
Spring 2006 Steve Tadelis

Econ 206 — Solutions for Problem Set 1

Question 1

a) Sufficiency: Suppose that we can write V ∗ (θ) =
P

i Vi (θ−i). Consider the transfer
functions of the form

ti (θ) =

⎡⎣X
i6=j

vj (k
∗ (θ) , θj)

⎤⎦+ hi (θ−i) ,

where for all i, hi (θ−i) = − (I − 1)Vi (θ−i) for all θ−i. By proposition 23.C.4, (k∗ (.) , t1 (.) , ..., tI (.))
is truthfully implementable in dominant strategies. Moreover, for all θ we have,

X
i

ti (θ) =
X
i

⎡⎣X
j 6=i

vj (k
∗ (θ) , θj)

⎤⎦+X
i

hi (θ−i)

= (I − 1)V ∗ (θ)− (I − 1)
X
i

Vi (θ−i) = 0

Necessity: Suppose (k∗ (.) , t1 (.) , ..., tI (.)) is ex-post efficient and truthfully im-
plementable in dominant strategies. Since (23.C.8) is necessary (by assumption) for
truthful implementation, this means that there exist functions (hi (θ−i))

I
i=1 such that

(I − 1)V ∗ (θ) +
X
i

hi (θ−i) =
X
i

⎡⎣X
j 6=i

vj (k
∗ (θ) , θj)

⎤⎦+X
i

hi (θ−i)

=
X
i

ti (θ) = 0

But this implies that by defining Vi (θ−i) =
³
−1
I−1

´
hi (θ−i) , we can then write V

∗ (θ) =P
i Vi (θ−i) .

b) If vi (k, θi) = θik − 1
2
k2, ∀i, then

k∗ (θ) = Argmax
k

ÃX
i

θi

!
k − 3

2
k2, ∀θ
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and so the FOC implies that k∗ (θ) =
P

i
θi

3
. Hence,

V ∗ (θ) =
3X

i=1

⎡⎣θi
ÃP

i θi
3

!
− 1
2

ÃP
i θi
3

!2⎤⎦
=

ÃP
i θi
3

!X
i

"
θi −

1

2

ÃP
i θi
3

!#

=
1

3
(θ1 + θ2 + θ3)

∙
θ1 + θ2 + θ3 −

1

2
(θ1 + θ2 + θ3)

¸

=
1

6

ÃX
i

θi

!2

=
1

6

³
θ21 + θ22 + θ23 + 2θ1θ2 + 2θ1θ3 + 2θ2θ3

´
We now define,

V1 (θ2, θ3) =
1

6

Ã
θ22 + θ23
2

+ 2θ2θ3

!

V2 (θ1, θ3) =
1

6

Ã
θ21 + θ23
2

+ 2θ1θ3

!

V3 (θ1, θ2) =
1

6

Ã
θ21 + θ22
2

+ 2θ1θ2

!

and the result then follows from part (a) above since

V ∗ (θ) = V1 (θ2, θ3) + V2 (θ1, θ3) + V3 (θ1, θ2) .

c) If V ∗ (θ) =
P

i Vi (θ−i), then clearly
∂IV ∗(θ)
∂θ1...∂θI

= 0.

d) In this case, V ∗ (θ1, θ2) = v1 (k
∗ (θ) , θ1) + v2 (k

∗ (θ) , θ2) , therefore,

∂V ∗

∂θ1
=

Ã
∂v1
∂k

+
∂v2
∂k

!
∂k

∂θ1
+

∂v1
∂θ1

∂2V ∗

∂θ1∂θ2
=

Ã
∂2v1
∂k2

+
∂2v2
∂k2

!Ã
∂k

∂θ1

!Ã
∂k

∂θ2

!
+

∂2v2
∂k∂θ2

∂k

∂θ1
+

∂2v1
∂k∂θ1

∂k

∂θ2

Since, ∂v1
∂k
+ ∂v2

∂k
= 0, we have,

∂2vi
∂k∂θi

= − ∂k

∂θi

Ã
∂2v1
∂k2

+
∂2v2
∂k2

!
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which in turn implies that

∂2V ∗

∂θ1∂θ2
= −

Ã
∂2v1
∂k2

+
∂2v2
∂k2

!
∂k

∂θ1

∂k

∂θ2
6= 0

thus proving the statement, since ∂k
∂θi

> 0 by the implicit function theorem.
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Question 2

a) The efficient trading rule is such that if θi > θj then j should sell the good to i for
a price p. To get individual rationality p ∈ [θj, θi] .

b) Let bi denote agent i’s bid. The utilities of the agents conditional on the relative
values of b1 and b2 are:

b1 ≥ b2 : u1 (b1, b2) = 2θ1 − b1, u2 (b1, b2) = b1

b2 ≥ b1 : u1 (b1, b2) = b2, u2 (b1, b2) = 2θ2 − b2

Restricting the bids to linear bids, bi = ai + ciθi, agent 1 maximizes her expected
utility:

Eu1 = Eθ2u11{b1≥b2} +Eθ2u11{b2≥b1}

=

b1−a2
c2Z
0

(2θ1 − b1) dθ2 +

1Z
b1−a2
c2

(a2 + c2θ2) dθ2

Using Leibniz’s rule we obtain the FOC:

(2θ1 − b1)

c2
−

b1−a2
c2Z
0

dθ2 −
1

c2

Ã
a2 + c2

b1 − a2
c2

!
= 0

which yields (after some simple algebra):

b1 =
a2
3
+
2θ1
3

(i)

The symmetric problem for agent 2 yields:

b2 =
a1
3
+
2θ2
3

(ii)

(i) and (ii) imply that a1 = a2 and b1 = b2 =
2
3
.

c) The social choice function that is implemented is: θi > θj implies that i buys
the good from j at price 2

3
θi. The analysis in b) above shows that it is Bayesian

incentive compatible, and clearly ex-post efficient. It can be easily shown that it is
interim individually rational as well (it is not ex-post IR if θj ∈

³
2
3
θi, θi

´
.) The

result differs from the Myerson-Satterthwaite Theorem because of the symmetry of
the agents: each agent is a buyer and a seller so there is always an efficient trade.
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Question 3

a) The social optimum is given by

x∗ (θ) = Argmax
x

[−C(x, θ)−D (x)]

A government with coercive power can give a firm which produces pollution x a
transfer t (x) = k −D (x). The firm with type θ then chooses x to maximize

t (x)− C (x, θ) = k − C (x, θ)−D (x)

which yields the social optimum. Like the Groves scheme, the transfer makes the firm
pay the net loss of all other parties caused by its action.

b) If the firm may choose not to participate, the scheme above will still work
as we simply choose k large enough that all firms will want to participate. If θ is
bounded we can use:

k = sup
θ
[C (x∗ (θ) , θ) +D (x∗ (θ))]

With a shadow cost of public funds, we must use the mechanism design approach of
section 7.3.2.in Fudenberg & Tirole. The problem is

Max
x(θ),t(θ)

Eθ [−D (x (θ))− (1 + λ)t (θ) + t (θ)− C (x (θ) , θ)]

s.t. θ = Argmax
θ0

[t (θ0)− C (x (θ0) , θ)] (IC)

t (θ)− C (x (θ) , θ) ≥ 0 (IR)

Note first that if (IR) is satisfied for θ = θ it is automatically satisfied for all other
θ (note the difference with respect to the case with a continuum of types in the notes)
as

t (θ)− C (x (θ) , θ) ≥ t
³
θ
´
− C

³
x
³
θ
´
, θ
´
≥ t

³
θ
´
− C

³
x
³
θ
´
, θ
´
≥ 0

Also the (IR) constraint must hold with equality for θ as otherwise we can reduce
t (θ) by an equal amount for all θ, such that all (IR) constraints continue to hold
and the (IC) constraints remain unaffected. This would not affect the constraints but
improve welfare. Let

u1 (θ) =Max
θ0

t (θ0)− C (x (θ0) , θ)

be the indirect utility function. By the envelope theorem, ∂u1
∂θ
= −∂C

∂θ
(x (θ) , θ). Hence

the (IC) constraint implies that:

u1 (θ) = u1
³
θ
´
−
Z θ

θ

∂u1
∂θ0

dθ0 = 0 +
Z θ

θ

∂C

∂θ
(x (θ0) , θ0) dθ0
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and
t (θ) = u1 (θ) + C (x (θ) , θ)

The problem is now

Max
x(θ)

Z θ

θ
[−D (x (θ))− λu1 (θ)− (1 + λ)C (x (θ) , θ)] p (θ) dθ

subject to x (θ) is non-increasing.
Note that, contrary to what we did in class, we are now requiring x (θ) to be non-

increasing. This is just due to the fact that we are dealing with a different objective
function and constraints. With this on mind, we can just replicate the proof we did
in class and obtain the non-increasing condition.
Now, using integration by parts and Leibniz’s rule,

Z θ

θ
u1 (θ) p (θ) dθ =

Z θ

θ

Z θ

θ

∂C

∂θ
(x (θ0) , θ0) dθ0p (θ) dθ

=
Z θ

θ

∂C

∂θ
(x (θ0) , θ0) dθ0P (θ) |θθ −

Z θ

θ

Ã
−∂C
∂θ
(x (θ) , θ)

!
P (θ) dθ

=
Z θ

θ

P (θ)

p (θ)

∂C

∂θ
(x (θ) , θ) p (θ) dθ

Ignoring the monotonicity constraint for now, we wish to maximizeZ θ

θ

"
−D (x (θ))− λ

P (θ)

p (θ)

∂C

∂θ
(x (θ) , θ)− (1 + λ)C (x (θ) , θ)

#
p (θ) dθ

Assuming that D(·) is concave and the derivatives of C(·) are as in the problem, we
can simply use the FOC for a maximum at each θ. This gives

∂D

∂x
(x (θ)) + (1 + λ)

∂C

∂x
(x (θ) , θ) + λ

P (θ)

p (θ)

∂2C

∂x∂θ
(x (θ) , θ) = 0

Let x∗ (θ) be the solution to this equation. If x∗ (θ) is in fact non-increasing, we
have found the solution. Firms announce their true type θ, production is x∗ (θ) and
a transfer of t (θ) given by the earlier formula is used.

c) The d’Aspremont-Gerard-Varet scheme is described in Fudenberg & Tirole
section 7.4.3. It consists of announcements θ01, ..., θ

0
I and prescribes x (θ

0
1, ..., θ

0
I) =

x∗ (θ01, ..., θ
0
I) where x

∗ (θ01, ..., θ
0
I) is the social optimum given types θ01, ..., θ

0
I , i.e.

x∗ (θ01, ..., θ
0
I) = argmaxx

"
−
X
i

Ci (x, θi)−D (x)

#
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The transfer is
ti (θ

0) = ε (θ0i) + τi
³
θ0−i

´
where ε (θi) is the expected externality when player i announces θ

0
i,

ε (θ0i) = Eθ−i

⎡⎣−X
j 6=i

Cj (xj (θ
0
i, θ−i) , θj)−D (xj (θ

0
i, θ−i))

⎤⎦
and τi

³
θ0−i

´
= − 1

I−1
P

j 6=i ε
³
θ0j
´
. See section 7.4.3 in Fudenberg and Tirole for an

explanation of why this does induce the social optimum.
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