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ABSTRACT

This paper analyzes adjustable rate mortgages (ARMs) based on the Eleventh District Cost of
Funds Index (EDCOFI). We study the behavior of EDCOFI over the period 1981–1993, and find
that adjustments in this index lag substantially behind term structure fluctuations. We also find that
the seasonality and days-in-the-month effects noted by previous authors are really symptoms of a
“January effect”.

Due to the lag in EDCOFI, if interest rates fall, mortgage holders may want to refinance their
mortgage loans to avoid paying a coupon rate that exceeds the market rate. We develop a finite
difference valuation algorithm which accounts for all usual ARM contractual features, in addition
to the dynamics of EDCOFI. The advantage of our pricing algorithm over commonly used simula-
tion strategies is that it allows us to determine endogenously the optimal prepayment strategy for
mortgage holders, and hence the value of their prepayment options. We find that the dynamics of
EDCOFI give significant value to this option, typically around .5% of the remaining principal on
the loan. Our algorithm permits issuers and investors in ARMs based on EDCOFI to quantify the
effects of the many interacting contract features, such as reset margin, coupon rate caps and reset
frequency, that determine mortgage value.
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Adjustable rate mortgages (ARMs) based on the Eleventh District Cost of Funds Index (EDCOFI)

are a significant factor in the primary and secondary mortgage markets. In the U.S., the estimated

stock of EDCOFI based ARMs is approximately $150 to $200 billion. In California, more than

50% of ARM originations in 1991 were indexed to EDCOFI.1 At the end of January 1993, nearly

a quarter of all outstanding Agency2 stock of ARM collateralized mortgage backed securities and

Collateralized Mortgage Obligations (CMOs) were indexed to EDCOFI (approximately $26 billion

in outstanding book value).3 In addition, there are another $6 billion in CMO tranches that float

off EDCOFI.4

Despite the popularity of EDCOFI, no existing study adequately addresses the valuation and hedg-

ing of ARMs based on this index. Movements in EDCOFI lag substantially behind shifts in the

term structure.5 The slower the adjustment of the underlying index, the more an ARM resembles

a fixed rate mortgage (FRM). In particular, just as with FRMs, if interest rates fall sharply, holders

of ARMs based on EDCOFI may find it optimal to refinance (presumably into an ARM based on

another index, or an FRM), to avoid paying above market rates on their loan.6 Previous ARM val-

uation studies have assumed that the index underlying the ARM resets with the contemporaneous

term structure.7 There is simulation evidence that EDCOFI ARMs have longer duration than Trea-

sury indexed ARMs (Ott 1986), and lower present value in the context of a non-option adjusted

present value model (Passmore 1993). However, neither of these studies considers the effects of

EDCOFI dynamics on mortgage holder prepayment behavior or the value of the mortgage holder’s

prepayment option.

In this paper, we extend previous empirical studies of the time series properties of EDCOFI, and

consistently embed our results in a contingent claims valuation model. This allows us to determine

the impact of index behavior and contract terms on prepayment behavior and the value of the mort-

gage and its embedded prepayment option. Rather than valuing the mortgages using Monte Carlo

simulation, we use a finite difference technique to solve the pricing equation, taking into account all

the main contractual features of the ARM, plus the dynamics of EDCOFI. The valuation method-

1Source: Private communication, Federal Home Loan Bank of San Francisco.
2The Agencies are the Federal National Mortgage Association (FNMA) and the Federal Home Loan Mortgage

Corporation (FHLMC). Statistics are not available on ARM mortgage-backed security stock for private issuers.
3Source: Lehman Brothers.
4Source: First Boston.
5See, for example, Cornell (1987), Crockett, Nothaft and Wang (1991), Hayre, Lodato and Mustafa (1991), Nothaft

(1990), Nothaft and Wang (1992), Passmore (1993), and Roll (1987) for analyses of the dynamics of EDCOFI.
6Previous authors, such as Kau, Keenan, Muller and Epperson (1990), have noted that some ARM prepayment

may occur because the coupon rate on ARMs adjusts only at discrete intervals, typically annually. The prepayment we
focus on, induced by the behavior of the index, will still occur, even if the coupon rate on the mortgage adjusts every
month to the prevailing index level.

7See, for example, Kau, Keenan, Muller and Epperson (1990), and McConnell and Singh (1991).
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ology builds upon techniques used by Kau, Keenan, Muller and Epperson (1990) and Kishimoto

(1990). Like Monte Carlo simulation, we may, if we desire, embed an empirical prepayment model

into the algorithm. However, unlike Monte Carlo simulation, our valuation strategy alternatively

allows us to determine endogenously the optimal prepayment policy for mortgage holders. This

yields explicit values for the mortgage holder’s prepayment option, and hence for the mortgage.

We find that the slow adjustment in EDCOFI gives significant value to the prepayment option

embedded in EDCOFI based ARMs. For a simple loan, with no caps, and annual coupon reset,

the minimum value of the prepayment option is about 0.5% of the remaining principal on the loan.

More generally, the size of the reset margin, coupon rate caps, and reset frequency all interact with

the behavior of EDCOFI to determine the exact value of the option, and hence of the mortgage. Our

algorithm permits issuers and investors in ARMs based on EDCOFI to quantify these effects. The

same algorithm could also be used to price other assets with embedded options, such as interest

rate swaptions, whose cash flows depend on both contemporaneous and lagged interest rates.

Modeling EDCOFI

The Eleventh District Cost-of-funds index (EDCOFI) is computed from the book values of lia-

bilities for all insured savings and loan (S&L) institutions in the Eleventh District (institutions in

California, Nevada, and Arizona). The index is the ratio of the month end total interest expenses

on savings accounts, advances, and purchased funds to the average book value of these liabilities

from the beginning to the end of the month. The ratio is adjusted with an annualizing factor so that

the interest expenses are comparable across months. The index is thus:

EDCOFIt =
Total interest, montht[

BVL t−1 + BVL t

]
/2
×

365
d
, (1)

where BVLt is the book value of liabilities at the end of montht, andd is the number of days in

montht. The use of book values to compute the rates on the liabilities introduces a lag in the index

because the rates cannot change until the individual liabilities mature or are withdrawn. The lag in

EDCOFI is clearly evident in figure 1, which compares EDCOFI with rates on 3 Month T-Bills, 1

Year T-Bills, and 5 Year Treasury Notes from July 1981 to May 1993.8 EDCOFI never reaches the

highs and lows of the other three series, lags them by several months, and is much less volatile.

8EDCOFI rates were obtained from the Federal Home Loan Bank Board of San Francisco. The treasury rates were
obtained from the Federal Reserve Statistical Release H15, monthly auction averages.
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Figure 1: EDCOFI, 3 month T-Bill, 1 year T-Bill, and 5 year T-Note rates, July 1981 to May 1993.
Source: Federal Home Loan Bank of San Francisco.
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A Simple Model for EDCOFI

Assume that the rate set on newly issued liabilities of every maturity is a function of the prevailing

term structure. This implies that EDCOFI is a weighted average of functions of the entire history of

the term structure. Suppose that in periodt, an institution issues an amountNτ,t of new liabilities

with maturity datet + τ , whose liability rate,Lt,τ , equals the yield on a riskless bond of the same

maturity, plus an additive constant, plus a maturity independent error termut. If we assume for

simplicity that the term structure only makes parallel shifts, the liability rateLt,τ can then be

written in the form

Lt,τ = TRt + ∆τ + ut, (2)

where TRt is the current short term riskless interest rate, and∆τ is a maturity specific constant.

Assuming the proportion of different maturities issued each period remains constant, the average

liability rate for all newly issued liabilities is then

L0
t =

1
Nt

∞∑
τ=1

Nt,τLt,τ , (3)

= TRt +K0 + ut, (4)

for some constantK0 (a weighted average of the∆τ ), and whereNt is the total value of newly

issued liabilities,

Nt =
∞∑
τ=1

Nt,τ .

Now suppose that liabilities of different maturities expire at known rates, which potentially differ

across different maturities,9 but are the same for each issue date. Then the average liability rate for

outstanding liabilities issuedj periods ago is

Ljt = TRt−j +Kj + ut−j, (5)

for some constantKj . If we also assume the total amount of newly issued liabilities,Nt, is constant

each period, and that the total outstanding balance of liabilities with each prior issue date decreases

9In particular, after one month all one-month liabilities expire; after two months all two-month liabilities expire,
etc.

4



at a constant geometric rateβ,10 then the current value of EDCOFI can be written as

EDCOFIt = (1− β)(TRt +K0 + ut) + β(TRt−1 +K1 + ut−1)

+ β2(TRt−2 +K2 + ut−2) + . . . (6)

= α0 + α1 EDCOFIt−1 + α2 TRt + εt, (7)

for some constantsα0, α1 andα2, and whereεt = (1− β)ut. This specification corresponds to

the partial adjustment model considered by Cornell (1987), Roll (1987), and Passmore (1993), and

provides theoretical justification for its use.

Estimation Results

We here test for the effects of seasonality in EDCOFI,11 and estimate a model based on equation 7

using data from July 1983 to May 1993.12 Columns 2–3 of table 1 model seasonality, simulta-

neously nesting Nothaft and Wang’s (1992) days-in-the-month seasonality correction, by using

a dummy variable for all months except February and December. February is handled with two

dummy variables, one for months with 28 days, and another for months with 29 days. With the

exception of January, the separate monthly dummies are not individually different from zero. A

likelihood ratio test of the joint null hypothesis that all the monthly dummies, except January, are

zero fails to reject the null. We conclude that the observed seasonality is in fact a January effect,

rather than a days-in-the-month effect. This may arise from balance sheet adjustments following

deposit withdrawals during the holidays.

The specifications reported in column 2–5 of table 1 show that EDCOFI exhibits serial correlation.13

This is consistent with the simple model above. To correct for first order serial correlation, in

columns 6–7 of table 1 we estimate the partial adjustment model defined in equation 7, using the

3 month T-Bill rate as the short term riskless rate.14 Since there is a significant January effect in

10I.e. the total outstanding balance drops each period toβ times its previous balance, though the balances for
different maturities will in general fall at different rates.

11See, for example, Nothaft and Wang (1992) and Passmore (1993).
12The start date of July 1983 reflects the regime test results reported by Nothaft and Wang (1992). It is also close to

the October 1983 starting date used by Passmore (1993).
13The autoregressive parameter for the twelve month seasonal is statistically insignificant, but the first and second

order serial correlation terms in the first regression are statistically significant. The autoregressive parameters for the
second regression reported in columns 4–5 indicate significant first order serial correlation. However, second order
serial correlation is no longer statistically significant.

14Augmented Dickey-Fuller (1979) tests of the form

∆xt = µ + γ∗ xt−1 +
p−1∑
j=1

φj ∆xt−j + εt
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Independent Effect of Month on Seasonal Partial Adjustment
Variables Variation in EDCOFI Model with Jan./Feb. effects

(Dep. Var. = EDCOFIt) (Dep. Var. = EDCOFIt)
12 dummies Jan. dummy

Est. t-stat. Est. t-stat. Est. t-stat.
Intercept 7.1 (.93) 7.2∗ (1.9) .056 (.87)
January −.065∗ (−1.8) −.086∗∗∗ (−5.8) −.047 (−1.5)
February .11∗∗∗ (2.6)
Feb. (29 days) .019 (.32)
Feb. (28 days) .022 (.34)
March −.074 (−1.0)
April −.064 (−.82)
May −.063 (−.75)
June −.018 (−.21)
July −.042 (−.50)
August −.016 (−.20)
September .041 (.59)
October .002 (.04)
November .022 (.59)
EDCOFIt−1 .89∗∗∗ (35)
3 Month T-Billt .11∗∗∗ (5.2)
Chow test .943
Breusch-Pagan (χ2

5) 9.2
ARCH (χ2

1) 1.0
White’s test (χ2

11) 17
R2 .984 .980 .997
Akaike −224 −199 −166
∗ Significant at the 10% level.
∗∗ Significant at the 5% level.
∗∗∗ Significant at the 1% level.

Table 1: Estimation results. Columns 2–5 show vector autoregressions of EDCOFI to investi-
gate seasonality and serial correlation structure. Columns 6–7 show results of estimating partial
adjustment model for EDCOFI using Newey-West correction.
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the EDCOFI series, and because a lagged value of EDCOFI appears on the right hand side of the

regression, we estimate the model with two dummy variables, one for January and one for Febru-

ary. The instrumental variables technique suggested by Cumby, Huizinga and Obstfeld (1983)

was used, with the Newey and West (1987) covariance matrix, to correct for any possible het-

eroscedasticity and first order serial correlation.15 Theχ2 test for parameter constancy, the Chow

test, compares parameter estimates excluding the last twenty four observations to those based on

the entire sample. It is not statistically significant indicating that the parameter estimates for this

period are stable. The other reported test statistics indicate that the residuals from the partial ad-

justment model are neither predictable from lagged residuals nor predictable from other variables

in the model. All threeχ2 tests are insignificantly different from zero at the .05 level or better.16

The parameter estimates, reported in the sixth column of table 1, show there is considerable lag in

the response of EDCOFI to movements in the 3 month T-Bill rate.17 Figure 2 shows the expected

response of EDCOFI to a jump inrt from 7.5% to 8.5%,18 where EDCOFI is assumed to move

according to the model given in the last column of table 1 (ignoring monthly dummies),

EDCOFIt = .056 +.889 EDCOFIt−1 + .112 TRt + εt. (8)

Whenrt jumps, EDCOFI also rises, but more slowly. It takes almost 6 months to get about half

way to its long run value of 9.1%. This lag needs to be recognized in a properly specified ARM

valuation model.

were performed on EDCOFI and the 3 month T-Bill series using twelve lagged differences to control for possible
seasonality effects. We were unable to reject the null hypothesis that there are unit roots in the series. Phillips
and Perron (1988) nonparametric unit root testing procedures were also applied, with the same result. Tests for the
cointegration of EDCOFI and the Treasury series, using Johansen (1988), showed that they are not cointegrated.
However, because our interest rate series are relatively short, and it is well known that the low power of standard unit
roots tests often leads to acceptance of the nullhypothesis of a unit root in many economic time series (Kwiatkowski,
Phillips, Schmidt and Shin 1992; Faust 1993), we rely on our strong priors that our interest rate series are mean
reverting rather than explosive, and undertake all our estimation in levels of interest rates.

15As a further check on the specification for the partial adjustment model, we ran a twelfth order autoregression on
the residuals using maximum likelihood. Only the twelfth order term was statistically significant at the .05 level. A
Lagrange Multiplier test on the joint null hypothesis that the coefficients on all twelve lags were zero rejected the null
at the .05 level, indicating that there may still remain some serial correlation.

16Although not reported here, we also tested a number of other specifications for EDCOFI using the model compar-
ison methods of Hendry and Richard (1982) and Passmore (1993). The partial adjustment model performed as well as
or better than the other specifications considered (using various lags and moving averages of Treasury rates). We also
found that including the very volatile period from late 1981 to mid 1982 led to some differences across models. This
result is consistent with the finding of regime shifts in Nothaft and Wang (1992).

17Regressions using other maturities yield very similar results.
18EDCOFI is assumed initially to take the value 8.1%. Inserting this value for EDCOFIt−1 into equation 8 shows

that, if rt stays constant at 7.5%, EDCOFI stays constant at 8.1%.
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Figure 2: Example of the lag in EDCOFI’s response to movements in the term structure. The short
term interest rate jumps from 7.5% to 8.5%. The graph shows the resulting movement in the value
of EDCOFI.
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Valuation

Holders of EDCOFI based ARMs may find early prepayment of their loans optimal if market

interest rates fall sharply. Like other ARMs, the coupon rate on an EDCOFI based ARM usually

adjusts only discretely, typically once per year. The longer the time between coupon resets, the

more the ARM resembles an FRM. If interest rates fall substantially while there is still a long time

until the next coupon reset date, the mortgage holder may prefer to avoid several months of above

market interest payments on his or her loan by refinancing into another loan (either ARM or FRM),

with a lower current coupon rate. Unlike other ARMs, holders of EDCOFI based ARMs also have

another reason why they might want to prepay their loans. EDCOFI moves slowly in response

to shifts in market interest rates. As a result, if interest rates fall suddenly, it will take some time

before the coupon rate drops to market levels, even if the coupon adjusts every month to the current

index level. Again, borrowers may find it preferable to avoid paying above market interest rates by

refinancing.

This section of the paper develops an algorithm for valuing EDCOFI based ARMs. The algorithm

can handle all of the important features of the contract, including the model for movements in

EDCOFI developed above. We shall assume that EDCOFI moves according to the process

EDCOFIt = .056 +.889 EDCOFIt−1 + .112 TRt. (9)

In other words, EDCOFI is a deterministic function of the entire past history of interest rates,

whose movements are locally perfectly correlated with movements in interest rates.19 In principle,

we could use an empirically derived prepayment function in the algorithm. However, our algorithm

can also derive endogenously the optimal prepayment strategy for mortgage holders, and hence

calculate the value of their prepayment option. This latter strategy has the advantage that it is robust

to possible changes in the economic environment, such as changes in the interest rate process.

Such changes would have an unquantifiable effect on an empirical prepayment function. Using the

optimal prepayment strategy allows us to determine an upper bound for the value of the prepayment

option possessed by mortgage holders. The algorithm is an extension of techniques described by

Kau, Keenan, Muller and Epperson (1990), and Kishimoto (1990). We first describe the features

of the contract that we wish to capture, then the algorithm itself.

19From table 1, 99.4% of the monthly variation in EDCOFI is explained by movements inrt. Our assumption
of perfect correlation is thus very close to the truth. It may, in fact, not be an approximation at all, if we assume
that we are seeing monthly observations on truly continuous processes. Two continuous processes with perfect local
correlation will not in general exhibit 100% correlation when sampled discretely.
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Our implementation of this algorithm applies to a world in which movements in EDCOFI and

interest rates are locally perfectly correlated, and where interest rates are described by a particular

one factor model. It could, however, be extended to more complex worlds. For example, we could

add an additional state variable to correspond to unexpected changes in EDCOFI, and/or another

interest rate variable. It would still be possible to solve the resulting partial differential equation

for the mortgage value.20 This would be more time-consuming, and the numerical results would

certainly differ, but the intuition behind the value of the embedded prepayment option is identical

to that described here.

Main Features of an ARM Contract

Coupon rate,Ct. The coupon rate on an ARM changes at each “reset date”. The coupon deter-

mines the monthly cash flows on the mortgage until the next reset date. The monthly cash flow

equals that on a fixed rate mortgage with the same time to maturity, same remaining principal

balance, and same coupon rate as the ARM.

Underlying Index, It. The adjustment rule for the coupon rate specifies an underlying index to

which the rate is tied. In this paper, we are considering mortgages based on EDCOFI, but adjustable

rate mortgages exist with other underlying indices, such as the 1 year T-Bill rate and LIBOR.

Margin, m. At each coupon reset date, the new rate is set by adding a margin,m (e.g. 2%), to the

prevailing level of the underlying index (subject to certain caps, discussed below).

“Teaser” rate, C0. It is common for the initial coupon rate to be lower than the “fully indexed”

rate given by adding the margin to the initial level of the index. The initial rate,C0, is often referred

to as a “teaser” rate.

Annual cap, ∆. ARM contracts usually specify a maximum adjustment in the coupon rate at each

reset period (e.g. 2% per year).

Lifetime caps,C andC. ARM contracts usually specify an overall maximum coupon rate over

the life of the loan,C (e.g. the initial rate plus 6%), and a minimum coupon rate over the life of

the loan,C.

Reset Frequency.The coupon rate on an ARM contract adjusts at prespecified intervals. This

20Partial differential equations in more than one state variable plus time may be solved by use of methods such as
the hopscotch algorithm (Gourlay and McKee 1977).
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interval is usually every 6 months or one year. In this paper, we assume yearly adjustment. If

montht is a coupon reset date, the new coupon rate is given by

Ct = max
[
C, Ct−1− ∆, min

[
It +m, Ct−1 + ∆, C

]]
(10)

Interest Rates

To value the mortgage, we need to make assumptions about the process governing interest rate

movements. We use the Cox, Ingersoll and Ross (1985) one-factor model. In this model, the

instantaneous risk-free interest rate,rt, satisfies the stochastic differential equation

drt = κ(µ− rt) dt + σ
√
rt dzt. (11)

This equation says that, on average, the interest rater converges toward the valueµ. The param-

eterκ governs the rate of this convergence. The volatility of interest rates isσ
√
rt. One further

parameter,λ, which summarizes risk preferences of the representative individual, is needed to

price interest rate dependent assets.

The parameter values used here are those estimated by Pearson and Sun (1989), using data from

1979–1986. These values are

κ = 0.29368,

µ = 0.07935,

σ = 0.11425,

λ = −0.12165.

The long run mean interest rate is 7.9%. Ignoring volatility, the time required for the interest rate

to drift half way from its current level to the long run mean is ln(1/2)/(−κ) ≈ 2.4 years.

Other factors affecting ARM value

The value of an ARM depends not only on the current interest rate,rt, but on the whole path

of interest rates since its issue. This determines the current coupon rate,Ct, the current level of

the underlying index,It (which in turn determines future movements in the coupon rate), and the

current remaining principal balance,Ft. These three variables summarize all relevant information

about the history of interest rates. By adding these as extra state variables, we return to a Markov
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setting (where all prices can be written as a function only of the current values of a set of underlying

state variables).

WriteBt for the value of a non-callable bond which makes payments equal to the promised pay-

ments on the ARM. The mortgage holder’s position can be decomposed into a short position inBt

(the scheduled payments on the mortgage) plus a long position in a call option onBt, with (time

varying) exercise priceFt. WritingMt for the market value of the mortgage, andOt for the value

of the prepayment option, we have

Mt = Bt −Ot (12)

SinceBt does not depend on the mortgage holder’s prepayment decision, minimizing his or her

liability value is equivalent to maximizing the value of the prepayment option,Ot. Write

Bt ≡ B(rt, It, Ct, Ft, t), (13)

Ot ≡ O(rt, It, Ct, Ft, t). (14)

All values are homogeneous of degree one in the current remaining principal amount,Ft. Thus, if

each month we value a mortgage with $1 remaining principal, we can scale up or down as neces-

sary for different principal amounts. Define normalized asset values (values per $1 of remaining

principal) by

B̂t = Bt/Ft, (15)

≡ B̂(rt, It, Ct, t).

Ôt = Ot/Ft, (16)

≡ Ô(rt, It, Ct, t).

Valuation with one State Variable

Given the interest rate model defined by equation 11, writeV (r, t) for the value of an asset whose

value depends only on the current level ofrt and time, and which pays coupons or dividends at a

rateδ(rt, t). This value satisfies the partial differential equation21

1
2
σ2rVrr + [κµ− (κ + λ)r] Vr + Vt − rV + δ = 0, (17)

21We need to assume some technical smoothness and integrability conditions (see, for example, Duffie (1988)).
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which can be solved forV , subject to appropriate boundary conditions.

Natural boundaries for the interest rate,r, are 0 and∞. Rather than working directly withr, define

the variabley by

y =
1

1 +γr
. (18)

for some constantγ > 0,22 The infinite range [0,∞) for r maps onto the finite range [0, 1] for y.

The inverse transformation is

r =
1− y
γy

. (19)

Equation 18 says thaty = 0 corresponds to “r =∞” andy = 1 tor = 0. Next, rewrite equation 17

using the substitutions

U(y, t) ≡ V (r(y), t), so (20)

Vr = Uy
dy

dr
, (21)

Vrr = Uy
d2y

dr2
+Uyy

(
dy

dr

)2

, (22)

to obtain

1
2
γ2y4σ2r(y)Uyy +

(
−γy2 [κµ− (κ + λ)r(y)] + γ2y3σ2r(y)

)
Uy +Ut − r(y)U + δ = 0. (23)

We can solve equation 23 using a finite difference algorithm. Finite difference algorithms replace

derivatives with differences, and approximate the solution to the original partial differential equa-

tion by solving the set of difference equations that arise. We use the Crank-Nicholson algorithm,

described in the appendix.

Represent the functionU(y, t) by its values on the finite set of points,

yj = j ∆y, (24)

tk = k ∆t, (25)
22The larger the value ofγ, the more points on a giveny grid correspond to values ofr less than, say, 20%.

Conversely, the smaller the value ofγ, the more points on a giveny grid correspond to values ofr greater than, say,
4%. We are most interested in values ofr in an intermediate range. Therefore, as a compromise between these two
competing objectives, we chooseγ = 12.5. The middle of the range,y = 0.5, then corresponds tor = 8%.
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for j = 0, 1, . . . , J , and fork = 0, 1, . . . , K. ∆y and ∆t are the grid spacings in they and t

dimensions respectively.∆y = 1/J , and∆t is chosen for convenience to be one month, making a

total of 360 intervals in the time dimension. Write

Uj,k ≡ U(yj, tk), (26)

for each (j, k) pair. The Crank-Nicholson algorithm rewrites equation 23 in the form

MUk = Dk, (27)

whereM is a matrix,Uk is the vector{U0,k, U1,k, . . . , UI,k}, andDk is a vector whose elements

are functions ofUj,k+1. This system of equations relates the values of the asset for different values

of y at timetk to its possible values at timetk+1. To perform the valuation, we start at the final

time period, when all values are known, and solve equation 27 repeatedly, working backwards one

period at a time.

Extension to multiple state variables

In general, when asset prices depend on more than one state variable plus time, solution of the

resultant partial differential equation becomes numerically burdensome. In this case, the additional

variables,It andCt, are functions of the path of interest rates, and so they introduce no additional

risk premia. This allows us to extend the Crank-Nicholson finite difference algorithm to handle the

multiple state variable case. The extensions required are to:

1. Allow values to depend onCt andIt as well asrt andt, allowing for dependence between

the processes governing movements in these variables.

2. Scale values to correspond to $1 remaining principal.

3. Handle caps, floors and teaser rates.

In addition to the finite sets of values fory andt defined above, define a finite set of values forI

andC by

Il = l ∆I, (28)

Cm = m∆C, (29)
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for l = 0, 1, . . . , L, and form = 0, 1, . . . ,M . ∆I and∆C are the grid spacings in theI andC

dimensions respectively. We are now solving for values on the points of a 4-dimensional grid,

whose elements are indexed by the values of (j, k, l,m). Write the value of an asset whose cash

flows depend on these state variables as

Uj,k,l,m ≡ U(yj, tk, Il, Cm), (30)

for each (j, k, l,m). I andC are functions of the path of interest rates. Over the next instant, the

movement inr completely determines the movements in bothI andC. Assume that movements

in EDCOFI are described by the equation

It+1 = g(It, rt+1), (31)

so that EDCOFI this month is a deterministic function of EDCOFI last month, plus the short term

riskless rate this month (the models estimated above are of this type). Definel∗ by

Il∗1,j,l,m ≈ g(Il, rj+1), (32)

Il∗0,j,l,m ≈ g(Il, rj), (33)

Il∗−1,j,l,m
≈ g(Il, rj−1). (34)

In words,l∗ gives the closest index to the value ofI next period given the current values ofr, I and

C, and three possible values ofr next period (up, the same, and down). Assuming that next month

is a coupon reset date (since otherwise, the coupon rate next month will just be the same as the

coupon rate this month), definem∗ similarly, to give the index ofC next period given the current

values ofr, I andC, and the value ofr next period.m∗ is determined by the interplay between the

current couponCt, the indexIt, the marginm, and the capsC, C and∆. Note that the effects of

caps, floors and teaser rates are all automatically captured in this definition ofm∗.

We can now generate a set of finite difference equations for each pair (l,m). For example, the

approximation for the time derivative given in equation 40 in the appendix now becomes

Ut(yj, tk, Il, Cm) ≈
(
Uj,k+1,l∗0,j,l,m,m

− Uj,k,l,m
)
/∆t, (35)

if tk+1 is not a coupon reset period, and

Ut(yj, tk, Il, Cm) ≈
(
Uj,k+1,l∗0,j,l,m,m

∗
0,j,l,m

− Uj,k,l,m
)
/∆t, (36)
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if tk+1 is a coupon reset period. This allows us to write down one set of systems of equations like

equation 27 for each (l,m) pair. These equations are independent of each other, so we can solve

them for each (l,m) pair in turn, looping overl andm to calculate values at every grid point at

time tk.

The final step in the process is to deal with the normalization of asset prices to correspond to a

remaining principal balance of $1. This is possible because, at any time, we know exactly how

much principal will be repaid over the next one month. Given a coupon rateCt and a current

remaining principalFt, the usual amortization formula tells us the value ofFt+1, regardless of any

possible movements inrt, It or Ct. The values stored in the grid for next period correspond to $1

in remaining principalnextperiod. These need only to be multiplied byFt+1/Ft (a function only

of Ct) to make them correspond to $1 of remaining principal today.

Valuation Results without Caps

The algorithm described above was used to value 30 year EDCOFI based ARMs. Starting in

month 360, the algorithm works backward to solve equation 23 one month at a time, calculating

the normalized bond value,̂Bt.23 For the option, the same process gives the value conditional on

its remaining unexercised for the next month. This value must then be compared with the option’s

intrinsic value (max[0, B̂t − 1]) to determine whether exercise (prepayment) is optimal.Ôt is set

to the higher of these two values, and the mortgage value is calculated from the relationship

M̂t = B̂t − Ôt.

The algorithm was applied first to a mortgage with no caps, whose coupon rate adjusts annually to

the prevailing value of EDCOFI. For this mortgage, the value of the prepayment option can only

be a function of the lag in the index, plus the annual reset frequency. Figure 3 shows the value

per $100 of remaining principal of the underlying bond (the stream of promised payments, with no

prepayment option), and the market value of the mortgage, for different values of the instantaneous

riskless interest rate,r, and the index, EDCOFI. For every point plotted, the current coupon rate is

assumed to equal the current value of EDCOFI. Figure 4 shows the value of the mortgage holder’s

prepayment option. These figures show that, for certain combinations ofr and EDCOFI, this

23The values of the bond and the option in month 360 are 0, since all principal has been repaid. Given known
values for the assets at montht + 1, for all possible combinations ofrt+1, It+1 andCt+1, the algorithm calculates their
values for every combination of these variables at montht by discounting back a weighted average of their possible
values at timet + 1, plus any coupon payments made at timet + 1. This is analogous to the “binomial tree” option
pricing algorithm. For a detailed discussion of the relationship between binomial methods, discounted expected values,
explicit and implicit finite difference methods for the valuation of contingent claims, see Brennan and Schwartz (1978).
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Figure 3: Bond and mortgage values for different values ofr, EDCOFI. Coupon rate currently
equals value of EDCOFI, and resets annually to the prevailing value of EDCOFI. There are no
caps on coupon movements. Remaining principal is $100.
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equals value of EDCOFI, and resets annually to the prevailing value of EDCOFI. There are no caps
on coupon movements. Remaining principal is $100.
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option is extremely valuable. However, most of these combinations (high EDCOFI together with

low r) are unlikely to occur in practice.

To see the value of the prepayment option in more likely interest rate environments, and to see

how this value would be affected by jumps in the level of interest rates, figure 5 shows the values

of the bond, the mortgage, and the prepayment option for different values of the interest rater,

with the current value of EDCOFI set to 8.5% (the average value of EDCOFI over the period

1981 – 1993).24 For r between 0% and about 5%, the value of the option drops from almost 6%

of remaining principal to approximately 0.5%. The graph of bond and mortgage values shows

that, in this region, it is optimal for mortgage holders to prepay immediately. Asr increases from

5%, the option valueincreasesagain. This initially seems counterintuitive, since the value of the

underlying asset decreases asr increases. However, this is more than offset by the fact that the

higherr is today, the faster EDCOFI will rise in the near future. Mean reversion inr, combined

with the lagging behavior of EDCOFI means that the higherr is today, the more likely we are to

see EDCOFI (and hence the coupon rate on the mortgage) rise, and then get left behind asr drops

towards its long run mean, making prepayment optimal. If we were to use an interest rate model

which did not exhibit mean reversion, this increase might not occur. Figure 6 shows the values

of the bond, the mortgage, and the prepayment option for different values of EDCOFI, with the

riskless interest rate equal to 7.5% (the sample mean over the period studied).25 The higher the

current value of EDCOFI (and the current coupon rate on the mortgage), the higher the value of

the underlying instrument and the value of the prepayment option. These results show that the

prepayment option embedded in an EDCOFI based ARM may have significant value.

The Effect of Caps

Another important feature of most ARM contracts is the existence of caps on movements in the

coupon rate. It is possible that much of the option value found above stems from the possibility

that the coupon rate may become very high at some time in the future. This is not permitted for

almost all existing EDCOFI based ARM contracts. To examine this, figures 7 and 8 differ from

figures 5 and 6 in one respect. The coupon rate on the mortgage now has a lifetime cap of 13.5%.

This change significantly reduces the value of the prepayment option. In most regions of figure 7,

the line for the bond value and the line for the option value are almost indistinguishable.

While this at first seems to argue that the prepayment option is insignificant after all, one other

feature of most ARM contracts has been ignored, the margin over the underlying index that is used

24This corresponds to cutting a vertical slice, parallel to ther axis, through the graphs in figures 3–4.
25This corresponds to cutting a vertical slice, parallel to the EDCOFI axis, through the graphs in figures 3–4.
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Figure 5: Bond and option values for different values ofr. Current EDCOFI is 8.5%. Coupon rate
currently equals 8.5%, and resets annually to the prevailing value of EDCOFI. There are no caps
on coupon movements. Remaining principal is $100.
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Figure 6: Bond and option values for different values of EDCOFI. Current short term riskless
interest rate is 7.5%. Coupon rate equals current value of EDCOFI, and resets annually to the
prevailing value of EDCOFI. There are no caps on coupon movements. Remaining principal is
$100.
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Figure 7: Bond and option values for different values ofr. Current EDCOFI is 8.5%. Coupon rate
currently equals 8.5%, and resets annually to the prevailing value of EDCOFI. Coupon rate has a
lifetime cap of 13.5%. Remaining principal is $100.
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Figure 8: Bond and option values for different values of EDCOFI. Current short term riskless
interest rate is 7.5%. Coupon rate equals current value of EDCOFI, and resets annually to the
prevailing value of EDCOFI. Coupon rate has a lifetime cap of 13.5%. Remaining principal is
$100.
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to determine the new coupon rate at each reset date. We have assumed a margin of 0% above

EDCOFI, which is lower than is commonly observed in practice. Figures 9 and 10 differ from

figures 7 and 8 in having a reset margin of 0.5% instead of 0%. This has a strong effect on the

value of the prepayment option, which is now worth approximately 1% of the remaining principal

amount over a wide range of values for the interest rate,r. In figures 11 and 12, the margin is

increased to 1%, and figures 13 and 14 depict mortgages with a 2% reset margin (a fairly typical

value in practice). These figures show that the value of the prepayment option is critically

dependent on the interaction between contract features, especially caps and margin levels.

We know that some of the prepayment option value we have found may derive from the discrete

coupon adjustment frequency. To show that this is not the only source of value, and that index

dynamics play a significant role, we also valued an EDCOFI based ARM with no caps, 0% margin,

and monthly coupon reset period. The value of the prepayment option was approximately 0.3% of

remaining principal, compared with 0.5% with annual coupon reset. Thus, approximately 60% of

the option value comes from the dynamics of the underlying index.

Given realistic values for contract features such as caps and reset levels, the mortgage holder’s

prepayment option has a significantly greater value than it would if (as assumed by previous au-

thors) the underlying index adjusted instantaneously to movements in the term structure. The lags

inherent in EDCOFI mean that ARMs based on this index look more like FRMs than has been

previously realized.

Summary

This paper analyzes Adjustable Rate Mortgages (ARMs) based on the Eleventh District Cost of

Funds Index (EDCOFI). Unlike the theoretical indices used in previous ARM valuation models,

movements in EDCOFI lag substantially behind shifts in the term structure. We examine this

relationship, and find that a partial adjustment model, with a contemporaneous interest rate variable

and a single lagged value of EDCOFI, accurately describes the dynamics of EDCOFI.

The lag in the index means that, if interest rates suddenly fall substantially, mortgage holders

may want to refinance their loans to avoid paying above market interest rates (even when the

coupon rate adjusts every month to the prevailing index level). Previous methods for valuing

adjustable rate mortgages are inadequate for ARMs based on EDCOFI, due to this lag. We extend

a commonly used finite difference valuation algorithm for interest rate contingent claims to value

ARMs based on EDCOFI. Our algorithm captures the effects of lags in the index, caps and floors

on coupon adjustment, discrete coupon adjustment frequency, and teaser rates. It allows us to use
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Figure 9: Bond and option values for different values ofr. Current EDCOFI is 8.5%. Coupon
rate currently equals 9.0%, and resets annually to the prevailing value of EDCOFI plus a margin
of 0.5%. Coupon rate has a lifetime cap of 13.5%. Remaining principal is $100.

80

85

90

95

100

105

110

115

120

0 5 10 15 20 25

A
ss

et
 V

al
ue

 (
$)

EDCOFI (%)

Bond
Mortgage

0

2

4

6

8

10

12

14

16

0 5 10 15 20 25

A
ss

et
 V

al
ue

 (
$)

EDCOFI (%)

Option

Figure 10: Bond and option values for different values of EDCOFI. Current short term riskless
interest rate is 7.5%. Coupon rate equals current value of EDCOFI plus 0.5%, and resets annually
to the prevailing value of EDCOFI, plus a margin of 0.5%. Coupon rate has a lifetime cap of
13.5%. Remaining principal is $100.
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Figure 11: Bond and option values for different values ofr. Current EDCOFI is 8.5%. Coupon
rate currently equals 9.5%, and resets annually to the prevailing value of EDCOFI, plus a margin
of 1%. Remaining principal is $100.
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Figure 12: Bond and option values for different values of EDCOFI. Current short term riskless
interest rate is 7.5%. Coupon rate equals current value of EDCOFI plus 1%, and resets annually to
the prevailing value of EDCOFI, plus a margin of 1%. Coupon rate has a lifetime cap of 13.5%.
Remaining principal is $100.
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Figure 13: Bond and option values for different values ofr. Current EDCOFI is 8.5%. Coupon
rate currently equals 10.5%, and resets annually to the prevailing value of EDCOFI, plus a margin
of 2%. Remaining principal is $100.
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Figure 14: Bond and option values for different values of EDCOFI. Current short term riskless
interest rate is 7.5%. Coupon rate equals current value of EDCOFI plus 2%, and resets annually to
the prevailing value of EDCOFI, plus a margin of 2%. Coupon rate has a lifetime cap of 13.5%.
Remaining principal is $100.
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an empirical prepayment function for mortgage holders, or to calculate an optimal prepayment

strategy for mortgage holders, leading to the valuation of their prepayment options. We find that

the lag in EDCOFI contributes significantly to the value of the mortgage holder’s prepayment

option under realistic assumptions about contract terms and interest rates.
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Appendix - The Crank Nicholson Algorithm

The Crank-Nicholson algorithm is a finite difference approximation used to solve partial differen-

tial equations like equation 23.26 Finite difference methods replace derivatives (such asUy, Uyy)

with approximations involving differences between the values ofU at neighboring points on a grid

of (y, t) values. The partial differential equation is thus replaced with a set of difference equations,

which can be solved subject to appropriate boundary conditions. There are several finite difference

methods. Each uses a different approximation for the derivatives. Represent the functionU(y, t)

by its values on the finite set of points,

yj = j ∆y, (37)

tk = k ∆t, (38)

for j = 0, 1, . . . , J , and fork = 0, 1, . . . , K. ∆y and ∆t are the grid spacings in they and t

dimensions respectively. Write

Uj,k ≡ U(yj, tk), (39)

for each (j, k) pair. The difference approximations used in the Crank-Nicholson algorithm are

Ut(yj, tk) ≈
(
Uj,k+1− Uj,k

)
/∆t; (40)

Uy(yj, tk) ≈
(
Uj+1,k+1− Uj−1,k+1 +Uj+1,k − Uj−1,k

)
/4∆y; (41)

Uyy(yj, tk) ≈
(
Uj+1,k+1− 2Uj,k+1 +Uj−1,k+1 +Uj+1,k (42)

− 2Uj,k +Uj−1,k
)
/2∆y2.

Substituting these into the original equation (e.g. equation 23), and rearranging, we obtain an

equation of the form

ajUj−1,k + bjUj,k + cjUj+1,k = dj,k, 27 (43)

for eachk = 0, 1, . . . , K − 1, and forj = 1, 2, . . . , J − 1. For the extreme values ofj, we need to

impose additional boundary conditions. For equation 23,j = 0 corresponds toy = 0, i.e. “r =∞”.

Any asset with finite cash flows held for a finite length of time therefore has zero value. The

26See McCracken and Dorn (1969), or Press, Flannery, Teukolsky and Vetterling (1992) for a discussion.
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boundary condition atj = 0 is

U0,k = C0,k, (44)

whereC0,k is the cash flow from the asset at timetk. This can be written in a form corresponding

to equation 43 as

b0U0,k + c0U1,k = d0,k, (45)

whereb0 = 1, c0 = 0, andd0,k = C0,k. At the other boundary,j = J corresponds toy = 1, r = 0.

The boundary condition aty = 1 is the equation

−γy2κµUy +Ut +D = 0. (46)

Using the non-central discrete approximation,

Uy(J, k) ≈
(
UJ,k − UJ−1,k

)
/∆y, (47)

to replaceUy, and equation 40 to replaceUt, allows this equation to be rewritten in the form

aJUJ−1,k + bJUJ,k = dJ,k. (48)

Equations 43, 45 and 48 can be written together in the form

MUk = Dk (49)

whereM is a tridiagonal matrix with subdiagonal elementsaj, diagonal elementsbj, and super-

diagonal elementscj; Dk is the vector whosejth element isdj,k.
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