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Abstract

The regulations governing asset distributions from many retirement plans give partici-
pants the option to time retirement or rollovers from the plan strategically. They possess
a long-lived put option, whose exercise price resets periodically to the current value of the
assets in the plan. I derive a recursive closed-form valuation formula for the option and
develop a numerical algorithm for implementing the result. I "nd that, for reasonable
assumptions about volatility and life expectancy, the option's value may approach 40%
of the value of the assets in the plan, "nanced entirely by those still contributing. This
wealth transfer can, however, be easily avoided by making a simple change to the current
regulations governing valuation and payout of these retirement plans. ( 2000 Elsevier
Science S.A. All rights reserved.
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1. Introduction

The Wall Street Journal reported on Thursday October 8, 1998, that American
Airlines was having to cancel signi"cant numbers of #ights due to a shortage of
pilots. In September and October, 1998, more than three times as many pilots
retired as during an average month, with the same expected to continue in
November. This surge in retirements was occurring because `pilots retiring now
can take away retirement distributions based on July's stock-market prices . . .
[A] pilot's lump-sum retirement check would be as much as $300,000 lower if he
or she had to take today's stock pricea (Wall Street Journal, 1998). Similar
accelerated retirements occurred after the stock market crash of 1987. For
example, the Wall Street Journal reported on Monday November 2, 1987, that
over 600 Lockheed Corp. employees had submitted early retirement papers the
previous Friday, October 30 (approximately three times the usual monthly
"gure), because &employees opting to retire by the last working day of October
would have their shares of a stock-based savings plan valued as of September 30
[1987]' (Wall Street Journal, 1987). By retiring early and taking out their assets
at a historical value, employees were able to avoid the large losses they would
otherwise have incurred due to stock market declines. The loss was instead
borne by the remaining participants in the plans.

Participants in many 401(k) retirement plans possess a similar option. If they
leave their employer (for example, to work for a di!erent company) they may at
any time roll their accumulations into another plan. For many plans, the
amount transferred on such a rollover is the value of the account on the most
recent valuation date (usually quarterly) prior to the rollover. For example, in
late June 1995 an acquaintance asked to roll over her 401(k) account at her old
employer, Sola Optical, into a Keogh account. The 401(k) account was invested
in two publicly quoted mutual funds, and the account balance reported on the
most recent statement, 3/31/95, was just over $46,000. This was also the amount
of the distribution check received at the beginning of July, 3 months later, even
though it was simple to determine that the market value of the investments on
that date was over $6,000 higher. This option allows people who have left the
"rm to time their rollovers strategically, waiting for a sharp drop in the market
before asking to roll over their accounts and thereby avoiding the drop.

This paper shows that both the &retirement option' and the &rollover option'
described above are long-lived put options, whose exercise price adjusts period-
ically to the current value of the underlying assets. I derive a recursive, closed-
form valuation formula for this option and develop an e$cient numerical
valuation algorithm, allowing me to value the option and to calculate the
optimal rollover/retirement strategy for an investor in one of these plans. I "nd,
for example, that, given reasonable assumptions about life expectancy and
volatility, the option to roll over a 401(k) plan strategically may be worth 40% of
the value of the underlying assets, "nanced entirely by those still contributing to
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1The Appendix contains a brief summary of the main regulations governing valuation and
distribution of 401(k) plans. Consult Franz et al. (1997) for details.

the plan. This wealth transfer can, however, be completely avoided by making
a simple change to the current regulations governing valuation and payout of
401(k) and other retirement plans.

2. The option

Even though 401(k) and other retirement plans often invest their funds in
assets whose value can be determined every day (such as mutual funds), the vast
majority of 401(k) plans are not valued daily. The law merely requires plans to
be valued at least once per year. Annual, semi-annual, quarterly, and monthly
valuation are all common, with quarterly valuation the most widespread among
smaller plans.1

Apart from retirement, employees who have left a "rm have another way to
withdraw funds from a 401(k) plan. They can &roll over' their accumulations at
will directly to another eligible plan, such as another employer's 401(k) plan (if it
accepts rollovers) or a rollover IRA account. Such rollovers do not result in any
liability for taxes or penalties and do not have to occur immediately on
separation from the company.

When a rollover or retirement occurs between two valuation dates, it is
common (as with the American Airlines, Lockheed, and Sola plans above) for
the amount withdrawn to be the balance on the valuation date prior to the
withdrawal, with some adjustment for contributions/withdrawals made since
that date, but not adjusted for changes in market value since the last valuation
date. While published data on the extent of this practice do not exist, a manager
of 401(k) plans told me in January 1997 that approximately 60% of the (mainly
small) plans she managed used quarterly valuation, and that, of these, roughly
20% used the last historical balance to determine the amount of any rollover.

Since markets are, on average, rising, the use of a historical account balance to
determine the amount withdrawn reduces the expected payo! to an employee
who withdraws without conditioning on the recent behavior of asset prices (such
as the Sola employee mentioned above). Much more signi"cantly, however, this
policy gives plan participants a valuable option to time their retirement or
rollovers to another plan strategically. By retiring or rolling over the account
just after a sharp drop in the value of the plan's assets (as did the American
Airlines employees mentioned above), a 401(k) participant receives the value of
the assets on the previous valuation date, completely avoiding the drop. This
option is "nanced entirely by participants still contributing to the plan. Even if
only (a very conservative) 1% of all 401(k) plan assets are handled this way, this
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2For analysis of the wild card option in Treasury bond futures contracts, see Arak and Goodman
(1987), Chance and Hemler (1993), Cohen (1995), Gay and Manaster (1986), and Kane and Marcus
(1986). Fleming and Whaley (1994) and Valerio (1992) develop binomial valuation algorithms for
option contracts with embedded wild card options.

a!ects at least $5 billion, almost double the market capitalization of Apple
Computer as of August 1997.

3. Valuing the option

Consider a 401(k) investor who has already left the "rm and is considering the
optimal time to roll over the money in a 401(k) account. Let S

t
be the value of

the non-dividend paying assets in the plan. Although the assets in which a 401(k)
plan is invested usually do pay dividends, these dividends are reinvested in the
plan. Regard S

t
as the gross price process, including reinvested dividends.

Assume that the plan is revalued only at discrete times 0, *, 2*,2 , and, for all
t*0, de"ne [t] to be the last valuation date prior to time t; i.e.,

[t],max i*,
i|N
i*:t

(1)

If a rollover occurs at time q, the amount transferred is the balance on the
previous valuation date,

S
*q+"Sq#(S

*q+!Sq ). (2)

The total value of the participant's position at time t can thus be written as

<
t
"S

t
#P

t
, (3)

where P
t
is the value of an asset whose payout, if exercised at time q, is

Pq"S
*q+!Sq . (4)

This is a put option on the underlying assets, whose exercise price adjusts every
* years to the current value of the underlying asset, S* . It is related to the &wild
card' option embedded in many options and futures contracts,2 and to the S&P
500 bear market warrant studied by Gray and Whaley (1997). While the exercise
price on an S&P 500 bear warrant resets only once, the exercise price on the
option described here resets repeatedly.

Although this &rollover put' option plan has no formal expiration date, it does
expire with its holder. Suppose there remain i valuation dates until the expir-
ation of the option (i*0), and write Pi(S,K, t) for its value, where S is the
current asset value, K is the current exercise price (equal to the asset value on the
most recent valuation date, S

*t+
), and 0)t)*.
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At a revaluation date, *, the option's payo! if exercised is K!S* . If it is not
exercised, the exercise price resets to the current asset value, S* , and the value of
the option (now with i!1 revaluations until maturity) is therefore
Pi~1(S* ,S* , 0). The option therefore satis"es the boundary condition

Pi(S* ,K, *)"max[Pi~1(S* ,S* , 0),K!S*], (5)

for i*0, where

P~1(S,K, t),0. (6)

Given a model for the dynamics of the process S
t

(and possibly other
variables, such as interest rates or volatility), we can now value this option by
solving a standard pricing equation, subject to this boundary condition. In
general, this will be computationally very burdensome, as the value of the
position depends on the values of both S and K, which change over time. We
can, however, reduce the computational burden substantially and obtain more
intuition and closed-form solutions by assuming that

A1. The value of a standard European put or call option is homogeneous of
degree 1 in the value of the underlying asset and the exercise price.

A2. The only state variable relevant for pricing a put or call option is the current
value of the underlying asset, S

t
.

These assumptions hold in a Black}Scholes (1973) world, but they also hold
more generally, including in worlds in which stock prices follow jump or
jump-di!usion processes.

Assume that Pi~1(S,K, t) is homogeneous of degree 1 in S and K (I shall prove
this homogeneity later). Eq. (5) then becomes

Pi(S* ,K, *)"max[S*Pi~1(1, 1, 0),K!S*], (7)

for i*0. This is shown, for di!erent values of S* , in Fig. 1. The investor
optimally exercises the option if S*(S

1 i
, where S

1 i
is given by

K!S
1 i
"S

1 i
Pi~1(1, 1, 0), (8)

i.e.,

S
1 i
"K/[1#Pi~1(1, 1, 0)]. (9)

Fig. 1 shows that that an alternative way of achieving exactly the same payo! is
to buy, and hold until time *, a portfolio consisting of Pi~1(1, 1, 0) units of the
underlying asset, and [1#Pi~1(1, 1, 0)] put options on the asset, with expir-
ation date *, and exercise price S

1 i
"K/[1#Pi~1(1, 1, 0)]. By arbitrage, the

value of this portfolio must equal the value of the option, so

Pi(S,K, t)"Pi~1(1, 1, 0)S#[1#Pi~1(1, 1, 0)]

P(S,K/[1#Pi~1(1, 1, 0)], *!t), (10)
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Fig. 1. Value of a rollover put option on a revaluation date. The solid line shows the value of
a rollover put option on a revaluation date, with i revaluations left until expiration. If the underlying
asset is worth more than S

1 i
, it is optimal to hold on to the option, now with i!1 revaluation periods

until expiration. If the underlying asset value falls below the critical value S
1 i
, it is optimal to exercise

the option and receive the payo! K!S* .

for all i*0, where P(S,K, t) is the value of a standard put option with current
asset value S, exercise price K, and time to expiration t. P is a rollover (periodic
reset) put; P is a standard put option. Exactly, the same equation will hold if we
allow exercise of the option at any time between revaluation dates, except that
P will now be the value of an American put option.

Note that the right-hand side of Eq. (10) is homogeneous of degree 1 in S and
K due to the assumed homogeneity of P. Hence, if Pi~1 is homogeneous of
degree 1 in S and K, so is Pi. Since

P0(S, K, t)"P(S,K, *!t), (11)

which is homogeneous by assumption, I have thus proved by induction that
Pi is indeed homogeneous of degree 1 in S and K for all i*0.

The value of the investor's overall position at time t is

<i(S,K, t)"S#Pi(S,K, t). (12)

This can obviously be calculated by adding S to the value obtained above for
Pi(S, K, t), but it will be helpful to rederive the results directly in terms of <.
From Eq. (12), the boundary condition on a revaluation date, Eq. (7), can be
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Fig. 2. Value of an investor's position on a revaluation date. The solid line shows the value of the
investor's position on a revaluation date, with i revaluations left until expiration. If the underlying
asset is worth more than S

1 i
, it is optimal to keep the money in the plan, now with i!1 revaluation

periods until expiration. If the underlying asset value falls below the critical value S
1 i
, it is optimal to

exercise the option and withdraw $K.

rewritten as

<i(S* ,K, *)"max[S* <i~1(1, 1, 0),K]. (13)

Fig. 2 shows this for di!erent values of S* (Fig. 2 is just Fig. 1 with the payo!
increased everywhere by S*). The same payo! can be achieved by buying, and
holding until time *, a portfolio containing K bonds with payo! $1 each at time
*, and<i~1(1, 1, 0) call options on the asset, with expiration date * and exercise
price S

M i
"K/<i~1(1, 1, 0). By arbitrage, the value of the position must equal the

value of this portfolio, so

<i(S,K, t)"Ke~r(*~t)#<i~1(1, 1, 0)C(S,K/<i~1(1, 1, 0), *!t), (14)

for i*0, where C(S, K, t) is the value of a standard call option with current asset
value S, exercise price K, and time to expiration t, and where

<~1(1, 1, 0),1. (15)

To value the option, we start at the "nal expiration date of the option and work
backwards one revaluation period at a time using Eq. (10) or Eq. (14). These
equations hold without needing to assume a speci"c model for the dynamics of
the underlying asset price, but to obtain numerical results we need to make some
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more speci"c assumptions. Regardless of the model assumed, given the homo-
geneity of the problem, the boundary conditions for revaluation period i are
determined entirely by the single value Pi~1(1, 1, 0).

3.1. Lognormal asset prices

Assume that S
t
follows the process

dS
t
"kS

t
dt#pS

t
dZ

t
, (16)

where k and p are constants and Z
t
is a standard Brownian motion. Note that

this process satis"es the homogeneity assumption A1. Also assume that the
continuously compounded riskless interest rate, r, is a constant. These assump-
tions allow use of the Black and Scholes (1973) results for the (European) option
value, P, in Eq. (10),

P(S,K, t)"Ke~rt[1!U(z!pJt)]!S[1!U(z)], (17)

where

z"
log(S/K)#(r#p2/2)t

pJt
. (18)

To value the option, start at maturity (i"0) and apply Eq. (10) repeatedly (using
Eq. (17) for the put value) for i"0, 1, 2,2 , to calculate, in turn, P0(1, 1, 0),
P1(1, 1, 0), P2(1, 1, 0), etc. If the plan is investing in securities that can also be
traded directly, the investor can, outside the plan, carry out the replicating
strategy that leads to the Black}Scholes result.

3.2. Binomial valuation

If we want to allow exercise between revaluation dates, we cannot use the
Black}Scholes formula, since we need the value of an American put option in
Eq. (10). The usual binomial stock price process also satis"es the homogeneity
assumption A1, however, and we can use the approach of Cox et al. (1979), as
follows:

1. Set up a tree of possible asset value movements over a period of length *,
starting at the value 1. Set i"0.

2. Using the already known value Pi~1(1, 1, 0), impose the boundary condi-
tions at the end of the tree, given in Eq. (5).

3. Discount back through the tree from period * to 0, in the usual way, yielding
the value Pi(1, 1, 0). If exercise of the option between exercise dates is
permitted, check at each node whether early exercise is optimal.
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Fig. 3. Binomial valuation of a rollover put option. To calculate the value of a rollover put
immediately after a revaluation date, with current asset value 1, exercise price 1, and i revaluation
periods until expiration, Pi(1, 1, 0), start at the "nal revaluation date (i"0), impose the terminal
boundary condition from Eq. (7),

P0(S* , 1, *)"max[0, 1!S*],

and discount back through a tree of length * to calculate P0(1, 1, 0). Use this value to impose the
terminal conditions for the prior revaluation date,

P1(S* , 1, *)"max[S* P0(1, 1, 0), 1!S*],

and discount back through another tree of length * to calculate P1(1, 1, 0). Repeat for i"2, 3,2,
at each date imposing the terminal boundary condition,

Pi(S* , 1, *)"max[S* Pi~1(1, 1, 0), 1!S*].

4. Increase i by 1, and go back to step 2. Continue for as many revaluation
periods as desired.

Fig. 3 shows this process. The valuation proceeds from right to left, as usual, but
rather than generating one large binomial tree, as in the case of a standard put
option, we here generate only a sequence of smaller trees, each of total length *.
This signi"cantly reduces the amount of calculation required.

3.3. Valuation results

Fig. 4 shows the value of the rollover put option just after a revaluation (so
K"S) as a fraction of the value of the underlying assets, for annual volatility,
p"10%, 20%, 30%, plotted against the time to expiration. The continuously
compounded riskless interest rate is assumed to be 5%, and asset revaluation
occurs once per year. I calculate the values using the Black}Scholes put option
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Fig. 4. Rollover put option value vs. volatility. Values are calculated via repeated applications of
Eq. (10), using the Black}Scholes put option formula. For each volatility, the riskless interest rate is
assumed to be 5% (continuously compounded), and the option strike price is reset to the prevailing
value of the underlying asset once per year.

value, as described above in Section 3.1. While the level of volatility has
a signi"cant e!ect on the option's value, it represents a sizable fraction of the
asset value in each case. For all three volatilities, the option value is zero at
expiration but quickly increases as the time to expiration increases, with the rate
of increase falling over time. Even for the lowest volatility, p"10%, the option
adds 10% to the underlying asset value with 13 years to expiration and 15%
with 39 years to expiration. For a plan invested in assets with a relatively high
volatility, p"30%, the option adds over 50% to the underlying asset value with
20 years to expiration and almost 70% with 50 years to expiration. Its value
actually exceeds 100% of the underlying asset value with (an admittedly hard to
achieve) 230 years to expiration. The option has signi"cant value even for plans
that allow only a small amount of time following separation in which to exercise
the option. With just one year to expiration and quarterly revaluation, the
option adds over 8% to the value of the assets in the plan with a volatility of
20% and adds over 13% if the volatility is 30%.

Fig. 5 focuses on the impact of valuation frequency. It plots the value of the
option as a fraction of the underlying asset value against the time to expiration
for annual, quarterly, monthly and daily valuation frequencies. The continu-
ously compounded riskless interest rate is assumed to be 5%, and p is "xed at
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Fig. 5. Rollover put option value vs. reset frequency. Values are calculated via repeated applications
of Eq. (10), using the Black}Scholes put option formula. For each revaluation frequency, the riskless
interest rate is 5% (continuously compounded), and the volatility of the underlying asset is 20%
annually.

20% annually. Valuation frequency has a signi"cant impact on the value of the
option. With 50 years to expiration, the option value is 40.7% of asset value with
annual revaluation, 26.9% of asset value for quarterly valuation, 17.6% for
monthly, and 5.3% for daily. It is interesting to note that, for some short
expirations, the value is nonmonotonic in the revaluation frequency. For
example, with one year to expiration, the option value is 5.57% of the asset value
for annual valuation and 8.28% for quarterly valuation. From 5 years to
maturity on, however, the value is decreasing in the revaluation frequency.

3.4. Optimal exercise policy

The investor optimally exercises the option if S*(S
1 i
, i.e., if the asset value

has fallen since the last revaluation date by more than

K!S
1 iK
"

Pi~1(1, 1, 0)

1#Pi~1(1, 1, 0)
. (19)

Fig. 6 plots this critical drop in value against the time to expiration for p"10%,
20%, 30%. The continuously compounded riskless interest rate is assumed to be
5%, and asset revaluation occurs once per year. The critical drop rises sharply
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Fig. 6. Rollover put option optimal exercise boundary vs. volatility. The drop in asset value (since
the previous valuation date) required for the exercise of the rollover option to be optimal, for
di!erent volatilities and times to expiration. In each case, the riskless interest rate is 5% (continu-
ously compounded), and the option strike price is reset to the prevailing value of the underlying asset
once per year.

from its initial value of zero, but once the expiration date reaches about 20 years
the impact of changing volatility is much more signi"cant than even a large
change in expiration date. For example, with a volatility of 10% and time to
expiration of 20 years, the optimal rule is to exercise the option (i.e., roll over the
plan) if the assets have declined by at least 10.7% since the last valuation date.
With a volatility of 30%, the corresponding critical drop is 34.1%.

4. Extensions

The analysis in Section 3 above considers the valuation of the option in
a Black}Scholes or binomial world from the perspective of a single (type of)
investor who has already left a "rm, is trying to decide on the optimal with-
drawal strategy, and does not have to think about the impact of others' behavior
on this value. While this may be a reasonable approximation of the situation in
practice, as very few participants in 401(k) and other retirement plans are even
aware that the option described here exists, the analysis above can be extended
in various directions. I here consider four such extensions. The "rst is to consider
the impact of alternative assumptions about the dynamics of the underlying

496 R. Stanton / Journal of Financial Economics 56 (2000) 485}516



3 I am grateful to the referee for suggesting these extensions.

asset price, and in particular the e!ect of correlation between asset price
movements and changes in volatility, on the value of the option. The second is to
consider the possible dilution e!ects that occur for other investors in the plan
when one investor decides to withdraw his or her funds. The third extension is to
analyze the impact of transaction costs on the value and optimal exercise policy
of the rollover option. Finally, I consider the decision of an employee who is still
employed and thinking about leaving the "rm to roll over his or her 401(k)
plan.3

4.1. Alternative stock price dynamics

Instead of assuming a Black}Scholes world, we could assume di!erent models
for the evolution of stock prices, as in, for example, Cox and Ross (1976) or
Merton (1976). Implementing such alternative pricing models would often be
more numerically burdensome (due to the presence of additional state variables
or the failure of the homogeneity assumption A1) and would almost certainly
yield di!erent numerical values for the option, but the basic intuition, that the
option should be exercised if the stock price falls far enough, will continue to
hold.

4.1.1. Example } Stochastic volatility
Suppose we believe that volatility typically increases following a market crash

and wish to calculate the impact that this correlation has on the value of the
option. We cannot address this with the implementation in Section 3, in which
volatility is always constant. Instead, assume that asset price movements are
governed by the stochastic volatility model of Hull and White (1987). In this
model, the joint (risk-neutral) dynamics of the asset value, S

t
, and its instan-

taneous variance, v
t
, are given by

dS
t
"rS

t
dt#Jv

t
S
t
dZ1, (20)

dv
t
"kv

t
dt#mv

t
dZ2, (21)

where the correlation between the innovations dZ1 and dZ2 is o. In this
two-factor world, the price of a non-dividend-paying asset, P(S, v, t), satis"es the
partial di!erential equation

1

2CvS2
L2P

LS2
#m2v2

L2P
Lv2

#2ov3@2mS
L2P
LSLvD#rS

LP

LS
#kv

LP

Lv
#

LP

Lt
!rP"0.

(22)
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Table 1
The impact of correlation between asset price and volatility on position value

The table shows the value of a 401(k) plan investor's position (per $1 of nominal assets) for di!erent
asset volatilities (p) and revaluation frequencies, under di!erent assumptions about the correlation
between changes in the asset price and changes in volatility (o). Asset price and volatility movements
(risk-adjusted) are described by the Hull and White model,

dS
t
"rS

t
dt#Jv

t
S
t
dZ1,

dv
t
"kv

t
dt#mv

t
dZ2,

dZ1dZ2"o dt.

The investment horizon is assumed to be 5 years, the riskless interest rate is assumed to be 5%
(continuously compounded), and the parameters of the volatility process are k"0, m"1 (matching
those used in Hull and White, 1987). Values are calculated by solving Eq. (22) using the hopscotch
algorithm of Gourlay and McKee (1977).

o p"0.1 p"0.2 p"0.3

!0.75 Annual 1.047 1.104 1.152
Quarterly 1.046 1.099 1.145

!0.30 Annual 1.053 1.114 1.162
Quarterly 1.054 1.111 1.156

0.00 Annual 1.056 1.121 1.168
Quarterly 1.060 1.118 1.164

0.30 Annual 1.059 1.127 1.175
Quarterly 1.065 1.126 1.171

0.75 Annual 1.062 1.136 1.186
Quarterly 1.071 1.138 1.182

The model described in Eqs. (20)}(21) satis"es the homogeneity property A1
(though not A2). The boundary conditions satis"ed at each revaluation date are
those given in Eq. (13), except that each price is now a function of both S and v;
i.e.,

<i(S* , v* ,K, *)"max[S*<i~1(1, v* , 1, 0),K]. (23)

Table 1 shows the value of the investor's position just after a revaluation (so
K"S) as a fraction of the value of the underlying assets for di!erent assump-
tions about instantaneous volatility, valuation frequency, and correlation. The
investment horizon in each case is "ve years, the continuously compounded
riskless interest rate is 5%, and the parameters used for the volatility process are
k"0, m"1 [matching those used in Hull and White (1987)]. Values are
calculated by solving Eq. (22), subject to the boundary condition in Eq. (23),
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using the hopscotch algorithm of Gourlay and McKee (1977). Table 1 reveals
that the option value is positively related to the level of volatility. The more
negative the correlation (i.e., the more a crash is likely to be associated with an
increase in volatility), the lower the value of the option. While this is consistent
with the results obtained by Hull and White (1987), it is also important to note
that the magnitude of this e!ect is relatively small. With an instantaneous
volatility of 30% (where the e!ect is largest), changing the correlation from 0 to
!0.3 only reduces the value of the position from $1.168 to $1.162 with annual
revaluation. A change in correlation from #0.75 to !0.75 reduces the value
from $1.182 to $1.145 with quarterly revaluation.

4.2. Multiple investors and dilution

Suppose there is more than one investor type, and one type decides to
withdraw from the fund this period. For any other investor who does not also
withdraw from the fund, there will be less remaining in the fund next period.
This dilution e!ect will make exercise relatively more attractive and reduce the
value of the option held by the investor.

To explore the signi"cance of this e!ect, suppose there are two di!erent
investor types, with horizons di!ering by *

h
years. De"ne:

<i(S,K, t)"Value of the short-horizon investor's position,

<j(S,K, t)"Value of the long-horizon investor's position with no short
horizon investor,

<j
H(S, K, t)"Value of the long-horizon investor's position with a short!

horizon investor,

where j!i"*
h
/*. The boundary conditions on a revaluation date for the

short-horizon investor (i) are identical to those described in Section 3 above, and
are depicted by the dashed line in Fig. 7. The boundary conditions for the longer
horizon investor (j) are a little more complicated; they are summarized by the
solid line in Fig. 7.

1. S*'S
M i
: In this case, the short-horizon investor chooses not to withdraw

funds. This automatically means that the long-horizon investor will also opti-
mally not withdraw, so the value of the long investor's position is

<j
H(S* , K, *)"<j~1H(S* ,S* , 0) (24)

"S*<j~1H(1, 1, 0), (25)

the last equality following from homogeneity. The payo! from exercising today
(per share) is the same for both investors, but the value of not exercising is higher
for the long-horizon investor.
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Fig. 7. Value of investment on a revaluation date } 2 investor types. The dashed line shows the value
of the short-horizon investor's position on a revaluation date, with i revaluations left until expir-
ation, the same as in Fig. 2. The solid line shows the value of the long-horizon investor's position on
the same date, with j revaluations left until expiration, taking into account the dilution that occurs
should the short-horizon investor withdraw from the fund. The slopes of the various line segments
are given by

<i~1(1, 1, 0)"Value of the short-horizon investor's position (per share) should he or she not
withdraw from the fund,

<j~1(1, 1, 0)"Value of the long-horizon investor's position if the short-horizon investor has
already withdrawn,

<j~1H(1, 1, 0)"Value of the long-horizon investor's position if the short-horizon investor has
not withdrawn.

The di!erent regions of the graph are determined by the value of S* :

0)S*(S
1 j

! Both investors withdraw from the fund.

S
1 j
)S*(S

1
H
j

! Both investors withdraw from the fund, but the long-horizon investor
would not do so in the absence of the short-horizon investor.

S
1
H
j
)S*(S

1 i
! The short-horizon investor withdraws from the fund; the long-horizon

investor does not.

S
1 i
)S* ! Neither investor withdraws from the fund.

2. S*(S
M i
: In this case, the short-horizon investor (i) optimally exercises the

option and withdraws from the fund. Depending on the proportion of the fund
owned by investor i and the di!erence between K and S* , this withdrawal will
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cause varying amounts of dilution for the long-horizon investor ( j), should he or
she decide not to withdraw from the fund.

Suppose at time *, before any withdrawals, the total number of shares in
the fund is N* , with type i owning a claim to a fraction h

i
of these. On with-

drawal, type i takes out dollar amount h
i
N*K, representing a fraction,

h
i
N*K/N*S*"h

i
(K/S*), of the total shares in the fund. The remaining investors

used to own a fraction 1!h
i
of the fund. After investor i withdraws, if they do not

also do so, they now own the fraction 1!h
i
(K/S*). This is smaller than the

original fraction, since type i will only exercise if K*S* . The exact amount of
dilution depends on the relative values of h

i
, K, and S* . If investor i exercises at the

money (i.e., at S*"K), or if h
i
"0, no dilution occurs at all. The larger h

i
, and the

further in-the-money investor i exercises, the greater the dilution that occurs.
The long-horizon investor ( j) thus faces a choice of withdrawing the full

amount at the exercise price K or remaining in the fund and facing some
dilution. If the investor does not withdraw from the fund, the position is worth
(after investor i has withdrawn)

1!h
i
(K/S*)

1!h
i

<j~1(S* , S* , 0)"
S*!h

i
K

1!h
i

<j~1(1, 1, 0).

Note the <, rather than <H, on the right-hand side. Since the short-horizon
investor optimally withdraws at this point, the value of the long-horizon
investor's position from now on needs to be calculated in the absence of the
short investor. Alternatively, the long investor can withdraw from the fund,
receiving K. The overall payo! is thus

<j
H(S* , K, *)"maxAK,

S*!h
i
K

1!h
i

<j~1(1, 1, 0)B, (26)

and the optimal strategy for the long investor is to withdraw if S*(S
1
H
j
, where

S
1
H
j

is given by

K"

S
1
H
j
!h

i
K

1!h
i

<j~1(1, 1, 0), (27)

i.e.,

S
1
H
j
"

(1!h
i
)K

<j~1(1, 1, 0)
#h

i
K. (28)

Note that <j~1(1, 1, 0)*1, so

S
1
H
j
"

(1!h
i
)K

<j~1(1, 1, 0)
#h

i
K

*

(1!h
i
)K

<j~1(1, 1, 0)
#

h
i
K

<j~1(1, 1, 0)
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"

K

<j~1(1, 1, 0)
,

"S
1 j

. (29)

As expected, the dilution e!ect caused by the presence of the short investor
makes the long investor more likely to withdraw.

The long-horizon investor's boundary conditions are summarized by the solid
line in Fig. 7. They apply at every revaluation date until the "nal expiration date
of the short-horizon investor, at which point the boundary conditions for the
long-horizon investor become the same as in Eq. (7) above. Note the relative
slopes of the di!erent line segments. First,

<j~1(S, K, t)'<i~1(S, K, t). (30)

The value of the position to the long-horizon investor is greater than the value
to the short-horizon investor because the long-horizon investor has longer to
exercise his or her option. Second,

<j~1(S, K, t)'<j~1H(S,K, t), (31)

since the presence of the short-horizon investor lowers the value of the position
held by the long-horizon investor.

Fig. 7 shows that the long investor's payo!s can be replicated by buying, and
holding until time *, a portfolio containing K bonds with payo! $1 each at time
*; <j~1(1, 1, 0)/(1!h

i
) call options on the assets, with expiration date * and

exercise price S
1
H
j
; a short position in [<j~1(1, 1, 0)/(1!h

i
)!<j~1H(1, 1, 0)]

call options on the assets, with expiration date * and exercise price
S
1 i
"K/<i~1(1, 1, 0); and S

1 i
<j~1H(1, 1, 0)!((S

1 i
!h

i
K)/(1!h

i
))<j~1(1, 1, 0)]

binary &cash-or-nothing' call options, each with payout 1 if S*'S
1 i

and 0 other-
wise. By arbitrage, the value of the position must equal the value of this
portfolio, so we obtain the formula

<j(S,K, t)

"Ke~r(*~t)#
<j~1(1, 1, 0)

1!h
i

C(S, S
M
H
j
, *!t)

!C
<j~1(1, 1, 0)

1!h
i

!<j~1H(1, 1, 0)DC(S, S
1 i
, *!t)

#CS1 i<j~1H(1, 1, 0)!A
S
1 i
!h

i
K

1!h
i
B<j~1(1, 1, 0)DBC(S, S

1 i
, *!t),

(32)

where BC(S,K, t) is the value of a binary call option that pays out $1 at time t if
an asset with current price S is worth more than K, and zero otherwise.
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Table 2
The impact of a short-term investor on position value

The table shows the value of a 401(k) plan investor's position (per $1 of nominal assets) for di!erent
horizons, asset volatilities (p), and revaluation frequencies, in the presence of another investor with
horizon 20 years shorter, who represents 20% of the fund.< is the value in the absence of the second
investor; <H is the value in the presence of the shorter horizon investor. Values are calculated using
a binomial tree with 100 time steps per valuation period.

Horizon p"0.1 p"0.2 p"0.3

Annual Quarterly Annual Quarterly Annual Quarterly

20 years < 1.120 1.102 1.307 1.227 1.517 1.364
<H 1.118 1.094 1.297 1.208 1.498 1.331

30 years < 1.139 1.110 1.351 1.245 1.594 1.395
<H 1.127 1.098 1.317 1.216 1.530 1.345

40 years < 1.152 1.116 1.383 1.258 1.650 1.416
<H 1.141 1.107 1.351 1.238 1.592 1.381

As in Section 3, if we make assumptions about the process driving movements
in the underlying asset price, we can use this relation to price the long investor's
position. For example, if asset prices were lognormal, we could use the
Black}Scholes call option value in Eq. (32), along with the result that, in this
economy,

BC(S,K, t)"e~rt'(z!pJt), (33)

where z"[log(S/K)#(r#p2/2)t]/pJt. Alternatively, we can value the posi-
tion using a binomial algorithm, as described in Section 3.2 above. This works
just like the single investor considered there, except that three values now need
to be calculated at each revaluation date, <i~1(1, 1, 0), <j~1(1, 1, 0) and
<j~1H(1, 1, 0).

I implemented this binomial valuation algorithm for two investors with
a wide range of di!erent horizons, asset volatilities, times to maturity, and
proportions of the short investor in the overall fund. In almost every case, the
presence of the shorter horizon investor made little di!erence to the value of the
position held by the longer horizon investor. As an example, Table 2 shows
representative results when h

i
"0.2 (i.e., the short-horizon investor owns 20%

of the assets in the fund) and the di!erence in horizons between long and short
investors is 20 years. All values are generated using binomial trees with 100 time
steps per valuation period. Although the presence of the shorter horizon inves-
tor does lower the value of the longer investor's position, the di!erence is small.
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As the horizon and volatility vary, there are factors that suggest that the
di!erence should be large in some cases, but for each such factor there is
another, countervailing factor, which in practice seems to be more important.
For example,

f At short horizons (e.g., 20 years in Table 2, when the corresponding horizon
for the short investor is 0), there is a relatively wide di!erence in the optimal
exercise policy of the two investors, and hence a range of possible asset values
at which the short investor withdraws, and dilution may be an issue. Yet
dilution only matters when there is a signi"cant di!erence between the asset
value and the exercise price. Close to maturity, the short-horizon investor
exercises the option when it is only just in-the-money, so, although dilution
occurs with signi"cant probability, the amount of dilution that actually
occurs is negligible.

f At longer horizons, the short investor only exercises the option when it is well
in-the-money, leading to the possibility of signi"cant dilution for the longer
term investor. At long horizons, however, since the optimal exercise boundary
is relatively #at (see Fig. 6), the optimal exercise policies of the long and short
investors are almost the same, and so dilution, while signi"cant in principle, is
very unlikely actually to occur.

f High volatility makes it more likely that the short-horizon investor will
exercise deep in-the-money, so more signi"cant dilution may occur. At the
same time, high volatility makes the optimal exercise boundary #atter at
a wider range of horizons (see Fig. 6), so again the likelihood of this dilution
actually occurring goes down as volatility increases.

4.2.1. Dilution with only a single investor type
For the rollover option to have value to one investor, there must be another

investor giving up that value. So far, I have been valuing the option from the
perspective of a single investor who represents a negligible fraction of the total
plan. The investor's option (or, in Section 4.2, the long- and short-horizon
investors' options) has been "nanced by the other investors in the plan, who
were implicitly assumed either to be unaware of the existence of the option or
else unable to exercise it (for example, because they were still employed, and the
costs of changing jobs were too high). I here analyze the &zero-sum' nature of the
option in more detail, taking into account the fact that those withdrawing
cannot take out more than the total current value of the assets in the plan.

Consider the position held by an investor of type i at time *, where all of the
type i investors together own a claim to a fraction h of the total shares in the
fund. Suppose all investors of type i will act the same, and that the remaining
fraction 1!h will de"nitely not withdraw from the plan.

Per share owned by the type i investors, there are 1/h shares in the fund
altogether, so, if the type i investors all withdraw, they cannot take out more
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Fig. 8. Value of an investor's position on a revaluation date. The solid line shows the value of the
investor's position on a revaluation date, with i revaluations left until expiration. Investors of type
i are assumed to own a fraction h of the assets in the plan, and all other investors will de"nitely not
withdraw this period. If the underlying asset is worth more than S

1 i
, it is optimal to keep the money in

the plan, now with i!1 revaluation periods until expiration. If the underlying asset value falls below
the critical value S

1 i
, it is optimal to exercise the option and withdraw $K. If the asset value falls far

enough, there will not be enough assets in the plan to withdraw the full $K, and the investor can
therefore only withdraw S*/h per share owned. The overall value of the position is

<ih(S* ,K, *)"max[S*<i~1h (1, 1, 0), minMK, S*/hN].

than S*/h. Adding this cap to Eq. (13), the payo! at date * becomes

<ih (S* , K, *)"max[S*<i~1h (1, 1, 0), minMK,S*/hN]. (34)

Fig. 8 shows this payo!. It is identical to Fig. 2, except that, for low enough
values of S* , the cap of S*/h becomes binding. The smaller the value of h, the less
signi"cant this cap. In the limit, as hP0 (i.e., the investors considering with-
drawal represent a negligible fraction of the overall plan), the cap becomes
irrelevant, and Fig. 8 turns into Fig. 2. At the other extreme, suppose h"1, as,
for example, in a plan with only a single investor. At maturity, Eq. (34) becomes

<0h (S* , K, *)"max[S*<~1h (1, 1, 0), minMK,S*/hN]

"max[S* , minMK,S*N]

"S* . (35)
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If the value of the position is S* at time *, it must equal S
t
at any time prior to *.

Hence, in particular,

<0h (1, 1, 0)"1. (36)

Now consider the value at the prior revaluation period.

<1h (S* , K, *)"max[S*<0h (1, 1, 0), minMK,S*/hN]

"max[S* , minMK,S*N]

"S* . (37)

Comparing Eqs. (35) and (37), it can be seen that the same relation will continue
to hold for all i. Thus, when h"1, for any i, S, K, and t,

<ih (S,K, t)"S. (38)

Thus, if all investors behave identically, the option adds no additional value at
all.

Fig. 8 reveals that the same payo! can be achieved by buying, and holding
until time *, a portfolio containing K bonds with payo! $1 each at time *;
<i~1h (1, 1, 0) call options on the assets, with expiration date * and exercise price
S
1 i
"K/<i~1h (1, 1, 0); and a short position in !1/h put options on the assets,

with expiration date * and exercise price hK. By arbitrage, the value of the
position must equal the value of this portfolio, so

<ih (S, K, t)"Ke~r(*~t)#<i~1h (1, 1, 0)C(S,K/<i~1h (1, 1, 0), *!t)

!

1

h
P(S, hK, *!t), (39)

for i*0, where C(S, K, t) is the value of a standard call option with current asset
value S, exercise price K, and time to expiration t, P(S,K, t) is the value of the
corresponding standard put option, and

<~1h (1, 1, 0),1. (40)

Table 3 shows the value of the investor's position as a fraction of the value of
the underlying assets for di!erent assumptions about horizon, volatility, and the
fraction h. The continuously compounded riskless interest rate is assumed to be
5%, and asset revaluation occurs once per year. I calculate the values using the
Black}Scholes put and call option values in Eq. (39). In the table, h"0
corresponds to the situation analyzed in Section 3, in which there was no
dilution e!ect. The other extreme, h"1, is where everyone in the plan either
exercises or does not exercise at the same time. As expected, the option adds no
value in this case. What is most interesting is that the di!erence in value between
h"0 and h"0.5 is negligible for all horizons and volatilities considered, and
even at h"0.7 the di!erence is only slightly noticeable at p"0.3. In almost any

506 R. Stanton / Journal of Financial Economics 56 (2000) 485}516



Table 3
The impact of dilution on position value

The table shows the value of a 401(k) plan investor's position (per $1 of nominal assets) for di!erent
horizons, asset volatilities (p), and proportions of the plan owned by that investor type (h). The
continuously compounded riskless interest rate is assumed to be 5%, and asset revaluation occurs
once per year. The values are calculated using the Black}Scholes put and call option values in
Eq. (39).

Horizon p"0.1 p"0.2 p"0.3

5 years h"0.0 1.062 1.166 1.277
h"0.2 1.062 1.166 1.277
h"0.5 1.062 1.166 1.274
h"0.7 1.062 1.160 1.229
h"1.0 1.000 1.000 1.000

10 years h"0.0 1.090 1.234 1.391
h"0.2 1.090 1.234 1.391
h"0.5 1.090 1.234 1.385
h"0.7 1.090 1.223 1.309
h"1.0 1.000 1.000 1.000

15 years h"0.0 1.107 1.276 1.464
h"0.2 1.107 1.276 1.464
h"0.5 1.107 1.276 1.456
h"0.7 1.107 1.261 1.351
h"1.0 1.000 1.000 1.000

realistic setting, this potential dilution will have almost no impact on the value
of the option. For long enough horizons, the value of h does eventually have an
impact on the value of the position. For example, it can be shown that, in
a Black}Scholes world, for given values of S, K, and t, and any value of h3[0, 1],

lim
i?=

<ih (S,K, t)"
S

h
, (41)

so, in particular, for h"0,

lim
i?=

<ih (S,K, t)"R, (42)

but it can take horizons of hundreds or thousands of years for these di!erences
to be noticeable.

4.3. Transaction costs

While exercising the option to withdraw from a 401(k) plan is costless, there
are costs associated with leaving money in the plan, in the form of management
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fees that are paid out of plan assets. These reduce the returns earned by investors
in the plan and lower the value of the position held by an investor, compared
with the corresponding value in the absence of such costs. I here consider the
impact of these costs on an investor's optimal rollover policy and on the exact
relation between the values with and without costs.

4.3.1. Rollover to another plan
Suppose the investor is considering rolling over his or her 401(k) plan into

another plan that has the same costs as the "rst, and assume that the date of the
rollover will have no impact on the date of the "nal withdrawal of assets from
the second plan. In this case, the costs are incurred whether or not the option is
exercised, though the amount of the costs will depend on the exercise strategy.

Proportional costs. Suppose that, in both plans, proportional costs equal to
c times the current plan balance are charged each period, and consider the
valuation of the investor's position at the "nal maturity date. Let $K be the
current exercise price and S* the value of the assets in the plan. If the investor
rolls over the account immediately prior to maturity, he or she receives K(1!c).
I assume that the $K is rolled into the second plan, where it immediately incurs
costs at rate c, and is then withdrawn. If the investor does not roll over the
account, he or she withdraws the amount in the plan, less transaction costs,
S*(1!c). Writing the value of the overall position in the presence of costs as <

c
(c for &cost'), the overall payo! at maturity can thus be written as

<0
c
(S* , K, *)"max[S* (1!c),K(1!c)]

"(1!c)max[S* ,K]

"(1!c)<0(S* , K, *), (43)

where<0 is the value of the position in the absence of transaction costs. The last
equality follows from Eq. (13). Given this relation between the payo!s at time *,
it follows that, at any time t in the last period,

<0
c
(S, K, t)"(1!c)<0(S,K, t), (44)

and the optimal exercise strategy at the last date is exactly the same, regardless
of whether there are transaction costs. This follows because the maximum is
taken over the same two quantities in both cases.

Now consider the investor's decision one period earlier, at the last revaluation
date prior to maturity. If the investor rolls over the account immediately prior to
the revaluation, he or she receives $K, which is invested into $K worth of assets
in the second plan, and withdrawn at maturity after incurring transaction costs
twice. The present value of this is K(1!c)2. If the investor does not roll over the
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account, costs c are paid out, and the investor now possesses

<0
c
(S* (1!c), S* (1!c), 0)"S* (1!c)<0

c
(1, 1, 0). (45)

The boundary condition for the last revaluation date can thus be written as

<1
c
(S* , K, *)"max[S* (1!c)<0

c
(1, 1, 0), K(1!c)2]

"max[S* (1!c)2<0(1, 1, 0), K(1!c)2]

"(1!c)2max[S*<0(1, 1, 0),K]

"(1!c)2<1(S* ,K, *), (46)

the last equality again following from Eq. (13). As above, given this relation
between the payo!s at time *, it follows that, at any time t within the valuation
period,

<1
c
(S, K, t)"(1!c)2<1(S,K, t). (47)

Again, the optimal exercise strategy is exactly the same, regardless of whether
there are transaction costs.

Working back one period at a time, it is straightforward to show that the
boundary condition i revaluation periods prior to maturity is

<i
c
(S* ,K, *)"max[S* (1!c)<i~1

c
(1, 1, 0),K(1!c)i`1]

"(1!c)i`1 max[S*<i~1(1, 1, 0),K]

"(1!c)i`1<i(S* , K, *). (48)

Hence, for any i and any time t within the valuation period,

<i
c
(S,K, t)"(1!c)i`1<i(S, K, t), (49)

and the optimal exercise policy is completely una!ected by the presence of
transaction costs. While they reduce the value of the overall position, they do so
by a "xed fraction each period regardless of whether the option is exercised.

Fixed costs. The irrelevance of transaction costs to the optimal exercise policy
above is due to the combination of proportional costs and the homogeneity of
the option value in S and K. It is not a general property. For example, assume
that transaction costs are a constant dollar amount, $C, per period, instead of
a constant proportion. Writing the value of the position in the presence of costs
as <

C
, the payo! at maturity can be written as

<0
C
(S* , K, *)"max[S*!C,K!C]
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"max[S* , K]!C

"<0(S* , K, *)!C, (50)

the last equality following from Eq. (13). It follows that, at any time t in the last
period,

<0
C
(S, K, t)"<0(S, K, t)!

C

(1#r)*~t
, (51)

and, just as with proportional costs, the optimal exercise strategy at the last date
is exactly the same, regardless of whether there are transaction costs.

Things change, however, if we go back one period. If the investor rolls over
the account immediately prior to the last revaluation, he or she receives $K,
which is invested into $K worth of assets in the second plan, and withdrawn at
maturity after incurring transaction costs twice, once now, and once after
* years. The present value of this is K!C!C/(1#r)*. If the investor does not
roll over the account, cost C is paid out, and the investor now possesses
<0

C
(S*!C, S*!C, 0). The boundary condition at this revaluation date can

thus be written as

<1
C
(S* , K, *)"maxC<0

C
(S*!C,S*!C, 0),K!C!

C

(1#r)*D. (52)

More generally, the boundary condition at any revaluation date can be written
as

<i
C
(S* , K, *)

"maxC<i~1
C

(S*!C,S*!C, 0),K!C!

C

(1#r)*
!2!

C

(1#r)i*D.
(53)

This boundary condition can be used to solve for<
C

but, except at maturity, the
relation between <

C
and < is not as simple as in the case of proportional

transaction costs. For example, from Eqs. (51) and (52),

<1
C
(S* , K, *)"maxC<0

C
(S*!C,S*!C, 0),K!C!

C

(1#r)*D
"maxC<0(S*!C,S*!C, 0)!

C

(1#r)*
,K!C!

C

(1#r)*D
"max[(S*!C)<0(1, 1, 0), K!C]!

C

(1#r)*

510 R. Stanton / Journal of Financial Economics 56 (2000) 485}516



"max[(S*<0(1, 1, 0)!CM<0(1, 1, 0)!1N,K]!C!

C

(1#r)*
.

(54)

This would be equal to<1(S* , K, *)!C!C/(1#r)*, and the optimal exercise
policy would be una!ected by the transaction costs, only if <0(1, 1, 0) were
equal to 1. However, <0(1, 1, 0) is greater than 1. As a result, the optimal
exercise decision here is not the same as in the absence of transaction costs. In
fact, exercising the option is relatively more attractive in the presence of the "xed
cost. This also means that there is no simple relation between the values with
and without costs.

4.3.2. Final withdrawal
Suppose, instead of rolling over the assets into another plan, any withdrawal

from the plan is "nal (e.g., it accompanies retirement). Then payment of transac-
tion costs stops on withdrawal from the plan. The transaction costs in this case
are very similar to a dividend payment. In the presence of proportional costs c,
the boundary condition in Eq. (13) becomes

<i(S* ,K, *)"max[S* (1!c)<i~1(1, 1, 0),K]. (55)

This is similar to Eq. (13), but the position's value if the option is not exercised is
reduced by a factor (1!c). Relative to the no-cost case, this makes the option
less valuable and makes exercise more likely.

4.4. Exercise while still employed

A plan participant can only exercise the option after leaving the "rm. In
principle, however, someone currently employed could decide to leave the "rm
to exercise the option. Consider an employee who can leave the "rm at any time
(rolling over the 401(k) investment in the process), and that leaving the "rm early
would force the employee to incur a cost of $Z. Assume also that, each
revaluation period while employed, the employee contributes an additional $X
to the fund. On a revaluation date, suppose the value of the employee's
underlying assets in the plan is S* , and write <K i(S, K, t) for the value of the
investor's position (including the option). The analysis is similar to that con-
sidered in Section 4.3.1 in the case of "xed transaction costs.

At the "nal maturity date, assume that the investor would retire anyway,
so the investor does not incur the additional cost. The payo! is the same as in
Eq. (13),

<K 0(S* , K, *)"max[S* ,K]

"<0(S* , K, *). (56)
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Given this relation between the payo!s at time *, it follows that, at any time t in
the last period,

<K 0(S, K, t)"<0(S, K, t), (57)

and the optimal exercise policy in the last period is the same as in Section 3.
Just as in the case of "xed transaction costs considered above, things change if

we go back one period. If the employee leaves the "rm to exercise the option
immediately prior to the last revaluation date before maturity, the payo! of the
option is the same as in Section 3, except that an additional cost of $Z is
incurred. The payo! is thus K!Z. If the investor does not leave the "rm, the
next period's additional contribution of $X to the plan will increase his or her
investment in the plan (reducing cash reserves by the same amount). The value
of the position therefore becomes <K 0(S*#X,S*#X, 0)!X, and the overall
boundary condition is

<K 1(S* , K, *)"max[<K 0(S*#X,S*#X, 0)!X, K!Z]. (58)

More generally, the boundary condition at any revaluation date is

<K i(S* ,K, *)"max[<K i~1(S*#X, S*#X, 0)!X, K!Z]. (59)

This boundary condition can be used to solve for <K , but, except at maturity,
there is no simple relation between <K and <. For example, from Eqs. (56) and
(58),

<K 1(S* , K, *)"max[<K 0(S*#X,S*#X, 0)!X, K!Z]

"max[<0(S*#X,S*#X, 0)!X, K!Z]

"max[(S*#X)<0(1, 1, 0)!X, K!Z]

"max[S*<0(1, 1, 0)#XM<0(1, 1, 0)!1N,K!Z]. (60)

This is shown, for di!erent values of S* , in Fig. 9. The cost associated with
moving jobs reduces the value should the employee exercise the option by $Z
(the distance between the solid and dashed horizontal line segments in Fig. 9).
On the other hand, the payo! of the option should the employee not exercise it is
higher than in Section 3 by XM<0(1, 1, 0)!1N (the distance between the solid
and dashed sloping line segments in Fig. 9), since the employee's additional
contribution to the plan increases holdings of the option in future.

Both of these e!ects make exercise relatively less attractive, but the e!ect on
the option's value today, relative to that calculated in Section 3, is ambiguous. It
depends on the relative values of X and Z, as well as the time to expiration. For
example, if Z"0 and X'0, i.e., there is no cost to moving jobs, the option is
unambiguously more valuable than in Section 3. The payo! if exercised is the
same, but the value of not exercising is higher, as it re#ects the value of future
units of the option that will be added to the account. If X"0 and Z'0, i.e.,
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Fig. 9. Value of the position on the last revaluation date. The solid line shows the value of the
position held by an investor who is currently employed, whose position was worth $K on the prior
valuation date, who faces a cost of $Z associated with leaving the "rm, and who will make an
additional contribution of $X to the plan next period if he or she does not leave the "rm. For
comparison, the dashed line is the payo! shown in Fig. 2. Relative to that payo!, the cost associated
with moving jobs reduces the payo! should the employee exercise the option by $Z (the distance
between the solid and dashed horizontal line segments). The payo! of the option should the
employee not exercise it is higher than in Fig. 2 by XM<0(1, 1, 0)!1N (the distance between the solid
and dashed sloping line segments), since the employee's additional contribution to the plan increases
the holdings of the option in future.

moving is costly, and no further money will be added to the account, the value is
unambiguously lower than in Section 3 due to the cost of moving. Over time,
both of these e!ects will become less and less signi"cant as the value of the assets
currently in the plan increases relative to both the cost of leaving and the value
of possible future contributions.

5. Summary

Under current regulations, participants in some 401(k) and other retirement
plans have an option to time retirement or rollovers from these plans strategi-
cally. I analyze this option and "nd that, given reasonable assumptions about
life expectancy and volatility, the option may be worth up to 40% of the value of
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the underlying assets, "nanced entirely by those still contributing to the plan.
Even when a plan insists that rollovers must occur within one year of leaving the
"rm, the option can add over 13% to the value of the underlying assets. Recent
events such as the accelerated retirements of American Airlines pilots in late
1998 show that this option can have very large payo!s in practice and causes
signi"cant changes in investors' behavior.

One way to prevent these wealth transfers is to value the accounts more often,
e.g., daily rather than annually, but this may require substantial additional
administrative overhead. An alternative way of achieving the same objective,
without changing the valuation frequency, and without any extra administrative
burden, is merely to require any request for a rollover or retirement payout to be
carried out immediately following the next valuation. Since participants can no
longer condition their withdrawal request on this (as yet unknown) value, they
lose the option described here.

Appendix. Rollover rules

While 401(k) plans have a fair degree of #exibility in their valuation and
distribution policies, there are a number of rules limiting this #exibility. Below is
a summary of some of the main applicable rules and regulations. This section
borrows from the much more extensive treatment in Franz et al. (1997), which
should be consulted for more details (see especially Chapters 3, 4, and 6).

f Valuation of a 401(k) plan may be performed as often as daily, or as
infrequently as annually. Traditional 401(k) plans are valued quarterly,
though the trend is towards more frequent valuation (Franz et al., 1997,
pp. 3}53).

f Distributions of funds in a 401(k) plan may always be made upon retirement,
death, disability, or separation from service [see Treas. Reg. Sections
1.401}1(b)(1)(ii), 1.401(k)}1(d)(1)(i)].

f Employer contributions are, in general, more accessible at other times than
elective (i.e., employee, as opposed to employer) contributions. Elective con-
tributions may also be distributed under the following circumstances [see
Treas. Reg. Sections 1.401(k)}1(d)(1)(ii}v)]:

f C Attainment of age 59 1/2.
f C Hardship
f C Termination of the plan
f C Sale or other disposition of at least 85% of the assets used by a corpora-

tion in its trade or business to an unrelated corporation
f C Sale or other disposition by a corporation of its interest in a subsidiary to

an unrelated individual or entity.
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4 If a 401(k) plan contains employer stock, the net unrealized appreciation (the di!erence between
the market value of the security at the time of distribution and the cost basis of the security) is not
subject to tax until the securities are sold. Only the cost basis of the securities is included in taxable
income at the time of the distribution [See IRC Section 402(e)(4)]. This tax advantage is lost if the
securities are rolled over into an IRA.

f Any such distribution can be &rolled over' without tax consequences4 directly
to another eligible plan, such as another employer's 401(k) plan (if it accepts
rollovers) or a rollover IRA account. A plan loses its tax-quali"ed status if it
does not allow such a direct rollover [see IRC Section 401(a)(31); Treas. Reg.
Section 1.401(a)(31)}1T, Q&A 1}3].

f A rollover does not have to occur immediately on separation from the
company. Although a person may roll over the account immediately on
leaving a "rm, the law provides that, as long as the person has more than
$3,500 in the plan, he or she cannot be forced to rollover immediately [see
Treas. Reg. Section 1.411(a)}11(c)(3), Section 1.411(a)}11(c)(4)].
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