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Abstract

We show that several well-known asset pricing anomalies are largely mitigated if we

endow the representative agent with an arbitrarily small minimum consumption level.

This allows us to solve the model for parameter values where the standard “Lucas

tree” model is not defined. For these parameters, disasters become more important,

and the market risk premium therefore higher, even though consumption is less risky.

Our model yields reasonable risk premia, Sharpe ratios and discount rates; excess price

volatility; and a high market price-dividend ratio. We derive closed-form solutions for

all variables of interest.
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1 Introduction

When a standard one-tree consumption-based exchange economy, with Brownian log-consumption

growth and a representative investor with power utility, is calibrated to data, three signif-

icant anomalies arise.1 First is the Equity premium puzzle, famously posed by Mehra and

Prescott (1985): For reasonable values of the risk-aversion coefficient, the implied equity

premium is too low. Second is the Risk-free rate puzzle (see Weil (1989)): If risk aversion

is chosen to match the equity premium, then the discount rate is implausible. Third is the

Excess-volatility puzzle (see LeRoy and Porter (1981), and Shiller (1981)): Price volatility

in the standard model is the same as dividend volatility and consumption volatility; in

reality, however, price volatility is many times higher than both consumption and dividend

volatility. As summarized in LeRoy (2006),

“The conclusion that appears to follow from the equity premium and price volatil-

ity puzzles is that, for whatever reason, prices of financial assets do not behave

as the theory of consumption-based asset pricing predicts.”

The equity premium puzzle remains perhaps the most disturbing counterfactual pre-

diction for the standard model, mainly because such a stylized model should not be “off”

by an order of magnitude. More sophisticated models inevitably build on the simple one,

making its poor performance especially troubling. In this paper, we show that all three of

these puzzles are, in fact, extremely fragile. With calibrations as reasonable as in Mehra

and Prescott (1985), a very small change to the setup leads to very different levels for the

market risk premium, the risk-free rate, and the level of price volatility. The specific change

we implement is to introduce an arbitrarily small risk-free consumption stream to the stan-

dard model. We call this the Minimum Consumption (MC) economy, and show that this

minor modification largely mitigates all three puzzles.

Our results are based on the observation that for some parameter values, beyond what

we dub the breakpoint, the risky tree in the standard model is so risky that the representative

investor’s expected utility is negative infinity, and the risk premium is therefore not well

defined. With a lower bound on consumption, expected utility remains finite, though it is

still strongly affected by low consumption states in this parameter region. As a result we

obtain a much higher risk premium than in the standard model. Indeed, for low growth rates

and personal discount factors, the risk premium in our model for these parameter values

can approach γ2σ2 instead of the γσ2 produced by the standard model.2 Interestingly, the

1Though commonly referred to as a “Lucas” model, the first order conditions for this economy and

associated stochastic discount factor, ρ
U′(Ct+1)
U′(Ct)

, were first derived by Rubinstein (1976), and later used by

Lucas (1978).
2The value γ2σ2 is an upper bound for the risk premium in our model. The risk premium is given in full

by γmax(γ − κ, 1)σ2, where κ > 0 depends on the parameters of the model, and can be close to zero.
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consumption process in our economy, with probability one, looks indistinguishable from the

standard one-tree model in the long run. Empirically, it would therefore be impossible to

distinguish the consumption process in the MC model from that in the standard model,

even though the differences in asset pricing are huge. Although the effects of minimal

consumption on asset prices is drastic in our model, the stochastic discount factor only

changes marginally, so our approach has little to say about the Hansen-Jagannathan bounds.

We are not the first to consider the effect of extreme events in consumption-based asset

pricing. For example, Barro (2005) (following Rietz (1988)) shows that adding catastrophic

risk, either actual or suspected, to the standard model can generate empirically reasonable

equity premia. In a similar spirit, Weitzman (2007) argues that parameter uncertainty, by

increasing subjective probabilities for low states, significantly increases the equity premium.

However, there are two major differences between our results and these papers. First,

whereas Barro (2005), Rietz (1988), and Weitzman (2007) all rely on making the lower

tail of the consumption distribution fatter than in the standard model, we actually reduce

the likelihood of very low states, making the lower tail of the distribution thinner than in

the standard model (indeed, we impose a strict lower bound on consumption, so the lower

tail has weight zero below this level). This allows us to analyze asset pricing properties

for parameters which are typically ignored; we explore this idea in more detail when we

consider the robustness of our model. Second, whereas prior papers have typically focused

on one puzzle at a time, we show that our model is capable of substantially mitigating all

three of the primary puzzles listed above with the same calibrated parameters.

For simplicity, we implement the model in a two-trees framework (see Cochrane, Longstaff,

and Santa-Clara (2008)), with one risky and one risk-free tree. This makes the analysis

tractable, and we obtain closed-form solutions for all variables of interest. We also show

that the effect of minimum consumption levels extends to broader classes of model.

In a simple calibration of the MC model, we show that to obtain a market risk premium

of 5% requires a risk aversion coefficient of only γ = 12.2, compared with the γ = 31

needed by the standard model.3 We also show that, in stark contrast to the standard

model, the long-term discount rate in our model is independent of risk aversion. In the

calibration, we get a long rate of 2.4%, so there is no risk-free rate puzzle at the long end of

the yield curve. The short rate is −2.8%, which is somewhat low, but far above the −58%

implied by the standard model with the same parameters; moreover, instead of the flat term

structure in the standard model, we typically get an upward-sloping term structure. Price

volatility is also higher than in the standard model: our calibration yields a price volatility

of 10.3%, compared with a consumption volatility of 4%. Finally, our calibration produces

a reasonable market Sharpe ratio of 0.49.

3In the standard model, γ = 12.2 leads to a risk premium of only 2%.
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Central to our analysis is the existence of a risk-free consumption stream. There are

many plausible economic frameworks that give rise to such a sector; we posit two. First,

in an economy with technology shocks, if there is enough “memory” in the economy, it is

natural to assume that production levels can never fall below some threshold. Similarly, a

lower bound on consumption can be interpreted as subsistence farming or consumption.4

Second, bonds may not be in zero net supply. The assumption that bonds are in zero

net supply is consistent with an infinitely lived representative agent in an economy absent

any frictions. In particular, any bonds that she issues, she also consumes. By contrast, in

a world with finitely lived investors, or with frictions, it may be possible for the current

generation to borrow against the consumption of future generations, leading to a positive

supply of bonds and risk-free consumption for the current generation over a significant time

period. Indeed, in any economy in which Ricardian equivalence fails, government bonds

can be in positive net supply.5

Intuitively, the existence of a minimum consumption level lowers the value to the repre-

sentative consumer of claims that pay off in states when her risky consumption is low. The

representative consumer weighs two factors when evaluating a claim that pays off when her

other consumption is low: first, her current level of consumption, and second, the difference

between current marginal utility and marginal utility when the claim pays off. The first

factor is important because it affects how far into the future she will consume the claim. A

higher current consumption level decreases the value of this claim by increasing the time

until its payoff (because the personal discount rate is positive). However, a higher current

consumption level also increases the relative difference between current marginal utility and

marginal utility at payoff. In the paper, we show that the relative importance of these two

factors changes drastically when passing the breakpoint. In the region in which the standard

model is defined, the first effect dominates the second, so for high consumption levels the

price of a low-consumption claim is negligible. Beyond the breakpoint, however, the second

effect dominates the first, and the claim becomes more and more valuable, the higher the

consumption level. In the standard model, the price of such a claim is infinite, which is why

the standard model is not defined beyond the breakpoint. By contrast, in the MC economy,

the minimum consumption level leads to a finite, albeit high, price for the claim.

4If a cataclysmic event such as a nuclear war occurred, a subsistence level of consumption might not exist.
However, since it is also unlikely that financial assets would survive, we restrict our attention to states of
the world in which no such event occurs. The only modification needed is that the representative investor
has a higher effective personal discount discount rate in the presence of such events (similar to the increased
discount rate in the portfolio problem of an investor with finite, stochastic life length, compared with an
infinitely lived one).

5In the extreme case, if the representative investor does not care at all about consumption after a certain
date, he will take the opportunity to transfer risk-free consumption from beyond that date, if feasible. The
economy then behaves like one with a finite horizon and a minimum consumption level. (Our results also
hold for long but finite horizons; see Section 4.7).
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A vast literature has suggested other solutions to the classic puzzles, usually based on

significant modifications of the standard model. We cannot do justice to this literature

here, but mention a few examples. To solve the equity premium puzzle, some researchers

have explored preference specifications that make the stochastic discount factor (SDF) more

volatile. Abel (1990) introduced catching-up-with-the-Joneses preferences, while Constan-

tinides (1990) (see also Ferson and Constantinides (1991) and Campbell and Cochrane

(1999)) suggested that consumers form habits. Others have investigated rational bubbles

as a potential solution to the excess-volatility puzzle (see, for example, Blanchard (1979),

Blanchard and Watson (1982), Froot and Obstfeld (1991)). With rational bubbles, prices

are highly nonlinear functions of dividends, leading to a higher price volatility. In our

model, the market price of equity is a convex function of consumption, which mechanically

leads to a higher risk premium and price volatility. This is similar to the price behavior

in, for example, Abel (1990), and Froot and Obstfeld (1991). In contrast to these models,

however, we make minimal modifications to the standard model; preferences are the same

and there are no bubbles in the MC economy. The only difference is the addition of an

arbitrarily small additional consumption stream.

The rest of the paper is structured as follows. We proceed by laying out the MC model

in Section 2, and study when the differences between this and the standard economy are

important. In Section 3, we address the equity premium puzzle, the risk-free rate puzzle and

the excess-volatility puzzle, and present a simple calibration. We discuss robustness, how

our approach is related to other approaches, and possible generalizations in Section 4. After

a brief conclusion, all proofs appear in the Appendix, as does some supporting Mathematica

code, which provides numerical back-up for our theoretical results.

2 Model

Consider an economy that evolves between times 0 and T , in which there are two sources

of the consumption good. As in the standard one-tree model, the first, risky asset grows

stochastically, and pays an instantaneous dividend of Dt dt, where Dt = D0 e
y(t), y(0) = 0,

dy = µdt + σ dω, and µ and σ are constants. Here, ω is a standard Brownian motion,

which generates a standard filtration, Ft, on t ∈ [0, T ). Unlike the one-tree model, there

is also a second, riskless asset paying a dividend, B dt, where B ≥ 0. It will be useful to

consider the share of the risky asset in the overall economy and so we define the risky share,

z(t) = Dt
B+Dt

. We also define µ̂ = µ+ σ2

2 . The horizon T can be finite or infinite. We focus

primarily on the case when T = ∞, but show in Section 4 that the results carry over to

the case with large but finite T . In Section 4, we also show how these assumptions on the

growth processes can be substantially relaxed.
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There is a price-taking representative investor with constant relative risk-averse (CRRA)

utility, risk-aversion coefficient γ > 1, and personal discount rate ρ > 0, who consumes the

total output:

U(t) = Et

[∫ ∞
t

e−ρ(s−t)u(B +Ds) ds

]
, (1)

where

u(c) =
c1−γ

1− γ
. (2)

We also write U(t|B,Dt), when we want to stress the dependence on B and Dt.

In what follows, we focus our attention on the (economically interesting) case µ > 0.

We note that in this case (when B > 0), the distribution of the risky share, z(t) ∈ (0, 1),

converges in probability to one for large t, z →p 1, and the growth rate of real variables

(i.e., dividends and consumption) in the economy behaves much like that in the one-tree

model for large t.6

The market is dynamically complete, and usual arguments imply that, in equilibrium,

an asset that pays out ξt, where ξt is an Ft adapted process satisfying standard conditions,

commands an initial price of

P0 =
1

u′(B +D0)
E0

[∫ ∞
0

e−ρsu′(B +Ds)ξs ds

]
. (3)

Equation (3) is the Euler equation relating the agent’s aggregate consumption, marginal

utility, and valuation for all securities.

Notice that if B = 0, all resources are in the risky asset and the economy collapses to

the standard one-tree model with constant growth and power utility. When B > 0, the

economy is a special case of that in Cochrane et al. (2008), further generalized in Martin

(2009); i.e., it is a so-called “two-trees” economy, in which one of the trees is risk free. We

refer to the case B = 0 as the standard model, whereas when B > 0 we have the Minimum

Consumption (MC) model.

As we elaborate below, providing the agent a minimal level of insurance (through the

risk-free tree) provides new implications. Equivalently, we could have specified the economy

as one with no riskless tree but with HARA utility, u(c) = (B+c)1−γ

1−γ , or one in which

there is one asset with output B + Dt and a risk-free bond in zero net supply (similar to

Rubinstein (1983)). More generally, our results will also apply to combinations of these

assumptions, such as a MC model with riskless consumption Bc, combined with HARA

6If, on the other hand, µ < 0, the share converges to zero, z →p 0. In this case, real variables become
almost risk free over time. If µ = 0, then the share converges in probability to a two-point distribution with
50% mass at 0 and 50% mass at 1 (the convergence also holds a.s. for µ 6= 0, but not for µ = 0).
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utility, u(c) = (Bu+c)1−γ

1−γ , as long as Bc +Bu > 0.

We define

η = ρ+ (γ − 1)µ− (γ − 1)2
σ2

2
,

the dividend yield in the standard model, which will be useful going forward. The properties

of the standard model have been extensively analyzed, and are summarized in Table 1.

Variable Value

Risk-free rate, rs ρ+ γ
(
µ+ σ2

2

)
− γ(γ + 1)σ

2

2

Long rate, rl ρ+ γ
(
µ+ σ2

2

)
− γ(γ + 1)σ

2

2

Market return, re ρ+ γ
(
µ+ σ2

2

)
− γ(γ − 1)σ

2

2

Dividend yield, η
def
= D/P ρ+ (γ − 1)µ− (γ − 1)2 σ

2

2
Market risk premium, re − rs γσ2

Consumption volatility σ
Dividend volatility σ
Price volatility σ
Market Sharpe ratio γσ

Table 1: Properties of the standard model (the consumption model with Brow-
nian log-consumption process and power preferences).

2.1 The Breakpoint

In the MC model, utility and marginal utility are bounded both from above and from below,

so (1) and (3) are well-defined for arbitrary values of µ > 0, σ > 0, ρ > 0, B > 0, and

D0 > 0. To clarify the differences between the MC model and the standard one, we study

the expected utility of the agent in the two settings. First, observe that the homogeneity

of the utility function implies that the value function, U , is scalable as U(t|B,Dt) = (B +

Dt)
1−γU(t|1 − z, z) def

= (B + Dt)
1−γw(z), where w(z)

def
= U(t|1 − z, z). We call w(z) the

normalized value function at share z.

We define the following three variables, which will be helpful going forward:

q =
√
µ2 + 2ρσ2, κ =

µ+ q

σ2
, α = γ − κ. (4)

We shall see later that the value of α will be extremely important for the behavior of the

model. Note that it is always the case that α < γ.

Our first result characterizes the normalized value function.
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Proposition 1 In the MC model, the normalized value function of the representative agent,

w(z), is finite for all z ∈ (0, 1). It is given by

w(z) =
z−κ(1− z)1−γ−κ

q(1− γ)

[
V

(
1− z
z

, κ, 2− γ
)

(5)

+

(
1− z
z

) 2q

σ2

V

(
z

1− z
, α+

2q

σ2
− 1, 2− γ

)]
. (6)

Here,

V (y, a, b)
def
=

∫ y

0
ta−1(1 + t)b−1 dt (7)

is defined for a > 0. Also, w(0) = 1
ρ(1−γ) .

Moreover, recall that the dividend yield in the standard model (if it exists) is given by

η = ρ+ (γ − 1)µ− (γ − 1)2 σ
2

2 . Then, if η > 0, w(1) = 1
η(1−γ) . If, on the other hand, η ≤ 0,

then w(1) = −∞.

The proof of this proposition is given in the Appendix. The last part of Proposition 1

is important. When η > 0, the value function in the MC model converges to that in

the standard model as z approaches one. However, when η ≤ 0, the two models behave

completely differently. Note that in this case, while we can still calculate η, it is no longer

equal to the dividend yield in the standard model (which does not exist). In this case,

the value function is negative infinity in the standard model, and equilibrium is undefined.

In contrast, the value function is always finite in the MC model. It is easy to check that

the breakpoint at which the standard model becomes undefined (η = 0) occurs at the risk-

aversion coefficient

γ = 1 + κ, (8)

where κ is defined in (4). It is straightforward to check that γ − (1 + κ) > 0 is equivalent

to α > 1 and to η < 0, so above the breakpoint the dividend yield in the standard model

is formally negative, as discussed above.7 Going forward, we shall use the term “below

the breakpoint” to refer to sets of parameters for which η > 0, and “above/beyond the

breakpoint” to refer to sets of parameters for which η < 0. Below the breakpoint point (i.e.,

for lower γ), the standard model is well-defined, whereas above the breakpoint it is not.

Thus, although we may expect the MC model to converge to the standard model below the

breakpoint, the characteristics of the MC model above the breakpoint are unclear.

7It is well-known that expected utility is infinite beyond the breakpoint in the standard model. For
example, Campbell (1986) develops a parameter restriction for general stationary processes, which is the
discrete-time version of the breakpoint equation. The breakpoint condition also occurs in Martin (2009),
though in a different context. Martin (2009) characterizes the prices of “small firms” below the breakpoint.
We examine the properties of the market above the breakpoint.
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To provide further intuition for the breakpoint, we note that although the true drift

of the risky tree is µ̂ > 0, the risk-adjusted drift term used by the representative investor

is lower. In fact, when B = 0, for utility purposes the investor treats the drift of the

expectation as being µ̂′ = (1 − γ)µ̂ + (1 − γ)2 σ
2

2 .8 When µ̂′ < 0, the investor acts as

if consumption is expected to be very low for large t. Moreover, when ρ − µ̂′ < 0, the

expected utility of consumption in the far future is also very low in present-value terms. In

this situation, we may expect the representative investor to be prepared to pay a lot for

insurance against bad states of the world in the far future. The condition ρ − µ̂′ < 0 is

exactly the condition of being above the breakpoint.

2.1.1 Calibration

To get a sense for what the breakpoint implies for risk aversion, suppose that the consump-

tion growth rate, volatility of growth and personal discount rate are

µ̂ = 0.75%, σ = 4%, and ρ = 1% (9)

respectively, these values selected as follows:

Consumption Volatility Our choice of 4%, is within (though at the top end of) the

range used by prior authors. In particular, it is close to the 3.6% used by Mehra and

Prescott (1985). Campbell (2003) reports the average annual consumption volatility for ten

countries between 1970 and 2000 as 2.13%, and a value of 3.2% for annual volatility in the

U.S. between 1891 and 1998. While our value of 4% is somewhat higher than these numbers,

these previous studies almost certainly underestimate the true volatility of consumption

growth. In particular, Triplett (1997) and Savov (2009) (Internet Appendix) point out

that three statistical issues with the NIPA consumption data in the U.S. automatically

lead to an artificially low volatility in measured consumption: i. benchmarking,9 ii. non-

8This holds in the sense that U =
D

1−γ
0

1−γ

∫ T
0
e−ρtE

[(
Dt
D0

)1−γ]
dt =

D
1−γ
0

1−γ

∫ T
0
e−ρtE [Rt] dt, where the

risk-adjusted diffusion process Rt ≡
(
Dt
D0

)1−γ
satisfies R0 = 1, dRt

Rt
= µ̂′ dt + (1 − γ)σ dω (following from

standard Itô calculus), and therefore E[Rt] = eµ̂
′t.

9Benchmarking, a comprehensive measurement of consumption, occurs only once every five years. In non-
benchmarking years, the Census Bureau’s Retail Trade Survey is used to estimate consumption updates,
but this does not include all expenditure types, so many values are interpolated or forecast based on the
most recent benchmark values.
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reporting,10 and iii. the residual method used to calculate consumption.11 In response,

Savov (2009) uses garbage generation data from the EPA as a proxy for consumption,

and estimates consumption volatility to be around 2.5 times as high as NIPA consumption

expenditures — 2.9% from 1960 to 2007. He also cites an alternative survey of garbage

data by the journal Biocycle, which has a volatility of 4.1% per year. In addition to

these statistical issues, Parker (2001) and Gabaix and Laibson (2001) argue that another

reason the usual historical measures may well be substantially too low is that consumption

adjustment costs may artificially reduce measured consumption volatility. Moreover, if

individual investors are adjusting consumption at infrequent, but different, points in time,

aggregate consumption will be smoother than the consumption of any individual. Finally,

Malloy, Moskowitz, and Vissing-Jørgensen (2009) note that asset prices are determined by

those who actually hold assets. Focusing on the consumption of shareholders, rather than

all individuals, they estimate the annual volatility of consumption to be between 3.6% and

5.4%, depending on whether an adjustment is made for the possibility of different people

being shareholders in different periods.

Consumption Growth Rate and Personal Discount Rate A growth rate in the

neighborhood of one percent per year is in line with observation as well as with previous

theoretical studies, as is a personal discount rate of one percent per year (see, for example,

Cochrane (2001) and references therein).

Implied Risk Aversion With these parameters, Equation (8) shows that the breakpoint

occurs at γ = 10.6, a not unreasonably high number (Mehra and Prescott (1985) consider

risk aversion coefficients up to 10, and several studies use higher values — for example,

Malloy et al. (2009) use values of γ between 10 and 15).

Relative Sizes of Trees At this point we are not making a specific assumption about

the relative size of the trees, z, but we shall be considering values close to 1. Note that

B → 0, D → ∞, and z → 1 are all equivalent, so all of our results for z close to 1 can be

interpreted as results when B → 0.

10Savov (2009) reports that around 7% of the annual data currently suffers from this problem, down from
14% ten years ago, and probably more in the preceding decades. In addition, there is no fixed method
for including new retail establishments. He suggests that it is likely that non-reporting and newly formed
retailers are also those with the most volatile sales.

11For most commodities, personal expenditure is calculated by subtracting government and business pur-
chases from total estimated domestic supply. Business purchases are in many cases estimated.
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3 Anomalies Revisited

Without loss of generality, we assume that B ≡ 1, i.e., that the risk-free part of the con-

sumption stream is of size one, and from (3) we define P (D0) to be the price of the total

consumption output in the economy,

P (D0) = E

[∫ ∞
0

e−ρs
(

1 +D0

1 +Dt

)γ
(1 +Dt) ds

]
. (10)

The price for general B 6= 1 then follows from the relation P (B,D0) = BP
(
D0
B

)
. We will

specifically be interested in the dynamics for large D, or, equivalently, for z close to 1.

We provide an explicit characterization of the price of the market:

Proposition 2 The price function P (D) is

P (D) = (1 +D)γ
D−κ

q

[
V (D,κ, 2− γ) +D

2q

σ2 V

(
1

D
,α+

2q

σ2
− 1, 2− γ

)]
, (11)

where V (y, a, b)
def
=
∫ y
0 t

a−1(1+ t)b−1 dt, and q, κ, and α are defined as in Equation (4), i.e.,

q =
√
µ2 + 2ρσ2, κ = µ+q

σ2 , α = γ − κ.

Similar formulas are derived in Cochrane et al. (2008) (for γ = 1), and in Martin (2009),

though there they are expressed in terms of hypergeometric functions.

Figure 1 shows the price-dividend ratio multiplied by |η|, for different choices of γ. This

product equals one in the standard model, regardless of D. Recall that the breakpoint risk

aversion for this set of parameters is γ = 10.6. For γ = 2 and γ = 3 (the lower lines),

the ratios quickly converge to one as D increases, in line with the intuition that when D

is large, the economy is effectively the same as the standard model. However, for γ = 12

and γ = 13, the function quickly increases as D grows. It is clear from the figure that price

dynamics above the breakpoint are quite different from those below. We now explore why.

Consider the price of a digital option that pays a very small amount (say $1) in the

event that total consumption drops to 1 + ε.12 Let K(D0, ε) be the value of such an asset,

starting at D0 (where we assume that D0 > ε).

It follows from (3) that K is given by

K(D0, ε) =

(
1 +D0

1 + ε

)γ
E0

[
e−ρτf

]
,

where τf is the stopping time

τf
def
= inf

t
{t : Dt ≤ ε}. (12)

12Technically, this is an American digital cash-or-nothing put option.
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=2, 3

=12=13

Figure 1: Scaled market price-dividend ratio in MC model as a function of D, for
parameters according to (9), i.e., µ̂ = 0.75%, σ = 4%, ρ = 1%, with risk aversion
coefficients, γ = 2, 3, 12, 13.

The value of this claim is thus made up of two offsetting elements. The first element,(
1+D0
1+ε

)γ
, is the incremental marginal utility of the agent when he consumes, given his

consumption today. The contribution of this part is heavily dependent on the agent’s risk

aversion. A high risk aversion implies a high difference between the marginal utility at the

consumption level 1 + ε and at 1 + D0, which has a positive effect on the price. For large

D0, the first element behaves like Dγ
0 , since the relative value of consumption at ε is higher

the wealthier the economy is at the starting point. Because of the direct dependence on the

risk-aversion coefficient, we call this the “risk-aversion effect.”

The second element, E0 [e−ρτf ], represents the expected discounted value of $1 when

consumption hits the boundary. We therefore call it the “discount effect.” It is straightfor-

ward, using standard results for stopping time distributions, to show that

E0

[
e−ρτf

]
=

(
ε

D0

)κ
, (13)
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where κ > 0 is defined in (4).13 Since κ > 0, it is always the case that this term is decreasing

in D0. This makes sense because the higher D0, the longer it will take to reach ε (and the

lower the chance that ε will ever be reached). It is easy to see that κ is increasing in µ and

ρ, but decreasing in σ. All these properties are intuitive: A higher growth rate, µ, lowers

the chance that ε will ever be reached, and thereby decreases the time-value of the digital

option. An increase in the volatility, σ has the opposite effect. Finally, an increase in the

personal discount rate, ρ, lowers the discounted value of the option.

Putting the risk-aversion and discount effects together, we arrive at

K(D0, ε) = εκ
(

1 + 1/D0

1 + ε

)γ
Dγ−κ

0 . (14)

Given a fixed ε > 0, εκ
(
1+1/D0

1+ε

)γ
approaches a positive constant for large D0. By contrast,

the behavior of Dγ−κ
0 depends on γ − κ. Below the breakpoint (i.e., for γ − κ < 1), for

large D0 this asset is worth much less than D0, i.e., K(D0, ε)/D0 goes to zero as D0 goes

to infinity. In this case, the discount effect dominates the risk-aversion effect for large D0.

Above the breakpoint, on the other hand (i.e., for γ − κ > 1), this asset becomes very

valuable for high D0, in a nonlinear fashion. The risk-aversion effect now dominates the

discount effect.

The central intuition of the paper is that the trees contain this type of payout (they

pay something in the bad states of the world). Therefore, above the breakpoint, the market

value of these trees will also increase superlinearly with D0. In fact, we will show that they

behave just like the digital options above the breakpoint, with their value growing like Dγ−κ
0

for large D0.

The digital option argument also provides an intuition for why the standard model

does not work above the breakpoint. The single tree in the standard model also contains a

collection of these types of threshold payments. The single tree does not, however, guarantee

the representative agent the subsistence level of B = 1. The first term in the equation

corresponding to (14) therefore only contains ε (not 1 + ε) in the denominator. It follows

that such claims will be much more valuable in the one-tree economy because when the

agent’s consumption is low (ε low), her marginal utility will be very high and therefore the

value of such claims will explode. In this way, the risky tree becomes infinitely valuable. We

will return to this point in more detail in Section 4, where we show that a similar argument

also holds for finite-horizon economies.

13The expression for κ can be derived from the first-passage-time distributions (see Ingersoll (1987)). It
can also be derived using methods from the real-options literature. Similar to Dixit and Pindyck (1994), pp.
142–144, the expectation can be derived as a solution (of the form (13)) to an ordinary differential equation.

Here, κ is the positive root to the characteristic equation σ2

2
κ2 − µκ− ρ = 0.
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It is possible to derive the following asymptotic results for large D for the behavior of

the market price-dividend ratio in the MC economy.14

Proposition 3 The asymptotic price-dividend ratio in the MC model depends on the pa-

rameter region. Specifically,

(i) Below the breakpoint (i.e., for α < 1 so that the value function is finite in the one-tree

model), for large D the price-dividend ratio converges to P (D)
1+D = 1

η .

(ii) Above the breakpoint (i.e., for α > 1 so that the value function is infinitely negative

in the one-tree model), for large D the price-dividend ratio converges to cDα−1, for

some constant c > 0, where α is defined in (4).

It is immediate from Proposition 3 that the exponent of the asymptotic price-dividend

ratio behaves like max(α, 1) − 1. It is thus the “convexity parameter,” max(α, 1), which

governs the behavior of price-dividend ratios (and prices) for large D. Figure 2 below shows

the convexity parameter as a function of risk aversion (γ) for some different parameter

choices.

The convexity of the price function lies at the heart of our analysis of the asset pricing

anomalies, to which we now turn.15

3.1 The Risk Premium

It is important to stress that reasonable values of the exogenous parameters are consistent

with the region in which prices and price-dividend ratios are undefined in the standard

model. In the MC economy, the asymptotic expected return on the market depends on the

parameter values. Recall that the instantaneous expected return on the market is

re dt = E

[
dP

P
+

1 +D

P
dt

]
. (15)

We have

Proposition 4 For z close to 1,

14Throughout the paper we study the value of the total B + D consumption flows. We obtain identical
asymptotic results for the purely risky part of the economy, i.e., the value of the D consumption flows.

15The convexity of the price function above the breakpoint (shown in Proposition 3(ii)) is crucial for the
subsequent results. The convexity can also be verified numerically. We provide Mathematica code for the
numerical calculations in the Appendix.
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Figure 2: Convexity parameter, max(α, 1), as a function of risk aversion γ. Pa-
rameters: µ̂ = 0.75%, ρ = 1%, σ = 2.5%, 3%, 4%, 6%, 12%.

(i) Below the breakpoint, the expected return on the market is the same as in the standard

model: re = ρ+ γµ− γ(γ − 2)σ
2

2 .

(ii) Above the breakpoint, the expected return on the market is re = αµ + α2 σ2

2 , where α

is defined in (4).

To get an intuition for the results in Proposition 4, we note that below the breakpoint,

the price is essentially the same as in the standard model (as shown in Proposition 3(i)), so

expected returns will essentially be the same. Above the breakpoint, however, the second

term in (15) becomes small for large D (as implied by Proposition 3(ii)). Moreover, since

P (D) ∼ Dα, the first term behaves like

E

[
dP

P

]
=

(µ+ σ2

2 )P ′ dt+ σ2

2 D
2P ′′ dt

P
≈ α(µ+

σ2

2
) dt+ α(α− 1)

σ2

2
dt.
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It follows that the market risk premium can also become large. In fact, it is well known

that the risk premium, re − rs can be expressed as

(re − rs) dt = − cov

(
dM

M
,
dP

P

)
, (16)

where rs is the short-term rate, and M is the pricing kernel, which is equal to e−ρt(1+D)−γ

in the MC economy (with B = 1). It therefore follows from standard Itô calculus that

re − rs = γmax(α, 1)σ2. (17)

For α < 1, the risk premium is thus the same as in the standard model. For α > 1, however,

it is larger, due to the convexity of P as a function of D. In this case, through α, the risk

premium now depends on the economy’s growth rate, µ, and the personal discount factor,

ρ, and is decreasing in both of these parameters.

One immediate implication of Proposition 4 is:

Corollary 1 For z close to one, for low values of µ and ρ, or high values of σ, the risk

premium is close to γ2σ2.

Thus, if µ and ρ are low and/or σ is large, then κ is close to zero and the risk premium,

γmax(γ−k, 1)σ2, is close to γ2σ2. The result emphasizes that the risk premium has a very

different dependence on the parameters of the economy here, compared with the standard

one-tree economy, in which the risk premium is γσ2. Since it is always the case that

κ > 0, γ2σ2 is also an upper bound on the risk premium in the MC economy, regardless of

parameter values.

The intuition behind the equation for the risk premium (17) is clear. As we saw in

Section 3, below the breakpoint, the discount effect dominates the risk-aversion effect, so

the values of digital options that pay off in bad states of the world are marginal for large D.

Therefore, the pricing in the states of the world close to current D will dominate the pricing

function. Since the risk-free asset is marginal in these states of the world, asset dynamics

will look much like in the one-tree model. Specifically, below the breakpoint all variables of

interest converge to the same values as in the one-tree economy as D becomes large — or

equivalently as z → 1.

Above the breakpoint, on the other hand, the risk-aversion effect dominates the discount

effect. The value of digital options that pay off in bad states of the world now increase as

Dα, when D increases. Therefore, the price function is very different from the one-tree price

function, even as z → 1. The convexity of the price function immediately implies a higher

equity premium. Specifically, from (16) it follows that that there are two parts of the risk

premium. The first part depends on the pricing kernel, dM
M , and the contribution of this
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part when z is close to 1 is γσ in both the one-tree and MC economy. The contribution of

the second part, dP
P , however, is different in the two models. Whereas the contribution is

σ — leading to a risk premium of γσ × σ = γσ2 when the price function is linear, it is ασ

when P (D) grows like Dα, α > 1. The risk premium is therefore γσ × ασ = γασ2 above

the breakpoint in the MC economy for z close to 1.

These are asymptotic results, for z close to 1. In Figure 3 we illustrate the market risk

premium for a fixed risk aversion, γ = 12.25 (which is above the breakpoint), as we vary the

risky share, z (recall that z = D
D+B ∈ (0, 1)), using the parameters in (9). As z approaches

1, there is indeed convergence to the asymptotic value of 5.0%. Comparing this with the

risk premium implied by the standard model, γσ2 = 2.0%, we see that the premium in the

MC model is substantially higher.

The following Figure 4 displays the market risk premium for z close to 1 as we vary

both risk aversion and volatility (each curve corresponds to a different volatility). Beyond

the breakpoint, the risk premium increases very quickly in a convex fashion, implying that

a small increase in risk aversion drastically increases the market risk premium.

0.2 0.4 0.6 0.8
z

0.01

0.02

0.03

0.04

re-rs

Figure 3: Market risk premium as a function of z, for fixed risk aversion. Pa-
rameters: µ̂ = 0.75%, ρ = 1%, σ = 4%, γ = 12.25, implying that α = 2.55. The
asymptotic risk premium is γασ2 = 5.0%.
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and linear in γ, re−rs = γσ2. Above the breakpoint, the risk premium is a steeply
convex function. Parameters: µ̂ = 0.75%, ρ = 1%, σ = 2.5%, 3%, 4%, 6%, 12%.

3.2 The Term Structure

The term structure is also quite different in the MC economy. From (3) it follows that a

zero-coupon risk-free bond with maturity date τ has the price

P τ = e−ρτE0

[(
B +D0

B +Dt

)γ]
. (18)

We can rewrite this expectation in terms of the risky share, z = D0
B+D0

,

P τ = e−ρτE0

[(
1 + z

(
Dt

D0
− 1

))−γ]
, (19)

and since the distribution of Dt
D0

does not depend on D0, it immediately follows that the

price can be written as a function of z alone, P τ (z), given by the following Proposition:
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Proposition 5 Define the log-relative size of the sectors as d = log(z/(1 − z)). Then the

price of a τ -period zero-coupon bond is given by

P τ = (1 + ed)γe−ρτ
1√

2πσ2τ

∫ ∞
−∞

e−(y−d−µτ)
2/(2σ2τ)

(1 + ey)γ
dy. (20)

This result follows immediately from Equation (19). An equivalent expression (Equa-

tion (29)) that is more convenient for calculation appears in the Appendix.

Martin (2009) independently characterizes the term structure in an economy with many

trees. His framework is more general than ours, in that it allows for general Levy processes

and multiple trees, but his solution is based on Fourier transform techniques, and so is

different from those in Proposition 5 and in the Appendix.

In the MC economy, the term structure is no longer constant. Defining the τ -period

spot rate as

rτ = − log(P τ )

τ
,

we use Equation (29) in the Appendix to study the yield curve with parameters chosen

according to (9), z = 70%, and risk-aversion coefficients between 6 and 12. The choice of

z = 70% means that the risky tree initially dominates the economy, and the risky share

converges to z = 1 as t grows, so the consumption growth rate is fairly stable in this

economy. The results are shown in Figure 5.

We note that the yield curves in the figure can slope upwards or downwards, and can

even be hump-shaped. The slope increases with the risk-aversion coefficient, γ, and so, in

general, does the curvature. Moreover, although the short end of the curve is sensitive to

γ, as in the one-tree model, there seems to be an asymptotic long-term rate that does not

vary much with γ. To understand these properties of the yield curve, we analyze the short

rate, rs, and the long rate, rl, defined to be

rs = lim
τ↘0

rτ , and rl = lim
τ→∞

rτ ,

respectively.

Proposition 6 In the MC economy, the short-term rate is

rs = ρ+ γz

(
µ+

σ2

2

)
− γ(γ + 1)

σ2

2
z2.
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Figure 5: Term structure of interest rates in the MC model. Parameters, z = 0.7,
γ varies between 6 (highest curve) to 12 (lowest curve). Other parameters
according to (9).

For z ∈ (0, 1), if µ ≤ γσ2, the long-term rate is

rl = ρ+
1

2
× µ2

σ2
. (21)

If, on the other hand, µ > γσ2, the long-term rate is

rl = ρ+ γ

(
µ+

σ2

2

)
− γ(γ + 1)

σ2

2
. (22)

Thus, the short rate has the same structure as in the standard model and, as long as

µ > γσ2, the long rate is also the same as in the standard model. This makes intuitive

sense, since the economy will almost surely be very similar to the one-tree economy in the

long run. If µ < γσ2, however, the long rate is a constant, independent of the risk aversion

parameter. Since

η = ρ+ (γ − 1)µ− (γ − 1)2
σ2

2
> (γ − 1)

(
µ− (γ − 1)

σ2

2

)
> (γ − 1)

(
µ− γσ2

)
,

it will always be the case that the long rate is independent of risk aversion above the

breakpoint (i.e., when η is negative).

19



In our previous numerical example, with parameters according to (9) and γ = 12.25, this

implies that the long rate is rl = 2.4%. The short-rate depends on z, as shown in Figure 6.

For z close to unity, i.e., for large D, it becomes negative. At z = 1, it is −2.8%. While

negative, this is nevertheless far more reasonable than the values we would obtain if we

calibrated the standard model to the market risk premium. For example, a risk premium of

5% would imply a risk-free rate of −58% in the standard model. We are, of course, dealing

with real variables, so a negative discount rate is obviously possible, although this value is

clearly extreme.

Our focus is on the case when z is close to one. We note in passing, however, that for

lower z (i.e., when the relative size of the risk-free tree is not negligible), the short rate is

also positive. In our calibration, for z ≤ 0.8, the short rate is positive. From Figure 3, we

see that the risk premium is about 3% at z = 0.8. Finally, we note that the volatility of

the short rate, σ(rs), is low and depends on z. In our example, σ(rs) varies between 0 and

0.08% and reaches its maximum at z ≈ 0.75.

0.2 0.4 0.6 0.8 1
z

-0.02

-0.01

0.01
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rs

Figure 6: Short rate as a function of z. Parameters according to (9) and γ = 12.25.

This γ-independence above the breakpoint stands in stark contrast to the results in the

standard model, where the interest rate is very sensitive to risk aversion. Specifically, in

the MC model, the long rate is always greater than the personal discount rate, rl > ρ,

20



regardless of the aggregate risk aversion in the economy, and is therefore positive.16,17 This

γ-independence thus offers a resolution to the risk-free rate puzzle at the long end of the

term structure.

The reason why risk aversion becomes unimportant for bond yields as the horizon in-

creases, even though bond prices depend on risk aversion, is that differences between bond

prices in economies indexed by different levels of risk aversion are sufficiently small, com-

pared with the compounding inherent in the yield calculation, that the price differences

become unimportant at the long end of the curve. The price of a bond is the expected

discounted value of a dollar multiplied by the representative agent’s marginal utility. In

the MC model, the marginal utility (irrespective of risk aversion) is bounded above and

below. If the agent consumes the fruit of a risk-free tree, which provides insurance, then

marginal utility is always bounded above. Indeed, one can find an upper bound on the ratio

of marginal utilities for two agents with the same personal discount factor but different risk

aversion coefficients independently of time horizon. Therefore, bond prices for the same

maturity for any two economies that differ only in the risk aversion of their representative

agents will not differ “by much.” For long maturities this will lead to similar yields.

The difference between the long rates in the standard and MC economy further under-

scores the fragility of the CRRA-lognormal model over longer time horizons. Regardless

of how close z is to 1 in the MC model, the long-term rate is drastically different from

when z is identically equal to 1. The differences between the two models are driven by the

insurance the risk-free tree provides in the far-left tails. Moreover, although the long rate

is always γ-independent above the breakpoint, there are also regions below the breakpoint

in which it is γ-independent.

At a broad level, our results are reminiscent of, but distinct from, those found in Weitz-

man (1998, 2001). Weitzman argues that if there is parameter uncertainty, the long-term

discount rate is lower than that inferred from the short- and mid-term rates. We agree with

Weitzman that a careful analysis of the implicit assumptions about return distributions and

utility in the tails is needed to understand the long-term discount rate. Both Weitzman’s

and our results are driven by the extreme importance of the worst states in longer horizons.

Unlike in Weitzman (1998, 2001), however, the long rate in our model may be higher than

16A somewhat related result on the long rate is presented in Dybvig, Ingersoll, and Ross (1996), who show
that long rates can never fall over time because Bayesian updaters can never be surprised by a worse state.
Within our specific economy, our result is stronger than the Dybvig-Ingersoll-Ross theorem, since it states
that rl is constant over time, and across risk aversion.

17We have verified that the formula is indeed correct by numerically integrating Equation (18) directly.
Mathematica code is provided in the appendix, showing that with parameters, ρ = 1%, µ = 3.5%, σ = 20%,

γ = 2.5, the long rate converges to rl = ρ+ µ2

2σ2 = 2.53% (in line with Equation (21), since 3.5% < 2.5×20%2).

On the contrary, Equation (22) would, for example give rl = ρ + γµ− γ2σ2/2 = 1% + 2.5× 3.5%− 2.52 ×
20%2/2 = −2.75%. By varying B, D0 and γ, it is easily verified that rl does not depend on these parameters.
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the short rate. This distinction is obviously important if existing market data are used to

infer a maximum possible discount rate.

3.3 Excess Volatility

Above the breakpoint, prices are not linearly related to consumption, but, as we observed

in Proposition 2, are a convex function of dividends. It naturally follows, then, that the

volatility of prices is much higher than the volatility of the underlying dividends. In fact,

it is easy to show that the price volatility is

vol

(
dP

P

)
= max(α, 1)σ. (23)

In our numerical example, with parameters according to (9) and γ = 12.25, this implies a

market price volatility of 10.3%, which is more than 2.5 times the dividend (and consump-

tion) volatility of 4%. Since C = B + D, if we think of B as a bond and D as a stock,

then the volatility of consumption will actually be somewhat lower than that of dividends.

This is, of course, in line with what we see in practice. The magnitude of the difference will

be small, though, as our focus is on the case where B � D. If we alternatively interpret

both B and D as being (different) parts of the stock market, one riskier than the other

(somewhat reminiscent of Rubinstein (1983)), dividend and consumption volatility will be

exactly equal. The model thus naturally leads to excess volatility, both with respect to

consumption and with respect to dividends. Since α < γ, an upper bound on the excess

volatility is given by the risk-aversion parameter.

Table 2 summarizes the formulas and numerical results we have derived.

Variable Formula Value-MC

Short rate, rs ρ+ γ
(
µ+ σ2

2

)
− γ(γ + 1)σ

2

2
−2.8%

Long rate, rl,when µ < γ σ
2

2
ρ+ µ2

2σ2 2.4%

Long rate, rl, when µ > γ σ
2

2
ρ+ γ

(
µ+ σ2

2

)
− γ(γ + 1)σ

2

2

Market return, re, when α > 1 αµ+ α2 σ2

2
2.2%

Market return, re, when α < 1 ρ+ γ
(
µ+ σ2

2

)
− γ(γ − 1)σ

2

2

Risk premium, re − rs γmax(α, 1)σ2 5.0%
Consumption volatility σ 4%
Dividend volatility σ 4%
Price volatility max(α, 1)σ 10.3%
Market Sharpe ratio γσ 0.49

Table 2: Properties of the MC model for large D, and an example with parameters according
to (9), µ̂ = 0.75%, σ = 4%, ρ = 1%, with γ = 12.25, implying that α = 2.58.
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4 Discussion and Generalizations

4.1 Sensitivity of Standard Model

Our model shows how minor changes to the process in low-consumption states (when CRRA

expected utility becomes unbounded as consumption approaches zero), drastically changes

the results obtained from the standard one-tree model. The fragility of expected utility

when utility is unbounded has been much studied, supported by the theoretical work of

Nielsen (1984, 1987), who develops an axiomatic foundation for expected utility theory

which allows for unbounded utility functions. More recently, Geweke (2001) shows that the

CRRA-lognormal framework is very fragile with respect to distributional assumptions in

the far-left tails. For example, he shows that for γ > 1, expected utility at some future date

is not finite if log(C) has a t distribution with any number of degrees of freedom, ν, so we

cannot use expected utility to make optimal choices (even though, for high values of ν, this

distribution is impossible to distinguish econometrically from lognormality). Thus, even if

the true distribution is normal, but the mean and variance are unknown (with standard

forms for their priors), expected utility to a Bayesian updater is not finite even in the limit

as the sample length goes to infinity.

Geweke (2001) notes that the extreme sensitivity of the finiteness of expected utility

to assumptions about tail distributions carries over to implications we might draw about

quantities such as the equity premium and the level of real interest rates. However, neither

Nielsen (1984) nor Geweke (2001) provides any specific quantitative implications. Pursuing

this line of thought, Barro (2005) (following Rietz (1988)) generates empirically reason-

able risk premia by allowing for some additional probability of extremely low consumption

states. Weitzman (2007) adds additional weight to low-consumption states via parame-

ter uncertainty.18 The importance of very low consumption states in the CRRA-lognormal

framework was also emphasized in Kogan, Ross, Wang, and Westerfield (2006), who studied

the price impact of irrational traders in capital markets.

The intuition behind our model is, in spirit, somewhat similar, in that we also focus

on the impact of very bad outcomes. However, whereas the papers above all fatten the

lower tail of the consumption distribution, we make the lower tail thinner. This allows us

to study regions of parameter space, invalid under the standard model, where bad events

have a much larger effect on expected utility. In these regions the risk premium is higher

even though there is no “jump risk” in the MC model. In addition, whereas the other

papers focus on one puzzle at a time (usually the equity premium puzzle), we show that

our modification of the standard model is able at the same time to substantially mitigate

18Other papers making small changes to the distributional assumptions include Geweke (2000), Tsionas
(2005), and Labadie (1989).
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the equity premium puzzle, risk-free rate puzzle, and excess volatility puzzle.

4.2 Bonds in Positive Net Supply

Ours is not the first model to provide a minimum consumption level via riskless bonds in

positive net supply. In particular, Cochrane et al. (2008), in the original “two-trees” model,

consider an example (Section 2.8) where one tree has a riskless dividend (though this is not

the main focus of their paper). However, because they assume log utility, they are unable

to consider parameter values beyond the breakpoint, so all of their economies converge to a

standard one-tree economy as one of the trees gets large. Heaton and Lucas (1996) consider

agents with general CRRA utility who can trade stocks and bonds and face stochastic labor

income. Although they mostly assume bonds are in zero net supply, they do also consider

one example with bonds in positive net supply (Section IV F). They find (p. 473) that this

can have a significant impact on prices and expected returns, but their solution technique

(approximating the true continuous-state model with a discrete-state Markov chain) rules

out extremely low consumption states, so they are unable to address the issues studied here.

4.3 Finite Time Horizons

The standard model is not defined above the breakpoint in the infinite-horizon setting. It

is, however, well defined above the breakpoint when the time horizon is finite, with the

same low market risk premium, re − rs = γσ2, as below the breakpoint. Similarly, it is

straightforward to show that the MC economy with a long but finite horizon converges to

the MC economy with infinite horizon.19 Here, by convergence we mean that given any

z > 0, there is a large but finite T such that the finite-horizon MC economy behaves in a

manner similar to the infinite-horizon economy with the same z.

How can the results then be so different? We argue that it is the standard model that

behaves strangely above the breakpoint. The price function in the finite-horizon case is

P (t,D) = 1−e−η(T−t)
η D . Below the breakpoint, this converges to D

η for large T . Above

the breakpoint, on the other hand, the price explodes as time to maturity increases. The

low risk premium then comes from the fact that Pt
P ≈ η, i.e., there is a large expected

price decrease at each point in time when η is negative. This decrease is driven by the

low-state digital options we discussed previously. These claims are extremely valuable for

long time horizons, but their value decreases very quickly over time when the terminal date

approaches, since the risk that these states will ever be reached decreases rapidly. The

behavior of the entire tree’s value is driven in large part by the extreme behavior of these

low-state digital options. Since such negative expected returns with time horizon do not

19The convergence follows much easier than in the standard model since, for γ > 1 and B > 0, the utility
function and its derivative are bounded below and above for all states of the world.
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seem to be present in practice, we conclude that the standard model also provides a poor

characterization above the breakpoint with finite horizons.

4.4 Relation to Literature on Bubbles

Price-dividend ratios in the MC model are nonstationary beyond the breakpoint. In fact,

the convex price function is similar for large D to what occurs in the rational-bubble models

that have been introduced to explain the excess-volatility puzzle (see, for example, Froot

and Obstfeld (1991)). In fact, our mechanism leading to excess volatility is technically

similar to the intrinsic (rational) bubble mechanism used in Froot and Obstfeld (1991).

The standard way of introducing rational bubbles in an infinite-horizon economy is to ignore

transversality conditions (see, e.g., Ingersoll (1987), Froot and Obstfeld (1991) and Gilles

and LeRoy (1997)). Within our setting, allowing for rational bubbles would amount to

changing the pricing function (3) by adding a non-zero rational-bubble term to the formula.

Without transversality conditions, there are multiple pricing functions consistent with

rational pricing. As shown, e.g., in Froot and Obstfeld (1991), in a constant discount

rate and investment opportunity setting, the bubble solutions take the form cDα for some

α > 1, as opposed to the no-bubble solutions, which have α = 1. Thus, these rational

bubbles have the same functional form as our price function above the breakpoint, and

are also nonstationary. In the MC economy, however, even though price-dividend ratios

are nonstationary, there is no bubble, since the discounted cash flow formula (3) prices all

assets in the economy. In fact, as noted already in Cochrane (1992), Appendix B, even

with stationary distributions for consumption growth, price-dividend ratios need not be

stationary. Thus, although the price functions have similar forms in the MC economy and

in the rational-bubble literature, the underlying economic reason is very different.

The empirical literature that has tested for explosive stock market price dynamics has

produced mixed results. For example, Diba and Grossman (1988) use a cointegration-

augmented Dickey-Fuller test to conclude that prices are not explosive, a conclusion that

is supported by Cochrane (1992). On the other hand, West (1987) and Froot and Obstfeld

(1991) do find evidence for explosive price dynamics, findings that are also supported by

Engsted (2006), who uses a cointegrated VAR method. In the MC model, the price-dividend

ratios explode quite slowly and may therefore be hard to detect. In our numerical example,

for example, it takes about 65 years for price-dividend ratios to double. This compares

with an observed increase in the market price-dividend ratio of 3.2 times during the 65

years between 1943 and 2008.20

20This calculation is based on annual price and dividend data obtained from Robert Shiller’s Web site,
http://www.econ.yale.edu/~shiller/data.htm.
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4.5 Relation to Hansen-Jagannathan Bounds

We have developed our results with respect to the market risk premium. In other words, our

analysis has rested on the assumption that the equity portfolio makes up the whole market

portfolio. This is the formulation developed in Mehra and Prescott (1985) and many other

papers. With that formulation it is shown that, all else equal, the risk premium is much

higher in the MC model than what seems to be implied by the standard model.

An alternative approach to the equity premium is given in Hansen and Jagannathan

(1991), in which it is described as a bound on the Sharpe ratio of the equity portfolio. This

bound puts restrictions on the SDF in the economy, whereas the market model puts joint

restrictions on the SDF and the price function. Since the risk premium in our approach

increases due to a more volatile price function, our approach therefore has less to say

about the Hansen-Jagannathan bounds. It does have two implications though. First, the

interpretation of a high equity volatility differs from that in the standard model. In the

standard model, a high equity volatility implies that the equity market is a highly leveraged

claim on consumption. This is not the case in the MC model, in which the high volatility

is introduced because of the convex price function. Second, since the price function is

nonlinear, the unconditional correlation between consumption and equity returns may be

low even though the two processes are instantaneously perfectly correlated. In fact, it

follows from Figure 1 that for low D, equity and consumption are perfectly negatively

correlated, which will decrease the unconditional correlation and, in turn, artificially make

the required risk premium look higher than it actually is (see Berk and Walden (2009) for

further analysis of this argument).

4.6 More General Utility

The focus of this paper is on standard time-separable expected utility. One may wonder

what the results would be in a model in which a more general utility specification is used.

Specifically, it is well known that the standard time-separable expected utility specification

jointly restricts risk aversion, γ and the elasticity of intertemporal substitution (EIS), such

that that the inverse of the EIS, ψ, is equal to γ. If the representative investor has stochastic

differential utility, ψ and γ may not be the same, raising the question whether ψ or γ

determines the breakpoint. It turns out that the breakpoint depends on both ψ and γ

in this case. For example, under Kreps-Porteus stochastic differential utility (Duffie and

Epstein (1992)), the breakpoint occurs at ρ+ (ψ − 1)
(
µ− (γ − 1)σ

2

2

)
, as follows from the

analysis in Roche (2001) (see equation 2.3) and Bhamra, Kuehn, and Strebulaev (2010).

Both the EIS and risk aversion parameter therefore contribute to the breakpoint under

stochastic differential utility.
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4.7 Generalizations

For simplicity, we have derived our results in a two-trees framework with one risk-free,

constant-size tree. The results, however, are much more general. As long as there is a lower

bound on consumption (which could grow deterministically at some rate), and the risk of

ending up in these low-consumption states is bounded below by an i.i.d. growth process that,

given γ, is above the breakpoint, similar results apply. The general consumption process

could, for example, contain mean-reverting growth, as well as long-term i.i.d. growth. To

fix ideas, we illustrate one such generalization and show how a convex price function arises

under general conditions.

Proposition 7 Consider an exchange economy, with a representative agent with CRRA

expected utility with risk aversion coefficient γ > 1 and personal discount rate ρ > 0, in

which the consumption is Ct = f(Dt), where Dt = est, and where f : R+ → R+ is a

continuous, increasing function, such that for large d, c0d ≤ f(d) ≤ c1d, for some constants

0 < c0 ≤ c1 <∞.

For the stochastic process, st ∈ R, define the c.d.f. F (s, t|s∗, I) = P(st ≤ s|s0 = s∗, I),

where I captures the information known about st at t = 0. Assume that the following

condition is satisfied:

∃µ, σ > 0, t ≥ 0, s, s, such that ∀t ≥ t, s∗ ≥ s : F (s, t|s∗, I) ≥ Φ

(
s− s∗ − µt

σ
√
t

)
. (24)

Here, Φ is the cumulative normal distribution function. Further, assume that the economy

is beyond the breakpoint, i.e., that α = γ − µ+
√
µ2+2ρσ2

σ2 > 1.

Then

(i) If f(x) ≤ c2x in a neighborhood of x = 0, for some constant c2 ≥ 0, then there is no

equilibrium in the economy.

(ii) If f(0) > 0, then in any equilibrium the price of the market satisfies P (C0) ≥ c3C
α
0 ,

for some constant c3 > 0.

Equation (24) states that for large D0 (i.e., for D0 ≥ es) and large t (i.e., for t ≥ t),

the risk of ending up in low-consumption states (st ≤ s) is at least as high as if s were a

constant coefficient Brownian motion with growth rate µ and volatility σ.21

21While Proposition 7 generalizes our results to different probability distributions for consumption, pricing
depends only on the product of the p.d.f. and marginal utility at each possible consumption value, so our
results could also be extended to more general utility functions.
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Example 1 The MC economy is a special case of Proposition 7, in which f(x) = 1 + x,

and st ∼ N(s0 + µt, σ2t). It therefore satisfies (24) as an equality for all t > 0, s, and s.

Moreover,

Example 2 Consider an MC economy with f(x) = 1 + x and a mean-reverting growth

process,

dst = µt dt+ σ dω1,

dµt = β(µ− µt) dt+ σµ dω2,

where µ, σ, σµ, and β are positive constants and where cov(dω1, dω2) = ρ dt. Similar pro-

cesses are, for example, assumed in Kim and Omberg (2002), Wachter (2002), and Bansal

and Yaron (2004), and it is well-known that the distribution of st is normally distributed,

st ∼ N

(
s0 + µt+

µ0 − µ
β

(
1− e−βt

)
,
σ2µ + 2σµβρσ + β2σ2

β2
t

−
3σ2µ + 4σµβρσ

2β3
+

2e−βt

β3
(
σ2µ + σµβρσ

)
−
e−2βtσ2µ

2β3

)
.

Therefore, for large t, (24) is satisfied with σ2
def
=

σ2
µ+2σµβρσ+β2σ2

β2 . Here, σ > 0, as long as

ρ > −1 or σµ 6= βσ. From Proposition 7 it therefore follows that similar price-dynamics

occur beyond the breakpoint in the MC economy with a mean reverting growth process.

Thus, our theory is really about minimum consumption levels in exchange economies,

not about specific tree economies. In particular, referring back to the discussion after

Equation (17), this result implies that if the representative investor has a low discount rate

and believes that growth will slow down some time (arbitrarily far) into the future, then

the effective equity premium for high D will still be approximately γ2σ2, regardless of the

value of µ today (since it is only the asymptotic growth that matters). With this line

of reasoning, the observed risk premium in the example we have studied throughout this

paper would be matched by γ =
√

5%/4%2 = 5.6 (instead of γ = 12.25 needed when the

expected growth rate is constant). Further, if we use the numbers in Weitzman (2007) —

a risk premium of 6% and consumption volatility of 2% — the risk premium is matched by

γ =
√

6%/2%2 = 12.25 (compared with γ = 6%/2%2 = 150 obtained in Weitzman (2007)

under the assumption that re − rs = γσ2). Thus, a high risk premium may be a sign that

the economy will not be able to continue to grow fast in the long run.
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5 Concluding Remarks

We have established that if risk aversion is sufficiently high, the stochastic discount factor in

a simple one-tree exchange economy with minimum consumption can be a convex function

of the dividend (and hence consumption) stream. This immediately leads to explosive price-

dividend ratios, excess volatility, modest interest rates, and risk premia that are in line with

those observed.

Intuitively, there are two main channels through which future low-consumption states

affect how the representative agent values the market. The first is how the representative

agent currently values these low states, and is therefore captured by the difference between

marginal utility at current consumption and at the low-consumption states; the higher

the current consumption, the greater the difference. Further, since marginal utilities are

convex functions of consumption (when risk aversion is greater than one), this channel also

makes current market prices convex in consumption. The second channel is how likely the

representative agent is to hit one of these low states; the higher her current consumption,

the lower the risk that the low-consumption states will ever be reached (and the longer it

will take if they are reached). Below the so-called breakpoint, the second effect outweighs

the first, which means that the influence of the consumption provided in low-consumption

states on the current price becomes negligible when current consumption is high. This

corresponds to the standard model, in which the value of the agent’s consumption stream

is essentially linear in that consumption. However, when risk aversion is high enough to be

above the breakpoint, the first effect dominates: The value of being able to consume in the

low-consumption states increases convexly as current consumption grows. There is a ready

analogy to this intuition in the rare-disaster literature; while there are no “disasters” in

this framework, the existence of low-consumption states completely changes the properties

of the model above the breakpoint.

There are two immediate conclusions that can be drawn from our work. First, the

standard long-horizon one-tree model with a CRRA representative investor and a lognormal

consumption process is highly sensitive to small perturbations, especially when risk aversion

is high. In short, the framework is not robust. Second, an economically plausible assumption

that is quite innocuous (subsistence consumption) renders predictions that are more in

accord with empirical work. Of course, this one augmentation does not solve all puzzles;

the short term risk-free rate is still too low, consumption volatility a bit too high, as is the

coefficient of risk aversion. However, we find it fascinating that such a small modification

of the classic work-horse consumption model can improve the “fit” so significantly.

Finally, and more broadly, our results indicate that there is yet more to learn about

the effect of the consumption process on asset prices. Because consumption (as opposed
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to utility) is observable, exhausting the implications of tractable models with plausible

consumption streams presents a fruitful research agenda.
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Proofs

Proof of Propositions 1 and 2:

Starting with Proposition 2, we have

P (D0) = (1 +D0)E

[∫ ∞
0

e−ρs
(

1 +D0

1 +Dt

)γ−1
ds

]

= (1 +D0)γ
∫ ∞
−∞

∫ ∞
0

e−ρs
(

1

1 +D0ey

)γ−1
e−

(y−µs)2

2σ2s

√
2πσ2s

ds dy

= (1 +D0)γ
∫ ∞
−∞

(
1

1 +D0ey

)γ−1
e
µy−q|y|
σ2

q
dy

= (1 +D0)γ

[∫ 0

−∞

(
1

1 +D0ey

)γ−1
eyκ

q
dy +

∫ ∞
0

(
1

1 +D0ey

)γ−1
ey(κ−2q/σ

2)

q
dy

]

= (1 +D0)γ
D−κ0

q

[
V (D0, κ, 2− γ) +D

2q

σ2

0 V

(
1

D0
, α+

2q

σ2
− 1, 2− γ

)]
,

where

V (y, a, b)
def
=

∫ y

0

ta−1(1 + t)b−1 dt (25)

is defined for a > 0.
In the last step we used the transformation t = D0e

y for the first integral. For the second integral,

we rewrote
(

1
1+D0ey

)γ−1
=
(

D−1
0 e−y

D−1
0 e−y+1

)γ−1
and then used the transformation t = D−10 e−y to get

the expression. The function V is related to the incomplete Beta function, B(x, a, b)
def
=
∫ x
0
ta−1(1−

t)b−1 dt (see Gradshteyn and Ryzhik (2000)), via the relation V (x, a, b) = (−1)aB(−x, a, b). How-
ever, the Beta function is complex valued for negative values, so we prefer using the real-valued
function V . Also, since the Beta function and the hypergeometric function satisfy the relationship
B(x, a, b) = 2F1(1 − b, a, a + 1, x), we could equivalently have expressed the formula in terms of
hypergeometric functions.

This proves Proposition 2. For Proposition 1, for z = D0/(B +D0), we have

w(z) = (B +D0)γ−1U(0|B,D0) =
1

1− γ
P (B,D)

B +D
=

1

1− γ
B

B +D
P

(
D0

B

)
=

1

1− γ
zP

(
z

1− z

)
,

where the second equality holds for for CRRA utility, which follows from (3). Therefore, from
Equation (11), we immediately have that for z ∈ (0, 1),

w(z) =
z−κ(1− z)1−γ−κ

q(1− γ)

[
V

(
1− z
z

, κ, 2− γ
)

(26)

+

(
1− z
z

) 2q

σ2

V

(
z

1− z
, α+

2q

σ2
− 1, 2− γ

)]
. (27)

For w(0) and w(1), we define ŵT (z) = E
[∫ T

0
e−ρtu (1− z + zeyt) dt

]
, where yt = log(Dt/D0).

Thus, w(z) = ŵ∞(z). It follows immediately that w(1) = ŵ∞(1) =
∫∞
0

e−ρt

1−γ dt = 1
ρ(1−γ) . More-
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over, ŵT (0) =
∫ T
0

e−ηt

1−γ dt = 1−e−ηT
η(1−γ) , so for η > 0, w(0) = ŵ∞(0) = 1

η(1−γ) , whereas for η < 0,

limT→∞ ŵT (0) = −∞. The proposition is proved.
We note that although ŵ∞(0) = limT→∞ limz→0 ŵT (z) = −∞ when η < 0, it does not immedi-

ately follow that limz→0 w(z) = limz→0 limT→∞ ŵT (z) is equal to −∞ (for example, if ŵT (z) = − 1
zT ,

then the former expression is infinite, whereas the second is zero). However, the latter result fol-
lows, since ŵT (z) is decreasing in T for arbitrary z ∈ [0, 1], and ŵT (z) is continuous in z for
arbitrary finite T . Specifically, for an arbitrary constant, k > 0, it follows that for T ∗ large enough,
ŵT∗(0) ≤ −2k, and because of the continuity in z, ŵT∗(z) ≤ −k for all z ≤ z∗, for some z∗ > 0.
Therefore, ŵ∞(z) ≤ ŵT∗(z) ≤ −k for all z ≤ z∗ and since k was arbitrary, it is indeed the case that
limz→0 w(z) = limz→0 ŵ∞(z) = −∞.

Proof of Proposition 3:

We first study the case when α > 1. We look at P (D)
(1+D)α , for large D. From (11), it follows that

P (D)

(1 +D)γ−κ
=

(
1 +D

D

)κ
1

q

[
V (D,κ, 2− γ) +D

2q

σ2 V

(
1

D
,α+

2q

σ2
− 1, 2− γ

)]
=

1 + o(1)

q

[∫ D

0

tκ−1(1 + t)1−γ dt+D
2q

σ2

∫ 1/D

0

tα+
2q

σ2
−2(1 + t)1−γ dt

]
. (28)

Here, limD→∞ o(1) = 0. Since κ > 0 and γ − κ > 1, limD→∞
∫D
0
tκ−1(1 + t)1−γ dt = c1, where

0 < c1 <∞. Moreover,

D
2q

σ2

∫ 1/D

0

tα+
2q

σ2
−2(1 + t)1−γ dt = D

2q

σ2

∫ 1/D

0

tα+
2q

σ2
−2 dt = c2D

2q

σ2D−(α+ 2q

σ2
−1) = c2D

1−α,

which converges to zero for large D. The finiteness of the integral is ensured, since α+ 2q
σ2 − 2 > −1.

Thus, for large D, the expression converges to c1
q .

For α < 1, we use that

P (D)

1 +D
= (1 +D)γ−1

D−κ

q

[
V (D,κ, 2− γ) +D

2q

σ2 V

(
1

D
,α+

2q

σ2
− 1, 2− γ

)]
=

1 + o(1)

q
Dγ−1−κ

[∫ D

0

tκ−1(1 + t)1−γ dt+D
2q

σ2

∫ 1/D

0

tα+
2q

σ2
−2(1 + t)1−γ dt

]
.

For the first term, we note that∫ D

0

tκ−1(1 + t)1−γ dt =
Dκ

κ
2F1(γ − 1, κ, 1 + κ,−D) =

Dκ−γ+1

κ
2F1

(
γ − 1, 1, 1 + κ,

D

D + 1

)
.

For large D, the first term therefore converges to

1

qκ
2F1 (γ − 1, 1, 1 + κ, 1) =

Γ(κ+ 1)Γ(1 + κ− γ)

Γ(2 + κ− γ)Γ(κ)
=

1

q(1− γ + κ)
= −σ

2

q
× 1

(γ − 1)σ2 − µ− q
.
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For the second term, we note that

∫ 1/D

0

tα+
2q

σ2
−2(1 + t)1−γ dt =

D1−α− 2q

σ2 σ2

2q + (α− 1)σ2 2F1

(
γ − 1, α+

2q

σ2
− 1, α+

2q

σ2
,− 1

D

)
.

Since 2F1

(
γ − 1, α+ 2q

σ2 − 1, α+ 2q
σ2 , 0

)
= 1, and α = γ − κ, the second term therefore converges to

σ2

q(2q + (α− 1)σ2)
=
σ2

q
× 1

(γ − 1)σ2 − µ+ q
.

Thus,

lim
D→∞

P (D)

1 +D
=

σ2

q
×
(

1

(γ − 1)σ2 − µ+ q
− 1

(γ − 1)σ2 − µ− q

)
=

σ2

q
× 2q

((γ − 1)σ2 − µ)2 − q2

=
1

ρ+ µ(γ − 1)− (γ − 1)2 σ
2

2

=
1

η
.

Proof of Proposition 4

It is easy to see from (28) of Proposition 3 that for large D, when α > 1, d
dD

[
P (D)

(1+D)α

]
converges

to 0, as does d2

dD2

[
P (D)

(1+D)α

]
. Therefore, in this case, P ′ = α(1 + o(1))c2D

α−1, and P ′′ = α(α −

1)(1 + o(1))c2D
α−2 for large D, and it follows that P ′(D)D

P (D) converges to α and P ′′(D)D2

P (D) converges

to α(α− 1). (ii) then follows from standard Itô calculus.

For α < 1, an identical argument for P (D)
D proves (i).

Proof of Proposition 5:

Defining F (x) = ex
2

Erfc(x), where Erfc is the error function, Erfc(x) = (
√
π)−1

∫∞
z
e−t

2

dt, we want
to show that Equation (20) can be expressed in the following form:

P τ =
(1 + ed)γe−ρτ−(d+µτ)

2/(2σ2τ)

2
× lim
ε↘0

∞∑
n=0

(−1)ne−εnan

(
F

(
ε+ d+ µτ + nτσ2

√
2σ2τ

)
+ F

(
ε− d− µτ + (n+ γ)τσ2

√
2σ2τ

))
. (29)

Here,

an =
Γ(γ + n)

Γ(γ)Γ(n+ 1)
,

where Γ(x) =
∫∞
0
e−ttx−1 dt, which reduces to an =

(
n+γ−1

γ

)
when γ is integer valued.
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(i) : The function 1
(1+z)γ is analytic in the complex plane, |z| < 1, and can therefore be expanded

in the power expansion

1

(1 + z)γ
=

∞∑
n=0

(−1)nanz
n.

For y < 0, we use this expansion to get 1/ (1 + ey)
γ

=
∑∞
n=0(−1)nane

ny, and for y > 0, we get a
similar expansion 1/ (1 + ey)

γ
= e−γy

∑∞
n=0(−1)nane

−ny.
Now, from Equation (18), it follows that

√
2πσ2τ

P τ

(1 + ed)
γ
e−ρτ

=

∫ ∞
−∞

e−(y−d−µτ)
2/(2σ2τ)

(1 + ey)
γ dy

=

(∫ −ε
−∞

+

∫ ∞
ε

+

∫ ε

−ε

)
e−(y−d−µτ)

2/(2σ2τ)

(1 + ey)
γ dy

=

∫ −ε
−∞

e−(y−d−µτ)
2/(2σ2τ)

(1 + ey)
γ dy +

∫ ∞
ε

e−(y−d−µτ)
2/(2σ2τ)

(1 + ey)
γ dy +O(ε)

=

∫ 0

−∞

e−(y−ε−d−µτ)
2/(2σ2τ)

(1 + ey−ε)
γ dy +

∫ ∞
0

e−(y+ε−d−µτ)
2/(2σ2τ)

(1 + ey+ε)
γ dy

+O(ε). (30)

for all ε > 0 and y < 0. However, since,

e−(y−d−ε−µτ)
2/(2σ2τ)

(1 + ey−ε)γ
=

∞∑
n=0

(−1)nane
−(y−ε−d−µτ)2/(2σ2)+n(y−ε) =

∞∑
n=0

(−1)nane
− ε2ne(y−ε−d−µτ)

2/(2σ2)τ+n(y− ε2 ),

the first term is equal to

∫ 0

−∞

∞∑
n=0

(−1)nane
− ε2ne−(y−ε−d−µτ)

2/(2σ2τ)+n(y− ε2 ) dy. (31)

Now, define gM,ε(y) =
∑M
n=0 an(−1)ne−εn/2e−(y−ε−d−µτ)

2/(2σ2τ)+n(y− ε2 ), y < 0, M ∈ N, and

hε(y) = e−(y−ε−d−µτ)
2/(2σ2τ). Then, since an ∼ Cnγ for large n, it is clear that supn≥0 ane

−εn/2 =
C <∞. Therefore,

|gM,ε(y)| ≤ C

M∑
n=0

e−(y−ε−d−µτ)
2/(2σ2τ)+n(y− ε2 )

≤ C

∞∑
n=0

e−(y−ε−d−µτ)
2/(2σ2τ)+n(y− ε2 ) = C

e−(y−ε−d−µτ)
2/(2σ2τ)

1− e−ε/2ey

≤ C ′εe
−(y−ε−d−µτ)2/(2σ2τ) = C ′εhε(y).

Clearly,
∫ 0

−∞ C ′εhε(y) dy < ∞, and therefore the dominated convergence theorem implies that
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∫ 0

−∞ limn→ gM,ε(y) dy = limn→∞
∫ 0

−∞ gM,ε(y) dy, i.e.,

∫ 0

−∞

e−(y−ε−d−µτ)
2/(2σ2τ)

(1 + ey−ε)γ
dy =

∞∑
n=0

∫ 0

−∞
(−1)nane

− ε2ne−(y−ε−d−µτ)
2/(2σ2τ)+n(y− ε2 ) dy

=

∞∑
n=0

(−1)nane
− ε2n

∫ 0

−∞
e−(y−ε−d−µτ)

2/(2σ2τ)+n(y− ε2 ) dy

Define F (x) = ex
2

Erfc(x), where Erfc is the error function Erfc(x) = (
√
π)−1

∫∞
z
e−t

2

dt (see
Abramowitz and Stegun (1964)). Then, since

1√
2πσ2τ

∫ 0

−∞
e−(y−εd−µτ)

2/(2σ2τ)+n(y−ε/2) dy =
1

2
en(ε/2+d+µτ)+n

2τσ2/2Erfc

(
ε+ d+ µτ + nτσ2

√
2σ2τ

)
=

e−n
ε
2 e−(ε+d+µτ)

2/(2σ2τ)

2
F

(
ε+ d+ µτ + nτσ2

√
2σ2τ

)
,

it follows that

1√
2πσ2τ

∫ 0

−∞

e−(y−ε−d−µτ)
2/(2σ2τ)

(1 + ey−ε)γ
dy =

1

2

∞∑
n=0

(−1)nane
−εne−(ε+d+µτ)

2/(2σ2τ)F

(
ε+ d+ µτ + nτσ2

√
2σ2τ

)

= (1 +O(ε))
1

2
e−(d+µτ)

2/(2σ2τ)
∞∑
n=0

(−1)nane
−εnF

(
ε+ d+ µτ + nτσ2

√
2σ2τ

)
.

An identical argument for the
∫∞
0

e−(y+ε−d−µτ)2/(2σ2τ)

(1+ey+ε)γ dy term leads to

1√
2πσ2τ

∫ ∞
0

e−(y+ε−d−µτ)
2/(2σ2τ)

(1 + ey+ε)γ
dy =

1

2

∞∑
n=0

(−1)nane
−εne−(ε+d+µτ)

2/(2σ2τ)F

(
ε− d− µτ + (n+ γ)τσ2

√
2σ2τ

)

= (1 +O(ε))e−(d+µτ)
2/(2σ2τ)

∞∑
n=0

(−1)nane
−εnF

(
ε− d− µτ + (n+ γ)τσ2

√
2σ2τ

)

Putting it all together in Equation (30), we get

P τ =
(1 + ed)γe−ρτ√

2πσ2τ

(∫ 0

−∞

e−(y−ε−d−µτ)
2/(2σ2τ)

(1 + ey−ε)γ
dy +

∫ ∞
0

e−(y+ε−d−µτ)
2/(2σ2τ)

(1 + ey+ε)γ
dy +O(ε)

)

= O(ε) +
(1 + ed)γe−ρτ−(d+µτ)

2/(2σ2τ)

2

×
∞∑
n=0

(−1)ne−εnan

(
F

(
ε+ d+ µτ + nτσ2

√
2σ2τ

)
+ F

(
ε− d− µτ + (n+ γ)τσ2

√
2σ2τ

))
,

and thus, as ε↘ 0, we get convergence to Equation (29).
The formula is straightforward to use, since F (x) ∼ 1/x for large x. An error analysis implies

that if n terms is used in the expansion, ε ∼ log(n)/n should be chosen.

(ii): When γ = 1, an = 1 for all n, and we can choose ε = 0 and still apply the dominated
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convergence theorem in Equation (31) to get

P τ =
(1 + ed)γe−ρτ−(d+µτ)

2/(2σ2τ)

2
×

∞∑
n=0

(−1)nan

(
F

(
d+ µτ + nτσ2

√
2σ2τ

)
+ F

(
−d− µτ + (n+ γ)τσ2

√
2σ2τ

))
, (32)

(iii): For
d+ µτ

σ2τ
= m ∈ N,

Equation (32) reduces to a case for which closed-form expressions exist, so

P τ =
(1 + ed)e−ρτ−m

2σ2τ/2

2

(
1 + 2

m−1∑
n=1

(−1)nen
2σ2τ/2

)
.

Finally, we note that Since P τ = e−r(τ)τ , where r(τ) is the time-τ spot rate, we have

r(τ) = ρ+
µ2

2σ2
+

1

τ

(
log

(
− (1 + ed)γ

2

)
+

d2

2σ2τ
+
dµ

σ2
+ log(z)

)
,

where z = limε↘0

∑∞
n=0(−1)ne−εnan

(
F
(
ε+d+µτ+nτσ2

√
2σ2τ

)
+ F

(
ε−d−µτ+(n+γ)τσ2

√
2σ2τ

))
.

Proof of Proposition 6:
The result for rs is standard. Using Feynman-Kac, we know that

P τt +
1

2
σ2z2(1− z)2P τzz +

[
−µ̂z(1− z) + 2σ2z(1− z)2

]
P τz −

[
ρ+ γµ̂(1− z)− 1

2
γ(γ + 1)σ2(1− z)2

]
P τ = 0,

and since P τ (τ, z) = 1, it is clear that P (0, z) = 1−
[
ρ+ γµ̂(1− z)− 1

2γ(γ + 1)σ2(1− z)2
]
τ + o(τ),

for small τ . Since − log(1 − s) = s + O(s2) for small s, it is clear that rs = limτ↘0− log(P τ )
τ =

ρ+ γµ̂(1− z)− 1
2γ(γ + 1)σ2(1− z)2.

For rl, we proceed as follows: We have

P τ = (1 + ed)γe−ρτ
1√

2πσ2τ

∫ ∞
−∞

e−(y−µτ)
2/(2σ2τ)

(1 + ed+y)γ
dy = (1 + ed)γe−ρτ

1√
2π

∫ ∞
−∞

e−x
2/2

(1 + edexσ
√
τ+µτ )γ

dx.

We study the behavior of 1√
2π

∫∞
−∞

e−x
2/2

(1+edexσ
√
τ+µτ )γ

dx for large τ . We decompose:

1√
2π

∫ ∞
−∞

e−x
2/2

(1 + edexσ
√
τ+µτ )γ

dx

=
1√
2π

∫ −µτ+d
σ
√
τ

−∞

e−x
2/2

(1 + exσ
√
τ+µτ+d)γ

dx+
1√
2π

∫ ∞
−µτ+d
σ
√
τ

e−x
2/2

(1 + exσ
√
τ+µτ+d)γ

dx. (33)
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We prove the results for rl by studying the first and second term in Equation (33) separately for the

two cases µ ≤ γσ2 and µ > γσ2 respectively. By showing that the first term behaves like e−
µ

2σ2
τ for

large τ for all µ, whereas the second term behaves like e−
µ

2σ2
τ when µ ≤ γσ2 and like e−(γµ−γ

2σ2/2)τ

when µ > γσ2, the result will follow.
Since 0 < exσ

√
τ+µτ+d ≤ 1 for x ≤ −µτ+d

σ
√
τ

, we have

1√
2π

∫ −µτ+d
σ
√
τ

−∞

e−x
2/2

(1 + exσ
√
τ+µτ+d)γ

dx = C
1√
2π

∫ −µτ+d
σ
√
τ

−∞
e−x

2/2 dx = C ×N
(
−µτ + d

σ
√
τ

)
,

for some C ∈ [1/2γ , 1], whereN(·) is the cumulative normal distribution function, N(v)
def
= 1√

2π

∫ v
−∞ e−y

2/2 dy.

Now, we use

N(−v) = C2
e−v

2/2

v
, C2 ∈

1√
2π

[
v2

1 + v2
, 1

]
, (34)

which is valid for v � 0, to get

1√
2π

∫ −µτ+d
σ
√
τ

−∞

e−x
2/2

(1 + exσ
√
τ+µτ+d)γ

dx = C × C2
e−q

2/2

q
= C3

e−
µ2

2σ2
τ− µd

σ2
− d2

2σ2τ

q
,

where

C3 ∈
1√
2π

[
1

2γ+1
, 1

]
, and q =

µτ + d

σ
√
τ
.

We next study the second term in Equation (33), when µ < γσ2. First, we note that µ < γσ2

implies that γσ − µ
σ > 0. Obviously, 1

(1+exσ
√
τ+µτ+d)γ

≤ e−γ(xσ
√
τ+µτ+d), so

0 ≤ 1√
2π

∫ ∞
−µτ+d
σ
√
τ

e−x
2/2

(1 + exσ
√
τ+µτ+d)γ

dx ≤ 1√
2π

∫ ∞
−µτ+d
σ
√
τ

e−(x
2+2xγσ

√
τ)/2−γµτ−γd dx

=
1√
2π

∫ ∞
−µτ+d
σ
√
τ

e−(x+γσ
√
τ)2/2+ γ2σ2τ

2 −γµτ−dγ dx

= e−γde−τ(γµ−γ
2σ2/2) 1√

2π

∫ ∞
−µτ+d
σ
√
τ
+γσ
√
τ

e−x
2/2 dx

= e−γde−τ(γµ−γ
2σ2/2) 1√

2π

∫ ∞
(γσ−µσ )

√
τ− d

σ
√
τ

e−x
2/2 dx

= e−γde−τ(γµ−γ
2σ2/2)N

(
−
(
γσ − µ

σ

)√
τ +

d

σ
√
τ

)
≤ e−γde−τ(γµ−γ

2σ2/2) 1√
2π

e−q
2
2/2

q2

= e−γde−τ(γµ−γ
2σ2/2) 1√

2π

e−
d2

2σ2τ
+γd− dµ

σ2
−(γ2 σ2

2 −γµ+
µ2

2σ2
)τ

q2

= e−
d2

2σ2τ
− dµ
σ2 × 1√

2π

e
−µ2

2σ2
τ

q2
,
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where q2 =
(
γσ − µ

σ

)√
τ − d

σ
√
τ

, and we used that 1√
2π

∫∞
v
e−y

2/2 dy = N(−v), and Equation (34).

Thus,

1√
2π

∫ ∞
−µτ+d
σ
√
τ

e−x
2/2

(1 + exσ
√
τ+µτ+d)γ

dx = C4e
− d2

2σ2τ
− dµ
σ2 × e

−µ2

2σ2
τ

q2
,

where C4 ∈
[
0, 1√

2π

]
. Putting it all together, for large τ we get

P τ = (1 + ed)γe−ρt

(
1√
2π

∫ −µτ+d
σ
√
τ

−∞

e−x
2/2

(1 + exσ
√
τ+µτ+d)γ

dx+
1√
2π

∫ ∞
−µτ+d
σ
√
τ

e−x
2/2

(1 + exσ
√
τ+µτ+d)γ

dx

)

= (1 + ed)γe−ρt

C3
e−

µ2

2σ2
τ− µd

σ2
− d2

2σ2τ

q
+ C4e

− d2

2σ2τ
− dµ
σ2 × e

−µ2

2σ2
τ

q2


= e

−
(
ρ+ µ2

2σ2

)
τ
(1 + ed)γe−

µd

σ2
− d2

2σ2τ

(
C3

q
+
C4

q2

)
.

Therefore,

− log(P τ )

τ
= ρ+

µ2

2σ2
+
Q(τ)

τ
, where Q(τ) = log

(
(1 + ed)γe−

µd

σ2
− d2

2σ2τ

(
C3

q
+
C4

q2

))
.

Now, Q(τ) = log
(
(1 + ed)γ

)
− µd

σ2 − d2

2σ2τ + log
(
C3

q + C4

q2

)
, and since C3 ∈ 1√

2π

[
1

2γ+1 , 1
]
, C4 ∈[

0, 1√
2π

]
, q = µτ+d

σ
√
τ

and q2 =
(
γσ − µ

σ

)√
τ − d

σ
√
τ

, it follows that |Q(τ)| = o(τ) for large τ , i.e., that

limτ→∞
|Q(τ)|
τ = 0. From this it immediately follows that limτ→∞− log(P τ )

τ = ρ+ µ2

2σ2 .

We now consider the case when µ > γσ2, and define v = µ/σ − γσ > 0. We first note

that µ2

2σ2 ≥ γµ − γ2σ2/2, since µ2/(2σ2) − γµ + γ2σ2/2 = 1
2σ2 (µ − γσ2)2 ≥ 0. Thus, since

the
∫ −µτ+d

σ
√
τ

−∞
e−x

2/2

(1+edexσ
√
τ+µτ )γ

dx-term in Equation (33) behaves like e−τ×µ
2/(2σ2) for large τ , if the∫∞

−µτ+d
σ
√
τ

e−x
2/2

(1+exσ
√
τ+µτ+d)γ

dx ∼ e−τ(µγ−γ
2σ2/2), for large τ , then the result we wish to prove follows,

since it is always the case that c1e
−α1τ + c2e

−α2τ ∼ e−min(α1,α2)τ for large τ , for arbitrary c1 > 0,
c2 > 0, α1 > 0, α2 > 0.

We have

1√
2π

∫ ∞
−µτ+d
σ
√
τ

e−x
2/2

(1 + exσ
√
τ+µτ+d)γ

dx ≤ 1√
2π

∫ ∞
−µτ+d
σ
√
τ

e−(x
2+2xγσ

√
τ)/2−γµτ−γd dx

=
1√
2π

∫ ∞
−µτ+d
σ
√
τ

e−(x+γσ
√
τ)2/2+ γ2σ2τ

2 −γµτ−dγ dx

= e−γde−τ(γµ−γ
2σ2/2) 1√

2π

∫ ∞
−µτ+d
σ
√
τ
+γσ
√
τ

e−x
2/2 dx

= e−γde−τ(γµ−γ
2σ2/2)N

(
v
√
τ +

d

σ
√
τ

)
= e−γde−τ(γµ−γ

2σ2/2)(1−O(e−vτ )).
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Also, since 1 + exσ
√
τ+µτ+d ≤ 2exσ

√
τ+µτ+d

1√
2π

∫ ∞
−µτ+d
σ
√
τ

e−x
2/2

(1 + exσ
√
τ+µτ+d)γ

dx ≥ 1

2γ
1√
2π

∫ ∞
−µτ+d
σ
√
τ

e−(x
2+2xγσ

√
τ)/2−γµτ−γd dx

=
1

2γ
1√
2π

∫ ∞
−µτ+d
σ
√
τ

e−(x+γσ
√
τ)2/2+ γ2σ2τ

2 −γµτ−dγ dx

=
1

2γ
e−γde−τ(γµ−γ

2σ2/2) 1√
2π

∫ ∞
−µτ+d
σ
√
τ
+γσ
√
τ

e−x
2/2 dx

=
1

2γ
e−γde−τ(γµ−γ

2σ2/2)N

(
v
√
τ +

d

σ
√
τ

)
=

1

2γ
e−γde−τ(γµ−γ

2σ2/2)(1−O(e−vτ )).

Thus, it is the case that

1√
2π

∫ ∞
−µτ+d
σ
√
τ

e−x
2/2

(1 + exσ
√
τ+µτ+d)γ

dx = C5e
−τ(γµ−γ2σ2/2),

where C5 ∈
[
e−γd

2γ − ε, e
−γd + ε

]
, for arbitrary ε > 0, for large enough τ .

We therefore get

− log(P τ )

τ
= −1

τ
log

(
(1 + ed)γe−ρτ

(
e−τ

µ2

2σ2 e−
µd

σ2
− d2

2σ2τ
C3

q
+ C5e

−τ(γµ−γ2σ2/2)

))
.

Now, since µ2

2σ2 ≥ γµ − γ2σ2/2, the second term within the log expression dominates the first,
so we get

− log(P τ )

τ
= −1

τ

(
log
(

(1 + ed)γe−ρτC5e
−τ(γµ−γ2σ2/2)

)
+ o(τ)

)
=

(ρ+ γµ− γ2σ2/2)τ + o(τ)

τ
,

so indeed limτ→∞− log(P τ )
τ = ρ+ γµ− γ2σ2/2 = ρ+ γ(µ+ σ2/2)− γ(γ + 1)σ2/2.

Proof of Proposition 7:

Without loss of generality, we assume that s ≤ s, since the whole proof otherwise goes through
by replacing s with s.

We begin with (ii): It is easy to show the following inequality, which is valid for an arbitrary
constant, x ≤ 0: ∫ ∞

t

e−ρs
e−

(x−µs)2

2σ2s

√
2πσ2s

ds ≥ e−(ρ+µt)

q
eκx, (35)

where κ and q are defined in (4).
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Now,

P (C0) = E

[∫ ∞
0

e−ρt
(
f(D0)

f(Dt)

)γ
f(Dt) dt

]
≥ f(D0)γE

[∫ ∞
t

e−ρtf(Dt)
1−γ dt

]
≥ cγ0D

γ
0

∫ ∞
t

e−ρtE
[
f(Dt)

1−γ] dt
≥ cγ0D

γ
0

∫ ∞
t

e−ρtE
[
f(Dt)

1−γIst≤s
]
dt

≥ cγ0D
γ
0f(es)1−γ

∫ ∞
t

e−ρtE
[
Ist≤s

]
dt

≥ cγ0D
γ
0f(es)1−γ

∫ ∞
t

e−ρtΦ

(
s− s0 − µt

σ
√
t

)
dt

= cγ0D
γ
0f(es)1−γ

∫ ∞
t

∫ s−s0

−∞
e−ρt

e−
(x−µt)2

2σ2t

√
2πσ2t

dx dt

= cγ0D
γ
0f(es)1−γ

∫ s−s0

−∞

∫ ∞
t

e−ρt
e−

(x−µt)2

2σ2t

√
2πσ2t

dt dx

≥ cγ0D
γ
0f(es)1−γ

e−(ρ+µt)

q

∫ s−s0

−∞
eκx dx

= cγ0D
γ
0f(es)1−γ

e−(ρ+µt)

q

eκs

κ
× e−κs0

= cγ0D
γ
0f(es)1−γ

e−(ρ+µt)

q

eκs

κ
×D−κ0

= cγ0f(es)1−γ
e−(ρ+µt)

q

eκs

κ
×Dα

0

≥ cγ0f(es)1−γ
e−(ρ+µt)

q

eκs

κ
c−α1 × f(D0)α

= c3C
α
0 .
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For (i), we note that when f(ε) < c2ε, we can choose an arbitrary m > max{0,−s}, to bound

P (C0) = E

[∫ ∞
0

e−ρt
(
f(D0)

f(Dt)

)γ
f(Dt) dt

]
≥ f(D0)γE

[∫ ∞
t

e−ρtf(Dt)
1−γ dt

]
≥ cγ0D

γ
0

∫ ∞
t

e−ρtE
[
f(Dt)

1−γ] dt
≥ cγ0D

γ
0

∫ ∞
t

e−ρtE
[
f(Dt)

1−γIst≤−m
]
dt

≥ cγ0D
γ
0f(e−m)1−γ

∫ ∞
t

e−ρtE [Ist≤−m] dt

≥ cγ0D
γ
0f(e−m)1−γ

∫ ∞
t

e−ρtΦ

(
−m− s0 − µt

σ
√
t

)
dt

= cγ0D
γ
0f(e−m)1−γ

∫ ∞
t

∫ −m−s0
−∞

e−ρt
e−

(x−µt)2

2σ2t

√
2πσ2t

dx dt

= cγ0D
γ
0f(e−m)1−γ

∫ −m−s0
−∞

∫ ∞
t

e−ρt
e−

(x−µt)2

2σ2t

√
2πσ2t

dt dx

≥ cγ0D
γ
0f(e−m)1−γ

e−(ρ+µt)

q

∫ −m−s0
−∞

eκx dx

= cγ0D
γ
0f(e−m)1−γ

e−(ρ+µt)

q

e−κm

κ
× e−κs0

= cγ0D
γ
0f(e−m)1−γ

e−(ρ+µt)

q

e−κm

κ
×D−κ0

= cγ0f(e−m)1−γ
e−(ρ+µt)

q

e−κm

κ

≥ cγ0c
1−γ
2

e−(ρ+µt)

q

1

κ
Dα

0 × em(γ−κ−1)

= c4(D0)em(α−1).

Now, since α > 1 and m is arbitrary, there P (C0) must be infinite, and the equilibrium does therefore

not exist. Equivalently, we could have used the identity 1
1−γ

P (C0)
C0

= U to show that expected utility
is negative infinity for this case.
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Mathematica code

Price-Dividend Ratios

We have verified numerically that the formulae for the prices given in Proposition 2 are indeed
correct, both above and below the breakpoint. The following Mathematica code calculates the
price-dividend ratios for different D, for a long, but finite horizon, economy (T = 1000), using direct
numerical integration of (10), and produces results identical to those shown in Figure 1.

In[1]:= γ = 5;σ = 4/100;µ = 0.75/100; ρ = 1/100; ξ = µ− σ2

2 ;T = 1000;B = 1; PD={};
In[2]:= v=Range[1/4,8,1/4];

In[3]:= For[i=1,i<32,

e=Extract[v,i];

v=NIntegrate[((B + e)/(B + e ∗ Exp[y]))γ−1 ∗ Exp[−ρ ∗ τ − (y − ξ ∗ τ)2/(2 ∗ σ2 ∗ τ)]
/Sqrt[2 ∗ π ∗ σ2 ∗ τ ], {y,−∞,∞}, {τ, 0, T}];
PD=Append[PD,{e,v}],
i=i+1];

In[4]:= ListPlot[PD,PlotJoined->True,PlotRange->All];

Long-Term Risk-Free Rate

We have verified numerically that the formulae for the long rate given in Proposition 6 are indeed
correct, by directly evaluating Equation (18). The following Mathematica code calculates the yield
for different maturities.

For example, with parameters, ρ = 1%, µ = 3.5%, σ = 20%, γ = 2.5, the long rate is close to

rl = ρ+ µ2

2σ2 = 2.53% in line with Equation (21). The list L provides pairs of time to maturity and
yields, {t, rt}. For example, the last element in L shows that for a time to maturity of 10,000 years
the yield is 2.56% in this example.

By varying B0, D0 and γ in the code, it is easily verified that the long rate does not depend on
these parameters. It can also be checked that, for µ > γσ2, Equation (22) provides the correct long
rate.

In[1]:= B0 = 2;D0 = 1;σ = 0.2;µ = 0.035; γ = 2.5; ρ = 0.01;Off[Integrate::gener];
In[2]:= L = {};T = {1, 10, 100, 1000, 10000,−1};
In[3]:= For[ t = First[T], t > 0,

P= N[Integrate[(B0 +D0)γ ∗ Exp[−ρt]∗
1/Sqrt[2π ∗ σ2t] ∗ Exp[−(y − µt)2/(2 ∗ σ2t)]/(B0 +D0 ∗ Exp[y])γ, {y,−∞,∞}]];
r = −Log[P ]/t;
L = Append[L, {t, r}]; T = Delete[T, 1]; t= First[T];]

In[4]:= L (* L is a list with elements {t, rt}, from numerical calculations*)

Out[4]= {{1,0.0362381},{10,0.0350963},{100,0.0307781},{1000,0.026798},{10000,0.0255731}}

In[5]:= rl = If[µ < γσ2, ρ+ µ2

2σ2 , ρ+ γµ− γ2σ2/2] (* Theoretical value of long rate *)

Out[5]= 0.0253125
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