
Solutions for Problem Set 3

Question 1

a) The first-best level of effort solves maxE(ey)− g(e). This is a concave problem,
and the first-order condition yields the optimal level of effort e∗ = Ey = 1. If the project
is undertaken, the total surplus is

E(e∗y)− g(e∗)−K =
1

2
−K

The project is worth undertaking when this value is non-negative, i.e., K ≤ 1
2
. 2

b) E solves the following optimal contracting problem:

maxe,w(·) Ew(ey)− g(e)
s.t. E(ey)−Ew(ey) ≥ K (I’s IR)

e ∈ argmaxeEw(ey)− g(e) (E’s IC)
w(x) ≥ 0∀x (LL)

Consider a contract of the form w(x) =

½
0 for x < a,
w for x ≥ a

for some a > 0 and w > 0.

For this contract we have

Ew(ey) =

Z 2

a
e

wf(y)dy =

Z 2

a
e

w
1

2
dy = w(1− a

2e
)

Look first at E’s Incentive Constraint. His problem now becomes

max
e

w(1− a

2e
)−1
2
e2

It is easy to check that the second derivative of the maximand is negative, and the problem
is concave. The first-order condition yields

w
a

2e2
−e = 0

. We want E to choose the first-best effort e∗ = 1. Substituting, we get w = 2
a
. Now,

turn to I’s individual Rationality constraint. To maximize E’s payoff, we want to make
this constraint binding:

e− w(1− a

2e
) = K

Substituting the first-best effort e∗ = 1, and w from the previous expression, we obtain
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1− 2
a
(1− a

2
) = K ≤ 1

2

This implies that a ≤ 4
3
and w ≥ 3

2
. Therefore, from I’s (IR) we have w ≥ 2− k, and

from all the above we get:

w(x) =

½
0 for x < 2

2−k
2− k for x ≥ 2

2−k

2

c) If E can costlessly destroy and borrow output before it is observed by outsiders,
the sharing rule w(x) is effectively constrained to satisfy 0 ≤ w0(x) ≤ 1 for every x. E’s
problem now becomes

maxe,w(·) Ew(ey)− g(e)
s.t. E(ey)−Ew(ey) ≥ K (I’s IR)

e ∈ argmaxeEw(ey)− g(e) (E’s IC)
w(0) ≥ 0 (LL)
0 ≤ w0(x) ≤ 1∀x

We will replace E’s Incentive Constraint with the corresponding first-order condition,
solve the resulting relaxed problem and then show that at a solution E’s effort is indeed
globally optimal for him. The first-order condition for E’s IC is E(ew0(ey))− g0(e) = 0.
Also, we express the objective function and I’s IR in terms of w(0) and w0(·), using

integration by parts:

Ew(ey) =
R 2
0
w(ey)f(y)dy = w(ey)F (y)|20 −

R 2
0
ew0(ey)F (y)dy =

= w(2e)−
R 2
0
ew0(ey)y

2

4
dy =

= w(0) +
R 2
0
ew0(ey)dy −

R 2
0
ew0(ey)y

2

4
dy.

Now we can rewrite E’s problem as

maxe,w(0),w0(·)w(0) +
R 2
0
ew0(ey)(1− y2

4
)dy − 1

2
e2

s.t.

e− w(0)−
R 2
0
ew0(ey)(1− y2

4
)dy ≥ K (I’s IR) μ ≥ 0R 2

0
ew0(ey)1

2
dy − e = 0 (E’s FOC) ν

w(0) ≥ 0 (LL) λ ≥ 0
0 ≤ w0(x) ≤ 1 ∀x

The last column contains corresponding Lagrange multipliers. The resulting La-
grangian is

L = (1− μ+ λ)w(0) +
R 2
0
ew0(ey)[(1− μ)(1− y2

4
) + 1

2
ν]dy + (μ− ν)e− 1

2
e2
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Differentiating the Lagrangian with respect to w(0), we obtain 1− μ + λ = 0, which
implies that μ = 1+λ ≥ 1. Therefore, the expression in square brackets inside the integral
is monotone increasing in y. Maximizing the integral with respect to w0(·) pointwise
subject to the constraint 0 ≤ w0(x) ≤ 1, we get

w0(ey) =

½
1 when [(1− μ)(1− y2

4
) + 1

2
ν] ≥ 0,

0 otherwise.

Since the expression in the square brackets is increasing in y, it must be that for some
a:

w0(x) =

½
1 when x ≥ a,
0 otherwise.

Assuming that (LL) binds, we obtain by integrating

w(x) =

½
x− a when x ≥ a,
0 otherwise.

Now it is only left to check that given a contract of this form, E’s first-order condition
will indeed yield the globally optimal effort level. Given such a contract, E’s maximization
problem becomes

max
e

Ew(ey)− g(e) =

Z 2

a
e

(ey − a)
1

2
dy − 1

2
e2 = e(4− a2

e2
)− a

2
(2− a

e
)− 1

2
e2

If the objective function is expressed in terms of t = 1
e
, it will be concave. Therefore,

the objective function has a unique local maximum, which is obtained from the first order
conditions. 2

d) The contract obtained in (c) is a debt contract.

3



Question 2

a) Normalize both agents’ reservation utilities to zero. Consider the following compensa-
tion scheme:

vi(x1, x2) =

½
g(H), when x1 = x2

g(L)− δ, when x1 6= x2
,

where δ > 0. In this scheme, (H,H) is a Nash equilibrium. Furthermore, in equilib-
rium both agents bear no risk, therefore this scheme implements the first best and has
the minimum cost. 2

b) It is clear from (a) that any least-cost scheme has both agents bear no risk when they
choose (H,H), therefore we must have vi(0, 0) = vi(1, 1) = g(H). To prevent unilateral
deviations from (H,H), we must have

1

2
vi(0, 1) +

1

2
vi(1, 0)− g(L) ≤ vi(1, 1)− g(H) = 0

But this implies that (L,L) is also a Nash equilibrium. Indeed, agent i’s utility is g(H)−
g(L) when agents play (L,L), and only

1

2
vi(0, 1) +

1

2
vi(1, 0)− g(L) ≤ 0

when he deviates. Therefore, each agent does not want to deviate from (L,L) unilaterally,
and this is a Nash equilibrium. Moreover, in this equilibrium each agent i gets g(H) −
g(L) > 0, i.e., more than what he gets in the equilibrium (H,H). 2

c) Let agent 1’s message space be {Ĥ, L̂}. The “extended” compensation scheme
vi(m,x1, x2) now also depends on agent 1’s message m. Define the compensation scheme
as follows:

vi(Ĥ, x1, x2) =

½
g(H), when x1 = x2
g(L)− δ, when x1 6= x2

,

v1(L̂, x1, x2) =

⎧⎨⎩
v1(Ĥ, x1, x2) + �, when (x1, x2) = (0, 0)

v1(Ĥ, x1, x2)− �, when (x1, x2) = (1, 1)

v1(Ĥ, x1, x2), when x1 6= x2

,

v2(L̂, x1, x2) =

½
g(L)− γ, when x1 = x2
v2(Ĥ, x1, x2), when x1 6= x2

,

where δ > 0, � > 0 and γ > δ+(g(H)−g(L)). This scheme coincides with the scheme
in (a) when agent 1 announces Ĥ. When agent 1 announces L̂, on the other hand, he
is given a lottery, where he gains � when outputs are (0, 0) and loses � when outputs are
(1, 1). As for agent 2, he is severely punished by a very large γ when agent 1 announces
L̂ and their outputs coincide. This scheme induces in the following payoff matrix (denote
a = g(H)− g(L)):
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H L

HĤ 0, 0 −a− δ,−δ
LĤ −δ,−a− δ a, a

HL̂ − �
2
,−a− γ −a− δ,−δ

LL̂ −δ,−a− δ a+ �
2
,−γ

Claim. The only Nash equilibrium in this game is (HĤ,H).

Proof. Suppose that agent 2 plays L with a positive probability. Then for agent 1
HL̂ is dominated by HĤ, and LĤ is dominated by LL̂. But if agent 1 only plays HĤ
and LL̂ with a positive probability, then for agent 2 L is dominated by H. Therefore, we
get a contradiction, and agent 2 must play H with probability one. But the unique best
response toH is HĤ. Thus, we have shown that (HĤ,H) is the unique Nash equilibrium.
2

Furthermore, observe that in equilibrium the agents bear no risk and are at their
reservation utility levels, which implies that this is a least-cost (in this case, first-best)
scheme.
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Question 3

Part a

Here the maximization problem is to:

maxα,β a
1
4
1 a

1
2
2 − αa1 − β

s.t.
(a1, a2) = argmax(αa1 + β − C(a1, a2)− 1

4
α2σ2)

αa1 + β − 1
4
α2 − C(a1, a2)) ≥ 0

The first equation is the incentive compatibility constraint. I’ve reduced it by factoring
out the noise term out of the utility function. (Another way of saying it is that I’ve
computed the certainty equivalent.) The second is the participation constraint. We can
use the first-order approach here since it satisfies the conditions given in class (MLRP
and the distribution functions are convex). Hence we can solve for the agent’s optimum,
and set the participation constraint binding. The agent’s problem is to optimize:

αa1 + β − (a1 + a2)
2 + 4(a1 + a2)−

1

4
α2

Hence the first order conditions give (obviously) that

(a1 + a2) ≤ 4

and
(a1 + a2) ≤ 4 + α

Hence if α > 0, (a1, a2) = (4+α, 0). If α = 0 the agent will put forth any combination fo
effort whose sum is 4. If α < 0 then1 (a1, a2) = (0, 4 + α). Then β is given by d
Thus if the principal choose α 6= 0 the firm gets no output. Hence the firm will chose

α = 0. In this case, the participation constraint gives us the β which is equal to

β∗ =
1

4
α2 − 8

Part b

Again the maximization problem is:

maxα,β 18ln(a1) + 6ln(a2)− αa1 − β
s.t.

(a1, a2) = argmax(αa1 + β − C(a1, a2)− 1
4
α2σ2)

αa1 + β − 1
4
α2 − C(a1, a2)) ≥ 0

1It’s not unreasonable to consider this case. In this problem the agent gets a particular pleasure in
working at the firm. Hence the principle might be able to “charge” him for it.
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The agent’s problem hasn’t changed so he’ll still decide the same action based on α. Since
ln(a1) goes to infinity as a1 → 0, it follows that α ≥ 0.
Assume α > 0. Let’s plug in for α into the maximization and solve. I’m ignoring

the participation constraint for now, it can be made to hold ex post by using β. The
maximand then becomes:

18ln(4 + α) + 6ln(1)− (α+ 4)
2

2
+ 4(α+ 4)− 1

4
α2

Taking the derivative with respect to alpha gives:

18

α+ 4
=

α

2

We can solve this to get that(one of the two solutions to the quadratic is negative):

α∗ = 2

with
a∗1 = 6

Finally profits are:
18ln(6) + 5

The case where α = 0 is simple because then the agent chooses action such that
a1 + a2 = 4. Thus we can solve for the optimal split of this for the principal who has
payoff

18ln(a1) + 6ln(1 + a2) + C

where C is some constant independent of ai. Setting up the Lagrangian and solving gives
that

(a∗1, a
∗
2) = (

18.5

24
,
6.5

24
)

Thus we get the payoff of

18ln(
18.5

24
) + 6ln(

30.5

24
) + 8

But computation gives that the profit from α = 2 is bigger, so we get that α = 2.

Part c

The strange thing is that we have α > 1 which is counterintuitive. It violates the in-
tuitive constraint we have that the incentive scheme should have derivative less than 1.
More surprising is that this incentive scheme has slope greater than 1 everywhere. In a
traditional principal-agent problem this would correspond to selling the firm many times
over.
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Part d

Holmstrom and Milgrom show that if four conditions are satisfied you get α = 0:

1. C(t1, t2) = C(t1 + t2); and the cost function is strictly convex in t1 + t2. Moreover
the cost function is u-shaped; it has a minimum at t̄.

2. Action 1 is measurable with noise, while 2 is not contractible.

3. B(t1, t2) is increasing in ti.

4. B(0, t2) = 0.

1-3 are satisifed here. But 4 is not since 18ln(0) =∞. This is why we don’t get α = 0
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