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Counter-stereotypical messaging and partisan cues:
Moving the needle on vaccines in a polarized
United States
Bradley J. Larsen1, Timothy J. Ryan2*, Steven Greene3, Marc J. Hetherington2, Rahsaan Maxwell4,
Steven Tadelis5

This paper reports results from a large-scale randomized controlled trial assessing whether counter-stereotyp-
ical messaging and partisan cues can induce people to get COVID-19 vaccines. The study used a 27-s video com-
pilation of Donald Trump’s comments about the vaccine from Fox News interviews and presented the video to
millions of U.S. YouTube users through a $100,000 advertising campaign in October 2021. Results indicate that
the number of vaccines increased in the average treated county by 103 (with a one-tailed P value of 0.097).
Based on this average treatment effect and totaling across our 1014 treated counties, the total estimated
effect was 104,036 vaccines.
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INTRODUCTION
In June 2021, U.S. White House chief medical advisor Anthony
Fauci warned that coronavirus disease 2019 (COVID-19) vaccina-
tion disparities could lead to the emergence of “two Americas,”
where regions with higher vaccination rates would fare much
better than those with lower rates (1). At the time, vaccination
was one of the most important tools for combatting the horrors
of the virus, and it was a public health priority to get as many
people vaccinated as possible.

Geographic divides in vaccination rates were driven by several
factors, including differences in race, ethnicity, income, urbanicity,
education, and age, which were all associated with Americans’ de-
cisions to get vaccinated. However, political partisanship was the
deepest fault line and seen by many as the key to understanding vac-
cination divides (2). Republican political leaders often downplayed
the danger of COVID-19 while simultaneously amplifying false
claims about the dangers of the vaccine. As a result, vaccine hesitan-
cy emerged disproportionately among Republicans. The Kaiser
Family Foundation estimated that, among the 27% of American
adults who remained unvaccinated in late October 2021, 60%
were Republicans, far above their share in the electorate (3, 4). Con-
sistent with Fauci’s warning, the division carried life and death con-
sequences. By early fall, counties that voted heavily for Donald
Trump experienced COVID-related death rates nearly three times
higher than counties that voted heavily for Joe Biden (5).

We posited that a remedy for this partisan divide might come
from the same mechanism that created the disparity in the first
place: partisan cues. Research shows that partisans form preferences
by following cues from their party leaders (6, 7, 8), a regularity that
has grown stronger as the parties have polarized over the last gen-
eration (9). We hypothesized that messages publicizing Donald
Trump’s support for COVID-19 vaccines—support Trump did
little to advertise after leaving the White House—might cue some

of the vaccine-hesitant among his supporters to get vaccinated
themselves.

To test this hypothesis, we created a public service announce-
ment (PSA), featuring news clips of Donald Trump on Fox News
encouraging his supporters to get vaccinated. The PSA can be
viewed at https://www.youtube.com/watch?v=INH-CmCgIYs;
Fig. 1 shows a screenshot. By using both Trump and Fox—both
of whom have long questioned the seriousness of the pandemic—
we created a counter-stereotypical messenger, which theory predicts
can be a particularly powerful catalyst (10).

We tested the PSA’s efficacy through a large randomized con-
trolled trial (RCT) on YouTube, randomizing at the county level
and targeting areas that lagged in vaccine uptake. Overall, we
spent just under U.S. $100,000 in ads, with a total of 11.6 million
ads reaching 6 million unique viewers. These ads appeared before
YouTube viewers on mobile phones, TVs, tablets, and computers.
Google’s algorithms attached our ad to specific YouTube channels
and YouTube posts. The YouTube channel on which Google placed
our ad the most was the Fox News channel (playing our ad over
200,000 times on this channel), with the ad displayed before seg-
ments of Sean Hannity, Laura Ingraham, Tucker Carlson, and
other conservative cable news personalities. As such, our ad likely
reached a disproportionately Republican audience, supporting our
aim to offer a counter-stereotypical message.

We measure the effect of the campaign on county-level vaccina-
tion counts in Centers for Disease Control and Prevention (CDC)
data. Previous work demonstrates that effects of ads on actual be-
havior tend to be miniscule and difficult to detect (11, 12), challeng-
es amplified by the fact that outcomes in our setting are measured at
the county (rather than individual) level. Given the important po-
tential live-saving implications of the study, wewere both hopeful of
moving the needle on vaccinations and circumspect about our
ability to produce especially precise estimates of treatment effects
given the study design.

Our intent-to-treat (ITT) analysis implies that the treatment led
to an increase of 103 vaccinations in the average treated county,
albeit with a fair amount of uncertainty (with a one-tailed P value
of 0.097). We also exploit treatment intensity (the realized number
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of ad impressions) across treatment counties to estimate the average
causal response (ACR) of actual ad displays. Using treatment assign-
ment to instrument for the number of ads, we estimate an ACR of
1000 additional ads to be 8.6 vaccines per county. Alternatively, 116
impressions of our ad were required to move one additional viewer
to get the vaccine. A one-standard-deviation increase in the number
of ads per county results in 217 additional vaccines in the average
county. We show that these results are robust to different ways of
controlling for county population and to dropping counties with
CDC data errors.

We also take advantage of the detailed engagement data provid-
ed by Google Ads tools. These data allow us to observe several alter-
native measures of treatment intensity in each county, such as how
much it cost us (as bidding advertisers) to win the ad auctions cor-
responding to viewers in each county. Google’s tools also show, for
each county, the percentage of viewers who watched at least 10 s of
the ad, watched the full ad, or clicked on the ad’s link. In the average
county, 41% of YouTube viewers to whom the ad was shown
watched at least 10 s of the ad, although they were allowed to skip
after 5 s, and 12% watched the full ad. We find that a one-standard-
deviation increase in the percentage of viewers watching at least 10 s
of the ad increases the number of vaccines distributed in the county
by 8.2. A one-standard-deviation increase in the percentage of
viewers watching the full ad leads to 12 additional vaccines.

We further expand our analysis by examining heterogeneous
treatment effects. Among the Trump-leaning counties that com-
prise our sample, counties that are less heavily Trump-leaning
were more responsive to the ad. Specifically, counties below the
median level of Trump support (69.4%) saw treatment effects that
were larger than counties with greater Trump support, and this dif-
ference is large enough and measured with sufficient precision that,
in a two-tailed test, it is significant at the 0.10 level when vaccina-
tions are measured in levels and at the 0.05 level when vaccinations
are measured in rates.

With 1014 treated counties in all, our estimated treatment effect
indicates that the total increase in vaccinations from the campaign
was 104,036, resulting in about 1 vaccine per dollar in ad spending.

Again, we emphasize that the treatment effect is less precisely esti-
mated than would be ideal, but the results taken as a whole suggest
that our approach likely made a difference. Combining these esti-
mates with those of Barro (13) indicates that our campaign resulted
in 839 avoided deaths, costing $115 per life saved. Given plentiful
evidence of small, undetectable effects of public messaging in
other settings, these results are encouraging and represent a large
return on investment.

We join a growing body of literature on interventions to increase
COVID-19 vaccinations, but our study is distinct in highlighting a
political mechanism, and its success for what appears to be a frac-
tion of the cost of other interventions. For example, Thirumurthy
et al. (14) and Lang et al. (15) study state vaccine lotteries but fail to
detect positive effects, while Barber andWest (16) and Acharya and
Dhakal (17) document positive effects for some states. An RCT in
Sweden found an increase in COVID-19 vaccinations from a direct
cash transfer, but at a much higher cost per vaccine ($24) (18).
Chang et al. (3) run a similar RCT among Medicaid patients in
the U.S. and find that even $50 was not enough to increase vaccina-
tions. Dai et al. (20) study an intervention of text message remind-
ers sent to U.S. adults to get the COVID-19 vaccine, and Bartoš et al.
(21) study a campaign informing Czech citizens of doctors’ support
for the vaccine. Both of those studies documented some positive
effects. However, our study breaks new ground by leveraging parti-
san divides as a tool for improving public health. Partisan divides
have long been the main divide in COVID-19 vaccination rates
(2), but ours is the only academic study—to the best of our knowl-
edge—to demonstrate that partisan divides can be leveraged as part
of the solution.

RESULTS
Core results
The results of our ITT analysis are shown in columns 1 and 2 of
Table 1. Throughout much of our analysis, we consider one-tailed
tests for inference because our expectations are clearly directional: A
campaign encouraging vaccination can only move the needle

Fig. 1. Screenshot of PSA at 3 s.
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among the unvaccinated, who were predominantly Republican at
this time (in October 2021, 91% of Democrats were vaccinated,
compared to only 62% of Republicans) (2). In aspects of our analysis
where we have no clear directional expectation (specifically, our
analysis of heterogeneity in treatment effects), we apply two-tailed
tests. See Materials and Methods for additional discussion of
inference.

Each column in Table 1 reports effects from a difference-in-dif-
ference analysis, controlling for vaccine levels differing across coun-
ties and dates. Our effect of interest is the average treatment effect of
the campaign for the average treatment county—the increase in
vaccine first doses that would be expected by the average county
if it were to adopt this campaign. Column 1 controls for differential
trends by county population size through an interaction of county
population with a dummy for the period after the start of the cam-
paign. Column 2 includes more flexible controls for these trends
that interact county population size with separate dummy variables
for individual dates. The results are statistically indistinguishable
across the two columns, demonstrating that the results are not sen-
sitive to how we control for the growth rate of vaccinations in dif-
ferent sized counties. In column 1, we observe an increase of 102.6

vaccines, with a standard error of 78.74, implying a P value from a
one-tailed test of 0.097. Thus, at a 95% confidence level, we cannot
reject a null effect. At a 90% confidence level, we do reject zero, al-
though we still cannot rule out small effects (as low as 1.81 vaccines
per county).

As we discuss in Materials and Methods, these confidence
bounds are constructed under our most conservative clustering ap-
proach (county-level clustering). We obtain smaller standard errors
(and hence smaller P values) under every alternative level of cluster-
ing we apply, including state-level or stratum-level clustering. Given
that we know the design for the field experiment, our study also
lends itself particularly well to randomization inference. Through-
out the study, we report P values using the treatment effect as our
test statistic for randomization inference tests of the weak null hy-
pothesis (the hypothesis that a treatment effect is zero for all coun-
ties). See Materials and Methods for more details. The
randomization inference P value for column 1 is 0.067, again sug-
gesting a significant effect at the 90% confidence level but not at the
95% level. Column 2 yields similar estimates and inference.

We discuss here implications of the point estimates, keeping in
mind that, based on the standard errors, we cannot reject much
smaller effects. The estimate in column 1 implies that, among the
1014 treatment counties, the average county saw a causal increase
of 102.6 vaccines due to the campaign. Aggregating across all treat-
ment counties, the total effect was an increase of 104,036 vaccines.
Because our total ad budget spent in these counties was $96,408.56,
the estimated vaccines per dollar spent was 1.08 (standard error of
0.828), with similar results in column 2. In either case, this implies
that $1 in advertising spending yielded one more shot in the arm. It
bears noting that, at the lower 90% confidence bound, the estimated
effect is quite small: Only 0.017 vaccines resulted from $1 in ads, or
$58.8 dollars per vaccine. At our 90% lower confidence bound, this
is still more cost effective than the point estimates of $68 and $82 in
(16, 17), respectively. At a 95% confidence level, we would be unable
to reject much larger cost estimates.

Estimates from Barro (13) can be used for a back-of-the-enve-
lope calculation to translate our results into an estimated number
of lives saved. Barro (13) estimates that, in the latter part of 2021,
124 additional full vaccine sequences were sufficient to avoid one
additional COVID-19 death. If each of the 104,036 first-dose vac-
cines from our campaign eventually yield fully vaccinated sequenc-
es—clearly a strong assumption—these estimates would imply that
839 deaths were avoided because of our campaign, costing $115 per
life saved. Although we are hopeful that the campaign saved many
lives, it is again important to note that the confidence intervals sur-
rounding these estimates are wide.

Columns 3 and 4 of Table 1 use the level of ad exposure to iden-
tify the causal response of an additional 1000 ads in a county in an
instrumental variables (IV) framework, instrumenting for the
number of ads using treatment assignment. We again offer two dif-
ferent approaches to controlling for differential trends by county
population, as in columns 1 and 2. Both columns 3 and 4 show a
positive and significant (and similarly sized) effect. The estimate
in column 3 of Table 1 suggests that an increase of 1000 ads leads
to 8.6 additional vaccines in the average treated county. Put differ-
ently, 116 ad impressions (1000 divided by 8.6) are required to yield
one additional vaccine. Because the standard deviation of the
number of ads across treatment counties is 25,245 (from Table 1),

Table 1. Vaccine increase per county. Regression results. Sample size is
151,945 county-date observations. All regressions include fixed effects at
the county and date levels. In columns 1 and 2, the ITT effect corresponds
to the OLS-estimated coefficient on the interaction of a treatment
assignment dummy (Treat) with a dummy for dates after October 14 (Post),
the start of the campaign. Column 1 also includes the interaction of Post
with county population. Column 2 replaces this with interactions of county
population with (i) flexible dummies for each date within 2 weeks before to
2 weeks after the campaign (omitting the date before the campaign
started), (ii) a dummy variable for 2 weeks ormore before, and (iii) a dummy
variable for 2 weeks or more after. Columns 3 and 4 report the IV-estimated
coefficient on the interaction of the number of ads the county received (in
1000s) with Post, with this interaction instrumented for by Treat × Post.
Column 3 mimics column 1 in controlling for differential trends by
population, and column 4 mimics column 2. “***,” “**,” and “*” indicate
significance (from a one-tailed test) at the 0.01, 0.05, and 0.10 levels.
Standard errors, reported in parentheses below each estimate, are
clustered at the county level. Randomization inference P values are from a
one-tailed test based on 1000 permutations using the treatment effect as
the randomization test statistic. Table S4 contains estimates of other
coefficients from these regressions.

ITT effect ACR of 1000 ads

(1) (2) (3) (4)

Effect 102.6*
(78.74)

101.4*
(78.76)

8.606*
(6.608)

8.500*
(6.609)

Implied vaccines
per dollar

1.08*
(0.828)

1.07*
(0.828)

1.01*
(0.773)

0.99*
(0.773)

County fixed effects Yes Yes Yes Yes

Date fixed effects Yes Yes Yes Yes

Population ×
Post dummy

Yes Yes

Population ×
Date dummies

Yes Yes

Randomization
inference P value

0.067 0.065
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the estimate in column 3 implies that a one-standard-deviation in-
crease in ads yields 217 additional vaccines in the county.

As described in Materials and Methods, 1000 ad impressions
cost us $8.55 on average (the cost per mille, or “CPM” in advertising
lingo). These numbers therefore imply an alternative estimate of the
number of vaccines per dollar, at 1.01. The estimate in column 4
implies a similar estimate of cost effectiveness, at 0.99 vaccines
per dollar spent. Thus, regardless of whether we rely on the estimat-
ed ITT effect or the ACR, our point estimates imply that $1 in ad-
vertising spending persuaded one (or slightly more than one)
viewer to get the vaccine. Supplementary Materials (SM) Section
A presents various robustness checks on the results in this section.

So far, we have conceptualized our outcome measure as a level:
the number of people in a county who are vaccinated. An alternative
approach would be to conceptualize the dependent measure as a
rate: the percent of residents in a county who are vaccinated. We
report results from this analysis in Table 2. For the measure of ad
exposure in columns 3 and 4, we use the number of ads per 100 res-
idents in the county. Table 2A displays results from these regres-
sions without weighting observations (as in Table 1), and
Table 2B shows results where each observation is weighted by the
size of the county.

In Table 2A, we find point estimates that are positive and signifi-
cant at the 0.10 level, under either county-level clustering or ran-
domization inference. The estimates in column 1 suggest the
campaign increased the percent vaccinated (a variable ranging

from 0 to 100) by 0.57 percentage points in the average county. Sim-
ilarly, the results in column 3 suggest that an increase of 1 more ad
per 100 county residents increases the percent vaccinated by 0.03
percentage points. Comparing odd and even columns, we see very
similar point estimates, suggesting that controlling directly for
county population after normalizing by county population does
little to affect the estimates. When we weight by county population
in Table 2B, we find slightly smaller estimates, enough to yield
results that are no longer significant at the 0.10 level, illustrating
that the marginal statistical significance of our results is not
robust to this variation in the estimation approach.

As demonstrated in the histograms in Fig. 2 (C and D) and in the
surrounding discussion, the number of ad impressions varies
widely across counties, but the number of ads per capita does as
well. Hence, the decision of whether to measure ads in rates or
levels has no single correct answer, as the actual meaning of being
“treated” is not fully captured by either. We prefer the levels-focused
analysis becausewe pre-registered it to address our primary research
question of whether our ad campaign changed behavior sufficiently
to increase the total count of vaccinated individuals (regardless of
how large this change is relative to county size).

Other measures of treatment intensity
The number of ads a county receives is only one of several ways to
measure a county’s treatment intensity. Using the same IV frame-
work as above, we examine several other measures that represent
viewer engagement within a county, including the engagement
rate, view rate, click rate, and CPM, as well as the frequency of
ads relative to the county population (the number of ads per 100
residents). These variables are defined in more detail below. We
normalize each variable by its standard deviation (across treatment
counties) to facilitate comparison. Thus, each ACR can be interpret-
ed as the effect of a one-standard-deviation increase in the corre-
sponding variable. It is important to note that these measures of
treatment intensity covary in complex ways (table S2). Our analysis
here measures the ACR to these measures in separate regressions,
but we emphasize that we are not capturing the causal effect of in-
dependently moving a single measure of treatment intensity.

The results are displayed in Table 3. We estimate that a one-stan-
dard-deviation increase in the percentage of viewers watching at
least 10 s of the ad (engagement rate) increases vaccines distributed
in the average county by 8.2. Additionally, a one-standard-deviation
increase in the rate of those viewing the full ad (view rate) increases
vaccinations by 12.3. Both suggest that counties in which viewers
watched the ad for longer were the most responsive in terms of vac-
cinations. Other measures of viewer engagement produce even
larger effects. A one-standard-deviation increase in the rate of click-
ing on the Fox News link at the bottom of the ad (click rate) leads to
94.1 additional vaccines. These results are also reflected in the cost
of ads: A one-standard-deviation increase in a county’s CPM results
in 4.9 additional vaccines, suggesting that, while we had to bid more
for each ad in some counties than others, this increased spending
yielded viewers who were more likely to respond by getting the
vaccine. Finally, ad coverage affects uptake as well, with a one-stan-
dard-deviation increase in the number of ads per capita in the
county resulting in 48.4 additional vaccines. All these effects are
statistically significant at the 0.10 level regardless of how we
control for population (panel A versus panel B) but not the 0.05

Table 2. Measuring vaccines and ads in rates. This table displays
estimates frommodifications of Eqs. 1 and 2 where the dependent variable
is the total percent of the county population vaccinated at a given point in
time and the treatment intensity is measured as the number of ads a
county receives per 100 residents. The number of observations is slightly
higher here than in our main analysis (163,856 county-date observations
rather than 151,945) because, for some observations, the vaccination count
is missing on certain dates in the CDC data, although the vaccination rate is
recorded. “***,” “**,” and “*” indicate significance (from a one-tailed test) at
the 0.01, 0.05, and 0.10 levels. Standard errors, reported in parentheses
below each estimate, are clustered at the county level. Randomization
inference P values are from a one-tailed test based on 1000 permutations
using the treatment effect as the randomization test statistic. Panel (A)
reports results from an unweighted regression, and panel (B) shows results
where observations are weighted by county population. Table S5 contains
estimates of other coefficients from these regressions.

ITT effect ACR of 1000 ads

(1) (2) (3) (4)

A. Unweighted regression

Effect 0.570*
(0.437)

0.563*
(0.437)

0.0296*
(0.0227)

0.0291*
(0.0226)

Randomization inference
P value

0.089 0.093 – –

B. Weighted regression

Effect 0.448
(0.458)

0.411
(0.454)

0.0191
(0.0196)

0.0173
(0.0192)

Randomization inference
P value

0.159 0.184 – –

County fixed effects Yes Yes Yes Yes

Date fixed effects Yes Yes Yes Yes
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level. These results together suggest that as viewers engage more
with the ad, the persuasive effects of the ad may be stronger.

Heterogeneous treatment effects
We next explore how the treatment effect and the response to the
number of ads varies with county-level characteristics. We begin by
considering the percent of voters in the county who voted for
Trump. (We use vote share for Trump from the 2016 election, as
county-level measures were more readily available for this year.
Vote shares for the 2020 election are highly correlated with those
of 2016.) It is a priori unclear which types of counties should
exhibit a stronger response to the treatment. One possibility is
that counties with more Trump support would be more affected
by the ads. This is based on the assumption that in places where
more people support Trump, an ad featuring Donald Trump will
be more likely to influence people.

An alternative possibility conceptualizes Trump support as part
of a broader context in which people are more likely to be generally

conservative. This might influence responses to our ad, because
highly conservative areas are generally most resistant to vaccines
and could impose the greatest anti-vaccine social pressure on the
people who viewed our messages. Consistent with this possibility,
in the fall of 2021, when Trump endorsed the COVID-19 vaccine
or booster shots at events, in front of his strongest supporters, the
conservative crowds reacted with loud boos (22). In addition,
Bechler and Tormala (23) find that messages about COVID-19 vac-
cines are most effective when targeted toward groups with more fa-
vorable attitudes toward vaccines.

We also consider heterogeneous treatment effects by education
(percent college educated) and race (percent white). Here, we come
to the analysis without strong expectations, although it bears note
that individuals with less educational attainment might be less likely
to know that Trump supported vaccination, and thus more respon-
sive to our message. Because our expectations have no clear direc-
tion, we report statistical significance based on two-tailed tests.

Fig. 2. Ad campaign characteristics. (A) Cumulative ads by date (in millions). (B) Each dot represents a given YouTube channel on which the ad was shown over 1000
times (with only a handful of these channels labeled for readability). The vertical axis shows the number of times (in units of 1000) that the ad showed on a given channel,
and the horizontal axis orders channels in descending order by the number of times the ad showed. (C) Histogram of the number of ads per county (in thousands). (D)
Number of ads per 100 county residents, separately for small (below median population) and large (above median population) counties.
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Throughout these analyses, we stress that all counties in our
study had vaccination rates below 50%. Vaccination rates are
strongly correlated with the moderating variables we consider in
this section. So, by proxy, we are examining unrepresentative distri-
butions of these variables. The median vote share for Trump across
counties in our sample is 69.4%, the median percent of residents
who are college educated is 28.7%, and the median percent white
is 91.3% (see "Materials and Methods"). These medians are each
more extreme than the corresponding medians computed using
all U.S. counties (this is also true comparing means rather
than medians).

The estimates from this analysis are shown in Table 4, where we
report the difference between the effect in low relative to high coun-
ties for a given county characteristic: Trump vote share in columns 1
and 2, the percent who are college educated in columns 3 and 4, and
the percent white in columns 5 and 6. We find that the ITT effect in
counties with below-median Trump vote share is 258.7 vaccines
higher than in stronger Trump counties, and this difference is sig-
nificant at the 0.10 level in a two-tailed test under both county-level
clustering and randomization inference. These results suggest that
our message is highly effective in garnering a behavioral response
among certain counties (those with less than 69.4% of voters favor-
ing Trump) and not among those withmore extreme proportions of
Trump supporters. This result is consistent with the possibility, dis-
cussed above, that a more conservative social context would
dampen message effects. In columns 3 to 6, we do not detect a stat-
istically significant difference between the effect in less- versus
more-educated counties or in whiter versus less-white counties. To-
gether, these results suggest that, within our sample of low-vaccine
counties, the most responsive counties to the message are those with
strong but less-extreme Trump support.

We also repeat our heterogeneous treatment effect analysis using
instead the vaccine rate within each county as the dependent vari-
able. We again find differential effects in terms of Trump vote share:
In counties that are below the median, the ITT effect is 1.775 per-
centage points larger than in counties with above-median Trump
share. The ACR analysis suggests that an increase of 1 more ad

per 100 county residents increases the percent vaccinated by 0.09
percentage points more in low-Trump-share counties than in
high-Trump-share counties. Each of these effects is significant at
the 0.05 level in a two-tailed test. The results are reported in table
S7. Effects separated by race or education again show no statistically
significant differences, suggesting that the strongest heterogeneous
effects of those we examine are the Trump share results.

Event study
Our analysis thus far compares treatment and control counties
before and after the campaign began, pooling together all pre-cam-
paign dates and similarly pooling together all post-campaign dates.
This pooling does not allow us to see when precisely the vaccine
uptake occurred. To examine this, we adopt an event study design
that expands on our main regression analysis to estimate ITT effects
at each specific date before and after the campaign.

The results are shown in Fig. 3. Estimating a separate effect for
each date, as we do here, can substantially reduce power. We there-
fore construct 95% confidence intervals (shown in the shaded
region) by clustering at the date level, in addition to the county
level, allowing for contemporaneous correlations across counties.
As with our other results in the paper, replacing county-level clus-
tering with state-level clustering would reduce the size of these con-
fidence intervals. In the Supplementary Materials, we report a
variant of the above event study that estimates the difference
between treatment and control counties in terms of their daily vac-
cination count on a given date rather than the cumulative vaccina-
tion count. We also report results with state-and-date-level
clustering in fig. S2.

The results suggest that the difference between treatment and
control counties is not significantly different from zero before the
campaign, which offers additional reassurance that our randomiza-
tion worked as intended. This is a test of the parallel trends assump-
tion required for identification in a difference-in-difference model,
evidence that the number of vaccines in treatment counties—and
the trend in that number—is not statistically significantly different
from that of treatment counties before the start of the campaign.

Table 3. Vaccine increase per county based on engagementmetrics. Regression results from IV regressions, as in columns 3 and 4 of Table 1, but using different
treatment intensity measures instead of number of ads. The dependent variable is the same as in Table 1, but themeasure of treatment intensity differs by column.
Each variable is normalized by dividing by its standard deviation across counties. A county’s engagement rate is the number of 10-s (or longer) views of the ad,
divided by the number of ad impressions the county received, multiplied by 100. View rate is the number of complete views of the ad divided by the number of
impressions, multiplied by 100. Click rate is the number of times the Fox News story link was clicked, divided by the number of ads, multiplied by 100. CPM is the
average cost (in dollars) of purchasing 1000 ad impressions in the county. Panels (A) and (B) control for differential trends over time in counties of different
populations using the strategies in Table 1; panel (A) follows column 3 of Table 1 and panel (B) follows column 4 of Table 1. “***,” “**,” and “*” indicate significance
(from a one-tailed test) at the 0.01, 0.05, and 0.10 levels. Standard errors, reported in parentheses below each estimate, are clustered at the county level.

Treatment intensity measure Engagement rate View rate Click rate Ads per 100 residents CPM
(1) (2) (3) (4) (5)

A. Controlling for population × Post dummy

Average causal response 8.255*
(6.333)

12.34*
(9.467)

94.12*
(72.11)

48.37*
(37.10)

4.877*
(3.742)

B. Controlling for population × Date dummies

Average causal response 8.153*
(6.335)

12.19*
(9.469)

92.96*
(72.12)

47.77*
(37.10)

4.817*
(3.742)

County fixed effects Yes Yes Yes Yes Yes

Date fixed effects Yes Yes Yes Yes Yes
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Figure 3 also shows that, after the campaign begins, the effect
remains small initially. The cumulative effect increases near the
end of the campaign and continues to increase slightly through
the first 2 weeks following, peaking at around 100 vaccines—con-
sistent with our main estimates from Table 1—at which point the
cumulative effect decreases. Near the end of the sample, the differ-
ence between treatment and control counties is swamped by other
noise, with the confidence intervals being quite wide and contain-
ing zero.

There are several possible explanations for the pattern of point
estimates (the solid black lines) we observe in Fig. 3. First, research
on the effects of advertising on behavior suggests that there are im-
portant cumulative effects of exposure in that, initially, several im-
pressions may be needed to generate a response, after which the
marginal impact of exposure declines (24, 25). Second, we discov-
ered that the CDC data itself is recorded with a lag for some coun-
ties, implying that, if the treatment did have an effect on a given
date, it may appear in CDC data on a later date. For example, in
some observations in the CDC data, a county’s cumulative
vaccine count jumps up by over 30,000 in a single day—for one
such county, this jump corresponds to about one-third of the
entire county population—an implausibly large amount for a
single day, but consistent with some counties updating their
vaccine count infrequently and, therefore, in batches. In any
event, the fact that our point estimates are similar regardless of
whether these counties are included suggests that the data errors
are uncorrelated with the treatment assignment and only introduce
statistical noise, not bias, into our estimates. We perform additional
robustness checks on this subsample in SM Section A.

Third, it is possible that those affected by the ad chose to sched-
ule vaccine appointments for several days or a week in the future
rather than getting vaccinated on the day they viewed the ad.
Even for vaccines administered as walk-ins, rather than scheduled
appointments, it is plausible that the advertising campaign had an
effect with a lag, with viewers’ changing attitudes being reflected in
actual vaccinations only after several days or a week of the attitude

change. For example, viewers may decide, consciously or not, “I
won’t go out of my way to get the vaccine today, but I’ve decided
to go ahead with getting vaccinated next time I find myself in a
drugstore.”

Finally, it may be that nationwide changes in vaccine policy,
which affected both treatment and control counties, had differential
impacts on treatment counties due to the priming of the advertising
campaign. The key change in vaccine policy that occurred during
our sample period was that children ages 5 to 11 became eligible
for the vaccine on November 2. Information about this policy
change was leaked slowly over the week preceding the change,
with an official announcement from the CDC released on Novem-
ber 2 announcing the November 4 eligibility date. One possibility is
therefore that the changing guidelines around childhood vaccina-
tion, and attention to these changes, can account for some of the
reason that the treatment effect was larger near the end of the
campaign.

DISCUSSION
The COVID-19 vaccines proved effective, substantially reducing the
chances of hospitalization and death among those who took them.
Remarkably, politics became a major obstacle to their adoption and
use. Large segments of the population declined to be vaccinated,
with partisanship exerting the largest effect. Hesitancy in the U.S.
proved especially high, with rates of vaccination barely among the
top 50 countries in February 2022 (26). Beyond leaving a dispropor-
tionate number of Republicans more vulnerable to the virus, greater
hesitancy comes with negative externalities: the prevalence of break-
through infections as well as the risk to immunocompromised in-
dividuals vulnerable to COVID infections even if vaccinated. As
many have observed, a tragedy of the COVID-19 pandemic is the
extent to which protective measures became tangled in Americans’
political identities, which led to deaths and suffering that could have
been avoided.

Fig. 3. Event study with standard errors clustered at county and date levels. (A and B) Coefficients from event study regression (Eq. 4), the effect on the cumulative
vaccine count up through a given date. (A) uses the full sample, and (B) drops counties that ever record a decrease in cumulative vaccine count over time. Shaded region
represents 95% confidence intervals computed under two-way clustering at the county level and date level. These confidence intervals are traditional two-sided 95%
confidence intervals, as a one-sided confidence interval for our test would have a tighter lower bound and no upper bound (an upper bound of infinity).
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But if politics characterizes one aspect of the problem, it might
also be part of a solution. We find that positioning Donald Trump
and Fox News as counter-stereotypical messenger is likely a cost-ef-
fective way to overcome hesitancy among people who still had not
been vaccinated, months after the vaccines became widely available.
An important caveat to our results is that we do not have conclusive
evidence that it was indeed the counter-stereotypical nature of the
message that led to its effectiveness; we may have simply designed
an effective ad, and it is possible that other (nonpolitical) ads would
have a similar positive impact. Unfortunately, there is scant exper-
imental evidence of the effectiveness of advertising on COVID-19
vaccine uptake to which our effects can be compared. Regardless of
the specific mechanism, our point estimates suggest higher number
of vaccines per dollar spent than other interventions that have
been studied.

Are our findings scalable? We believe they are. With seasonal flu
vaccines—and immunization attitudes generally—starting to show
signs of increased partisan schism in the wake of the COVID-19
pandemic (27), support from party leaders for vaccinations may
represent a potent tool that public health messengers can use.
Insofar as vaccinations continue to be politicized, this research pro-
vides a model for political messaging as an important public health
tool in future pandemics.

Whether the dividing line is politics or something else, our study
suggests that public health proponents might do well to reflect on
messengers whose voices might carry special weight among target
populations. For example, other research finds that a pro-masking
message from a military general increases support for masking
among political conservatives (28). The results we report here
help corroborate this theme. We think it represents a promising
route to overcome resistance and, in turn, save lives.

MATERIALS AND METHODS
Message considerations
Previous research has demonstrated that message persuasiveness
rarely hinges on argument quality, because evaluating quality re-
quires effortful information processing that many people avoid
(29, 30). Instead, people tend to rely on mental shortcuts, such as

beliefs about a source’s credibility, to decide whether to accept or
reject new information (31). Donald Trump stands out as distinctive
in this respect. Original survey data we collected in the months fol-
lowing the pandemic’s onset revealed that members of our target
audience (unvaccinated Republicans) persistently had greater con-
fidence in vaccine advice coming from Donald Trump than in
advice coming frommore traditional sources, such as their personal
doctor or the scientific community (Table 5).

Because Republicans have become identified with skepticism
about the severity of the COVID-19 virus and COVID vaccines, a
pro-vaccine message from the leader of the Republican Party qual-
ifies as counter-stereotypical—and counter-stereotypical messages
have been shown to evoke more effortful mental processing (10).
Recent survey experiments conducted on a convenience sample
found that a vaccine message from Donald Trump successfully in-
creased vaccine intentions among Republicans (7, 8). We build on
those insights, but rather than use self-reported attitude surveys as
an outcome measure, we focus on actual vaccination behavior.

A pro-vaccine endorsement from Donald Trump that is associ-
ated with Fox News should further enhance the counter-stereotyp-
ical nature of the message. Fox News personalities have been
skeptical of Fauci and many COVID vaccine efforts. Moreover, pre-
vious research has demonstrated the persuasive effects of Fox News
on Republican attitudes broadly, as well as on viewers’ attitudes
toward pandemic guidelines in particular (32, 33).

The PSA
The PSA (which can be viewed at https://www.youtube.com/watch?
v=INH-CmCgIYs) includes four separate video clips—the first and
third from a Fox 13 News Utah (a local station) segment recorded
on 16 March 2021, the second from a phone interview between
Donald Trump and anchor Maria Bartiromo recorded on the Fox
News Channel (the nationwide cable TV channel) from the same
date, and the fourth from a social media post of Ivanka Trump
from the spring of 2021. We hired a professional video editor to
combine these clips and overlay them with an engaging soundtrack.

Knowing that many users might opt to stop the PSA from
playing as soon as possible, it was imperative that news of
Trump’s endorsement occur immediately. Within the first 3 s of

Table 4. Vaccine increase per county: Heterogeneous effects and causal responses. Table reports the difference in the estimated effect in low versus high
counties based on a given county characteristic. This characteristic is the 2016 Trump vote share in columns 1 and 2, the fraction of county residents with a college
degree in columns 3 and 4, and the fraction of county residents who are white in columns 5 and 6. High refers to counties that are above the median level for that
characteristic, and low refers to below themedian, where the median is computed across counties in our sample. In odd columns, the effect is the ITT effect and in
even columns it is the ACR.“***,” “**,” and “*” indicate significance (from a two-tailed test) at the 0.01, 0.05, and 0.10 levels. Standard errors, reported in parentheses
below each estimate, are clustered at the county level. Randomization inference P values are from a two-tailed test based on 1000 permutations using the effect in
low-relative-to-high counties as the randomization test statistic. Table S5 contains estimates of other coefficients from these regressions.

% Trump % College % White

(1) (2) (3) (4) (5) (6)

ITT ACR ITT ACR ITT ACR

Effect in low relative to high county 258.7*
(154.5)

17.28*
(11.24)

−56.76
(158.5)

4.496
(10.84)

216.3*
(152.3)

12.15
(12.18)

County fixed effects Yes Yes Yes Yes Yes Yes

Date fixed effects Yes Yes Yes Yes Yes Yes

Randomization inference P value 0.096 – 1.00 – 0.149 –
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our ad, the Fox 13 Utah anchor says, “Donald Trump is urging all
Americans to get the COVID-19 vaccine.” The rest of the PSA
unfolds as follows:

1) Seconds 4 to 12: Donald Trump speaking on phone interview
on Fox News with Bartiromo, while Bartiromo nods in agreement:
“I would—I would recommend it, and I would recommend it to a
lot of people that don’t want to get it, and a lot of those people voted
for me, frankly.”

2) Seconds 13 to 19: Fox 13 News Utah anchor, with footage of
the Trumps at White House: “Both Trump and former First Lady
Melania Trump did receive their vaccines privately in January at the
White House.”

3) Seconds 20 to 23: Screen text quote from Ivanka Trump, with
still shot of her getting the vaccine: “Today I got the shot. I hope you
do too.”

4) Seconds 24 to 27: Black screen with white print: “Your vaccine
is waiting for you.”

Our choice of wording for this final frame was driven by evi-
dence that, for flu vaccines, patients are most responsive to
framing suggesting that a vaccine is reserved for them (34).

The specific YouTube setting we adopted required users to watch
the first 5 s of the PSA before being allowed to skip. Hence, viewers,
even if only involuntarily, heard that Trump was urging all Amer-
icans to get the vaccine. A screenshot taken at 2 s into the ad appears
in Fig. 1. One second later, viewers saw Fox News’ familiar news
anchor, Bartiromo, and the official Fox News stamp. For viewers
who had the sound on their devices muted, on screen text delivered
the message. The Fox Utah news story prominently displays,
“Trump encourages getting COVID-19 vaccine” on the screen,
and the Fox News story shows, “Trump on the success of operation
warp speed.” We included closed captions of all spoken words to
increase the likelihood that viewers would absorb the message.
We also embedded a link in the bottom left corner of the ad, allow-
ing viewers to click to see the full Fox News interview with Bartir-
omo. In the bottom right, a box displays a countdown of the
number of seconds until the user can skip the ad (showing “300
in Fig. 1).

How YouTube’s advertising platform works
For each advertising slot—someone watching a YouTube video
—Google runs an instantaneous auction, bidding on behalf of

each advertiser, to determine which advertiser ’s content will be
shown (like search or display ads). YouTube’s advertising platform
(Google Ads) allowed us to select a target population (our treatment
counties) and to specify our willingness to pay for 1000 ad impres-
sions (CPM), known as a “mille” in advertising lingo. We use CPM
to gauge the cost effectiveness of our campaign. An advertiser is
more likely to win an auction if she is willing to pay more than
other advertisers and if Google predicts that, for a given user, the
advertiser ’s content is more likely to generate user engagement
(which Google defines as watching at least 10 s of the ad). As we
describe below, these features generated widely varying exposure
to our ad across different counties, as Google’s algorithm dynami-
cally adjusted as it learned which types of users were more likely to
engage with the ad.

Selection of treatment and control counties
We designed our experiment to administer ads such that they would
be concentrated in areas with low vaccination rates while also facil-
itating our ability to estimate effects on actual vaccine uptake at the
county level, the smallest geographic unit for which vaccine admin-
istrative records are widely available. Specifically, we excluded coun-
ties with vaccination rates above 50% (full vaccine series complete,
according to CDC records as of 28 September 2021). We also ex-
cluded counties with populations above 1 million (45 counties).
Aside from being culturally distinctive (e.g., large cities) and expen-
sive to target, these had the potential to exert disproportionate in-
fluence on our results because the distribution of county
populations has a long right tail. We also excluded the following
other areas that we deemed inappropriate for our study. First, we
excluded several—mostly uninhabited—Alaska Census areas.
These are not conducive to YouTube targeting, as they are not coun-
ties. We excluded all counties in Texas (254), as these counties are
not consistently included in CDC records (our source for measur-
ing vaccine uptake). Third, we exclude Washington, D.C., given its
unique cultural status.

These exclusions left us with 2168 counties eligible for the study.
We divided these into quintiles according to (i) population and (ii)
percentage of the population vaccinated and then created strata
defined by the intersections of these two classifications. The crea-
tion of these strata happened before we chose to exclude high-
vaccine counties from our experiment. Applying this restriction
dropped the top quintile in terms of vaccination rates, leaving us
with 20 strata created by the intersection of the two classifications.
We then randomly assigned counties to treatment or control, block-
ing by the 20 strata, using the software developed by Blair et al. (35).
This procedure resulted in 1083 counties assigned to receive ads,
and 1085 retained as a control group.

Table 6 provides summary statistics for the counties included in
our study—separately for counties assigned to treatment and
control conditions. Treatment and control groups are closely ba-
lanced on prior percentage of the population vaccinated (diff =
0.01, SE = 0.39, P = 0.98) as well as population (diff = −3216, SE
= 3757, P = 0.39). Table 6 also shows that treatment and control
counties are well balanced on the share of the vote received by
Trump, the percent of the population who are college educated,
the percent who are white, and the level of internet access, although
we did not intentionally target balance along these variables.

Among our 1083 treatment and 1085 control counties, 136 (69
treatment and 67 control) ended up reporting no vaccine count data

Table 5. Percent of unvaccinated Republicans expressing a “great deal
of confidence” “when it comes to advising you on taking the covid-19
vaccine.” Cell entries represent the percentage of respondents in a national
survey indicating they have a great deal of confidence in vaccine advice
coming from each of the indicated sources. This table relies on two
different waves of the survey, March/April (sample size 422) and August/
September (sample size 387). See SM Section F for details on question
wording and the sampling approach.

March/April August/September

Donald Trump 39 40

Joe Biden 10 8

Anthony Fauci 14 11

Your personal doctor 35 23

Scientific community 16 11
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to the CDC during our sample period. Our regression analyses
therefore use the 1014 treatment counties and 1018 control counties
with nonmissing CDC data. This set of counties spans 43 states.

Ad campaign characteristics
Online advertising often results in low signal-to-noise ratios, requir-
ing very large ad campaigns to detect an effect even in carefully de-
signed randomized control trials (11, 36). Fortunately, our ad
budget was substantial. The total budget we spent on ads was
$99,009.51. We spent the remainder of our original $100,000
budget in early testing to learn the platform’s features. Of the
total $99,009.51 spent during the actual experiment, $96,408.56
was spent in counties that reported vaccine data to the CDC.

As described above, for any ad shown to a user on YouTube, an
auction determines which advertiser’s ad gets displayed. Google
bids on behalf of each bidding advertiser, who submits target bids
—a price that a bidder would pay, on average, for 1000 impressions.
We set our initial target CPM to $7.43, the level at which YouTube
advertising algorithms and staff recommended. Between October
14th and 17th, we spent approximately $7500 per day on ads. As
the campaign progressed, and the pool of users to which Google’s
algorithm sent our ads changed dynamically, this initial target price
proved too low to place our ad and spending dropped to between
$2000 and $3000 on the 18th and 19th. Increasing our CPM
target price to $10 allowed spending to surge above $8000 per day
from the 20th to the 24th. For the complete duration of the cam-
paign, our realized average CPM was $8.55.

The campaign ran from October 14 through October 31, with
ads steadily rolling out over this period, as shown in Fig. 2A. We
initially avoided any targeting of specific demographic groups
other than excludingminors. After the first 10 days of the campaign,
however, we observed in Google Ads tools that users ages 18 to 24
were receiving a disproportionate share of ads. In response, we ex-
cluded this age category for the last week of the campaign. Com-
bined, we purchased a total of 11,573,574 impressions. These ads
were delivered to 6,079,732 distinct viewers, with the average user
seeing the ad 1.9 times and no one seeing it more than four times.

Table 6 shows that the average treatment county received 10,679
ad impressions—19 for every 100 residents. Table 6 also shows sta-
tistics of the county-level engagement rate, which in Google Ads
tools parlance refers to the percent of ad instances in which users
watched at least 10 s of the ad (41% in the average county). The
view rate is the percent of cases where viewers watched the full 27
s of the ad (12% of viewers in the average county). The click rate
refers to the percent of viewers who clicked on the link below the
ad that took the user to the original Fox News story (fewer than
1% of viewers in the average county).

Google Ads tools also allow us to observe characteristics of
YouTube viewers. We summarize these characteristics in table S8.
The ad was shown to nearly twice as many males as females, and to
more than twice as many nonparents as parents. The rate of viewing
the full ad was roughly constant at about 11 to 13%, regardless of a
user’s characteristics (gender, age, income, or parental status). En-
gagement rates hovered around 40% for most users, with users ages
18 to 24 being slightly less likely to watch at least 10 s. Users whom
YouTube knows less about (marked with “Unknown” for a given
characteristic in table S8) are also less likely to engage.

We also obtain from Google Ads detailed information on the
outlets through which users viewed the ad, which we summarize

in table S9. Panel D shows that 52% of ads appeared on phones,
30% on television screens (e.g., via Roku or Apple TV), 13% on
tablets, and 4% on computers. We find the viewers watching on
TV screens tended to watch much more of the ad—46% watched
at least 10 s, compared to only 37% among mobile phone users.
Table S9A shows that the PSA was placed on 150,284 distinct
YouTube channels, several hundred websites, and 10,072 mobile
apps (largely games). Figure 2B plots YouTube channels ranked
by the number of times our ad displayed on each channel. Of
these YouTube channels, the main Fox News channel hosted our
ad the most—over 200,000 times, which is 3 times the quantity
on Forbes and 10 times that on NBC News YouTube channels.
Several other channels with the word “fox” in their title (such as
Fox News Business) also hosted the ad—270,000 ads in all appeared
on such channels. The ad also appeared on other channels with con-
servative leanings, such as Glenn Beck and The Blaze, as well as
outlets not supportive of Trump, such as Saturday Night Live
(each of these channels had over 3000 ad impressions), and many
local news stations (Fig. 2B).

Google’s tools also show the specific YouTube postings to which
our ad was attached for a given channel. For the Fox News channel,
these include segments by cable news personalities such as Laura
Ingraham, Greg Gutfeld, Tucker Carlson, Judge Jeanine Pirro,
Sean Hannity, Jesse Waters, and The Five. For example, fig. S3
shows a screenshot of a Jesse Waters YouTube segment titled
“Biden’s lost touch with reality.” Our ad was attached to this video
2740 times.

We emphasize here that the outlet (YouTube channel) and spe-
cific video segments were not choice variables in our design;
Google’s algorithm chose to place our ad on these YouTube chan-
nels and videos based on its predictions of user engagement, a
highly convenient feature for our goal of reaching a vaccine-hesitant
audience using a counter-stereotypical messenger.

Variation in ad exposure across counties
Google Adsmetrics records the number of ad impressions displayed
in each county over the duration of the campaign. Because of the ad
auction features described above, our campaign’s budget was spent
asymmetrically across our treated counties. Figure 2C shows a his-
togram of the number of ads received by each county, omitting the
top 5% for readability. Some counties receivedmore than 40,000 ads
(with a maximum of 346,089), while some received far fewer (in-
cluding five small, treatment-assigned counties that received
zero). This is because YouTube does not treat counties as separate
blocks, each to be assigned some ad exposure. Instead, the whole list
of counties is taken to be a single target audience and YouTube at-
tempts to serve the ad to the users within that audience who are
most likely to engage with the ad. The average county saw 10,679
ads, with a standard deviation of 25,245 (Table 6). Table S2 demon-
strates that, among treated counties, the number of ads a county re-
ceives is significantly positively correlated with county population
and the level of internet access in the county.

Figure 2D normalizes the number of ads by the county popula-
tion, showing a histogram of the number of ads per 100 residents in
the county separately for large (those with a population above the
median) versus small counties, omitting the top 5%. These numbers
range from 0 to nearly 30 ads per 100 residents for both sets of coun-
ties (with a maximum of 160; see Table 6), demonstrating that, even
accounting for population differences, the number of ads is quite
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Table 6. Descriptive statistics by county.Descriptive statistics at the county level. Top panel shows statistics for all counties, middle panel for treatment counties,
and bottom panel for control counties. Vaccine first doses before campaign correspond to the vaccine count in the county on October 13. A county’s engagement
rate is the number of 10-s (or longer) views of the ad, divided by the number of ad impressions the county received, multiplied by 100. View rate is the number of
complete views of the ad divided by the number of impressions, multiplied by 100. Click rate is the number of times the Fox News story link was clicked, divided by
the number of ads, multiplied by 100. CPM is the average cost (in dollars) of purchasing 1000 ad impressions in the county. Data on vote shares come from the MIT
Election Data Science Lab (https://electionlab.mit.edu/data). Data on internet access come from the FCC (https://www.fcc.gov/form-477-county-data-internet-
access-services). Internet access is defined as having a fixed high-speed connection over 200 kbps in at least one direction. Data on county population and county-
level education and racial demographics come from USAfacts.org and the U.S. Census website.

Mean Standard deviation Min Median Max

All counties

County population (10,000s) 4.72 8.75 0.0463 2.16 99.9

Vaccine first doses before campaign 24,123 48,655 92 10,027 591,758

Trump vote share 67 13 10.5 69.4 96

Percent college educated 28.7 7.92 5.95 27.9 61.6

Percent white 83.7 17.1 8.33 91.3 100

Fraction households with internet 0.7 0.142 0.22 0.7 2.12

Number of households with internet (10,000s) 1.39 2.73 0 0.6 31.6

Number of counties 2,168

Treatment counties

County population (10,000s) 4.56 8.12 0.0463 2.08 99.9

Vaccine first doses before campaign 23,282 45,442 92 9,704 591,758

Trump vote share 67 13 10.5 69.4 96

Percent college educated 28.8 8.04 5.95 28 61.6

Percent white 83.7 17.1 8.33 91.5 99.8

Fraction households with internet 0.7 0.145 0.22 0.7 2.12

Number of households with internet (10,000s) 1.34 2.45 0 0.6 27.9

Number of ads 10,679 25,245 0 3,764 346,089

Number of ads per 100 residents 19.3 9.17 0 19 160

Engagement rate 41.3 3.32 0 41.1 63.3

View rate 12.4 1.49 0 12.3 25

Click rate 0.0838 0.0769 0 0.0776 1.14

Cost (dollars) per 1000 ads (CPM) 8.53 0.406 0 8.55 10

Number of counties 1,083

Control counties

County population (10,000s) 4.88 9.33 0.0465 2.24 96.5

Vaccine first doses before campaign 24,954 51,643 216 10,435 530,314

Trump vote share 67.1 13 13.6 69.4 91.8

Percent college educated 28.5 7.81 8.68 27.7 60.3

Percent white 83.7 17 11.3 91.1 100

Fraction households with internet 0.699 0.14 0.3 0.7 1.86

Number households with internet (10,000s) 1.45 2.97 0 0.6 31.6

Number of counties 1,085
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variable across counties, with the number of ads per capita being
higher in larger counties. Figure 4 shows that this variation has
no obvious geographical bias: High- and low-saturation counties
are distributed more or less evenly throughout the entire
United States.

Empirical approach
We pre-registered our analysis plan via the Open Science Frame-
work. (Our pre-registration plan can be viewed at https://osf.io/
m9yhn/?view_only=c0d43e87224649e88b671eafddb22df8.) We
discuss reasons for specific departures from our pre-registration
in SM Section E.

Our pre-registered dependent variable is the cumulative number
of COVID-19 vaccine first doses administered in each county up
through a particular date. We focus only on vaccine recipients
who are 12 or older, as children ages 5 to 11 only became eligible
after our campaign ended (in early November 2021). An observa-
tion in our analysis is a given county on a given date.

Let yit denote the cumulative number of COVID-19 vaccine first
doses among residents ages 12 and older in county i up through date
t, obtained from https://data.cdc.gov/Vaccinations/COVID-19-
Vaccinations-in-the-United-States-County/8xkx-amqh. Our analy-
sis encompasses dates from 1 month before the campaign to 1
month after, which includes 151,945 county-date observations.
(See SM Section C for an analysis of alternative time windows.)
Let Treati be an indicator variable equal to 1 if county i is a
treated county and 0 otherwise. Let Postt be a binary variable
equal to 1 if date t occurs on or after October 14, the start date of
the campaign. Let Populationi be the population of county i (in
units of 10,000). We estimate the following difference-in-difference

regression:

yit ¼ αþ λt þ γi þ βðTreati � PosttÞ þ ηðPopulationi
� PosttÞ þ εit ð1Þ

The variable λt is an effect for date t, capturing nationwide trends
in vaccinations on a given date, and γi is a county effect, capturing
time-invariant differences in vaccination counts across counties. λt
and γi also absorb the main effects Treati, Populationi, and Postt.
The interaction term Populationi × Postt allows for the possibility
that the cumulative vaccine count grows at a different rate over
time in counties of different sizes. The inclusion of this interaction
term represents a departure from our pre-registered regression anal-
ysis plan. We discovered the importance of controlling for differen-
tial growth rates by county population only after the campaign was
complete. SM Section C discusses this in more detail and, for trans-
parency, reports our pre-registered specifications.

Our estimation algorithm to incorporate these two-way fixed
effects relies on Baum et al. (37). The residual εit includes all unob-
served factors affecting the number of vaccines administered in a
particular county on a given date. Not all counties in the treatment
group received ads, and for those that did receive ads, the exposure
varied widely across counties. Thus, the primary coefficient of in-
terest, β, is the ITT effect.

One important assumption underlying our analysis is the stable
unit treatment value assumption (SUTVA), which requires that a
county’s treatment status does not affect the potential outcomes
of other counties. This assumption could be violated, for example,
if some people view the ad in a treatment county and then cross
county borders into a control county to get the vaccine. If

Fig. 4. Geographic distribution of advertising campaign. Gray regions are counties that were excluded (highly vaccinated, large population, or poor CDC records).
Purple shows control counties. Blue shows the distribution of ads at the county level for treatment counties, with the five shades of blue corresponding to five quintiles of
ad displays per resident.
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present, this type of violation would lead to our estimates of the ITT
effect being understated.

In some regressions, we modify Eq. 1 to include flexible interac-
tions of county population with dates in our sample period. These
are implemented by replacing the product of η and Postt in
η(Populationi × Postt) in Eq. 1 with

X

τ[T
ητ1t¼τ þ ηt1t,t þ ηt1t.t

where T ¼ ft þ 1; t þ 2; . . .; t� � 1; t� þ 1; . . .; t � 2; t � 1g is a
window of dates defined as 13 days before the campaign up
through 13 days after, with t*, the date immediately preceding the
campaign, being omitted. Thus, t is September 30, t is November 14,
and t* is October 13. 1E is an indicator equal to 1 if the event E
is true.

Inference considerations
We apply one-tailed hypothesis tests in most specifications for two
reasons. First, low signal-to-noise ratios make measuring the effects
of advertising notoriously difficult. One recent contribution con-
cluded that “informative advertising experiments can easily
require more than 10 million person-weeks, making experiments
costly and potentially infeasible” (11). Another recent meta-analysis
of 40 field experiments studying persuasion effects of political cam-
paign advertisements resulted in an average effect estimate of zero
(12). These challenges are exacerbated by the fact that, in our
setting, we only have county-level outcome data, likely rendering
our study underpowered from the perspective of a two-tailed test.
Second, and more importantly, our expectations are clearly direc-
tional, evidenced by the obvious fact that it would be unethical to
conduct a study that we believed might discourage people from re-
ceiving life-saving vaccines. With directional expectations, a one-
tailed test is the correct approach, since a two-tailed test would
lead to an inflated type 1 error rate. Moreover, a negative treatment
effect in Table 1, for example, would arise only if there exist viewers
who would have been vaccinated absent seeing our ad but who
decide to not get the vaccine because of the ad. We believe this is
implausible, making a one-tailed test the natural choice. For analy-
ses where our expectations are not directional (our analysis of het-
erogeneity in treatment effects), we instead apply two-tailed tests.

We adopt two main approaches to conducting inference
throughout: randomization inference and county-level clustering.
In randomization inference (38), the researcher uses Monte Carlo
methods to simulate the distribution of effect sizes that arise under
the “sharp null” hypothesis (i.e., a treatment effect of zero for all
units). To implement this, we follow our stratified random sampling
routine to create a randomly assigned placebo treatment status for
each county and reestimate our effects of interest with this placebo
treatment status. We repeat this exercise 1000 times, reassigning
placebo treatment status each time. We then compute P values as
the fraction of cases (out of the 1000) where the estimate effect is
larger than the effect estimated with the correct treatment assign-
ment. We apply this approach to all ITT effects in the paper.

It bears emphasis that the assumptions underlying randomiza-
tion inference differ from those of asymptotic approaches (our clus-
tering approaches): Where the asymptotic approaches test the null
hypothesis that the average treatment effect across units is zero, ran-
domization inference tests the more restrictive hypothesis that the

effect is zero for every unit, which recent work of Wu and Ding (39)
shows can yield P values that are larger or smaller than those cor-
responding to a hypothesis test of the average treatment effect. The
virtue of the approach is that it yields exact finite-sample inference
for the sharp null hypothesis without requiring us to take a stance
on a level of geographic clustering.

For our second approach—clustered standard errors—our pre-
registration plan stated an intention to estimate uncertainty with
state-level clustering (43 clusters) to allow for the possibility that
county-level residuals may be correlated within a state. The
choice of the level at which to cluster standard errors is the
subject of ongoing research in econometrics. It is known that bias
can result from having too few clusters on one hand or from not
clustering at an aggregate enough level on the other. However, the
question of what constitutes “too few” is unresolved; some research-
ers point to 50 as a reasonable threshold, others to 20 (40). Accord-
ing to Cameron andMiller (40),“the consensus is to be conservative
and avoid bias and use bigger and more aggregate clusters when
possible, up to and including the point at which there is concern
about having too few clusters. For example, suppose your dataset
included individuals within counties within states, and you were
considering whether to cluster at the county level or the state
level. We have been inclined to recommend clustering at the state
level. If there was within-state cross-county correlation of the re-
gressors and errors, then ignoring this correlation (for example,
by clustering at the county level) would lead to incorrect inference.“

Our pre-registered preference for state-level clustering was
driven by this conventional wisdom. More aggregate clustering typ-
ically results in larger standard errors, but, as highlighted by
Cameron andMiller (40), it is possible for more aggregate clustering
to reduce standard errors when residuals are negatively correlated
across observations in a more aggregate cluster. Abadie et al. (41)
critique the conventional view, presenting arguments for clustering
at the level at which randomization occurs (the county, in our case).

We find this to be the case in our setting, where the standard
errors on our effects of interest are smaller under state-level cluster-
ing or stratum-level clustering than under county-level clustering.
Table S10 demonstrates these results. There, we find that our
results from Table 1 are significant at the 0.01 level when we
apply state-level clustering and the ACRs from Table 1 are signifi-
cant at the 0.05 level when we apply stratum-level clustering. Two-
way clustering, following Cameron andMiller (40), combining geo-
graphic clustering with date-level clustering to allow for possible
correlations across counties on a given date, makes little or no dif-
ference to our estimated standard errors. In the end, we adopted the
most conservative standard errors from this analysis—county-level
clustering—to avoid overstating the strength of our findings.

Assessing causal response to treatment intensity
We also move beyond the ITT effect to analyze how the number of
ads a county receives affects the number of vaccines in the county,
referred to as the ACR (42). To measure this effect, we implement
the IV design proposed by Angrist and Imbens (42), instrumenting
for the number of ads in each county using the county’s random
assignment to treatment or control.

The reason for this design is important: Unlike assignment to
treatment or control status, the number of ads a county receives is
not randomly assigned, but rather arises from the black box of
Google’s machine learning predictions of viewers’ likelihood of
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engaging with the ad together with variation in competition for ad
auctions. As such, it is possible that Google sends more ads to coun-
ties where viewers are more likely to be receptive, and hence a stan-
dard ordinary least squares (OLS) regression treating the number of
ads as randomly assigned would not yield an unbiased estimate of
the effect of ad exposure. (This does not bias the estimate of ITT
effect, only the naïve estimate of the causal effect of an increase in
ad exposure.) The IV approach, on the other hand, exploits the
random assignment to restore a causal estimate of the response to
an increase in the number of ads. Our setting also falls into the
special case of one-sided noncompliance, meaning here that some
treatment counties received no ads, but no control counties received
ads (43). In this case, our effect corresponds to the ACR for treated
counties.

In our difference-in-difference regression framework, our IV re-
gression is as follows

yit ¼ αþ λt þ γi þ δðAdsi � PosttÞ þ ηðPopulationi
� PosttÞ þ εit ð2Þ

where we instrument for Adsi × Postt using Treati × Postt, with Adsi
denoting the number of ads received by the county, measured in
units of 1000 impressions. Thus, the estimate of δ represents the
ACR for treated counties from an additional 1000 ad impressions.
We rely here on the estimation algorithm of Correiga (44).

Assessing heterogeneous effects
As discussed in Results, we sought to examine the extent to which
treatment effects were moderated by county-level support for
Donald Trump, education (percent with a college education), and
race (percent white). For each of these three characteristics, we
compute the median across counties, and we let Wi be a dummy
variable equal to 1 if county i is below the median value for that
characteristic. We then estimate regressions of the following form

yit ¼ αþ λt þ γi þ βðTreati � PosttÞ þ ϕðTreati � Postt
�WiÞ þ ψðWi � PosttÞ þ ηðPopulationi � PosttÞ þ εit ð3Þ

In Eq. 3, β represents the ITT effect for above-median counties
and β + ϕ represents the effect for below-median counties, and ϕ
represents the difference between the below-median and above-
median effect. We again estimate the ACR using IV. Specifically,
we replace Treati in Eq. 3 with Adsi and we instrument for (Adsi
× Postt) and (Adsi × Postt × Wi) using (Treati × Postt × Wi) and
(Treati × Postt).

Event study analysis
To conduct an event study analysis, we run the following regression

yit ¼ αþ λt þ γi þ Treatiðβt1t�t þ
X

τ.t;τ=t�
βt1t¼τÞ

þ Populationiðηt1t�t þ
X

τ.t;τ=t�
ηt1t¼τÞ þ εit ð4Þ

where the date t is September 30 and t* is October 13, the day before
the start of the campaign. Thus, this specification estimates a date-
specific effect for each date after September 30, and a single coeffi-
cient pooling together dates before that.

We also estimate a variant of the above event study that controls
for yit − 1, the lagged vaccine count within county i, on the right-

hand side, as follows

yit ¼ αþ δyit� 1 þ λt þ γi þ Treatiðβt1t�t þ βt1t�t
þ

X

τ.t;τ=t�
βt1t¼τÞ þ Populationiðηt1t�t þ ηt1t�t

þ
X

τ.t;τ=t�
ηt1t¼τÞ þ εit ð5Þ

Equation 5 also bins together dates falling within the last 2 weeks
of the sample (those on or after November 14, which is denoted t).
This regression estimates the difference between treatment and
control counties in terms of their daily vaccination count on a
given date rather than the cumulative vaccination count.
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Supplementary Text Sections A through D
Figs. S1 to S3
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