete information entry-game that we analyzed in the previous sec-

tion can be used to illustrate these two classes. In the Bayesian Nash equilibrium

(OO,F ), both types of player 1 chose “out”, so player 2 learns nothing about

player 1’s type when it is his turn to play (in this case, he has no active action

following player 1’s decision to stay out). Thus, (OO,F ) is a pooling equilibrium.

In the Bayesian Nash equilibrium (IO,A), which is also a Perfect Bayesian equilib-

rium, player 1’s action perfectly reveals his type: if player 2 sees entry, he believes

with probability 1 that player 1 is strong, while of player 1 choose to stay out

then player 2 believes with probability 1 that player 1 is weak. Thus, (IO,A) is a

separating equilibrium.

22.1 The MBA Game

In this section we will analyze a very simple version of an education signaling

game in the spirit of Spence’s work, that sheds some light on the signaling value of

education. To focus attention on the signalling value of education, we will ignore

any productive value that education has. That is, we assume that a person learns

nothing productive, but has to “suffer” the loss of time and the hard work of

studying to get a diploma, in this case an MBA. The game proceeds as follows:

1. Nature chooses player 1’s skill (a worker). It can be “high” or “low”, and

only player 1 knows his skill. Thus, his type set is T1 = {H,L}. It is common

knowledge that p ≡ Pr{H}.

2. After player 1 learns his skill (type) he can choose whether to get a MBA

diploma (D) or stay at his undergraduate level (U), so that his action set is

A1 = {D,U}. Getting a diploma requires some effort that is type dependent.

Namely, a worker incurs a private cost ct1
if he gets an MBA, and 0 of he

does not. We assume that “smarter” people (i.e., high skilled workers) find

it easier to study, which is captured by the values cH = 2 and cL = 5.

3. Player 2 is an employer, who can allocate the worker to one of two jobs

in a project he is running. Specifically, player 2 can assign player 1 to be

either a manager (M) or a blue-collar worker (B), so that her action set is
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A2 = {M,B}. The employer will retain the profit from the project, and must

pay a wage to the worker depending on the job assignment. The market wage

for a manager is 10, while the market wage for a blue-collar worker is 6.

4. Profit is determined by the combination of skill and job assignments. It is

assumed that the MBA diploma adds nothing to productivity. A high skilled

worker is relatively better at managing, while a low skilled worker is relatively

better at blue-collar work. The employer’s net profits of skill-assignment

matches are given in the following matrix:

Assignment︷ ︸︸ ︷
M B

sk ill

{
H

L

10 5

0 3

Give the information about the game that is laid out in 1-4 above, the complete

game tree is represented in figure 5.4. We depart from our previous methods of

drawing information sets to a different one that is more accommodating for games

that are more complex, say, than the entry game we have seen before. In this game

we draw the information sets as dashed lines that connect the nodes that are in

the same information set. Namely, the two nodes that follow the choice U are in

one information set, and the two nodes that follow the choice D are in the second

information set. In the analysis that follows, we refer to the first information set

as IU and to the second as ID.
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1

2

8
10

4
5

U D

M B

1

2

5
0

1
3

U D

M B

Nature

p 1- p

10
10

6
5

M B

10
0

6
3

M B

H L

2 2
µU 1-µU

µD 1-µD

First, to define beliefs, let µ
U
denote the belief of player 2 that player 1’s type

is H conditional on player 1 choosing U, and similarly let µ
D
denote the belief of

player 2 that player 1’s type is H conditional on player 1 choosing D. These beliefs

will be determined by the distribution of Natures choice, together with the beliefs

that player 2 holds about the strategy that player 1 is playing. For equilibrium

analysis, these beliefs will be determined according to requirements R2 and R3.

In general, if player 1 is using a mixed strategy where type H chooses U with

probability σH and type L chooses U with probability σL, and if both σH and σL

are strictly between 0 and 1(i.e., the two types are randomizing) then requirement

2 implies that by Bayes rule,

µ
U
=

pσH

pσH + (1 − p)σL
,

and

µ
D
=

p(1− σH)

p(1 − σH) + (1− p)(1 − σL)
.

If, however, both σH = σL = 1, then both types are choosing U , and beliefs are

only well defined for So, for the first case we nee to determine what µU is.
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We are now ready to see how to solve for PBE in the example of the MBA game

above. Since each player has 2 information sets, and two actions in each of these

sets, then each player has 4 pure strategies. Let player 1’s strategy be denoted

aH
1
aL
1
, where at

1
∈ {U,D} denotes what player 1 does if he is type t ∈ {H,L}.

Similarly, let aU
2
aD
2

denote player 2’s strategy where ak
2
∈ {M,B} denotes what

player 2 does if he observes that player 1 chose k ∈ {U,D}.

Now, assume that Nature chooses according to p = 1

4
, so that we can derive

the bi-matrix that is the normal-form representation of the MBA Bayesian game.

As we have demonstrated earlier for the entry game, the payoffs in the matrix

are calculated by taking each pair of pure strategies, observing which paths are

played with the different probabilities due to Nature’s choice, and then writing

down the derived expected utilities from this pair of strategies. For example, if

(UD,MB) are the pair of strategies, then with probability 1

4
Nature chooses type

H for player 1 who chooses U, and in response player 2 chooses M , yielding a

payoff pair of (10,10). With probability 3

4
Nature chooses type L for player 1 who

chooses D, and in response player 2 chooses B, yielding a payoff pair of (1,3). The

expected pair of payoffs for the players from the strategy (UD,MB) is therefore,

1

4
(10, 10) +

3

4
(1, 3) = (3.25, 4.75) .

Similarly we calculate the expected payoffs for all the other 15 entries. Notice that

when player 1 plays the same action for the different types (rows 1 and 4) then

part of player 2’s strategy is never used so there are repeat entries which reduces

the number of calculations needed. The matrix representation is then,

player 1

Player 2

MM MB BM BB

UU

UD

DU

DD

10, 2.5 10, 2.5 6, 3.5 6,3.5

6.25, 2.5 3.25, 4.75 5.25, 1.25 2.25, 3.5

9.5,2.5 8.5, 1.25 6.5, 4.75 4.5, 3.5

5.75, 2.5 1.75, 3.5 5.75, 2.5 1.75, 3.5

If we follow the method of underlining 1’s best responses for each column and

overlining player 2’s best responses for each row, we immediately observe that
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there are two pure strategy Bayesian Nash equilibria: (UU,BB) and (DU,BM).

To see whether these can be part of a PBE, we need to find a system of beliefs

that support the proposed behavior, and that together with these strategies satisfy

requirement R1 through R4.

From Proposition 16 above it follows that (DU,BM) can be part of a PBE. This

follows because all of the information sets are reached with positive probability.

In particular, the derived beliefs from (DU,BM) are µ
U
= 0 and µ

D
= 1.2 It is

easy to check that player 2 is playing a best response to these beliefs in each of his

information sets, and that player 1 is playing a best response in each of his. So,

(DU,BM ) together with µU = 0 and µD = 1 constitute a PBE.

What about (UU,BB)? Unique beliefs are only derived for information set IU

since ID is reached with zero probability. In particular, µ
U
= 1

4
and µ

D
is not well

defined. Therefore, to see whether (UU,BB) can be part of a Perfect Bayesian

equilibrium we need to see if there are beliefs µ
D
that support B as a best response

for player 2 in information set ID.

For B to be a best response in the information set ID, it must be the case that

given the belief µ
D
, the expected payoff from B is higher than the expected payoff

from M . This can be written down as,

5 · µ
D
+ 3 · (1 − µ

D
) ≥ 10 · µ

D
+ 0 · (1− µ

D
) ,

which is true if and only if µ
D
� 3

8
. this implies that we can support (UU,BB) as

part of a PBE. In particular, (UU,BB) together with belief µU = 1

4
and any belief

satisfying µ
D
∈ [0, 3

8
] constitute a PBE.

There is something fundamentally different between the two pure strategy PBE

that we have just derived. In the first, (DU,BM), different types of player 1 choose

different actions, thus using there actions to reveal to player 2 their true type.

In other words, this is a separating Perfect Bayesian equilibrium. In the second,

(UU,BB), both types of player 1 do the same thing, and thus player 2 learns

nothing from player 1’s action, and this is a pooling Perfect Bayesian equilibrium. L17

2Using the equations we derived from Bayes rule above, this is the case where σH = 0 and σ
L
= 1, and the

resulting µU and µD follow.
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22.2 Entry Deterrence

We turn to another application of the analysis of dynamic games of incomplete

information to an important antitrust issue. Bain (1949) argued that incumbent

firms can engage in limit pricing to deter entry, and thus try to gain control as a

long run monopolist. This practice is defined as one in which a firm prices below

marginal costs, which is obviously a losing strategy in the short run. But, if by

doing this they run a competitor out of business and turn into a monopolist, then

this might be a winning strategy in the long run.

The case for antitrust is clear: if some firm is faced with potential competi-

tion and is charging a price that is “too low” in the sense that the firm is losing

money in the short run, and this behavior deters entry in the long run to cap-

ture future monopoly profits, then the form is engaging in limit pricing which is

anti-competitive behavior.

This argument, however, should make one feel a bit uncomfortable: is it rea-

sonable to punish firms for charging low prices? How can we convince ourselves

that Bain’s intuition is correct and that a firm may indeed choose to incur low

run losses to generate long run profits? This was answered in a very nice paper by

Paul Milgrom and John Roberts (1982). We present a simplified version of their

analysis in the following game:

• Consider a market for some good that will last for 2 periods with demand

P = 5− Q in each period.

• In period t = 1 only one firm, the incumbent (player 1) is in the market, and

this incumbent will continue to produce in period t = 2.

• A potential entrant (player 2) observes what happened in the market in

period t = 1 and then makes a choice of whether to enter at a fixed cost of
1

2
and then compete against the incumbent in period t = 2, or to remain out

of the market.

• Each firm has marginal costs ci, where it is common knowledge that the

entrant’s marginal costs are c2 = 2.
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• There is asymmetric information with respect to the costs (“type”) of the

incumbent. In particular, the entrant only knows that c1 ∈ {1, 2} so that the

incumbent can either be more efficient than the entrant (have low (L) costs

of cL = 1) or not (have high (H) costs, cH = 2). It is common knowledge

that Pr{c1 = 1} = 1

2
, but only the incumbent knows his true costs.

The timing of this game that captures this story is described as follows:

1. Nature choose the type of player 1, c1 ∈ {cL, cH} = {1,2}, each type with

equal probability.

2. Player 1 (the incumbent) observes his costs and decides how much to produce

in the first period, q1
1
, and the price in the first period is then P = 5− q1

1
.

3. Player 2 (entrant) observes q1
1
and decides whether to enter or not at a cost

of F =
1

2
.

4. If player 2 stayed out, then in period t = 2 player 1 chooses q2
1
and the price

is P = 5− q2
1
.

5. If player 2 enters, then in period t = 2 each player i simultaneously chooses

q2
i
and the price is P = 5 − q2

1
− q2

2
(Cournot competition).

Given the continuous action space of this game (quantities) it is not too useful

to write down a game tree, but it can focus our attention on what we need to

worry about. A way of considering such a game tree is depicted in figure 5.x.

Solving for the Perfect Bayesian equilibria of this game is not as simple as for

the MBA game. The reason is that the strategy spaces are continuous, so we

can’t look for all the BNE in a bi-matrix and then check whether they can be

supported as PBE. Thus, to solve for the PBE of this game, we go to the heart

of what sequential rationality means, and solve the game using similar techniques

to backwards induction. We proceed in two steps, first looking for separating PBE

and then for pooling PBE.
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FIGURE 22.1.



22.2 Entry Deterrence 235

Separating Equilibria

We proceed to check for the existence and nature of separating PBE using a se-

quence of steps:

Step 1: What will q2
1
be if firm 2 stays out?

The answer is quite simple: firm 1 is then a monopoly and maximizes:

max
q
2

1

(5− q
2

1
− c1)q

2

1

which yields the solution using the first order condition (which in this case is

necessary and sufficient):

q
2

1
=

5− c1

2
=

{
2 if c1 = 1

1.5 if c1 = 2

Step 2: What will q
2

1
and q

2

2
be if firm 2 enters and firm 1’s costs are

known to all?

The answer is again simple: both firms play a Cournot game. Firm 1 solves

max

q
2

1

(5− q
2

1
− q

2

2
− c1)q

2

1

which yields the best response function using the first order condition (which is

again necessary and sufficient):

BR1 : q
2

1
=

5 − q2
2
− c1

2
((BR1))

and similarly for firm 2 (but there is the fixed costs in the objective function that

does not effect the first order condition):

max
q
2

2

(5 − q
2

1
− q

2

2
− c1)q

2

2
−

1

2

which yields the best response function using the first order condition (which is

again necessary and sufficient):

BR2 : q
2

2
=

5 − q2
1
− c2

2
=

3− q2
1

2
((BR2))

There are two cases to be considered if c1 is known to all:
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Case 1: In this case c1 = 2, and (BR1) and BR2) imply that q2
1
= q2

2
= 1, P = 3,

and profits for the two firms in the second period are π2

1
= (3 − 2)1 = 1,

while π2

2
= (3− 2)1 = 1

2
= 1

2
.

Case 2: In this case c1 = 1, and (BR1) and BR2) imply that q2
1
= 5

3
, q2

2
= 2

3
, P =

8

3
, and profits for the two firms in the second period are π2

1
= (8

3
− 1)5

3
= 25

9
,

while π2

2
= (8

3
− 2)2

3
−

1

2
= − 1

18
.

Step 3: What quantities for each type will support firm 1’s separating

(signaling) behavior?

To answer this we consider logic of separating versus pooling equilibrium. In

any separating equilibrium, it must be that different types of player 1 choose

different actions, thus in any such equilibrium, player 2 learns the type of player

1. To continue our analysis, let us consider a separating PBE with the following

notation: qtτ

1
denotes the choice of player 1 in period t ∈ {1, 2} when he is of type

τ ∈ {H,L}. That is, qtτ
1
is the strategy of type τ in period t. Let q2

2
(q1

1
) denote the

choice of player 2 in period 2 in response to q1
1
being played by firm 1 in period 1,

which is the strategy of player 2. Finally, let µ(q1
1
) = Pr{c1 = 2|q1

1
} be player 2’s

belief in period 2 in response to q1
1
being played by firm 1 in period 1. Using this

notation we can write a PBE as3

{q1L
1

, q
1H

1
︸ ︷︷ ︸

firm 1,t=1

, q
2L

1
, q

2H

1
︸ ︷︷ ︸

firm 1,t=2

, q
2

2
(q1

1
)

︸ ︷︷ ︸

firm 2,t=2

, µ(q1
1
)

︸ ︷︷ ︸
}

firm 2’s beliefs

.

We can now establish a series of claims:

Claim 1: In any separating PBE, when firm 2 believes that c1 = 1 then it will

stay out and firm 1 will choose q
2L

1
= 2, while if firm 2 believes that c1 = 2

it will enter, and both firms produce q
2H

1
= q

2

2
= 1.

3To be precise, q2τ
1

must be a function of whether or not form 2 decides to enter or not, and firm 2’s strategy

should be two elements; first whether to enter or not depending on q
1

1
, and then upon entry what the choice

q
2

2
(q1

1
) is. We are simplifying by collapsing both of these choices of firm 2 into the quantity choice, and we will let

q
2

2
(q1

1
) = 0 be the choice of no entry.
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The proof just follows from the analysis above of the monopoly problem (Step 1)

and the Cournot problem (Step 2), and the fact that we require firm 2’s behavior

to be sequentially rational. This is one of the nice features of separating PBE: even

though player 2 does not know the type of player 1, in a separating equilibrium

types are revealed, and player 2 must act as if he knew the type of player 1.

Claim 2: In any separating PBE, in the first period a high cost incumbent must

produce q
1H

1
= 1.5.

Proof: From claim 1, in any separating PBE it must be that following q
1H

1
firm 2

will enter, and following q
1L

1
firm 2 will stay out and let firm 1 be a monopolist

(otherwise it would not be a separating PBE). If q1H
1

is indeed part of a PBE,

then it must be that q
1H

1
= 1.5. To see this, assume not. Then in period 1 firm

1 is making less than monopoly profits when its marginal costs are c1 = 2,

and in period 2 firm 1 is making Cournot profits. Now consider a deviation

of firm 1 (when c1 = 2) to the monopoly quantity of 1.5. In period 1 profits

are higher, which means that for this deviation not to be profitable it must

be that firm 1 gets less than Cournot profits in the second period. But this

cannot happen because either: (i) firm 2’s beliefs after the deviation remain

Pr{c1 = 2} = 1 in which case they will play the same Cournot game, or (ii)

firm 2 changes its beliefs to Pr{c1 = 2} < 1 in which case firm 1 will make

higher than Cournot profits (either firm 2 will stay out or it will play Cournot

against an unknown rival and produce less than 1 depending on its beliefs).

This concludes that if q
1H

1
�= 1.5 then firm 1 has a profitable deviation to

q
1H

1
= 1.5.�

So, we have established from our analysis that if a separating PBE exists then it

must satisfy q
2L

1
= 2, q2H

1
= 1, q2

2
(q2L

1
) = 0, q2

2
(q2H

1
) = 1, µ(q1L

1
) = 0 and µ(q1H

1
) =

1. From Claim 2 we established that it must satisfy q1H
1

= 1.5. We are left to

find two more things: first, we must define beliefs for all other quantities q1
1

/∈

{ q1H
1

, q
1L

1
}, and we have to find q

1L

1
. If we find these values in a way that strategies

and beliefs satisfy requirements R1-R4, then we have found a separating PBE.

Step 4: Setting off-equilibrium path beliefs.
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Here we will use a “trick” that is common for games with continuous strategy

spaces, and it is similar to what we did for the MBA game. Recall that we want

the separating PBE to work in such a way that each type of player 1 τ ∈ {L,H}

will stick to his strategy q1τ
1
, rather than deviating to some other quantity q

1

1
. To

do this, we can make the continuation game following any such deviation to be as

worse as possible for player 1. When does this happen? Precisely when player 2

enters and believes that player 1 has high costs. This follows because when this

player 2 acts in this way, player 1 faces the most severe second period competition,

and this is the most undesirable outcome for player 1. So, the easiest way to prevent

deviations and keep player 1 on the equilibrium path, is by setting beliefs that make

off the equilibrium path very unattractive, and this will follow from:

µ(q1
1
) =

{
1 if q

1

1
�= q

1L

1

0 if q
1

1
= q

1L

1

These beliefs cause a unique best response for player 2 which is not to enter if

q
1

1
= q

1L

1
and to enter and produce q

2

2
= 1 if q

1

1
�= q

1L

1
. So, we have set beliefs, and

in return we know what q
2

2
(q1

1
) must be to satisfy sequential rationality.

Step 5: What should q
1L

1
be?

We know that once we have calculated all of the equilibrium components we

found above, then for q
1L

1
to satisfy the missing piece of the puzzle, it must satisfy

the following two important conditions:

1. When firm 1 is a L type, it prefers to choose q1L
1

over any other quantity, in

particular over q1H
1

2. When firm 1 is a H type, it prefers to choose q1H
1

over q1L
1

The first condition is that type L is playing a best response. We can think of this

as first, a L type does not want to choose some other random quantity, and second,

a L type does not want to “imitate” a H type. The second condition just says that

a H type does not want to imitate a L type. What about other quantities? Using

the belief system we defined above, claim 2 already implies that a H type prefers
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q1H
1
= 1.5 to any other non-monopoly profit that induces entry. The reason we have

to care about imitating a L type is because q1L
1

induces exit, not entry.

We call these two conditions, that each type prefers choosing his designated ac-

tion rather than imitating some other type, incentive compatibility conditions. The

meaning is precisely that each type has an incentive to choose what the equilibrium

prescribes for him, and not choose what the equilibrium prescribes for the other

types. this is something that was true for the PBE that we found in the MBA

game, and is a general set of constraints for signalling games.

To solve for q
1L

1
we can start with a natural candidate: monopoly quantity for

the L type. From the analysis of step 1 above this would be q1L
1
= 2, and the first

period profits would be 4. If this is a separating PBE, this choice by firm 1 induces

form 2 to stay out, and thus firm 1 again gets a profit of 4. Now we must check

for incentive compatibility for the low type: would the L type of firm 1 want to

deviate and choose q1H
1

? By construction of beliefs the answer is clearly no since

it loses both in the first period (by deviating from monopoly profits) and in the

second since it induces entry. So we are fine with L playing a best response.

What about incentive compatibility of type H? If he follows his strategy, he

produces 1.5 in the first period and gets monopoly profits of 2.25, and this induces

entry that results in Cournot profits of 1 in the second period, so total profits are

3.25. From the analysis above, he would not deviate to any other entry inducing

quantity. We are left to check whether he would want to deviate and choose q
1L

1
= 2

instead of q1H
1

= 1.5. If he indeed deviates he gets total profits of:

π =

1st period
︷ ︸︸ ︷

(5− 2 − 2)2 +

2nd period
︷ ︸︸ ︷

(5 − 1.5 − 2)1.5 = 4.25 > 3.25 !

This happens because by imitating a L type, the H type is sacrificing monopoly

profits in the first period to get them in the second period, and it turns out that the

sacrifice is not as bad as playing Cournot in the second period. So, the suggested

q1L
1
= 2 violates incentive compatibility of the H type.4

4Note that if we introduce discounting into this model then this conclusion might change. In particular, getting

monopoly profits tomorrow is not as good as getting them today, so the sacrifice may be enough to keep the H

type from deviating. This will happen if there is enough discounting of second period profits.
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Finding q
1L

1
: The intuition from the previous unsuccessful attempt is that for

incentive compatibility to hold we need an H type to suffer enough from deviating.

This can be done by making the deviation less attractive, which means we need

to make q1L
1

larger. This follows because if we make q1L
1

smaller, it is closer to 1.5,

which means higher profits for a H type. This would make the deviation of a H

type even more attractive since it is closer to his monopoly profits.

Fortunately, we don’t need to make any guesses about q1L
1
: In our analysis above

we have already pinned down all the other components of any separating PBE.

So, to see if such a PBE exists all we need is to find a q
1L

1
that satisfies the two

incentive compatibility constraints. First, we need to make sure that a H type does

not want to deviate to q1L
1
. This will be satisfied if the first period profits from

deviating, plus the second period monopoly profits he gets (because firm 2 stays

out after q1L
1
), are no more than what he gets from producing monopoly first and

Cournot later. This can be written as,

(5 − q
1L

1
−

c
H

1

︷︸︸︷

2 )q1L
1

+

2nd period

monopoly

︷︸︸︷

2.25 � 3.25

which is reduced to,

q
1L

1
≥

3

2
+

√
5

4
= 2.618 > 2 !

That is, there is a lower bound on q1L
1

that captures the smallest sacrifice needed

to deter the H type from deviating from q1H
1

to q1L
1
. Similarly, we have to make

sure that the L type will not want to deviate from q1L
1

to some other quantity. This

would put an upper bound on q1L
1
. To find this upper bound we need to figure out

what would be the best deviation for a type L. Given the belief system we are

imposing, any deviation from q1L
1

will induce entry, and firm 2 will produce q2
2
= 1

from the analysis above. So, a type L who deviates should play a best response to

q2
2
= 1 in the second period. This is calculate by:

max
q2
1

(5 − q
2

1
−

q
2

2

︷︸︸︷

1 −

c
L

1

︷︸︸︷

1 )q2
1
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which is maximized by q
2

1
= 1.5, yielding a second period profit of 2.25. Since any

deviation of a L type will be followed by this BR, then a L type gains the most

from deviating to his monopoly quantity of q1
1
= 2 with a first period profit of 4.

This implies that the best deviation for firm 1 when it is a L type yields a profit

of 6.25, and incentive compatibility of the L type is guaranteed if,

(5− q1L
1
− 1)q1L

1
+ 4 ≥ 6.25

which reduces to,

qL
1
� 3. 323.

Summing up the complete analysis we have done above allows us to state the

following conclusion on separating PBE of this game:

Result: In the entry deterrence game there is a continuum of separating PBE. In

particular, any profile of strategies {q1L
1

, q
1H

1
, q

2L

1
, q

2H

1
, q

2

2
(q1

1
)} together with

beliefs µ(q1
1
) that satisfies

2.618 � q
L

1
� 3. 323,

q
1H

1
= 1.5,

q
2L

1
= 2,

q
2H

1
= 1,

µ(q1
1
) =

{
1 if q

1

1
�= q

1L

1

0 if q
1

1
= q

1L

1

,

q
2

2
(q1

1
) =

{
1 if q

1

1
�= q

1L

1

0 if q
1

1
= q

1L

1

,

is a separating PBE.

It is worth noting something special about all these PBE: for a low cost firm

to deter entry, it must choose a quantity that is higher than it’s short-run profit

maximizing (monopoly) profits. Why? Because to credibly scare off opponents, it

must choose something that a high cost firm would not find profitable to do. In

other words, for a signal to be credible, it must be that no other type would want

to use the signal. For a signal to be part of an equilibrium, it must be not too
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costly so that one type wants to use it, but costly enough so that other types do

not. Note that a low cost firm is not charging below marginal costs here, but it is

clearly charging below monopoly costs.

If we would extend the game to many more periods, and if by deterring entry

in the first period the firm would be a monopoly for several periods thereafter,

the lower bound we derived would have to be higher, as would the upper bound.

This would eventually drive the first period separating quantity for the low type

to be so high that price would be below marginal cost. This would be the extent of

the sacrifice needed to make sure that the signal is credible. Thus, Bain’s intuition

survives the test of a formal model that is built to capture the essence of anti-

competitive limit pricing.

Pooling Equilibria

Pooling equilibria are easier to find. For this game a pooling equilibrium will be

{q1∗
1
, q

2L

1
, q

2H

1
, q

2

2
(q1

1
), µ(q1

1
)} because both types of player 1choose the same quantity

q
1∗

1
in the first period. This immediately implies that beliefs must satisfy µ(q1∗

1
) = 1

2

since it is common knowledge that nature chooses Pr{c1 = 1} = 1

2
. This implies

that firm 2, if it would enter following q
1∗

1
, is in a static game of incomplete infor-

mation, and we need to find the BNE (which is an incomplete information version

of the Cournot equilibrium) for this second period. Thus, we find q
2L

1
, q2H

1
and

q2
2
(q1∗

1
) by solving the following three maximization problems: For a type L firm:

max
q2L
1

(5− q
2L

1
− q

2

2
(q1∗

1
)− 1)q2L

1

which yields the FOC:

q
2L

1
=

4− q
2

2
(q1∗

1
)

2

Similarly, for a H type firm,

max
q
2H

1

(5− q
2H

1
− q

2

2
(q1∗

1
)− 2)q2H

1

which yields the FOC:

q
2H

1
=

3− q
2

2
(q1∗

1
)

2
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And finally, for firm 2 we have

max
q
2

2
(q1∗

1
)

1

2

[
(5− q

2L

1
− q

2

2
(q1∗

1
)− 2)q2

2
(q1∗

1
)
]
+

1

2

[
(5− q

2H

1
− q

2

2
(q1∗

1
)− 2)q2

2
(q1∗

1
)
]
−

1

2

which yields the FOC:

q
2

2
(q1∗

1
) =

3 − 1

2
(q2L

1
+ q

2H

1
)

2

The BNE of this Cournot game is solving the three FOCs simultaneously, which

yields,

q
2

2
(q1∗

1
) =

5

6
, q2L

1
=

19

12
, q2H

1
=

13

12

which yields profits to firm 2 of 7

18
> 0. The profits to the H type are (13

12
)2, and

for the L type are (19
12
)2 .

This implies that in a pooling equilibrium, in which firm 2 does not learn the

type of player 1 but rather sticks to the priors given by nature, then firm 2 will

choose to enter. Now we have to set beliefs for off-equilibrium paths (q1
1
�= q

1∗

1
),

which will determine the best response function of firm 2 q
2

2
(q1

1
) for information

sets that are off the equilibrium path. We will then need to find the value of q1∗
1

to

complete the equilibrium.

As with the separating equilibrium, the best way to keep the different types

of player 1 on the equilibrium path is by making off the equilibrium path very

undesirable.. This is again done by setting the “worse” beliefs for player 1, which

are µ(q1
1
) = 1 for q

1

1
�= q

1∗

1
, and on the equilibrium path Bayes rule implies that

µ(q1∗
1
) = 1

2
. This immediately implies the best response function of firm 2,

q
2

2
(q1

1
) =

{
1 if q

1

1
�= q

1∗

1

5

6
if q

1

1
= q

1∗

1

We are left to find a q
1∗

1
from which neither type 1 would want to deviate. For

this, we need to calculate the best deviation of each type, but given the belief

system we already have this from the analysis above. The best deviation for both

types is to choose monopoly quantities in the first period, followed by the best

response to q
2

2
= 1 in the second period. These yielded a profit of 3.25 to the

H type and 6.25 to the L type as we have calculated above. So, we need two
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inequalities satisfied for q1∗
1

to be a best response for both types. For the H type,

(5 − q
1∗

1
− 2)q1∗

1
+

(
13

12

)2

≥ 3.25

which reduces to

1. 0833 � q1∗
1
� 1. 9167 . (ICH)

Similarly, for the L type,

(5 − q1∗
1
− 1)q1∗

1
+

(
19

12

)
2

≥ 6.25

which reduces to

1. 4931 � q
1∗

1
� 2. 5069 . (ICL)

Thus, since q
1∗

1
must satisfy5 both (ICH) and (ICL) we can summarize our analy-

sis above as follows:

Result: In the entry deterrence game there is a continuum of pooling PBE. In

particular, any profile of strategies {q1∗
1

, q
2L

1
, q

2H

1
, q

2

2
(q1

1
)} together with beliefs

µ(q1
1
) that satisfies

1. 4931 � q
1∗

1
� 1. 9167,

q
2L

1
=

19

12
,

q
2H

1
=

13

12
,

µ(q1
1
) =

{
1 if q

1

1
�= q

1∗

1

1

2
if q

1

1
= q

1∗

1

,

q
2

2
(q1

1
) =

{
1 if q

1

1
�= q

1∗

1

5

6
if q

1

1
= q

1∗

1

,

is a pooling PBE.

5Note that the inequalities make sense: for each type the best deviation is to its monopoly quantity, which is

1.5 for the H type and 2 for the L type. Thus, for both types the range is around the monopoly quantity.
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Unlike the separating equilibrium that had the feature of the incumbent’s action

revealing some important information to the entrant, this is not the case here. In

fact, it is not that convincing that different types of the incumbent will choose the

same actions, which makes the pooling equilibrium look somewhat artificial, and

less appealing. As we will see in section 5.5, there are some convincing arguments

that not only favor the separating equilibria as more reasonable, but actually often

select one of the separating equilibria as the most reasonable.


