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A Additional Outcomes

In Figure A-1, we present versions of Figure 2 with alternative dependent variables. Figure

A-1a shows the decreased time to first offer associated with round-number listings. Figure

A-1b shows that round listings are more likely to sell within 60 days. These plots permit

a non-parametric visualization of the results captured in Table 4.

Figure A-1c plots the probability of a Buy-it-Now sale (i.e. sale where the buyer

accepted the listing price) by price BIN price. Figure A-1d shows the probability of a

BIN sale conditional on sale decreases with BIN price, meaning that the probability of

negotiating increases in the level of the BIN price. In this plot, we also see that round

listings are less likely to be purchased at the “Buy-It-Now” price. This is likely a result of

the increased buyer arrival rate, as shown in Figure 6, because some fraction of buyers

will purchase without negotiation and a higher number of potential buyers will raise the

number of such buyers. When we condition on the item selling, we find that the probability

of selling at the BIN price is substantially lower for round listings. We test this relationship

econometrically and explore this intuition further in Section 4.4.2, with results in Columns

(5) and (6) of Table 5.

Figures A-1e and A-1f show the first and second moments of the distribution of sale

prices for each listing price bucket. The sale price is, expectedly, increasing in the listing

price. Although less salient on this scale, round-number listings are still well below the

overall trend. The variance of sales is higher for round listings than non-round listings.
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Figure A-1: Additional Outcome Plots
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B Alternative Approach: Basis Splines

1 Basis Splines

Our main results from Section 4.2 employ a local linear specification that identifies g(·)
from equation (1) only in small neighborhoods of the discontinuities we study. There are

a number of additional questions we could ask with a more global estimate of g(·): for

instance, one might be interested in the shape of g(·), or in using all of the data for the

sake of estimating seller fixed effects as we do belows. To this end we employ a cardinal

basis spline approximation (De Boor, 1978; Dierckx, 1993), a semi-parametric tool for

flexibly estimating continuous functions. Intuitively, a cardinal basis spline is a set of

functions that form a linear basis for the full set of splines of some order p on a fixed

set of knots. This is a convenient framework because the weights on the components of

that linear basis can be estimated using OLS, which will identify the spline that best

approximates the underlying function.

The approach requires that we pick a set of k equidistant “knots”, indexed by t, which

partition the domain of a continuous one-dimensional function of interest f(·) into segments

of equal length.1 We also select a power p, which represents the order of differentiability

one hopes to approximate. So, for instance, if p = 2 then one implements a quadratic

cardinal basis spline. Given a set of knots and p, cardinal basis spline functions Bj,p(x)

are constructed recursively by starting at power p = 0:

Bj,0(x) =

1 if tj ≤ x < tj+1

0 else
, (1)

and

Bj,p(x) =
x− tj

tj+p−1 − tj
Bj,p−1(x) +

tj+p − x
tj+p − tj+1

Bj+1,p−1(x). (2)

Given a set of cardinal basis spline functions Bp ≡ {Bj,p}j=1...k+p, we construct the

basis spline approximation as:

f(x) '
∑

j=1,...,k

αjBj,p(x), (3)

1The fact that knots are equidistant is what makes this a cardinal, rather than an ordinary basis spline.
In principle, one could pick the knots many different ways.
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where the vector α is chosen by OLS.

An advantage of the cardinal basis spline approach is that, for appropriately chosen α,

any spline of order p on that same set of knots can be constructed as a linear combination

of the elements of Bp. Therefore we can appeal to standard approximation arguments for

splines to think about the asymptotic approximation error as the number of knots goes to

infinity.

2 Identification Argument with Basis Splines

Here we present additional, albeit less formal evidence for our identification strategy. We be-

gin with the premise – an intuitive assertion – that one would expect E[sale price|BIN price]

to be monotonically increasing in the BIN price. This is testable insofar as we can estimate

g(·) over large regions of the domain – we therefore employ the cardinal basis spline

approach to estimate this expectation in the neighborhood of BIN prices near 500, without

including dummies for round numbers. Predicted values from this regression are presented

in Figure A-2a. One notes the counter-intuitive non-monotonicity in the neighborhood of

500; contrary to the premise with which we began, it appears that the derivative of g(·) is

locally negative. This phenomenon can be documented near other round numbers as well.

To resolve this surprising outcome, it is sufficient to re-run the regression with dummies

for Z = {[499, 500), 500}. Predicted values from the regression with dummies are presented

in Figure A-2b, which confirms that the source of the non-monotonicity was the behavior

of listings at those points. We take this as informal evidence for the claim that a model of

E[sale price|BIN price] should allow for discontinuities at round numbers; that something

other than the level of the price is being signaled at those points.

3 Basis Spline Robustness

An additional benefit of estimating g(·) globally, as the basis spline approach allows, is that

we are able to employ the full dataset of listings and offers. This permits the estimation of

seller-level fixed effects, which is important because they address any variation of a concern

in which persistent seller-level heterogeneity drives our results. This is an extension of the

local linear specification because it permits the use of all of listings simultaneously and

not just those observations local to the threshold. That adds many observations per seller

to each regression, some round and some non-round, identifying the effect within seller.
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Figure A-2: Basis Spline Identification
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Notes: This figure depicts a cardinal basis spline approximation of E[sale price|BIN price] without (a) and with (b) indicator

functions 1{BIN ∈ [499, 500)} and 1{BIN = 500}. Sample was drawn from collectibles listings that ended in a sale using

the Best Offer functionality.

Table A-1: Within Seller Variation of Roundness

% Split Count
1 Listing 0.00 99637
2-5 Listings 0.19 114609
6-9 Listings 0.32 35304
>=10 Listings 0.46 86445

Notes: Here we summarize the extent to which sellers, categorized by the number of listings they have generated, mix
between round- and non-round listing prices, where roundness is defined by the use of an exact “00” number.

Table A-1 shows the breakdown, by listing count, of the percentage of sellers that have

a mix of both round and non-round listings. In general, we find that propensity to list

round declines with experience (See Table A-10) and that first listings are more likely to

be round than later listings. Yet even very large sellers use round numbers for some of

their listings. For instance, 43 percent of sellers with 10 or more listings (19 percent of all

sellers) have some mix of round and non-round listings, allowing for the identification of

the sample.2

Table A-2 presents results with and without seller-level fixed effects for the average

first offer as well as the sale price. These results are consistent with those from Table

2Moreover, as shown in Table A-10, 22 percent of listings by the top decile of sellers are round.
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2, which rules out most plausible stories of unobserved heterogeneity as an alternative

explanation for our findings.

Table A-2: Basis Spline Estimation for Offers and Sales for Round $100 Signals

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15) (16)
1st Offer $ 1st Offer $ Sale Price $ Sale Price$ Days to Offer Days to Offer Days to Sale Days to Sale Sold Sold SRP SRP VI VI BIN|Sold BIN|Sold

BIN=100 -4.835∗∗∗ -1.189∗∗∗ -4.396∗∗∗ -2.080∗∗∗ -12.70∗∗∗ -3.369∗∗∗ -15.14∗∗∗ -5.079∗∗∗ 0.0531∗∗∗ 0.0296∗∗∗ -85.30∗∗∗ -10.55 1.478∗∗∗ 0.488∗∗∗ 0.00328∗∗ 0.00290∗

(0.292) (0.288) (0.304) (0.290) (0.377) (0.345) (0.569) (0.526) (0.00336) (0.00340) (12.25) (12.04) (0.0739) (0.0668) (0.00157) (0.00163)

BIN=200 -8.863∗∗∗ -4.804∗∗∗ -6.609∗∗∗ -5.266∗∗∗ -11.30∗∗∗ -3.029∗∗∗ -14.43∗∗∗ -5.198∗∗∗ 0.0275∗∗∗ 0.0193∗∗∗ -120.4∗∗∗ -44.29∗∗ 1.922∗∗∗ 0.626∗∗∗ 0.00544∗∗ 0.00121
(0.456) (0.443) (0.488) (0.459) (0.589) (0.531) (0.912) (0.831) (0.00524) (0.00523) (19.06) (18.47) (0.115) (0.102) (0.00244) (0.00250)

BIN=300 -14.37∗∗∗ -8.781∗∗∗ -12.10∗∗∗ -8.797∗∗∗ -11.21∗∗∗ -2.758∗∗∗ -15.04∗∗∗ -5.173∗∗∗ 0.0202∗∗∗ 0.00832 -114.7∗∗∗ -5.687 2.045∗∗∗ 0.781∗∗∗ 0.00127 -0.00184
(0.602) (0.584) (0.674) (0.634) (0.778) (0.701) (1.260) (1.148) (0.00693) (0.00690) (25.15) (24.35) (0.152) (0.135) (0.00323) (0.00330)

BIN=400 -16.94∗∗∗ -12.12∗∗∗ -13.91∗∗∗ -12.47∗∗∗ -12.80∗∗∗ -0.978 -14.20∗∗∗ -1.654 0.00348 -0.0174∗∗ -116.6∗∗∗ 44.96 2.322∗∗∗ 0.604∗∗∗ 0.00334 -0.00435
(0.734) (0.714) (0.843) (0.795) (0.948) (0.856) (1.575) (1.439) (0.00844) (0.00843) (30.61) (29.72) (0.184) (0.165) (0.00393) (0.00403)

BIN=500 -31.02∗∗∗ -23.97∗∗∗ -33.59∗∗∗ -27.30∗∗∗ -11.25∗∗∗ -1.244 -12.92∗∗∗ -1.950 0.0233∗∗ 0.0164 -124.0∗∗∗ -10.16 2.114∗∗∗ 1.146∗∗∗ 0.000327 -0.00508
(0.870) (0.851) (1.042) (0.985) (1.124) (1.020) (1.947) (1.784) (0.0100) (0.0100) (36.25) (35.35) (0.218) (0.196) (0.00466) (0.00480)

Category FE Yes Yes Yes Yes Yes Yes Yes Yes
Seller FE Yes Yes Yes Yes Yes Yes Yes Yes
N 2804521 2804521 1775014 1775014 2804521 2804521 1775014 1775014 2804521 2804521 2649747 2649747 2668207 2668207 2804521 2804521

Notes: Here we report coefficients on a regression form of (1) where yj is average first offers and sale prices and g(·) is
approximated using a cardinal basis spline.

4 LASSO Model Selection

We employ the cardinal basis spline approach to offer supplementary motivation for our

choice of the set of discontinuities Z. Based on the size of our dataset it is tempting to

suppose that approximation error in g would yield evidence of discontinuities at any point,

and therefore it is non-obvious that we should restrict attention to round numbers. To

answer this concern we use LASSO model selection to construct Z. We include dummies for

dBIN pricee for all integers in the window [k − 25, k + 25] for k ∈ {100, 200, 300, 400, 500}.
These integers are constructed in similar fashion as the buckets used for Figure 2, where

every listing is included and the dummy indicates whether the listing is in the range

(n− 1, n] for all integers in the range [k − 25, k + 25]. We then include every dummy as

well a continuous approximation to g(·) so that the LASSO optimization problem is as

follows:

min
β

1

N

∑
j=1,...,N

(
yj −

∑
s∈S

γzbs(x) +
∑
z∈Z

βz1z{BIN pricej}

)2

− λ
∑
z∈Z

|βz| (4)

Note that we do not penalize the LASSO for using the cardinal basis spline series b(x) to

fit the underlying g(·). In this sense we are considering the minimal set of deviations from

a continuous estimator. Figure A-3 presents results. On the x axis is log(λ/n), and on the

y axis is the coefficient value subject to shrinkage. What is striking about these figures

is that the coefficient βx00 (shown in red) is salient relative to other discontinuities, even
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Figure A-3: LASSO Model Selection
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Notes: Plots show coefficients (vertical axis) for varying levels of λ in the Lasso where the dependent variable of sale

price and regressors are dummies for every dollar increment between -$25 and +$25 of each $100 threshold. The red lines

represent each plots respective round $100 coefficient. The Lasso includes unpenalized basis spline coefficients (not shown).

when the penalty term is large, and this pattern holds true for all five of the neighborhoods

we study. Backus and Peng (2017) iterates on this procedure and shows how to select λ in

order to control the false discovery rate of detected discontinuities.
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C Bandwidth

We implement the optimal bandwidth selection proposed by Fan and Gìjbels (1992) and

described in detail by DesJardins and McCall (2008) and Imbens and Kalyanaraman

(2012). We estimate the curvature of g(·) and the variance in a broad neighborhood of

each multiple of $100, which we arbitrarily chose to be +/- $25. We then compute the

bandwidth to be (σ2)
1
5 × (Nl+Nr

2
× | g̃′(100 ∗ i) |)− 1

5 where i ∈ [1, 5]. We estimate σ using

the standard deviation of the data within the broad neighborhood of the discontinuity.

We estimate g̃(·) by regressing the outcome on a 5th order polynomial approximation of

the list price and analytically deriving g̃′(·) from the estimated coefficients.

D Local Linear Ancillary Coefficients

Table A-3 presents ancillary coefficients for the local linear regression results for Table

2. The BIN price variable is re-centered at the round number of interest, so that the

constant coefficient can be interpreted as the value of g(·) locally at that point. The slope

coefficients deviate substantially from what one might expect for a globally linear fit of the

scatterplot in Figure 2 (i.e., roughly 0.65). In other words, it seems that the function g(·)
exhibits substantial local curvature, which offers strong supplemental motivation for being

as flexible and nonparametric as possible in its estimation. Similarly, Table A-4 presents

ancillary coefficients corresponding to our local linear sales results in Table 4. Optimal

bandwidth choices for both tables reflect the fact that there is more data available for

lower BIN prices.

E The 99 effect

The regressions of Section 4.2 included indicators 1{BIN pricej = z} as well as indicators

1{BIN pricej ∈ [z − 1, z)} for z ∈ {100, 200, 300, 400, 500}. Table A-5 reports the coeffi-

cients on the latter indicators. Perhaps surprisingly, the results are very similar to those

in Table 2; it seems that listing prices of $99.99 and $100 have the same effect relative

to, for instance, $100.24. It suggests that what makes a “round” number round, for our

purposes, is not any feature of the number itself but rather convention – a Schelling point

– consistent with our interpretation of roundness as cheap talk.
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Table A-3: Intercepts and Slopes for Each Local Linear Regression

(1) (2) (3) (4)
Avg First Offer $ Avg First Offer $ Sale Price $ Sale Price $

Near round $100:
Constant 60.17∗∗∗ 61.38∗∗∗ 82.26∗∗∗ 79.67∗∗∗

(0.0861) (0.168) (0.0902) (0.178)
Slope 0.654∗∗∗ 0.687∗∗∗ 1.088∗∗∗ 1.074∗∗∗

(0.0184) (0.0173) (0.0181) (0.0181)
Bandwidth 6.441 7.388 7.615 7.492
N 286606 289772 224868 224445

Near round $200:
Constant 119.2∗∗∗ 120.0∗∗∗ 162.8∗∗∗ 156.3∗∗∗

(0.314) (0.467) (0.322) (0.503)
Slope 0.928∗∗∗ 1.006∗∗∗ 1.762∗∗∗ 1.592∗∗∗

(0.0639) (0.0622) (0.0674) (0.0655)
Bandwidth 8.171 8.253 7.365 7.662
N 151004 151093 103690 103898

Near round $300:
Constant 175.5∗∗∗ 172.2∗∗∗ 242.9∗∗∗ 232.1∗∗∗

(0.609) (0.586) (0.735) (0.756)
Slope 1.416∗∗∗ 0.737∗∗∗ 2.156∗∗∗ 1.408∗∗∗

(0.118) (0.0210) (0.149) (0.0605)
Bandwidth 9.985 22.46 8.595 12.73
N 101690 137956 63270 70069

Near round $400:
Constant 231.6∗∗∗ 222.1∗∗∗ 322.4∗∗∗ 303.5∗∗∗

(0.660) (1.058) (1.020) (1.335)
Slope 1.406∗∗∗ 1.234∗∗∗ 2.111∗∗∗ 1.763∗∗∗

(0.0742) (0.0690) (0.146) (0.128)
Bandwidth 16.03 17.97 12.55 14.20
N 80967 81413 44154 44443

Near round $500:
Constant 279.7∗∗∗ 275.7∗∗∗ 396.8∗∗∗ 376.7∗∗∗

(1.065) (1.432) (1.276) (1.641)
Slope 1.433∗∗∗ 1.457∗∗∗ 2.712∗∗∗ 1.748∗∗∗

(0.131) (0.110) (0.216) (0.141)
Bandwidth 16.62 19.48 14.22 16.29
N 69129 69615 36003 37201
Category FE YES YES

Notes: Here we report ancillary coefficients from separate local linear fits according to equation (4) in the neighborhood of the
round number indicated, using the dependent variable shown for each column, corresponding to Table 2. Heteroskedacticy-
robust standard errors are in parentheses, ∗ p < .1, ∗∗ p < .05, ∗∗∗ p < .01.

This finding also suggests that we can pool the signals, letting Z = {[99, 100], [199, 200],

[299, 300], [399, 400], [499, 500]}. Results for that regression are reported in Table A-6.

Consistent with our hypothesis, this does not substantively alter the results.
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Table A-4: Intercepts and Slopes for Local Linear Regressions - Sales

(1) (2) (3) (4) (5) (6)
Days to Offer Days to Offer Days to Sale Days to Offer Sold Sold

Near round $100:
Constant 35.34∗∗∗ 40.48∗∗∗ 46.67∗∗∗ 49.62∗∗∗ 0.133∗∗∗ 0.130∗∗∗

(0.274) (0.543) (0.355) (0.651) (0.00162) (0.00240)
Slope 0.180∗∗∗ 0.263∗∗∗ 0.641∗∗∗ 0.686∗∗∗ 0.0100∗∗∗ 0.00781∗∗∗

(0.0582) (0.0557) (0.0742) (0.0738) (0.000735) (0.000735)
Bandwidth 6.907 7.048 7.321 7.384 2.681 2.740
N 287366 289072 224354 224389 798842 799105

Near round $200:
Constant 32.70∗∗∗ 40.05∗∗∗ 45.37∗∗∗ 50.17∗∗∗ 0.128∗∗∗ 0.115∗∗∗

(0.482) (0.711) (0.671) (0.936) (0.00239) (0.00304)
Slope 0.442∗∗∗ 0.648∗∗∗ 0.872∗∗∗ 1.021∗∗∗ 0.00663∗∗∗ 0.00325∗∗∗

(0.100) (0.0945) (0.137) (0.136) (0.000911) (0.000911)
Bandwidth 7.841 8.106 8.308 8.564 3.493 3.722
N 150378 150989 104398 104430 425926 426091

Near round $300:
Constant 30.37∗∗∗ 36.52∗∗∗ 42.05∗∗∗ 47.09∗∗∗ 0.120∗∗∗ 0.103∗∗∗

(0.581) (0.627) (0.656) (0.863) (0.00285) (0.00235)
Slope -0.0746 0.0930∗∗∗ 0.144 0.204∗∗∗ 0.00562∗∗∗ -0.00208∗∗∗

(0.112) (0.0317) (0.0965) (0.0508) (0.000904) (0.000399)
Bandwidth 9.775 18.51 10.38 18.06 4.926 6.972
N 101507 120721 67702 75779 282623 344593

Near round $400:
Constant 26.37∗∗∗ 31.88∗∗∗ 39.25∗∗∗ 42.56∗∗∗ 0.119∗∗∗ 0.102∗∗∗

(0.402) (0.504) (0.528) (1.019) (0.00205) (0.00245)
Slope -0.0859∗∗ -0.0439∗∗∗ -0.0682 -0.0131 -0.00218∗∗∗ -0.00267∗∗∗

(0.0425) (0.0109) (0.0429) (0.0720) (0.000428) (0.000425)
Bandwidth 16.04 29.33 20.30 17.27 6.772 6.888
N 80967 117887 51208 46905 234627 234670

Near round $500:
Constant 28.24∗∗∗ 36.29∗∗∗ 41.62∗∗∗ 47.15∗∗∗ 0.119∗∗∗ 0.0998∗∗∗

(0.550) (0.823) (0.834) (1.209) (0.00325) (0.00364)
Slope 0.260∗∗∗ 0.314∗∗∗ 0.340∗∗∗ 0.420∗∗∗ 0.00103 -0.00113∗

(0.0635) (0.0602) (0.0947) (0.0944) (0.000673) (0.000673)
Bandwidth 16.26 18.45 19.96 19.98 5.605 5.378
N 69122 69342 37473 37477 208351 208293
Category FE YES YES YES

Notes: Here we report ancillary coefficients from separate local linear fits according to equation (4) in the neighborhood of the
round number indicated, using the dependent variable shown for each column, corresponding to Table 4. Heteroskedacticy-
robust standard errors are in parentheses, ∗ p < .1, ∗∗ p < .05, ∗∗∗ p < .01.
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Table A-5: Offers and Sales for [$99,$100) Signals

(1) (2) (3) (4)
Avg First Offer $ Avg First Offer $ Sale Price $ Sale Price $

BIN=099 -6.277∗∗∗ -4.744∗∗∗ -5.903∗∗∗ -4.917∗∗∗

(0.0974) (0.0955) (0.104) (0.106)

BIN=199 -14.21∗∗∗ -9.742∗∗∗ -11.75∗∗∗ -9.035∗∗∗

(0.333) (0.330) (0.350) (0.348)

BIN=299 -22.66∗∗∗ -16.31∗∗∗ -17.70∗∗∗ -15.31∗∗∗

(0.640) (0.398) (0.767) (0.543)

BIN=399 -32.99∗∗∗ -22.00∗∗∗ -22.61∗∗∗ -17.89∗∗∗

(0.777) (0.776) (1.116) (1.042)

BIN=499 -42.03∗∗∗ -26.30∗∗∗ -34.32∗∗∗ -27.15∗∗∗

(1.193) (1.123) (1.451) (1.302)
Category FE YES YES

Notes: Each cell in the table reports the coefficient on the indicator for BIN pricej ∈ [z − 1, z) from a separate local linear
fit according to equation (4) in the neighborhood of the round number indicated for the row, using the dependent variable
shown for each column. Ancillary coefficients for each fit are reported in Table A-3. Heteroskedacticy-robust standard
errors are in parentheses, ∗ p < .1, ∗∗ p < .05, ∗∗∗ p < .01.

Table A-6: Pooling 99 and 100

(1) (2) (3) (4)
Avg First Offer $ Avg First Offer $ Sale Price $ Sale Price $

BIN=099 or 100 -4.793∗∗∗ -3.944∗∗∗ -4.615∗∗∗ -4.101∗∗∗

(0.0519) (0.0511) (0.0709) (0.0680)

BIN=199 or 200 -13.37∗∗∗ -10.50∗∗∗ -11.75∗∗∗ -10.24∗∗∗

(0.164) (0.164) (0.183) (0.183)

BIN=299 or 300 -20.90∗∗∗ -15.30∗∗∗ -19.04∗∗∗ -16.52∗∗∗

(0.352) (0.354) (0.381) (0.380)

BIN=399 or 400 -28.89∗∗∗ -20.10∗∗∗ -21.95∗∗∗ -18.46∗∗∗

(0.606) (0.611) (0.690) (0.674)

BIN=499 or 500 -40.48∗∗∗ -26.66∗∗∗ -34.77∗∗∗ -28.58∗∗∗

(0.923) (0.924) (1.083) (1.083)
Category FE YES YES

Notes: Each cell in the table reports the coefficient on the indicator for BIN pricej ∈ [z − 1, z] from a separate local linear
fit according to a modified version of equation (4) in the neighborhood of the round number indicated for the row, using the
dependent variable shown for each column. Ancillary coefficients for each fit are reported in Table A-3. Heteroskedacticy-
robust standard errors are in parentheses, ∗ p < .1, ∗∗ p < .05, ∗∗∗ p < .01.
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F UK Ancillary Coefficients

The UK difference-in-difference estimation uses a different dataset than the primary

specification. This sample uses offer-level data so that offers can be separately identified

by country of origin. Table A-7 reports some basic summary statistics for this data. US

offers are generally higher, but they are also on slightly more expensive items. A higher

fraction of US offers are on round listings.

Table A-7: UK Data Summary Statistics

US UK
First Offer 110.1 99.96

(85.50) (82.11)

Listing BIN Price (£) 178.1 154.7
(124.4) (113.1)

Listing Round £100 0.0540 0.0453
(0.226) (0.208)

Listing 99 cents 0.0855 0.0759
(0.280) (0.265)

N 86930 409624

Notes: Here we report summary statistics corresponding to the sample for Table 3. Standard deviations are in parentheses.

Table A-8 shows the local linear estimation of the round number effect on offers made.

There is a negative and statistically significant effect on US buyers, which suggest that

there is either a selection bias or that the buyers react to the round price in pounds shown

on the item detail page. The UK effect is substantially (and statistically) larger. The

difference in these two measures is conceptually captured by the estimates in Table 3.3

Tabel A-9 presents the ancillary intercept and slope coefficients for the regression in

Table 3. The base levels of UK and round are shown and the interaction of these two is

coefficient presented in Table 3. Each country is allowed a separate intercept: the constant

represents the US base level and the UK indicator is the difference in this intercept for

the UK bidders. The BIN coefficient is the slope of the local linear fit and the interaction

of the UK indicator and the BIN represents the difference in the slope for UK bidders.

3The difference is not exactly comparable due to different weighting in the pooled regression.
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Table A-8: UK and US Separate Local Linear Estimation

(1) (2)
US Buyers UK Buyers

BIN=100 -2.251∗∗∗ -3.914∗∗∗

(0.553) (0.256)

BIN=200 -6.505∗∗∗ -9.227∗∗∗

(1.521) (0.743)

BIN=300 -5.627∗∗ -14.27∗∗∗

(2.566) (1.395)

BIN=400 -4.134 -12.55∗∗∗

(3.908) (2.373)

BIN=500 -0.890 -33.72∗∗∗

(5.205) (3.338)
Category FE YES YES

Notes: Each cell in the table reports the coefficient on the indicator for roundness from a separate local linear fit according
to equation (4) in the neighborhood of the round number indicated for the row, using the dependent variable shown for
each column. Each observation is an offer., dependent variable is offer made in GBP. Heteroskedacticy-robust standard
errors are in parentheses, ∗ p < .1, ∗∗ p < .05, ∗∗∗ p < .01.

G Seller Response to Round Offers

A natural extension of our analysis is to look at seller responses to round buyer offers. We

limit our attention to the bargaining interactions where a seller makes at least one counter

offer and compare the buyer’s initial offer to level of that counter offer. We derive a metric

of conciliation which indexes between 0 and 1 the distance between the buyer’s offer and

the BIN (the sellers prior offer). We show in Figure A-4 that round initial offers by buyers

are met with less conciliatory counter offers by sellers. Roundness may be used as a signal

to increase the probability of success at the expense seller revenue.

H Seller Experience

Next we ask whether or not seller experience explains this result. We might suspect that

sophisticated sellers learn to list at precise values and novices default to round-numbers.

There is some evidence for this, but any learning benefit is small and evident only in the

most expert sellers. We define a seller’s experience to be the number of prior Best Offer

listings prior to the current listing. With this definition, we have a measure of experience

for every listing in our data set. For tractability, we narrow the analysis to all listings with
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Figure A-4: Seller Response to Buyer Offers by Value
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Table A-9: Intercepts and Slopes for UK Linear Regression

(1) (2)
Avg First Offer $ Avg First Offer $

Near round $100:
UK Offer=1 1.850∗∗∗ 0.0424

(0.287) (0.263)
BIN=100 -2.304∗∗∗ -2.084∗∗∗

(0.553) (0.551)
BIN 0.681∗∗∗ 0.650∗∗∗

(0.0302) (0.0283)
UK Offer =1 X BIN 0.246∗∗∗ 0.0964∗∗∗

(0.0410) (0.0311)
Constant 65.35∗∗∗ 66.91∗∗∗

(0.243) (0.347)
UK Bandwidth 9.81 10.16
US Bandwidth 10.10 11.00
N 49887 67364

Near round $200:
UK Offer=1 4.952∗∗∗ 3.027∗∗∗

(1.007) (0.989)
BIN=200 -7.853∗∗∗ -6.145∗∗∗

(1.512) (1.505)
BIN 0.983∗∗∗ 0.885∗∗∗

(0.112) (0.108)
UK Offer =1 X BIN -0.140 -0.0980

(0.123) (0.119)
Constant 129.2∗∗∗ 127.6∗∗∗

(0.911) (1.276)
UK Bandwidth 12.37 12.65
US Bandwidth 13.72 13.98
N 27708 27743

Near round $300:
UK Offer=1 14.89∗∗∗ 8.591∗∗∗

(1.951) (1.496)
BIN=300 -6.000∗∗ -3.841

(2.728) (2.524)
BIN 1.050∗∗∗ 0.921∗∗∗

(0.179) (0.0979)
UK Offer =1 X BIN 0.373∗ -0.158

(0.221) (0.109)
Constant 185.5∗∗∗ 179.8∗∗∗

(1.673) (2.314)
UK Bandwidth 14.92 21.36
US Bandwidth 15.68 22.84
N 16002 21131
Category FE YES

(3) (4)
Avg First Offer $ Avg First Offer $

Near round $400:
UK Offer=1 16.07∗∗∗ 5.356∗∗

(2.639) (2.624)
BIN=400 -6.458∗ -0.706

(3.823) (3.871)
BIN 0.969∗∗∗ 0.977∗∗∗

(0.186) (0.184)
UK Offer =1 X BIN -0.00867 -0.171

(0.210) (0.204)
Constant 246.9∗∗∗ 226.4∗∗∗

(2.315) (4.329)
UK Bandwidth 21.46 22.90
US Bandwidth 20.21 20.11
N 13786 13828

Near round $500:
UK Offer=1 31.03∗∗∗ 14.78∗∗∗

(3.441) (3.384)
BIN=500 -4.369 2.415

(5.201) (5.203)
BIN 0.759∗∗∗ 0.771∗∗∗

(0.166) (0.163)
UK Offer =1 X BIN 0.278 -0.0202

(0.225) (0.213)
Constant 297.6∗∗∗ 275.1∗∗∗

(2.799) (5.934)
UK Bandwidth 23.37 24.16
US Bandwidth 27.19 27.81
N 10474 10500

Notes: Here we report ancillary coefficients from separate local linear fits according to equation (9) in the neighborhood of
the round number indicated, using the dependent variable shown for each column, corresponding to Table 3.

Heteroskedacticy-robust standard errors are in parentheses, ∗ p < .1, ∗∗ p < .05, ∗∗∗ p < .01.
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BIN prices between $85 and $115 and focus on a single round-number, $100. Table A-10

shows first the proportion of listings that are a round $100 broken down by the sellers

experience at time of listing. The most experienced 20 percent of sellers show markedly

lower rounding rates, but collectively still list round with more than 5 percent of their

listings.

By interacting our measure of seller experience with a dummy for whether the listing

is a round $100, we can identify at different experience levels the round effect on received

offers. The right pane of Table A-10 shows the estimates with and without seller fixed

effects. Without seller fixed effects, we are comparing the effect across experienced and

inexperienced sellers. As before, the only differential effect appears in the top two deciles of

experience. Interestingly, when we include seller fixed effects, and are therefore comparing

within sellers experiences, we see that the effect is largest in the upper deciles. This means

that the most experienced sellers use signal with the largest hit to price.

It would seem logical that such experienced sellers would only do this knowingly and

so we check again for evidence of sorting across seller experience. Figure A-5 revisits the

analysis of Figure 5a and shows the difference in the probability of accepting offers by

offer fraction. We show the gap between responses on round and non-round listings for

the least and most experienced sellers. We see that the most experienced sellers are even

more likely to accept any offer when listing round. This increased sorting suggests that

sellers learn to sort as they gain experience: and signal weakness only when most willing

to accept any offer (e.g. when they are in a hurry to clear inventory).

I Model

This section presents a stylized model in which round numbers are chosen strategically

as a signal by impatient sellers who are willing to take a price cut in order to sell faster.

The intuition is quite simple: if round numbers are a credible cheap-talk signal of eager

(impatient) sellers, then by signaling weakness, a seller will attract buyers who rationally

anticipate the better deal. In equilibrium, patient sellers prefer to hold out for a higher

price, and hence have no incentive to signal weakness. In contrast, impatient sellers avoid

behaving like patient sellers because this will delay the sale.

The model we have constructed is deliberately simple, and substantially less general

than it could be. There are three essential components: the form of seller heterogeneity
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Figure A-5: Seller Response to Offers by Experience
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Table A-10: Seller Experience and Round Numbers

Percent Round $100 Percent 99
1st Decile 0.164 0.0904

(0.00224) (0.00174)

2nd Decile 0.139 0.0982
(0.00201) (0.00172)

3rd Decile 0.127 0.0981
(0.00197) (0.00176)

4th Decile 0.118 0.105
(0.00182) (0.00174)

5th Decile 0.107 0.108
(0.00165) (0.00164)

6th Decile 0.102 0.118
(0.00155) (0.00163)

7th Decile 0.0927 0.122
(0.00142) (0.00159)

8th Decile 0.0822 0.124
(0.00129) (0.00151)

9th Decile 0.0683 0.129
(0.00113) (0.00146)

10th Decile 0.0507 0.126
(0.000914) (0.00131)

N 234635 234635

Avg First Offer Avg First Offer
Round $100 x 1st Decile -8.257∗∗∗ -1.386

(0.700) (2.168)

Round $100 x 2nd Decile -8.377∗∗∗ -3.314∗∗∗

(0.633) (1.053)

Round $100 x 3rd Decile -7.502∗∗∗ -2.157∗∗

(0.614) (0.848)

Round $100 x 4th Decile -7.761∗∗∗ -2.653∗∗∗

(0.560) (0.705)

Round $100 x 5th Decile -7.988∗∗∗ -2.544∗∗∗

(0.513) (0.607)

Round $100 x 6th Decile -9.299∗∗∗ -3.260∗∗∗

(0.461) (0.519)

Round $100 x 7th Decile -9.358∗∗∗ -3.518∗∗∗

(0.422) (0.455)

Round $100 x 8th Decile -9.489∗∗∗ -3.910∗∗∗

(0.373) (0.391)

Round $100 x 9th Decile -9.925∗∗∗ -3.889∗∗∗

(0.326) (0.333)

Round $100 x 10th Decile -11.84∗∗∗ -5.414∗∗∗

(0.250) (0.248)
Category FE YES
Seller FE YES
N

Notes: The left table documents prevalence of round-number listings by deciles of seller experience, where seller experience
is measured by the number of past transactions. Standard deviations are presented in parenthesis. The right table replicates
estimates of β100 separately by decile of seller experience. Standard errors are in parenthesis.

(here, in discount rates), the source of frictions (assumptions on the arrival and decision

process), and the bargaining protocol (Nash). A very general treatment of the problem is

beyond the scope of this paper, but we appeal to the fact that there are numerous models

in the literature which share our intuition but differ in the above components.4

4With respect to seller heterogeneity, the intuition requires heterogeneity in sellers’ reserve prices.
Farrell and Gibbons (1989) impose this directly, while Menzio (2007) takes as primitive heterogeneity in
the joint surplus possible with each employer. Finally, Kim (2012) describes a market with lemons, so that
sellers have heterogeneous unobserved quality. Another critical ingredient is explaining why sellers who
offer buyers less surplus in equilibrium also have non-zero market share. In a frictionless world of Bertrand
competition, this is impossible. To address this, frictions are an essential part of the model. In Farrell
and Gibbons (1989) this is accomplished by endogenous bargaining breakdown probabilities. Recent work
used matching functions to impose mechanical search frictions in order to smooth expected market shares.
All that we require of the bargaining mechanism is that outcomes depend on sellers’ private information.
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It is also important to note that we use a rather standard “non-behavioral” approach

that imposes no limits on cognition or rationality. One may be tempted to connect

roundness and precision with ideas about how limited cognition among sellers and buyers

may impact outcomes. Perhaps, a round listing price reflects “cluelessness” or uncertainty

about demand for the product listed. This idea is particularly compelling because it is

intuitive that sellers use the Best Offer feature on eBay as a demand discovery mechanism.

If, however, round-number sellers were more uncertain about demand then they should

solicit more offers and take longer to sell; instead we find that they sell substantially sooner

than precise-number sellers. It is for this reason that we build our model on heterogeneity

in discounting rather than heterogeneity in seller informedness because the latter fails to

fit the empirical facts. However, in general we acknowledge that alternative cheap-talk

signaling models could be specified with similar predictions (e.g., with heterogeneity

in seller costs) – our intention is not to sort between them, but rather to provide an

illustrative example, to derive predictions, and to use them to prove the empirical relevance

of cheap-talk signaling in bargaining.

1 A Simple Model of Negotiations

Consider a market in which time is continuous and buyers arrive randomly with a Poisson

arrival rate of λb. Each buyer’s willingness to pay for a good is 1, and their outside option

is set at 0. Once a buyer appears in the marketplace he remains active for only an instant

of time, as he makes a decision to buy a good or leave instantaneously.

There are two types of sellers: high types (θ = H) and low types (θ = L), where types

are associated with the patience they have. In particular, the discount rates are rH = 0

and rL = r > 0 for the two types, and both have a reservation value (cost) of 0 for the

good they can sell to a buyer. The utility of a seller of type θ from selling his good at a

price of p after a period of time t from when he arrived in the market is e−rθtp.

We assume that at most one H and one L type sellers can be active at any given

instant of time. If an H type seller sells his good then he is replaced immediately, so that

there is always at least one active H type seller. Instead, if an L type seller sells his good

then he is replaced randomly with a Poisson arrival rate of λs. Hence, the expected time

between the departure of one L type seller and the arrival of another is 1
λs

. This captures

Farrell and Gibbons (1989) do the general case of bargaining mechanisms, while Menzio (2007) uses a
limiting model of alternating offers bargaining from Gul and Sonnenschein (1988).
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the notion of a diverse group of sellers, where patient sellers are abundant and impatient

sellers appear less frequently.

Buyers and sellers interact in the marketplace as follows. First, upon each buyer arrival

to the marketplace, each active seller sends the buyer a cheap-talk signal “Weak” (W ) or

“Strong” (S). Being cheap-talk signals, these are costless and unverifiable, but they may

affect the buyer’s beliefs in equilibrium. Second, the buyer chooses a seller to match with.

Third and finally, upon matching with a seller, the two parties split the surplus of trade

between them given the buyer’s beliefs about the seller’s type.5

When a buyer arrives at the marketplace she observes the state of the market, which

is characterized by either one or two sellers. The assumptions on the arrival of seller types

imply that if there is only one seller, then the buyer knows that he is an H type seller,

while if there are two sellers, then the buyer knows that there is one of each type. A buyer

chooses who to “negotiate” with given her belief that is associated with the sellers’ signals.

Nash bargaining captures the idea that bargaining power will depend on the buyers’ beliefs

about whether the seller is patient (S) or impatient (W ).

We proceed to construct a separating Perfect Bayes Nash Equilibrium in which the L

type chooses to reveal his weakness by selecting the signal W to negotiate a sale at a low

price once a buyer arrives, while the H type chooses the signal S and only sells if he is

alone for a high price. We verify that this is an equilibrium in the following steps.

1. High type’s price: Let pH denote the equilibrium price that a H type receives

if he choose the signal S. The H type does not care about when he sells because

his discount rate is rH = 0, implying that his endogenous reservation value is pH .

Splitting the surplus, i.e. Nash bargaining in this setting, requires that pH be halfway

between that endogenous reservation value and 1, and therefore pH = 1.

2. Low type’s price: Let pL denote the equilibrium price that a L type receives from

a buyer if he chooses the signal W . If he waits instead of settling for pL immediately,

then in equilibrium he will receive pL from the next buyer. The Poisson arrival

rate of buyers implies that their inter-arrival time is distributed exponential with

5For a similar continuous time matched-bargaining model see Ali et al. (2015). This split-the-surplus
“Nash bargaining” solution is defined for situations of complete information, where the payoff functions are
common knowledge. We take the liberty of adopting the solution concept to a situation where one player
has a belief over the payoff of the other player, and given that belief, the two players split the surplus.
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parameter λb, so the expected value of waiting is pLEt[e−rt], where the discount can

be solve analytically:

Et[e−rt] =

∫ ∞
0

e−rxλbe
−λbxdx

=
λb

r + λb

∫ ∞
0

(r + λb)e
−x(r+λb)dx︸ ︷︷ ︸

=1

=
λb

r + λb
. (5)

The integral in the second line is equal to one by the definition of the exponential

distribution. Nash bargaining therefore implies

pL =
1

2
pL

λb
r + λb

+
1

2
1 ⇒ pL =

r + λb
2r + λb

. (6)

3. Incentive compatibility: It is obvious that incentive compatibility holds for H

types. Imagine then that the L type chooses S instead of W . Because there is always

an H type seller present, once a buyer arrives we assume that each seller gets to

transact with the buyer with probability 1
2
. Hence, the deviating L type either sells

at pH = 1 or does not sell and waits for pL, each with equal probability. Incentive

compatibility holds if pL ≥ 1
2

λb
r+λb

pL + 1
2
1, but this holds with equality from the Nash

bargaining solution that determines the L type’s equilibrium price.6

2 Equilibrium Properties and Empirical Predictions

In equilibrium, if both sellers are present in the market then any new buyer that arrives will

select to negotiate with an L type in order to obtain the lower price of pL. Furthermore,

an H type will sell to a buyer if and only if there is no L type seller in parallel. Because L

types are replaced with a Poisson rate of λs, the H type will be able to sometimes sell in

the period of time after one L type sold and another L type arrives in the market. As a

result, the equilibrium has the following properties: First, the L type sells at price pL < 1

6 Because we use the Nash solution for the negotiation stage of the game, there is no deviation to
consider there. One could consider an alternative game in which sellers commit to a single, public signal
of their type which will be visible to all buyers. Then we should verify that the L type does not want to
deviate and commit to choose the S signal forever until he makes a sale. If the L type commits to this
strategy then his expected payoff can be written recursively as v = 1

21 + 1
2v

λb

r+λb
. By analogy with (6)

this implies v = pL and so we conclude that such a deviation is not profitable.
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and the H type sells at price pH = 1. Second, the L type sells with probability 1 to the

first arriving buyer while the H type sells only when there is no L type. This implies a

longer waiting time for a sale for H. In turn, this implies for any given period of time, the

probability that an H type will sell is lower than that of an L type.

These equilibrium properties lend themselves immediately to several empirical predic-

tions that we can take to our data. In light of the regularity identified in Figure 2, we take

round numbers in multiples of $100 to be signals of weakness, justified further in Section

4.1. As such, the testable hypotheses of the model are as follows:

H1: Round-number listings get discounted offers and sell for lower prices.

H2: Round-number listings receive offers sooner and sell faster.

H3: Round-number listings sell with a higher probability (Because listings expire, even L

types may not sell).

H4: In “thick” buyer markets (higher λb) discounts are lower.

We have chosen to model bargaining and negotiation using Nash Bargaining rather

than specifying a non-cooperative bargaining game. As Binmore et al. (1986) show, the

Nash solution can be obtained as a reduced form outcome of a non-cooperative strategic

game, most notably as variants of the Rubinstein (1982) alternating offers game. Building

such a model is beyond the scope of this paper, but analyses such as those in Admati and

Perry (1987) suggest that patient bargainers will be tough and willing to suffer delay in

order to obtain a better price. Hence, despite the fact that within-bargaining offers and

counter-offers are not part of our formal model, the existing theoretical literature suggests

the following hypotheses:

H5: Conditional on receiving an offer, round-number sellers are more likely to accept

rather than counter.

H6: Conditional on countering, round-number sellers make less aggressive counter-offers.

In the above we have taken as given that round numbers are the chosen signal of

bargaining weakness. A natural question would be, why don’t impatient sellers just reduce

their listing price rather than choose a round number? In practice, sellers may be trying

to signal many dimensions of the item and their preferences simultaneously, and the level

Online Appendix-22



of the price is more likely to be useful for signaling item quality to buyers. As we show

in Section 4.4.1 below, these signals are directing buyer search at an early stage, before

buyers are exposed to – i.e. make the investment in examining – full item descriptions or

multiple photographs. Therefore, if a seller has an item that he believes can sell for about

$70, but is willing to sell it faster at $65, then by listing it at $65 buyers may infer that it

is of lower quality and not explore the item in more detail. Instead, the round number of

$100 signals to buyers “I’m ready to cut a deal.”

2.1 Effects of Market Thickness: Testing H4

Testing H4, that “thick” markets have lower price discounts, is more challenging than the

previous three hypotheses because it requires a measure of market thickness. One could

select products that are more standardized and for which markets are likely to be thick,

compared to “long-tail” items for which markets are thin. Two drawbacks of this approach

are first, that standardized items will have less scope for price discovery and bargaining,

and second, that any such selection would be ad hoc. Instead, we use behavioral data on

Search Result Page (SRP) and View Item (VI) page visits to measure market thickness.

In particular, more popular items with higher traffic, as measured by SRP and VI

counts can be categorized as having more buyers interested in them, and hence, thicker

markets than items with lower view counts. These items are different in myriad other

characteristics, so we consider the results only suggestive.7 The way in which traffic and

item popularity are measured is explained in more detail in Online Appendix J.

Listings are divided into deciles in increasing order of SRP and VI visit frequency. We

then replicate our local linear approach from equation (4) to estimate the effect of round

listing prices on mean first offers within each decile. Figure A-6 in Online Appendix J

plots the point estimates and confidence intervals of the discounts at round numbers. We

find lower relative discounts for item deciles with higher view rates, which is consistent

with H4. If we use search counts as a measure of popularity, we see a U-shaped pattern

where both very low and very high search counts have lower discounts than the mid range

of search counts. Nonetheless, this relationship is still positive as suggested by H4 – a

linear fit of these coefficients has a significant positive slope.

7Our measure is an imperfect proxy for market thickness because traffic is only indirectly correlated
with the arrival of buyers. Perhaps quirky yet undesired items receive traffic because they are interesting.
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J Separation in Thicker markets

An ancillary prediction of the model (Hypothesis H4) is that “thick” markets will have

lower discounts than thinner markets. Low type (inpatient) sellers do not have to wait

as long for buyers in thicker markets so they do not have to offer as deep discounts to

rationalize signaling weakness. We take this to the data by conjecturing that thicker

markets will have more traffic (views and search events) for items in thicker markets. This

is an imperfect proxy since traffic is only indirectly correlated with the arrival of actual

buyers.8

We proceed by grouping listings into deciles by view item counts. We first find that

the baseline (non-round) mean offers vary across decile of exposure. This is an undesired

byproduct of group by exposure: items in these groupings are different in ways other

than pure buyer arrival rates (λb). We correct for this by normalizing estimates by the

baseline mean offer. That is, we normalize βz by the constant az in equation 4. Otherwise,

estimation proceeds just as in equation 4, but separately for each decile of exposure.

Figure A-6 shows the results. This figure plots the point estimates and confidence

interval of the local linear estimation of the round-number BIN effect on mean first offers

for each decile of view item detail counts and search result exposure counts. The x-axis

shows the decile for each viewability metric, with 10 being have the highest search and

item detail counts. The y-axis is interpretable as percentage effect of roundness because

the coefficients are normalized by the baseline (precise) mean offers.

For the delineation across item detail views, we indeed see lower relative discounts for

higher view rates, which bolsters H4. For the delineation across search counts, we see

a peculiar u-shape pattern where both very low and very high search counts have lower

discounts than the mid range of search counts. On balance, this relationship is actually

still positive (as a linear fit of these coefficients has a positive slope). We surmise that

the selection effect of our imperfect proxy leads to a positive bias for the thinnest market

items. Hence, we conclude only that this evidence is suggestive that thicker markets have

lower discounts (H4).

8For intuition on this, consider that quirky yet undesired items may still get a lot of traffic because
they are interesting.
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Figure A-6: H4
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Notes: This figure plots the point estimates and confidence interval of the local linear estimation of the round number BIN
effect on mean first offers for each decile of view item detail counts and search result exposure counts.
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K Lesser Round Numbers

We present here estimates from the $10, $25, $50, and $75 round number thresholds for

tables 2, 4, and 5. We find that effects continue to decrease and become and less precisely

estimated as the salience of the round signal declines from multiples of $50 to $25 to $10.9

That is especially true as we move to higher dollar amounts where the $25 multiple is a

less salient signal.

This is consistent with the suggested effects of Figure 2, and the effects are generally

consistent across all outcomes. The effects are indeed decreasing with the salience of the

signal, but persist for the most part with the exception of the thinnest data at the $400

plus signals.

The large array of statistically significant coefficients results from the sheer size of the

data. To ensure that these round numbers are not spurious requires some form variable

selection. We use regularized regression in Online Appendix B4 and see that $100 are

by far the most robust coefficient to regularization. We also note that the $10 multiples

have results that are less than robust. This is likely because these local linear estimations

include the nearest $100 round numbers which can tilt the linear approximation of running

variable. Our primary estimates in the paper make use of optimal bandwidths which are

small enough to exclude neighboring round numbers.10

Figure 2 draws our attention to the difference in proportional responses between $100

and $50 signals shown in Figure 2. That is, there is an increase in absolute effects for the

$100 and not for the $50. This naturally appears in the regression results as well with

effects that are similarly ‘flat’ for $25 and $75 signals. The roughly constant proportional

effects only hold for the $100 signal which is the largest signal throughout the dollar values

in our posting price range. If we had data that included larger prices, the $100 signal

might also attenuate. We see some evidence of this in the last data point of Figure 8,

where the $1 million signal has special significance. From this, we surmise that there is

extra power from being the most round number for any given price.

We turn now to the offer-level effects. The Figure A-7 replicates Figures 5a and 5b

for $75 (left), $110 (center), and $150 (right) round numbers. We see similar evidence of

sorting at $75 and $150, but none at $110.

9To limit, somewhat, the size of this bewildering array of results, we show only the first multiples of
$10.

10Bandwidths are shown in Table A3.
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Figure A-7: Acceptance and Counteroffers at $75, $110, and $150
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Notes: This figure replicates figures 5a and 5b for $75 (left), $110 (center), and $150 (right) round numbers. The first row
depicts the probability of acceptance, while the second row depicts counteroffers.

L Round Number Listings in Real Estate

We see nothing specific to the Best Offer platform that would lead to the equilibrium

we propose. There are many bargaining settings where buyers and sellers would want

to signal weakness in exchange for faster and more likely sales. We consider the real

estate market as another illustration of the role of cheap-talk signaling in bargaining using

round numbers. In contrast to eBay, real estate is a market with large and substantial

transactions. Furthermore, participants are often assisted by professional listing agents

making unsophisticated behavior unlikely.

We make use of the Multiple Listing Service (“MLS”) data from Levitt and Syverson

(2008) that contains listing and sales data for Illinois from 1992 through 2002 which allows

us to partially replicate our analysis in the real estate market. We consider round-number

listings to be multiples of $50,000 after being rounded to the nearest $1,000, which counts

listings such as $699,950 as round. In this setting, conspicuous precision cannot be achieved

by adding a few dollars but requires a few hundred or thousand dollars. Listings bunch

at round numbers, particularly on more expensive listings. In Figure A-8 we document

the pattern of rounding in real estate listings. We observe the same tendency to round

that we observed in Figure 3 where we documented listing prices for Best Offer listings, in
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Figure A-8: Real Estate Grouping at round-numbers
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Notes: This is a histogram of sellers’ chosen listing prices for our dataset. The bandwidth is $10,000 and intervals are
generated by rounding up to the nearest round increment (e.g., $80, 000, $90, 000, $100, 000, . . .)

particular, the tendency to round more at higher prices. Note that although the pattern

is similar, the magnitudes are substantially higher suggesting that ‘roundness’ is context

specific.

Figure A-9 mimics Figure 2 for the real estate data using sale prices and similarly

shows that round listings sell for less. In addition to the graphical evidence, we estimate

basis spline regressions of the sale fraction on a single dummy for whether the listing

is round. Results are presented in Table A-12. Adding controls such as those found in

Levitt and Syverson (2008) or, as shown here, listing agent fixed effects, absorbs variation

in regions or home type. With controls, we found that on average, round listings sell

for 0.15% lower than non-round listings, which represents about $600 or 3.4% of the the

typical discount off of list price.11

It is interesting to note that the magnitude and significance of this effect is stronger

when real estate agent fixed effects are included, where the effect is estimated from within-

agent variation. It is well known that the role of real estate agents is to help sellers and

buyers meet their objectives. Hence, if an equilibrium is played, we would expect these

expert players to play according to equilibrium. Unfortunately, we do not observe offers,

unsold listings, or the time between listing and acceptance of an offer, so we are unable to

11The average sales prices is 94% of the list price so sales are negotiated down 6%. For comparison, on
eBay the sales prices is 65% of list price so the effect at $100 of 2% is 5.7% of the typical discount.
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Figure A-9: Real Estate Sales at Round Numbers
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Notes: This scatterplot presents average real estate sale prices in Chicago, normalized by the listing price price to be
between zero and one, grouped by $10,000 intervals of the listing price, When the listing price is on an interval rounded to
the hundreds of thousands, it is represented by a red circle; numbers rounded to fifty thousands are represented by a red
triangle. We consider round-number listings to be multiples of $50,000 after being rounded to the nearest $1,000, which
counts listings such as $699,950 as round.

test incentive compatibility in the real estate setting. Still, the fact that we are able to

replicate our finding that round numbers are correlated with lower sale prices suggests

that round-number signaling is more a general feature of real-world bargaining.

Table A-12: Real Estate Basis Spline Estimates

(1) (2)
Sale $ / List $ Sale $ / List $

Round $50k -0.000879 -0.00150∗∗

(0.000747) (0.000746)
Agent FE YES
N 35808 35808

Notes: Here we report coefficients on a regression form of (1) where yj is real estate sale prices in Chicago, g(·) is approx-
imated using a cardinal basis spline, and the coefficient of interest is on a dummy for the listing price of a home being
rounded up to a multiple of $50,000. Heteroskedasticity-robust standard errors are in parentheses, ∗ p < .1, ∗∗ p < .05, ∗∗∗

p < .01.
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