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Evidence on Simulation Inference for Near Unit-Root Processes
with Implications for Term Structure Estimation

ABSTRACT

The high persistence of interest rates has important implications for the preferred method used
to estimate term structure models. We study the finite-sample properties of two standard dynamic
simulation methods—efficient method of moments and indirect inference—when they are applied
to an AR(1) process with Gaussian innovations. When simulated data are as persistent as interest
rates, the finite-sample properties of EMM differ both from their asymptotic properties and from
the finite-sample properties of indirect inference and maximum likelihood. EMM produces larger
confidence bounds than indirect inference and maximum likelihood, yet they are much less likely
to contain the true parameter value. This is primarily because the population variance of the data
plays a much larger role in the EMM moment conditions than in the moment conditions for either
indirect inference or maximum likelihood. These results suggest that, under Gaussian assumptions,
indirect inference (if practical) is preferable to EMM when working with persistent data such as
interest rates. EMM’s emphasis on the population variance strongly enforces stationarity on the
underlying process, so this same reasoning suggests that EMM may be preferable in settings where
stability and stationarity are important and difficult to impose.

JEL classification: C15.
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1 Introduction

Term structure estimation poses serious econometric challenges. The models are highly

parameterized—empirical work often uses models with more than 30 free parameters. In ad-

dition, in all but the simplest settings, the likelihood functions of bond yields are intractable.

Thus, models are often estimated using dynamic simulation methods, such as the method

of simulated scores (including efficient method of moments, or EMM), indirect inference, or

simulation-based approximations to maximum likelihood.

Although dynamic simulation, and in particular EMM, has been successfully applied to

a variety of economic models, Monte Carlo evidence casts some doubt on the finite-sample

performance of EMM in a few specific term structure settings, such as the square-root dif-

fusion model studied in Zhou (2001) and two-factor affine models studied in Duffee and

Stanton (2004). Unfortunately, we do not know how much weight to put on this evidence.

Finite-sample properties have been calculated only for models that are simultaneously both

too complicated and too simplistic. Their complex structures make it impossible to deter-

mine which model features are difficult for EMM to capture, yet practical term structure

estimation focuses on even more sophisticated (and thus more highly parameterized) models.

Because we do not know which features of the relatively simplistic models create difficulties,

we do not know if they carry over to models of greater practical relevance.

Evaluation of the finite-sample properties of dynamic simulation methods thus requires

the study of either much simpler or much more complicated models. This paper takes the

first approach, focusing on the effects of the high persistence exhibited by interest rates.

We ask how accurately EMM and indirect inference estimate a highly persistent Gaussian

AR(1) process, compared with a benchmark of maximum likelihood (ML).1 We find that,

for reasonable sample sizes, statistical inference using EMM with confidence intervals based

on the estimation criterion function is less reliable than using either indirect inference or

maximum likelihood.

This evidence needs to be tempered by the fact that our setting is so simple. In more

complicated models, EMM is likely to be much more tractable than either ML or indirect

inference, and it may have better small sample properties due to its heavy penalty for

deviations from stationarity. Moreover, EMM has been updated as a Bayesian method

based on a Laplace likelihood (Gallant and Tauchen, 2007). It is known from Sims and

Uhlig (1991) that, under a Bayesian implementation, near unit roots do not cause problems

with the criterion function. We defer comparison of Bayesian-EMM to other methods in

1Somewhat conflicting definitions of these techniques can be found in the literature. We defer a precise
description of what we mean by EMM and indirect inference to Section 2.
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more complicated models to future research.

Our conclusion is surprising for two reasons. First, Gallant and Tauchen (1996) note

that, if the probability distribution of the data implied by an auxiliary model is close to

the distribution implied by the structural model, then simulation-based estimates should

be close to those obtained using maximum likelihood.2 Second, the methodologies that

underlie EMM and indirect inference are similar. EMM matches the score vector of an

auxiliary model, while indirect inference matches its parameters.

The simple structure of the AR(1) model allows us to identify analytically key features of

EMM that drive these results. The most important feature is that when the data are highly

autocorrelated, the EMM criterion function is much more asymmetric than both the cor-

responding full ML criterion function (which is also asymmetric) and the indirect inference

criterion function (which is symmetric). The intuition underlying the extreme asymmetry is

straightforward. Given the parameters of an auxiliary model, the scale of the score vector

depends on the variability of the data. This is a general property of auxiliary models. The

EMM estimator evaluates the variability of the data using the data’s implied population

variance. For persistence parameters close to one, the population variance is an extremely

asymmetric function of the persistence parameter. By contrast, the indirect inference esti-

mator uses the data’s sample variance instead of the implied population variance, eliminating

the asymmetry.

To illustrate our results, assume that an econometrician has 1000 weekly observations

of an AR(1) process. The true half-life of a shock is six years, which is similar to the

persistence of Treasury bond yields in the postwar period. Using a conditional Gaussian

auxiliary model, the median length of the EMM-based 95th percent confidence interval for

the autoregression coefficient is more than 20 times larger than the median length of the

ML-based confidence interval. Yet, even though the EMM confidence intervals are large,

they are much less likely to contain the true coefficient. With these 95th percentile bounds,

the empirical rejection rate of truth is about 10 percent for ML and about 75 percent for

EMM. In contrast, indirect inference generally performs as well as, or better than, maximum

likelihood. For this example, the empirical rejection rate for indirect inference using the same

auxiliary model is almost identical to the asymptotic rejection rate of five percent.

Although the simplicity of our setting allows us to draw analytic inferences about the

estimators, it also necessarily limits the generality of our conclusions. We point out spe-

cific limitations at various points in the paper. Two are worth highlighting here. First, we

2Previous Monte Carlo evidence generally finds that, in many practical settings, the finite-sample perfor-
mance of these estimators compares favorably to tractable alternatives. Relevant research includes Andersen,
Chung, and Sørensen (1999), Chumacero (1997, 2001), Michaelides and Ng (2000), and Monfardini (1998).
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specify the auxiliary models based on theoretical considerations. In practice, these spec-

ifications are often based on a data-driven search for an accurate in-sample fit, such as

a semi-nonparametric (SNP) specification search. Our approach allows us to disentangle

the finite-sample properties of a dynamic simulation from the finite-sample properties of

the search for an appropriate auxiliary model. But it also prevents us from studying the

combined properties of a specification search and dynamic simulation.

Second, in many practical problems, extreme asymmetry of the EMM criterion function

in the neighborhood of nonstationarity can be an advantage of the EMM estimator. For ex-

ample, as discussed by Tauchen (1998), asymmetry effectively forces the parameter estimates

to lie in the stationary region. In an AR(1) setting, the econometrician knows the stationary

region and can impose it directly on the parameter space (as we do). This is also a property

of standard affine term structure models, thus from our perspective it is an attractive feature

of our setting. But for econometric problems where stability of the process is desirable but

analytically intractable to impose directly on the parameter space, our results may paint a

biased picture of the attractiveness of EMM.

The next section describes the data-generating process studied throughout the paper. It

also reviews the estimation techniques. Sections 3 and 4 describe the finite-sample properties

of estimating the autoregression coefficient of an AR(1) process. The estimation techniques

examined in Section 3 use the full likelihood function, both in maximum likelihood estimation

and as the auxiliary model, while the techniques examined in Section 4 use more highly

parameterized auxiliary models. Concluding remarks are offered in Section 5.

2 Overview of the analysis

This section describes the data-generating process examined in this paper, sets up notation,

and briefly reviews the relevant estimation techniques.

2.1 The data-generating process

The true data generating process is

yt = ρ0yt−1 + εt, εt ∼ N(0, 1), (1)

where |ρ0| < 1. Interest rate data are often studied at high frequencies relative to, say,

data on macroeconomic performance. Accordingly, we interpret (1) as a process generating

weekly observations of yt. Tauchen (1998) uses the same formal process to investigate some

features of EMM estimation, although his focus differs from ours.
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The values of ρ0 we consider are motivated by the properties of interest rates. We use

three different values. The smallest is ρ0 = 0.8522. This is a fairly low level of persistence.

With weekly observations, this choice implies that shocks have a half life of only one month.

Thus the estimation properties for this value are a good benchmark with which to compare

the properties for highly persistent processes. The second value of ρ0 is 0.9868, which

corresponds to a half-life of one year. The most persistent process uses ρ = 0.9978, which

corresponds to a half-life of six years. This value is chosen based on the behavior of the

five-year Treasury bond yield over the sample period 1960 through 2003.3

The observed data are a sequence of interest rates YT ≡ {y1, . . . , yT}. Again, we use

three different values of T . The sample sizes are 1000, 2000, and 10,000 observations. With

weekly data, these values correspond to about 19 years, 38 years, and 192 years respectively.

The shortest period is similar to those used to study the behavior of interest rates after

the disinflation of the early 1980s. Research that spans multiple interest rate regimes often

use samples that span 40 or 50 years, although the data are typically observed at a lower

frequency than weekly.

2.2 The estimated model

The econometrician estimates the true process (1), but with an unknown parameter ρ re-

placing ρ0:

yt = ρyt−1 + εt, εt ∼ N(0, 1). (2)

The econometrician follows the dynamic term structure literature by assuming that in-

terest rates are stationary. Although statistical tests often cannot reject the hypothesis of a

unit root, stationarity is almost universally imposed in the empirical literature on dynamic

term structure models. The assumption is motivated in part by its theoretical plausibility,

as noted by Clarida, Gaĺı, and Gertler (2000). It is also a convenient restriction to impose in

these models because the parameter restrictions that correspond to stationarity are straight-

forward. Here, of course, the restriction is simply |ρ| < 1. This maintained restriction on

the admissible parameter space distinguishes our approach from that of Tauchen (1998).

For many of the combinations of true persistence parameters ρ0 and sample sizes T that

we consider, stationarity is easily verified statistically. Table 1 summarizes Monte Carlo

simulations that illustrate this point. Samples of length T are generated, then a Dickey

and Fuller (1979) test is constructed to test the null hypothesis of a unit root in the data-

generating process. The Dickey-Fuller test appropriate for (2) is their Case 1, which does not

3An AR(1) regression using monthly observations of the CRSP five-year bond yield from 1960:1 through
2003:12 produces an estimate of 0.98974, which corresponds to a half life of 5.6 years.
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include a constant term. The table reports the fraction of simulations for which the null is

rejected at the five percent level. Stationarity is statistically ambiguous only for ρ0 = 0.9978

with the sample sizes T = 1000 or T = 2000.

Estimation is performed with maximum likelihood, EMM and indirect inference. The

remainder of this section reviews these techniques.

2.3 Full maximum likelihood

We use the full (i.e., unconditional) likelihood function. Denote the mean log-likelihood of

YT given a candidate parameter ρ as QT (YT , ρ). The maximum likelihood estimate of ρ is

ρ̂L,T = argmax
ρ∈(−1,1)

QT (YT , ρ). (3)

Denote the derivative of QT with respect to ρ as hT (YT , ρ). This is the mean score vector

(which here has a single element). Maximum likelihood test statistics considered in this

paper are based on the mean outer product of the score, denoted ŜT . The Generalized

Method of Moments (GMM) criterion function associated with the ML problem is

JL,T (ρ) = ThT (YT , ρ)′ Ŝ−1
T hT (YT , ρ) . (4)

The null hypothesis ρ = ρ0 can be tested using this criterion function. Asymptotically,

JL,T (ρ0)
d→ χ2(1). (5)

This is the standard score test in ML. It is also the GMM version of the likelihood ratio test.

2.4 Auxiliary likelihoods

Both simulated scores and indirect inference estimation choose ρ to make sample properties

of an auxiliary function close to the expected properties of the auxiliary function, where

the expected properties are calculated using ρ. The econometrician chooses the auxiliary

function to be both tractable and to fit the important dynamics of the data. With simulated

scores, the auxiliary function is a likelihood function that is typically easier to work with

than the true likelihood. Although indirect inference does not emphasize the use of likelihood

functions as auxiliary functions, for comparability with simulated scores we restrict the focus

of this paper to auxiliary functions that are likelihoods.

We use auxiliary likelihoods associated with two auxiliary models. The first is the struc-

tural model (2), replacing the structural parameter ρ with the auxiliary parameter β. For
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this model we use the full likelihood as the auxiliary likelihood.

The second auxiliary model is the more general AR(1) model

yt = β0 + β1yt−1 + ξt, ξt ∼ N(0, β2), β = (β0 β1 β2)
′. (6)

For this model we use the likelihood conditioned on the first observation.

For notational convenience, the parameter vector for each model is a vector β, with length

pa = 1 for the first auxiliary model and pa = 3 for the second. For a given auxiliary model,

denote the mean auxiliary log-likelihood of YT given β by Qa,T (YT , β). Denote the mean

score vector by ha,T (YT , β). The estimate of β is

β̂T = argmax
β∈B

Qa,T (YT ; β). (7)

Denote by d̂a,T the second derivative of the auxiliary log-likelihood at this estimate.

As T gets large, the auxiliary likelihood no longer depends on the particular sample YT .

It is simply a function of the true structural parameter ρ0,

lim
T→∞

Qa,T (YT ; β) = Qa,∞(ρ0, β). (8)

In this limit, the auxiliary parameters that maximize the auxiliary likelihood converge to β0,

defined as

β0 = argmax
β∈B

Qa,∞(ρ0, β). (9)

Similarly, d̂a,T converges to da,0.

Denote the covariance of the mean score vector evaluated at β0 (and scaled by T ) by ΩT .

Formally,

ΩT (YT ) = TVar (ha,T (YT , β0)) . (10)

As T gets large, this converges to a fixed matrix Ω. Then, from the Central Limit Theorem,

the probability density of β̂T converges in distribution to

√
T

(
β̂T − β0

)
d→ N

(
0, d−1

a,0Ωd−1
a,0

)
. (11)

In (11), da,0 and Ω are unknown. The former can be replaced with d̂a,T , which is a consis-

tent estimate of da,0. Similarly, Ω can be replaced with a consistent estimator. Throughout

this paper we use the mean outer product of the auxiliary score vector to estimate Ω. The

outer product is a consistent estimator of Ω if the auxiliary score vector is asymptotically

serially uncorrelated. Both the auxiliary likelihoods we consider nest the true likelihood
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function, thus this property of the score vector is satisfied.

2.5 EMM

Efficient method of moments is developed in Bansal, Gallant, Hussey, and Tauchen (1993,

1995) and Gallant and Tauchen (1996). Our implementation differs from the standard pro-

cedure, so we need to explain precisely our approach, and how it differs from the standard

procedure.

The standard implementation of EMM is a two-step process. First, a data-driven search

process chooses a reduced-form auxiliary model that best fits the data (by an appropriate

metric). The reduced-form model is often in the semi-nonparametric family. Second, the

structural model is estimated using the method of simulated scores, which chooses the pa-

rameter vector to set the expectation of the auxiliary likelihood score vector as close to zero

as possible. Gallant and Tauchen (1996) use the term EMM to describe the method of sim-

ulated scores when the search process asymptotically produces an auxiliary likelihood that

converges to the true likelihood.

We do not perform the first step. Instead, we use pre-specified auxiliary models that nest

the true model. This choice is motivated by two goals. First, we want to understand the

finite-sample properties of the simulated score procedure without introducing complications

associated with the finite-sample properties of the auxiliary model search. Second, we want

to give simulation-based estimators the greatest opportunity to succeed. Poor performance

on the part of an estimator cannot be blamed on a poorly-chosen auxiliary likelihood. We

use the term EMM because our auxiliary likelihoods converge to the true likelihood, as

in the standard implementation of EMM. Nonetheless, the finite-sample properties of our

procedure will certainly differ from those of the two-step procedure, and it is conceivable

that properties of the latter procedure are better than those of the former.

A minor difference between the standard implementation and our procedure concerns

the type of auxiliary likelihood. In the former case, the auxiliary likelihood function is

a conditional likelihood function. Because we want to allow for the use of both full and

conditional auxiliary likelihoods, our description of the simulated score methodology differs

slightly from that in Gallant and Tauchen (1996). Denote the expectation of ha,T (YT , β) as

Ha,T (ρ, β) ≡ E (ha,T (YT (ρ), β)) . (12)

This expectation is taken over the density of YT , thus it depends on ρ. In practice, Ha,T is

computed by simulating the true data-generating process using ρ, unless the combination of

auxiliary model and true process admits an analytic solution. The data generating process
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studied in this paper is sufficiently tractable that analytic solutions are typically available.

The subscript T on Ha,T is necessary only if a full auxiliary likelihood is used. In this

case, the expectation of the auxiliary score of the first (and unconditional) observation differs

from the expectation of the auxiliary score of all other (conditional) observations. Therefore

the expectation of the mean score depends the number of conditional observations relative

to the single unconditional observation. If a conditional auxiliary likelihood is used, all

observations have the same expected score, hence Ha,T does not depend on T .

The GMM criterion function associated with EMM estimation is

JE,T (ρ) = THa,T

(
ρ, β̂T

)′
Ŝ−1

a,T Ha,T

(
ρ, β̂T

)
. (13)

In (13), Ŝa,T plays the role of a consistent estimator of Ω. The EMM estimate of ρ, denoted

ρ̂E,T , minimizes this function:

ρ̂E,T = argmin
ρ∈(−1,1)

JE,T (ρ). (14)

The parameter vector is overidentified if the length of β exceeds one. Then asymptotically,

JE,T (ρ̂E,T )
d→ χ2(pa − 1). (15)

This is a test of general model misspecification. The null hypothesis ρ = ρ0 can be tested

with

JE,T (ρ0)− JE,T (ρ̂E,T )
d→ χ2(1). (16)

This is the EMM counterpart of the ML test (5).

An interesting special case is when the auxiliary likelihood is identical to the true like-

lihood. Then by the consistency property of ML, the EMM estimate ρ̂E,T equals the ML

estimate ρ̂L,T (and also equals β̂T ). Equality of ρ̂L,T and ρ̂E,T does not correspond to equality

of the ML and EMM likelihood ratio statistics (5) and (16). In other words, the criterion

functions (4) and (13) are guaranteed to equal each other only at the ML estimate of ρ,

where both functions equal zero.

2.6 Indirect inference

Indirect inference is developed in Smith (1990, 1993), Gouriéroux, Monfort, and Renault

(1993), and Gouriéroux and Monfort (1996).4 The setting here is more restrictive because

only likelihood functions are considered. Estimation chooses ρ to minimize the difference

4Although EMM is one of several estimators called “indirect inference” by Gouriéroux et al. (1993), we
follow standard usage by distinguishing between EMM and indirect inference.
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between the sample estimate of the auxiliary model’s parameters and the expected parameter

estimates. This difference can be expressed in terms of the binding function

b(ρ) = argmax
β∈B

Qa,∞(ρ, β). (17)

Asymptotically, the auxiliary model estimate β̂T approaches the value of the binding function

evaluated at ρ0. More precisely,

T
(
β̂T − b(ρ0)

)′
da,0Ω

−1da,0

(
β̂T − b(ρ0)

)
a→ χ2(pa). (18)

This result suggests an estimator for ρ,

ρ̂I,T = argmin
ρ∈(−1,1)

JI,T (ρ), (19)

where the criterion function JI,T is

JI,T (ρ) = T
(
β̂T − b(ρ)

)′
d̂a,T Ŝ−1

a,T d̂a,T

(
β̂T − b(ρ)

)
. (20)

In (20), the unknown parameters da,0 and Ω are replaced with consistent estimates. Gouriéroux

and Monfort (1996) prove that indirect inference is asymptotically equivalent to EMM (when

the same auxiliary function is used, as it is here), thus it necessarily achieves the same asymp-

totic efficiency.

For the purposes of comparing the finite-sample properties of indirect inference with

those of EMM, note that we can interpret the criterion function (20) as a quadratic form

in a vector of moments d̂a,T (β̂T − b(ρ)). The weighting matrix is the inverse of Ŝa,T , which

is the same weighting matrix used with EMM estimation. Thus comparing the properties

of Ha,T (ρ, β̂T ) with those of d̂a,T (β̂T − b(ρ)) will help us understand the differences in the

finite-sample properties of the estimators.

As with EMM, we can construct a test of model misspecification and a test of the hy-

pothesis that ρ = ρ0. Asymptotically,

JI,T (ρ̂I,T )
d→ χ2(pa − 1), (21)

and

JI,T (ρ0)− JI,T (ρ̂I,T )
d→ χ2(1). (22)

The difficulty with indirect inference is in computing the binding function b(ρ). In some

applications it is known analytically. One case is where the auxiliary likelihood is identical
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to the true likelihood. Then, by the consistency property of ML, b(ρ) = ρ. The indirect

inference estimator is then ρ̂I,T = β̂T . Absent an analytic expression of the binding function,

it is approximated with simulations. The indirect inference literature uses two alternative

simulation approaches, one of which requires a slight modification to the derivation above.

The existing literature uses the term indirect inference to refer to both approaches, but we

modify this term to help distinguish between them.

The first approach, which we call asymptotic indirect inference, defines a simulated version

of the binding function,

b∗(Ỹτ (ρ)) = argmax
β∈B

Qa,τ (Ỹτ (ρ), β), (23)

where Ỹτ (ρ) is a length-τ simulated sequence of data generated by the true model with

parameter ρ. As τ approaches infinity, this simulated binding function approaches b(ρ).

Thus we also refer to the case where b(ρ) has an analytic expression as asymptotic indirect

inference.

The second approach, which we call finite-sample indirect inference, defines a finite-

sample version of the binding function. The function is

bH
T (Ỹ 1

T (ρ), . . . , Ỹ H
T (ρ)) =

1

H

H∑
h=1

argmax
β∈B

Qa,T (Ỹ h
T (ρ), λ), (24)

where Y h
T (ρ) is a length-T simulated sequence of data generated by the true model with

parameter ρ. The sequences are independent. To simplify notation, denote this function by

b̃H
T (ρ). As H approaches infinity, this function no longer depends on the particular randomly

generated samples, so we write

lim
H→∞

b̃H
T (ρ) = bT (ρ). (25)

For finite H, the criterion function must be modified to account for the randomness

introduced by simulating the binding function. The adjusted criterion function is

JF,T (ρ) = T
1

1 + 1/H

(
β̂T − b̃H

T (ρ)
)′

d̂a,T Ŝ−1
a,T d̂a,T

(
β̂T − b̃H

T (ρ)
)

. (26)

The subscript F refers to the finite-sample version of indirect inference. The finite-sample

indirect inference estimator is

ρ̂F,T = argmin
ρ∈(−1,1)

JF,T (ρ). (27)

The test statistics (21) and (22) also apply to finite-sample indirect inference, with JF,T

replacing JI,T .

Note that finite-sample indirect inference does not require a large value of H. For exam-
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ple, H = 1 is valid. Higher values of H reduce the uncertainty in the estimate of ρ because

the variance of β̂T − b̃H
T (ρ0) is proportional to (1 + 1/H).

2.7 Tradeoffs among these techniques

Gouriéroux, Monfort, and Renault (1993) show that EMM and the two indirect inference

estimators described above all have the same asymptotic properties. However, they differ

markedly in their computational needs. Both indirect inference estimators require the aux-

iliary model to be reestimated for every set of simulated data. In contrast, with EMM, the

parameters of the auxiliary model need to be estimated only once, on the original sample.

For each simulated dataset, EMM requires only the computation of the auxiliary model’s

score vector at the original set of auxiliary parameter values. This speed advantage is the

primary reason why researchers use EMM more often than they use either indirect inference

estimator.

There is also a speed tradeoff with the two forms of the indirect inference estimator.

The asymptotic indirect inference estimator requires only a single estimation of the auxiliary

model’s parameters for a given structural-model parameter vector. The finite-sample version

requires estimation of H sets of auxiliary model parameters.5

Advocates of finite-sample indirect inference focus on the bias in point estimates. The

use of simulated datasets of the same length as the original sample means that finite-sample

indirect inference corrects some of the small-sample bias present in both EMM and asymp-

totic indirect inference. Indeed, Gouriéroux, Renault, and Touzi (2000) show that, as H

approaches infinity, the finite-sample indirect inference estimator provides the same second-

order bias correction in the point estimates as the bootstrap estimator of Efron (1979).

While this result does not hold for finite H (unlike with a finite number of bootstrap repli-

cations), Gouriéroux, Renault, and Touzi (2000) nevertheless show in simulations that the

finite-sample indirect inference estimator reduces bias in point estimates as well as the exact

median-unbiased estimator of Andrews (1993) for AR(1) models, and as well as the approx-

imate median-unbiased estimators of Rudebusch (1992) and Andrews and Chen (1994) for

AR(p) models.

In the simulations that follow we confirm the bias reduction associated with finite-sample

indirect inference. However, statistical inference depends on both point estimates and es-

timated standard errors. One of the surprising conclusions of this paper is that the small-

sample properties of test statistics produced by finite-sample indirect inference are generally

inferior to those produced by asymptotic indirect inference.

5For the AR(1) model we examine, asymptotic indirect inference has an even larger speed advantage,
because there is an analytic expression for the asymptotic indirect inference binding function.
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3 Estimation using the full likelihood function

This section focuses on estimation of ρ in (2) using the full likelihood function, both directly

in ML estimation and indirectly as the auxiliary likelihood function. Although the calcu-

lations are straightforward, we go into a little detail to illustrate the differences among the

estimation techniques.

3.1 Setup

The mean score vector is

hT (YT ; ρ) =
1

T

[
ρ

(
y2

1 − (1− ρ2)−1
)

+ (T − 1)
(
ytyt−1 − ρy2

t−1

)]
. (28)

The ML estimator, ρ̂L,T , sets hT (YT ; ρ) to zero. We solve for this estimate using the Matlab

root-finder “fzero.” The outer product of the score vector is

ŜT =
1

T

[
ρ̂2

L,T

(
y2

1 − (1− ρ̂2
L,T )−1

)2
+

T∑
t=2

(
ytyt−1 − ρ̂L,T y2

t−1

)2

]
. (29)

The second derivative of the mean log-likelihood is

d̂T =
1

T

[
y2

1 −
(
1− ρ̂2

L,T

)−2 (
1 + ρ̂2

L,T

)
− (T − 1)y2

t−1

]
. (30)

Note that the unconditional variance of yt conditional on a candidate ρ is

Var(yt|ρ) = E(y2
t |ρ) = (1− ρ2)−1. (31)

The auxiliary likelihood is the full likelihood of the true model, with the parameter ρ

replaced by β. The expectation of ha,T is thus identical to the expectation of hT and is given

by

Ha,T (ρ, β) =
1

T

[
β

((
1− ρ2

)−1 −
(
1− β2

)−1
)

+ (T − 1) (ρ− β) (1− ρ2)−1
]
. (32)

Inspection of (32) reveals that it is identically zero for ρ = β. The asymptotic indirect

inference binding function is b(ρ) = ρ. Therefore the estimate of ρ for both of these estimators

is ρ̂L,T . The finite-sample indirect inference binding function does not have an analytic

expression. We approximate it with H = 4. This choice is sufficient to illustrate the

advantages and disadvantages of finite-sample indirect inference. The Matlab root-finder

“fzero” is used to find the finite-sample indirect inference estimate of ρ.
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3.2 Criterion functions and confidence intervals

For this setup, the GMM criterion functions for ML, EMM, asymptotic indirect inference,

and finite-sample indirect inference are, respectively,

JL,T (ρ) = ThT (YT ; ρ)2/ŜT ; (33)

JE,T (ρ) = THa,T (ρ; ρ̂L,T )2/ŜT ; (34)

JI,T (ρ) = T (d̂T (ρ̂L,T − ρ))2/ŜT ; (35)

and

JF,T (ρ) = T
1

1 + 1/4
(d̂T (ρ̂L,T − b̃4

T (ρ)))2/ŜT . (36)

We follow the recommendation of Gallant and Tauchen (1998), and construct confidence

intervals for ρ by inverting the criterion functions.6 performance of Hansen, Heaton, and

Yaron (1996) conclude, based on Monte Carlo studies of various GMM estimators, that

Wald-type confidence intervals typically perform poorly. They find that confidence intervals

based on inverting GMM criterion functions are more reliable.

Define cζ as the probability-ζ critical value of a χ2(1) distribution:

Prob(χ2(1) > cζ) = 1− ζ. (37)

For example, with ζ = 0.95, the probability is 5% that a random variable distributed as

χ2(1) exceeds cζ . A confidence interval for ρ based on maximum likelihood is

ζ-level ML confidence interval = {ρ : JL,T (ρ) < cζ} . (38)

Confidence intervals for the other estimation methods are constructed similarly. Because

these intervals are constructed from criterion functions instead of inverting asymptotic stan-

dard errors, they are not necessarily symmetric around the ML point estimate.7 In principle,

this asymmetry is a nice feature of the confidence intervals, because it reflects the cost (in

terms of the likelihood) of values of ρ near the boundary of stationarity. However, one of

the main problems we document with the EMM criterion function is that it is excessively

asymmetric when the data are highly persistent.

6 In particular, we do not calculate confidence intervals from asymptotic standard errors, including those
calculated, as in recent implementations of EMM, using the MCMC methodology of Chernozhukov and Hong
(2003).

7The intervals are not necessarily symmetric around the point estimate even if the criterion function is
symmetric, because the intervals do not extend beyond the boundary of the stationary region |ρ| < 1.
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Examples of the criterion functions and associated confidence intervals are displayed in

Fig. 1. We generate three samples of 1000 weekly observations for the different values of ρ0

discussed in Section 2.1.8 Panels A, B, and C contain criterion functions for ρ0 = 0.8522 (one-

month half life of shocks), ρ0 = 0.9868 (one year), and ρ0 = 0.9978 (six years) respectively.

Panels D, E, and F are magnified views of the corresponding panel on the left. Criterion

functions for full ML, asymptotic indirect inference, finite-sample indirect inference, and

EMM are illustrated with solid lines, dashed lines, dotted lines, and dashed-dotted lines

respectively. In the magnified panels, the point estimate of ρ is marked with an “O” and

the true value is marked with a “b”. The points “L” and “U” are the lower and upper 95th

percentile bounds on ρ constructed using the EMM criterion function.

The criterion functions for ML, EMM, and asymptotic indirect inference all reach a

minimum of zero at the same point—the ML estimate of ρ. The point that minimizes the

finite-sample indirect inference criterion function is random because of the finite number of

simulations used to construct b̃H
T (ρ).

3.3 The asymmetry of the EMM criterion function

The most interesting feature of these plots is the asymmetry in the EMM criterion function

relative to the other criterion functions. The relative asymmetry increases significantly

as the persistence of the data increases. A detailed discussion of the functions for which

analytic expressions are available (i.e., not finite-sample indirect inference) helps explain

this pattern. Begin with the asymptotic indirect inference criterion (35). Inspection of this

equation reveals the function is symmetric in (ρ̂L,T − ρ), and in particular the function is

quadratic. A comparison of the EMM criterion function (34) with (35) is simplified by

ignoring the role of the first observation in the construction of both d̂T and Ha,T . Then the

two functions are approximately given by

JE,T (ρ) ≈ T
(
(ρ̂L,T − ρ)(1− ρ2)−1

)2
/ŜT (39)

and

JI,T (ρ) ≈ T
(
(ρ̂L,T − ρ)y2

t−1

)2

/ŜT . (40)

Both functions scale the difference between the ML estimate and the candidate ρ by a

measure of the variance of the data. For the EMM criterion function, the variance measure

is the population variance (31). For the asymptotic indirect inference criterion function,

the variance measure is the sample estimate. When ρ > ρ̂L,T , EMM scales the deviation

8The samples are constructed with the same underlying random numbers, generated using the Matlab
random number generator randn. The seed for the sequence is zero.
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(ρ̂L,T − ρ) by a larger variance than when ρ < ρ̂L,T . This asymmetry is more pronounced

when ρ̂L,T is close to one, because (31) is more sensitive to ρ at such points.

A similar approximation illustrates the relation between the ML criterion function (33)

and the EMM criterion function. The conditional maximum likelihood estimate of ρ (i.e.,

dropping the first observation) is ytyt−1/y2
t−1. Ignoring the difference between this estimate

and the full ML estimate, the ML criterion function is approximately

JL,T (ρ) ≈
[

1

T
ρ(y2

1 − (1− ρ2)−1) +
T − 1

T
(ρ̂L,T − ρ)y2

t−1

]2

/ŜT . (41)

Aside from the treatment of the first observation, this criterion function is identical to (40).

The population variance (31) appears in the derivative of the log-likelihood of the first

observation. Therefore the ML criterion function is asymmetric for the same reason that

the EMM criterion function is asymmetric. But because the population variance affects only

one of the T observations, the magnitude of the asymmetry is smaller than in (39).

For the one-month half life, the asymmetry of the EMM criterion function is noticeable

but small. In Panel D, the distance between the EMM lower 95th percentile bound L

and the point estimate ρ̂L,T is 0.0326. The distance between ρ̂L,T and the EMM upper

95th percentile bound is 0.0223, or about two-thirds the length of the lower bound. The

asymmetry is stronger with the one-year half life in Panel E, where the lower and upper

distances between the bounds and ρ̂L,T are 0.0213 and 0.0059, respectively. By contrast,

the ML and asymptotic indirect inference criterion functions are almost indistinguishable in

this panel. With a six-year half life, the asymmetry in the ML criterion function relative to

the asymptotic indirect inference criterion function is clear (Panel F), but it is swamped by

the asymmetry of the EMM criterion function. In fact, the lower bound of the EMM 95th

percentile bound cannot be displayed in either Panel C or Panel F. It is ρ = 0.38.

When ρ is close to one, the population variance (31) is both large and highly nonlinear

in ρ. The asymmetry in the criterion function is created by the latter effect, not the former.

Although our data-generating process does not allow us to distinguish between these effects,

consider the more general DGP

yt = ρ0yt−1 + εt, εt ∼ N(0, σ2). (42)

The magnitude of the population variance depends on both ρ0 and σ, yet σ has no effect on

any of our results. To see this, define y∗t = yt/σ and ε∗t = εt/σ. Dividing (42) by σ produces

dynamics for y∗t that are identical to (1). Thus all calculations and conclusions regarding

the estimation of ρ are unaltered aside from the substitution of yt/σ for yt.
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Asymptotically, the asymmetry of the EMM criterion function has no implications for test

statistics based on the criterion function because the ML estimate converges to ρ0. In other

words, all that matters is the behavior of the functions over the tiny range that encompasses

both ρ̂L,T and ρ0. But in finite samples, the asymmetries can have important effects. For

concreteness, consider the functions for the one-year half life displayed in Panels B and E. At

the ML estimate, the second derivative of the EMM criterion function (34) is close to those

of (33) and (35). (By construction, the latter two have identical second derivatives at the

ML estimate). Their ratio is 1.2. However, the third derivative of the ML criterion function

at ρ̂L,T is much closer to zero than is the third derivative of the EMM criterion function. To

simplify the interpretation of the third derivatives, divide them by the corresponding second

derivatives. With this scaling, the third derivative of the ML function (33) is 23, while the

third derivative of the EMM function (34) is 362. Thus, although the true value of ρ is very

close to the ML estimate (0.9868 versus 0.9836), the ratio of second derivative of the EMM

function to the second derivative of the asymptotic indirect inference function at ρ0 is 4.1.

The corresponding ratio for the ML and asymptotic indirect inference functions is only 1.1.

In summary, the evidence in Fig. 1 suggests that with highly persistent data, the finite-

sample properties of EMM confidence bounds and test statistics are likely to differ substan-

tially from the corresponding finite-sample properties of both ML and indirect inference.

The next subsection uses Monte Carlo simulations to document this claim. It also shows

that the finite-sample properties of ML and asymptotic indirect inference are much closer to

their asymptotic properties than are the finite-sample properties of EMM.

3.4 Finite sample properties

Bias in estimated autocorrelation coefficients, particularly when the data are persistent, is

a well-known problem for most estimation techniques, not just those that are simulation-

based (see, for example, Orcutt (1948), Quenouille (1949), Marriott and Pope (1954), Kendall

(1954), or, for a more recent example involving non-linear processes, Ball and Torous (1996)).

Because our focus is on persistent processes, it is not a surprise that the techniques we

consider exhibit deviations between finite-sample and asymptotic properties. Our goal is to

examine how and why these deviations differ across estimation methods. Relevant evidence

from Monte Carlo simulations is reported in Tables 2 and 3.

Table 2 reports means, medians, and root mean squared errors of point estimates for

both maximum likelihood and finite-sample indirect inference. (The remainder of the table is

discussed in Section 4.3.) The two conclusions to draw from these statistics are unsurprising.

First, the ML estimate is downward biased. Second, the finite-sample indirect inference
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estimate is less biased than is the ML estimate. These statements apply to each combination

of ρ0 and T .

Table 3 reports median lengths, across 5000 simulations, of 95 percent confidence intervals

for ρ. This length is defined by (38) for ML and defined by similar equations for EMM and

indirect inference. The table also reports empirical rejection rates for these bounds (e.g., for

what fraction of the simulations is ρ0 contained in the range defined in that simulation’s (38)).

We draw two important conclusions from the results of Table 3. The first concerns EMM

and the second concerns finite-sample indirect inference.

3.4.1 Hypothesis testing with EMM

When the data-generating process is highly persistent, the finite-sample properties of EMM

differ sharply from those of the other estimators. The EMM confidence intervals are much

larger than the ML and indirect inference confidence intervals, yet the empirical rejection

rates for EMM are much higher than those of the other estimators. For example, with 2000

weeks of data and ρ0 = 0.9978, the median length of the EMM confidence interval is more

than 30 times the median length of the ML or indirect inference confidence intervals. The

empirical rejection rate at the 95th percentile level exceeds 20 percent for EMM, compared

with between 7.5 and 7 percent for ML and asymptotic indirect inference. Differences be-

tween EMM and the other estimators are relatively large even with extremely long data

samples. With 10,000 observations (192 years), the median length of the EMM confidence

intervals is more than 50 percent larger than the median length of the ML and asymptotic

indirect inference confidence intervals, and empirical rejection rates are twice as large.

The problem with EMM is inherent in the sharp asymmetry in the EMM criterion func-

tion induced by the role that the population variance function (31) plays in the EMM moment

condition. This problem is explained easily in the context of Fig. 1. With highly persistent

data, the EMM criterion function is extremely asymmetric. This asymmetry produces a

confidence interval that covers a wide range of ρ below ρ̂L,T , but covers too little of the range

of ρ above ρ̂L,T . Given this asymmetry, it is not surprising that almost all of the EMM

rejections of the hypothesis ρ = ρ0 occur when the point estimate ρ̂L,T is less than ρ0. (This

fact is not reported in any table.)

We emphasize that our point is not simply that EMM has poor finite-sample properties in

this AR(1) setting. It is that EMM has poor properties relative to the alternative simulation

technique of asymptotic indirect inference. In fact, the test statistic for indirect inference

has better finite-sample properties than does the test statistic for ML. Moreover, EMM

breaks down in cases where the hypothesis of a unit root is typically rejected. For example,

with ρ0 = 0.9868 and T = 2000, the empirical rejection rate of the hypothesis ρ = ρ0 is
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almost twice as high with EMM as it is with ML and asymptotic indirect inference. Yet,

as mentioned in Section 2.2, the power of a Dickey-Fuller test is extremely high for this

combination of ρ0 and T . (The test rejects the hypothesis of a unit root at the 95 percent

confidence level in 4999 of 5000 simulations.) Thus the finite-sample properties of EMM

are poor relative to asymptotic indirect inference when the underlying process is highly

persistent, but not necessarily statistically close to a unit root.

3.4.2 Hypothesis testing with finite-sample indirect inference

When the data-generating process is highly persistent, asymptotic indirect inference out-

performs finite-sample indirect inference in testing the hypothesis ρ = ρ0. For example,

with 1000 weeks of data and ρ0 = 0.9978, the empirical rejection rates are 9 percent and 18

percent respectively. At first glance, this is a surprising result because finite-sample indirect

inference point estimates of ρ are less biased than those of asymptotic indirect inference.

We might be tempted to attribute this result to a low value of H, which creates uncertainty

in the calculation of the finite-sample binding function. However, this poor performance is

actually attributable to the smaller bias in the point estimate.

To understand how the smaller bias affects statistical inference, note that the indirect

inference test statistics (35) and (36) are derived from the following asymptotic results:

lim
T→∞

ρ̂L,T − ρ0

ŜE(ρL,T )

d→ N(0, 1) (43)

and

lim
T→∞

(
1

1 + 1/H

)1/2
ρ̂L,T − b̃H

T (ρ0)

ŜE(ρ̂L,T )

d→ N(0, 1), (44)

where the robust estimate of the standard error of ρ̂L,T is

ŜE(ρ̂L,T ) =

√
ŜT /(T d̂2

T ). (45)

The statistics (35) and (36) are squared versions of (43) and (44). According to (43) and (44),

ML estimates of ρ are asymptotically distributed symmetrically around ρ0 or b̃H
T (ρ) respec-

tively. (Asymptotically, b̃H
T (ρ) converges to ρ0.) Hence if we use, say, a 95% confidence level

for the χ2(1) tests (35) and (36), then asymptotically half of the rejections should occur

when the estimate of ρ exceeds ρ0 (or b̃H
T (ρ)) and half should occur when the estimate of ρ

is less than ρ0 (or b̃H
T (ρ)). Of course, in finite samples this symmetry need not be observed.

Visual evidence of this symmetry, or lack thereof, is in Fig. 2. It is constructed using the

simulations produced with the high-persistence parameter ρ0 = 0.9978 and T = 1000. Both
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panels A and B display the same scatter plot of ML point estimates and the corresponding

estimate of its standard error. The mean point estimate is marked with an “O” on the

horizontal axis. The true value ρ0 is marked with a “p.” It is the square root of (1− ρ2
0)/T .

For the points in Panel A labeled in red, the asymptotic indirect inference test (35) rejects

the hypothesis of ρ = ρ0 at the 95 percent confidence level. The test is not rejected at the

points in blue. The colors in Panel B are explained below.

Panel A illustrates three features of the ML estimates that affect the symmetry of the

outcome of the asymptotic indirect inference test (35). First, the ML estimate is biased

down; point “O” is less than “p.” All else equal, this bias generates more rejections in the

region ρ̂T < ρ0 and fewer in the region ρ̂T > ρ0, simply because the ML estimates are less

likely to occur in the latter range. Second, the ML estimates are negatively skewed—the

distribution has a long left tail. All else equal, this skewness also generates more rejections

in the region ρ̂T < ρ0, because the typical numerator in (43) is larger in magnitude in this

region than in the region ρ̂T > ρ0. Third, there is a strong inverse relation between the point

estimate of ρ and its estimated standard error. All else equal, this relation generates more

rejections in the region ρ̂T > ρ0, because the denominator in (43) is lower in this region than

in the region ρ̂T < ρ0.

In combination, these three features produce empirical rejections of the hypothesis ρ = ρ0

that are almost evenly divided between estimates of ρ that exceed ρ0 and estimates that are

less than ρ0. Using a 95% critical value, these ranges contain 4.5% and 4.2% of the total

number of simulations, for a total rejection rate of 8.7%.

Panel B contains similar evidence for finite-sample indirect inference. Rather than ap-

proximate the binding function at ρ0 with H = 4, we can use the Monte Carlo simulations to

approximate the function with H = 5000. The point labeled “O” is not only the mean ML

point estimate; it is also b̃5000
T (ρ0). Thus we can calculate the statistic (36) for H = 5000. For

this test, the red and blue dots in Panel B have the same interpretation as the dots in Panel A.

Rejections of the null hypothesis at the 95% critical value are no longer evenly divided. The

upper and lower ranges contain 15.6% and 2.6% of the total number of simulations, for a

total rejection rate of 18.2%.

The difference between Panels A and B is that in Panel B, the effect of the biased ML

estimate is removed. The test statistic is based on the difference between the ML estimate

and the expected ML estimate, not the difference between the ML estimate and ρ0. As a

consequence, the inverse relation between the point estimate of ρ and its estimated standard

error dominates the distribution of the test statistic. Rejections thus increase in the region

ρ̂T > ρ0. Because the probability density of ρ̂T is high in this region, the null hypothesis is

rejected for a relatively large fraction of the total sample.
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We do not know if the patterns in Panel A are a happy accident, or if there is something

fundamental about the combination of the three features that affect the distribution of the

asymptotic indirect inference test statistics. A more robust conclusion is that there is no

theoretical reason to believe that finite-sample indirect inference produces more accurate

test statistics than asymptotic indirect inference. The motivation for finite-sample indirect

inference lies exclusively in correcting for bias in point estimates, not the size of statistical

tests. In the setting here, correcting for biased point estimates has unfortunate consequences

for the size of statistical tests.

4 Estimation using a conditional Gaussian likelihood

Section 3 documents relatively poor finite-sample performance of statistical inference with

EMM. The auxiliary likelihood used in that section–full ML–provides the cleanest way to

explain differences among the criterion functions. However, it does not allow us to compare

point estimation properties, because EMM and asymptotic indirect inference point estimates

are identical to ML estimates. Nor does it permit an examination of the finite-sample

properties of overidentifying restrictions. Thus in this section we use the auxiliary conditional

likelihood of (6). We refer to this likelihood as the “conditional Gaussian” likelihood.

The conditional Gaussian likelihood is less precise than the full ML likelihood. Put dif-

ferently, it is a more flexible, and thus more highly parameterized, likelihood. By using it, we

move in the direction of auxiliary likelihoods more frequently used in practice. Econometri-

cians use auxiliary likelihoods to circumvent the problem of an unknown or intractable true

likelihood. Gallant and Tauchen (1996) and Bansal et al. (1995) argue in favor of a data-

based approach to choosing the auxiliary likelihood in order to detect misspecification of the

structural model. In practice, this means using a flexible functional form that can capture

arbitrarily complicated dynamics (at least asymptotically). This flexibility typically results

in an auxiliary likelihood that is more highly parameterized than is the true data-generating

process. Gallant and Tauchen recommend the SNP family of conditional likelihood functions

described in Gallant and Tauchen (1992). For the case of a scalar time series, the simplest

SNP specification a conditional Gaussian likelihood.

It is important to recognize, however, that we are not conducting a search for the best

SNP specification. Instead, we use a common specification across all data samples. Although

we use an auxiliary likelihood function that nests the true likelihood and is asymptotically

equivalent to the true likelihood, it is not necessarily the best in-sample SNP specification

for every sample.
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4.1 Setup

The derivative of the mean auxiliary log-likelihood (6) is

ha,T (YT , β) = β−1
2

 et

etyt−1

(1/2)(e2
t /β2 − 1)

 (46)

where

et = yt − β0 − β1yt−1. (47)

The optimal parameter vector β̂T = (β̂0,T β̂1,T β̂2,T )′ is equivalent to the combination of the

coefficients of an OLS regression of yt on yt−1 and the mean of squared regression residuals.

At this point, the Hessian matrix is

d̂a,T = −β̂−1
2,T

 1 yt−1 0

yt−1 y2
t−1 0

0 0 1
2
β̂−1

2,T

 . (48)

The mean outer product of the score is

Ŝa,T = β̂−2
2,T


β̂2,T e2

t yt−1
1
2
e3

t β̂
−1
2,T

e2
t yt−1 e2

t y
2
t−1

1
2

(
e3

t yt−1β̂
−1
2,T − etyt−1

)
1
2
e3

t β̂
−1
2,T

1
2

(
e3

t yt−1β̂
−1
2,T − etyt−1

)
1
4
(e4

t β̂
−2
2,T − 1)

 . (49)

Both of these matrices asymptotically approach (aside from a sign change)

Sa,0 =

 1 0 0

0 (1− ρ2
0)
−1 0

0 0 1/2

 . (50)

Estimation of ρ with EMM uses the expectation of (46) conditional on ρ. Some algebra

reveals that this expectation is

Ha,T (ρ, β) = β−1
2

 −β0

(ρ− β1)Var(y|ρ)
1
2

(
β−1

2 − 1
)

+ 1
2
((ρ− β1)

2Var(yt|ρ) + β2
0) β−1

2

 . (51)

The T subscript on Ha,T is included for notational consistency, but it is unnecessary because

the auxiliary likelihood is a conditional likelihood. Because the auxiliary likelihood is cor-
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rectly specified, the consistency of maximum likelihood implies that the asymptotic indirect

inference binding function is

b(ρ) =

 0

ρ

1

 . (52)

The finite-sample binding function is approximated with H = 4. With our choice of auxiliary

model, estimation of the auxiliary parameters does not require numerical, and computation

of b̃H
T (ρ) is therefore tractable.

4.2 The criterion functions and confidence bounds

As in the case of full maximum likelihood, a closer look at the EMM and asymptotic indirect

inference criterion functions helps us understand the differences between their performance.

The EMM moment vector is (51) evaluated at β̂T . The moments are weighted by the inverse

of (49). The corresponding asymptotic indirect inference moment vector is d̂a,T (β̂T − b(ρ)):

da,T (β̂T − b(ρ)) = β̂−1
2,T

 −β̂0,T + yt−1(ρ− β̂1,T )

(ρ− β̂1,T )y2
t−1 − β̂0,T yt−1

1
2
(β̂−1

2,T − 1)

 . (53)

These moments are also weighted by the inverse of (49). Each element of the vector (53)

differs slightly from its counterpart in (51). The effects of these differences are illustrated in

Fig. 3.

The figure displays the criterion functions for EMM, asymptotic indirect inference, and

finite-sample indirect inference for the 1000-observation samples previously examined in

Fig. 1. The points labeled “O” are the EMM point estimates and the points labeled “L” and

“U” are the upper and lower 95th percentile bounds on these estimates. The points labeled

“R” are the estimates of persistence from the auxiliary model (β̂2,T ), which are also the OLS

regression estimates.

The most striking feature of this figure is that the EMM criterion functions in Panels B

and C look nothing like the indirect inference criterion functions. Consider, for example,

Panel C. For this highly persistent sample of data, the OLS estimate of ρ is 0.9884. The

asymptotic indirect inference estimate is 0.9987, at which point the value of the corresponding

criterion function is about 16. The finite-sample indirect inference estimate is 0.9971, with

a criterion function value of about 11. By contrast, the EMM estimate is 0.9256, with a

criterion function value that exceeds 175.

What accounts for the anomalous behavior of the EMM criterion function? One reason
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is identified in Section 3.3: the presence of the unconditional variance in the EMM moment

condition, which is extremely sensitive to small variations in ρ in the neighborhood of ρ = 1.

A second reason is that the sample mean has a large variance when the data are highly

persistent. If the auxiliary model specifies the true mean, as it does in Section 3, this is

irrelevant. But with a more general auxiliary model, the EMM criterion function is extremely

sensitive to the sample mean.

This sensitivity cannot be seen merely by studying the EMM moment vector (51) because

it is driven by the interaction of the moment vector and the weighting matrix. More precisely,

the sample mean of the data is correlated with sample covariance between the first two EMM

moments, with unfortunate effects. The details (which are unavoidably mind-numbing)

follow.

First note that in any finite sample, the mean of yt will differ from the true mean, which

is zero in this setting. In addition, in most finite samples where the true process is stationary,

the OLS regression estimate of mean reversion, β̂1,T , is less than one. As a consequence, the

estimate of the constant term in the OLS regression, β̂0,T , is positively correlated with the

sample mean of yt.
9 Therefore the first moment of (51) is negatively correlated with the

sample mean of yt. Asymptotically, this moment has no effect on the estimate of ρ. The

parameter does not appear in the equation for this first moment, and we can see in (50) that

the asymptotic covariances between this moment and the other two moments are both zero.

However, the criterion function uses sample covariances, not asymptotic covariances. The

sample covariance between the first two moments is, from (49):

e2
t yt−1 = Ĉov(e2

t , yt−1) + e2
t yt−1. (54)

Thus if the sample mean of yt happens to be greater (less) than its true mean, the sample

covariance will also tend to be greater (less) than its true mean. Hence the first moment tends

to be positively correlated with the second moment whenever the first moment is negative,

and negatively correlated whenever the first moment is positive. This pattern means that

the EMM criterion function is typically minimized at a negative value of the second moment,

which corresponds to an EMM estimate of ρ less than the OLS estimate β̂1,T . The effect

holds regardless of the true value of ρ, which is why the EMM estimate of ρ is less than the

OLS regression estimate in each panel of Fig. 3. The effect is magnified for highly persistent

processes because the variance of the sample mean is higher for higher values of ρ.

The structure of the asymptotic indirect inference moment vector (53) avoids this prob-

9This is from β̂0,T = yt − β̂1,T yt−1; ignore the difference between the sample mean of yt and the sample
mean of yt−1.
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lem. The steps used to conclude that the EMM criterion function is typically minimized

at a negative value of the second moment also apply to this moment vector. However, the

second moment of (53) has a term that does not appear in the EMM moment (51). This

term picks up the negative value of the second moment. In fact, the asymptotic indirect

inference estimate of ρ is usually larger than the OLS estimate β̂1,T . In addition, the asymp-

totic indirect inference moment vector depends on an estimate of the sample variance of yt

instead of the population variance. As a result, the asymptotic indirect inference criterion

function is quadratic. Depending on the sample, the asymptotic indirect inference estimate

of ρ can equal one, or equivalently the first-order conditions are not satisfied at an estimate

less than one. This is a consequence of using a conditional likelihood as the auxiliary model.

We now present Monte Carlo evidence on the finite-sample performance of the estimators.

4.3 Finite sample properties

We first summarize features of the empirical density functions of estimates of ρ. Return

to Table 2, which reports means, medians, and RMSEs of the parameter estimates. The

OLS estimates are the estimates β̂1,T from the conditional Gaussian auxiliary likelihood.

Two features of the table are worth highlighting. First, for all combinations of ρ0 and T ,

the point estimates produced with EMM exhibit greater bias and greater RMSE than esti-

mates produced with either asymptotic indirect inference or OLS estimation. Second, there

is no clear winner in a horse race between asymptotic and finite-sample indirect inference.

Unsurprisingly, point estimates produced with the latter technique exhibit less bias. Also

unsurprisingly, the noise introduced by using a small number of finite-sample simulations

typically inflates the RMSE of finite-sample indirect inference relative to that of asymptotic

indirect inference. However, for the highest-persistence value of ρ0, the bias reduction over-

comes the noise, and the RMSEs of finite-sample indirect inference are actually lower than

those of asymptotic indirect inference.

Figure 4 displays empirical density functions for ML, EMM, and asymptotic indirect

inference when the sample size is 1000 observations. Each panel contains three plots. (To

limit clutter, densities for finite-sample indirect inference are not displayed. They are not

markedly different from those for asymptotic indirect inference.) The solid lines are the den-

sities produced with full ML estimation. Equivalently, they are the densities produced with

EMM and indirect inference using the full likelihood as the auxiliary likelihood. The dotted

lines are densities produced with EMM estimation using the conditional Gaussian auxiliary

likelihood. The dashed lines are densities produced with asymptotic indirect inference using

the same auxiliary model.
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There are three conclusions to draw from this figure. First, the asymptotic indirect

inference densities are very close to the full ML densities. Second, the EMM density is

similar to the others only when the data-generating process is not highly persistent. When

the process has either a one-year or a six-year half life, the EMM density is significantly

more diffuse than are the other two densities. In particular, the lower tails of the EMM

densities are much fatter than the lower tails of the other densities. For specificity, consider

the densities in Panel B (one-year half life). The interquartile range of the ML estimate is

from 0.9819 to 0.9890. These values correspond to half lives of 0.73 years to 1.2 years. The

interquartile range of the EMM estimate is from 0.9720 to 0.9857, corresponding to half lives

of 0.47 years and 0.93 years. Not only is this range much larger, but it does not contain the

true value of ρ.

Third, the efficiency of EMM estimation relative to the other estimation methods is

lower when the data generating process exhibits greater persistence. (This conclusion is also

evident in the RMSEs in Table 2.) Comparing Panels B and C, the ML and asymptotic

indirect inference estimates are less diffuse when the process has a six-year half life than

when it has a one-year half life. By contrast, the EMM estimates are more diffuse when the

process has a six-year half life. The interquartile range of the EMM estimate in Panel B is

from 0.9085 (outside of the plotted area) to 0.9924, corresponding to half lives of less than

two months and 1.7 years.

We now turn to test statistics, including tests of overidentifying restrictions. Monte Carlo

results for the EMM and indirect inference estimators are displayed in Table 4. The table

reports median lengths of 95 percent confidence bounds for ρ. It also reports empirical rejec-

tion rates for tests of overall model adequacy and tests that ρ = ρ0. Because three moments

are used to identify a single parameter, the first category of statistics has an asymptotic

χ2(2) distribution and the second category has an asymptotic χ2(1) distribution.10

There are three main conclusions to draw from this table. First, asymptotic indirect

inference, in combination with the conditional Gaussian likelihood, works well in finite sam-

ples even when the data are highly persistent. The median confidence bounds for indirect

inference are typically slightly larger than those reported in Table 3 for ML. The larger

confidence intervals are warranted: the empirical rejection rates of the hypothesis ρ = ρ0

correspond almost exactly to the asymptotic rejection rates, in contrast to the modest over-

10Indirect inference test statistics are not computed for samples in which the estimate of ρ is on the
boundary of the stationary region. For the one-month and one-year half lives, none of the estimates is on
the boundary. For the six-year half life and 1000 observations, slightly less than two percent of the estimates
are on the boundary. Doubling the number of observations reduces the fraction on the boundary to about
one quarter of one percent. None of the estimates are on the boundary for the six-year half life and 10,000
observations.
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rejections reported for ML in Table 3. Tests of the overidentifying restrictions are somewhat

less well-behaved, but the differences between empirical and asymptotic rejection rates are

small except for the six-year half life. The largest difference occurs with 1,000 observations:

14 percent of the statistics exceed the asymptotic 95 percent critical value.

Second, EMM, in combination with the conditional Gaussian likelihood, works poorly

when the data are highly persistent. The confidence bounds are large and the empirical

rejection rates of truth are high. The poor performance of EMM is evident even in very large

samples. With a six-year half life and 10,000 observations (almost 200 years of weekly data),

the median EMM confidence interval is almost twice the length of the median asymptotic

indirect inference confidence interval. Yet over one-quarter of the EMM test statistics for

ρ = ρ0 exceed the asymptotic 95 percent critical value. Naturally, shorter samples correspond

to poorer finite-sample behavior. With 1,000 observations, almost three-fourths of the test

statistics exceed the same critical value. Tests of the EMM overidentifying restrictions are

somewhat better behaved, but also strongly over-reject the null. With a one-year half life

the over-rejections are smaller, but remain significant. For example, with a one-year half life

and 2,000 observations, almost one-quarter of the statistics for ρ = ρ0 exceed the asymptotic

95 percent critical value.

Third, the empirical rejection rates for finite-sample indirect inference are generally higher

than those for asymptotic indirect inference. This result confirms with this auxiliary likeli-

hood what we observed in Section 3.4.2. Although finite-sample indirect inference produces

less biased point estimates, it does not necessarily produce more accurate test statistics.

Comparing the results here with the results in Section 3 shows that implementing EMM

with this conditional Gaussian auxiliary likelihood instead of the true full likelihood results in

both less efficient parameter estimation and larger discrepancies between finite-sample and

asymptotic critical values. The conditional Gaussian auxiliary likelihood differs from the

true likelihood in two (obviously related) respects—it uses less information about the true

model and it is more highly parameterized. A natural question is whether the consequences

of these two aspects of the auxiliary likelihood can be disentangled.

4.4 Does imposing structural model restrictions improve efficiency?

Imagine that instead of estimating (2), we estimate a more general Gaussian AR(1):

yt − α = ρ(yt−1 − α) + εt, εt ∼ N(0, v). (55)

In other words, instead of using our knowledge of the true model to fix the unconditional

mean to zero and the variance of shocks to one, we treat these parameters as unknown.
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Full maximum likelihood estimates of ρ are less efficient when the parameters α and v are

treated as unknown than when they are fixed to their true values.11 As can be seen in the

RMSEs reported in Table 2, the same result holds for the auxiliary model used by EMM and

asymptotic indirect inference. In other words, when estimating the single parameter ρ with

either EMM or indirect inference, using the full likelihood as the auxiliary model produces

more accurate point estimates than using a conditional Gaussian likelihood. (The reduction

in accuracy with indirect inference is fairly small, but as we saw in Fig. 4, it is dramatic with

EMM.)

Surprisingly, this intuition does not carry over to the structural model used by EMM

estimation, at least for the process examined in this paper. In other words, holding the

auxiliary model constant, estimates of ρ using the structural model that imposes the true

values of α and v are less efficient than estimates of ρ using the structural model that treats

α and v as unknown.

The evidence for this conclusion is hidden in Table 2. The information in the table

allows us to compare the accuracy of two particular estimates of ρ. One estimate uses

EMM combined with the conditional Gaussian auxiliary likelihood to estimate the single-

parameter model (2). The other estimate uses EMM combined with the same conditional

Gaussian auxiliary likelihood to estimate the three-parameter model (55). This estimate is

identical to the OLS estimate of ρ. The reason for this equivalence is that the conditional

Gaussian likelihood is the true conditional likelihood for (55). Therefore the EMM point

estimate of structural model equals the point estimate of the auxiliary model.12 As noted

in Section 4.1, the auxiliary-model point estimate is the OLS point estimate. Thus the

columns labeled “OLS” in Table 2 can be interpreted as results for the estimate of ρ from

EMM estimation of (55) using the conditional Gaussian auxiliary likelihood.

We see in the table that the OLS estimates are less biased than those from EMM esti-

mation of (2) using the conditional Gaussian auxiliary likelihood. They are also less diffuse,

in a RMSE sense. Put differently, when the same auxiliary model is used to estimate both

the restrictive model (2) and the broader model (55) with EMM, the estimates of ρ using

the broader model are more accurate.

11Although perhaps obvious, we verified this result with Monte Carlo simulations; the evidence is available
on request.

12This statement is a little loose. The estimate of the structural model will impose stationarity, but the
estimate of the conditional Gaussian model will not. Inspection of the EMM moment condition for the
structural model (55) combined with its conditional likelihood used as the auxiliary likelihood reveals that
the point estimates of the auxiliary model equal the point estimates of the structural model when the point
estimates for the auxiliary likelihood are in the stationary region. This condition was satisfied for all but 84
of the 5000 Monte Carlo simulations that specified 1000 observations and a six-year half life. It was satisfied
for all but 4 of the simulations that specified 2000 observations and a six-year half life, and was always
satisfied for all other combinations of T and ρ0.
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What accounts for this apparently counterintuitive behavior? Although more information

is available to pin down ρ when the restrictive model (2) is estimated than when (55) is esti-

mated, EMM estimation does not necessarily use the information appropriately. Section 4.2

placed part of the blame for the poor EMM estimates of ρ on the correlation between the

sample mean of the data and the weighting matrix. Hence the information in the difference

between the true mean and the sample mean tends to be used incorrectly in EMM estimation

of (2). Estimation of the broader model (55) throws away this information because it treats

the true mean as an unknown parameter. For the sample sizes and values of ρ0 examined

here, throwing away the information is better than using the information improperly.

A more provocative way to express this conclusion is that with EMM estimation of

highly persistent processes, it is more important to impose model-based restrictions on the

auxiliary model than on the structural model. This runs counter to the standard advice to

use a data-driven auxiliary model. We hasten to add that we do not know whether this

result generalizes to other settings.

4.5 Some caveats

The results of this section, combined with those in Section 3, do not shine a favorable light

on EMM estimation. Thus it is important to recognize that, in many ways, the AR(1)

setting we study rules out many of the advantages of the EMM procedure that others have

noted. Perhaps the most obvious difficulty in generalizing our results is that there is no need

for EMM estimation in our setting because of the tractability of the likelihood function.

Dynamic simulation methods are commonly used in settings where structural models are

nonlinear, when shocks are conditionally heteroskedastic and conditionally nonnormal, and

where likelihood functions are unknown or intractable. What we really want to know is how

estimation techniques perform when confronted with the combination of highly persistent

data and these more realistic dynamic properties. Unfortunately, the analytics are beyond

us.

A clear limitation of our analysis is that the strong asymmetry of the EMM criterion

function, which is largely responsible for the poor performance of EMM identified here, may

well be a desirable property in more complicated settings. When the econometrician does

not know how to impose stability on the parameter space, EMM ensures that neither the

parameter estimates nor the confidence bounds include the explosive region. This enforced

stability is not shared by indirect inference. Thus the asymmetry of the EMM criterion

function might well produce more accurate point estimates and confidence regions than

indirect inference.
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From the perspective of dynamic term structure estimation (the motivation behind our

study), this limitation is not particularly important, because for these models the stationary

region of the parameter space is typically known. But even in this case, criterion function

asymmetry may be useful in damping the effects of nonlinearities and fat tails near the

boundary of stationarity. An investigation of this question is beyond the scope of the current

work.

5 Conclusions

Efficient method of moments and indirect inference are both asymptotically equivalent to

maximum likelihood when the auxiliary model nests the true likelihood function. This paper

confirms that their finite-sample properties are also similar to those of maximum likelihood

when estimating an AR(1) process that is not close to a unit root. However, when the

persistence of the data is similar to the observed persistence of interest rates, the finite-sample

properties of EMM estimates differ substantially both from their asymptotic properties and

from the finite-sample properties of indirect inference and maximum likelihood.

The most obvious implication of our results is that any estimation of a structural model

with highly persistent data should be accompanied by a Monte Carlo analysis of its finite-

sample properties. Without this, it is impossible to draw reliable inferences from reported

test statistics. We can also draw three further preliminary implications. Although we can-

not be sure that these necessarily hold unaltered in more complex settings than considered

here, their significance warrants further investigation. First, researchers using EMM to es-

timate such models might want to consider using model-based auxiliary models instead of

data-driven models. Unfortunately, researchers lose much of their ability to test for mis-

specification when using a model-based auxiliary model. But the results here indicate that

the efficiency and size properties of EMM estimates are improved substantially by impos-

ing model-based restrictions on the mean of the data. Second, the superior performance

of asymptotic indirect inference documented here suggests that researchers should consider

using asymptotic indirect inference as an alternative to EMM estimation of such models.

Third, our results also cast doubt on a common perception that finite-sample indirect infer-

ence (averaging over independent replications) is superior to asymptotic indirect inference

(working with a single long simulation). Finite-sample indirect inference does, indeed, pos-

sess bias-reduction properties, but this advantage, at least in the setting we consider, is

outweighed by its high computational cost and relatively poor finite-sample test statistics.
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ρ0

T 0.8522 0.9868 0.9978

1000 1 0.936 0.157

2000 1 1 0.315

10000 1 1 1

Table 1: Power of Dickey-Fuller test for nonstationarity

This table summarizes results from 5,000 Monte Carlo simulations. The true data-generating
process is

yt = ρ0yt−1 + εt, εt ∼ N(0, 1)

For each simulation a sample of length T is generated. A Dickey-Fuller test (case 1) of the
hypothesis that ρ = 1 is performed. This table reports the fraction of simulations for which
the null hypothesis of nonstationarity is rejected at the five percent level.
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F-II EMM A-II F-II
using w/cond w/cond w/cond

T ρ0 ML true like Gaussian Gaussian Gaussian OLS

1000 0.8522 0.8504 0.8518 0.8467 0.8504 0.8536 0.8486
(0.8513) (0.8524) (0.8475) (0.8511) (0.8543) (0.8494)
[0.0165] [0.0184] [0.0183] [0.0166] [0.0186] [0.0171]

2000 0.8522 0.8515 0.8522 0.8496 0.8515 0.8531 0.8506
(0.8517) (0.8525) (0.8500) (0.8517) (0.8535) (0.8508)
[0.0119] [0.0133] [0.0125] [0.0120] [0.0134] [0.0121]

10000 0.8522 0.8520 0.8521 0.8516 0.8520 0.8523 0.8518
(0.8521) (0.8522) (0.8518) (0.8521) (0.8524) (0.8519)
[0.0053] [0.0060] [0.0053] [0.0053] [0.0060] [0.0053]

1000 0.9868 0.9849 0.9859 0.9733 0.9848 0.9883 0.9825
(0.9859) (0.9874) (0.9809) (0.9859) (0.9893) (0.9836)
[0.0060] [0.0062] [0.0314] [0.0062] [0.0066] [0.0053]

2000 0.9868 0.9858 0.9863 0.9827 0.9858 0.9876 0.9847
(0.9863) (0.9871) (0.9841) (0.9863) (0.9881) (0.9853)
[0.0040] [0.0043] [0.0089] [0.0041] [0.0045] [0.0047]

10000 0.9868 0.9866 0.9867 0.9862 0.9866 0.9870 0.9864
(0.9867) (0.9868) (0.9863) (0.9867) (0.9870) (0.9865)
[0.0016] [0.0018] [0.0019] [0.0017] [0.0019] [0.0017]

1000 0.9978 0.9962 0.9972 0.9451 0.9961 0.9975 0.9929
(0.9972) (0.9983) (0.9781) (0.9970) (0.9982) (0.9940)
[0.0034] [0.0031] [0.0890] [0.0037] [0.0027] [0.0069]

2000 0.9978 0.9969 0.9974 0.9748 0.9969 0.9980 0.9954
(0.9974) (0.9981) (0.9930) (0.9973) (0.9984) (0.9960)
[0.0021] [0.0020] [0.0435] [0.0022] [0.0019] [0.0034]

10000 0.9978 0.9976 0.9977 0.9966 0.9976 0.9980 0.9974
(0.9977) (0.9979) (0.9972) (0.9977) (0.9981) (0.9975)
[0.0007] [0.0008] [0.0047] [0.0008] [0.0008] [0.0009]

Table 2: Estimates of an autocorrelation coefficient

This table reports means, medians (in parentheses), and RMSEs (in brackets) from 5,000
Monte Carlo simulations. The true data-generating process is

yt = ρ0yt−1 + εt, εt ∼ N(0, 1).

For each simulation, a sample of length T is generated. The parameter ρ is treated as
unknown, and is estimated with full maximum likelihood (ML), efficient method of moments
(EMM), asymptotic indirect inference (A-II), finite-sample indirect inference (F-II) where the
binding function is approximated with four simulations, and OLS. The auxiliary likelihood
used with EMM and indirect inference is either the true likelihood or a conditional Gaussian
likelihood. The OLS regression includes a constant term.
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Actual
Median length of rejection rate of
95% conf bound 95% conf bound

T ρ0 ML EMM A-II F-II ML EMM A-II F-II

1000 0.8522 0.0646 0.0670 0.0646 0.0725 0.051 0.059 0.051 0.049

2000 0.8522 0.0457 0.0466 0.0458 0.0512 0.055 0.059 0.056 0.055

10000 0.8522 0.0205 0.0206 0.0205 0.0229 0.052 0.052 0.052 0.055

1000 0.9868 0.0190 0.0383 0.0197 0.0217 0.058 0.145 0.058 0.079

2000 0.9868 0.0140 0.0193 0.0141 0.0158 0.056 0.108 0.057 0.068

10000 0.9868 0.0063 0.0067 0.0064 0.0071 0.051 0.066 0.051 0.054

1000 0.9978 0.0066 0.5671 0.0066 0.0055 0.106 0.256 0.087 0.182

2000 0.9978 0.0050 0.1629 0.0054 0.0050 0.075 0.213 0.071 0.129

10000 0.9978 0.0025 0.0038 0.0026 0.0029 0.058 0.121 0.059 0.067

Table 3: Hypothesis tests of an autoregression coefficient

This table summarizes results from 5,000 Monte Carlo simulations. The true data-generating
process is

yt = ρ0yt−1 + εt, εt ∼ N(0, 1).

For each simulation, a sample of length T is generated. The parameter ρ is treated as
unknown, and is estimated with full maximum likelihood (ML). Confidence bounds and test
statistics are based on GMM criterion functions for ML, efficient method of moments (EMM),
asymptotic indirect inference (A-II), and finite-sample indirect inference (F-II) where the
binding function is approximated with four simulations. The true full likelihood is the
auxiliary likelihood for EMM and indirect inference. Confidence bounds are constructed by
inverting the criterion functions. Tests of the hypothesis that ρ = ρ0 are GMM versions of
the likelihood ratio test. Under the null, all statistics have asymptotic χ2(1) distributions.
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Actual rejection rate
Median length of at 95% critical value
95% conf bound Overident ρ = ρ0

T ρ0 EMM A-II F-II EMM A-II F-II EMM A-II F-II

1000 0.8522 0.0685 0.0646 0.0726 0.066 0.061 0.057 0.086 0.050 0.056

2000 0.8522 0.0471 0.0457 0.512 0.057 0.054 0.055 0.075 0.057 0.060

10000 0.8522 0.0206 0.0205 0.0229 0.057 0.057 0.050 0.054 0.053 0.055

1000 0.9868 0.0564 0.0207 0.0209 0.126 0.079 0.097 0.344 0.056 0.144

2000 0.9868 0.0230 0.0144 0.0161 0.089 0.062 0.069 0.230 0.053 0.087

10000 0.9868 0.0070 0.0064 0.0071 0.061 0.057 0.051 0.102 0.050 0.057

1000 0.9978 0.1455 0.0078 0.0048 0.375 0.136 0.315 0.739 0.051 0.239

2000 0.9978 0.0892 0.0058 0.0042 0.234 0.110 0.203 0.590 0.049 0.176

10000 0.9978 0.0048 0.0026 0.0029 0.100 0.066 0.065 0.261 0.055 0.097

Table 4: Tests of an autocorrelation coefficient using a conditional Gaussian auxiliary model

This table summarizes results from 5,000 Monte Carlo simulations. The true data-generating
process is

yt = ρ0yt−1 + εt, εt ∼ N(0, 1).

For each simulation, a sample of length T is generated. The parameter ρ is treated as
unknown, and is estimated with efficient method of moments (EMM), asymptotic indirect
inference (A-II), and finite-sample indirect inference (F-II) where the binding function is
approximated with four simulations. The auxiliary likelihood is the conditional likelihood of a
three-parameter AR(1) with Gaussian innovations. The columns labeled “Overident” report
rejection rates of χ2(2) tests of the overidentifying restrictions. The columns labeled “ρ = ρ0”
report empirical rejection rates for test statistics that have asymptotic χ2(1) distributions
under the null. They are equivalent to empirical rejection rates of the confidence bounds on
ρ.
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Figure 1: Criterion functions for estimation of an autoregression coefficient

Weekly data are generated by the model yt = ρ0yt−1 + εt, εt ∼ N(0, 1). Three samples of
1000 observations are generated. They use ρ0 = 0.8522, ρ0 = 0.9868, and ρ0 = 0.9978,
corresponding to half lives of shocks of one month, one year, and six years, respectively.
Panels A, B, and C display criterion functions for these samples. The functions are for full
maximum likelihood (solid lines), asymptotic indirect inference (dashed lines), finite-sample
indirect inference where the binding function is approximated with four simulations (dotted
lines), and efficient method of moments (dashed-dotted lines). The latter three methods use
the full likelihood as the auxiliary likelihood. Panels D, E, and F are magnified views of
Panels A, B, and C. The ML estimate of ρ is labeled “O.” The points labeled “L” and “U”
are lower and upper 95th percentile confidence bounds on ρ based on the EMM criterion
functions. The points labeled “p” are the true values of ρ.
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A.  Asymptotic indirect inference
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B.  Finite−sample indirect inference

Figure 2: Hypothesis testing with indirect inference

The data generating process is yt = ρ0yt−1 + εt, εt ∼ N(0, 1), where ρ0 = 0.9978. For each
of 5000 Monte Carlo simulations, the full maximum likelihood estimate of ρ and a robust
estimate of its standard error are calculated. A scatter plot of these values is displayed in
both panels. The mean estimate of ρ is labeled “O” and the true value ρ0 is labeled “p.”
The red dots in Panel A are those for which the hypothesis ρ = ρ0 is rejected at the 95
percent confidence level, using the asymptotic indirect inference criterion function and the
true likelihood as the auxiliary likelihood. The red dots in Panel B are defined similarly,
using the finite-sample indirect inference criterion function where the binding function is
approximated with 5,000 simulations.
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Figure 3: Criterion functions for estimation of an autocorrelation coefficient, using a condi-
tional Gaussian auxiliary auxiliary likelihood

Weekly data are generated by the model yt = ρ0yt−1 + εt, εt ∼ N(0, 1). Three samples of
1000 observations are generated. They use ρ0 = 0.8522, ρ0 = 0.9868, and ρ0 = 0.9978,
corresponding to half lives of shocks of one month, one year, and six years, respectively.
Panels A, B, and C display criterion functions for these respective samples. approximated
with four simulations. The auxiliary likelihood is the conditional likelihood of a three-
parameter AR(1) with Gaussian innovations. Efficient method of moments (EMM) criterion
functions are dotted-dashed lines, asymptotic indirect inference functions are solid lines, and
finite-sample indirect inference functions (using four simulations to approximate the binding
function) are dotted lines. The EMM point estimates are labeled “O” and the upper and
lower 95th percentile bounds on these estimates are labeled “L” and “U.” The points labeled
“R” are estimates of ρ from an OLS regression.
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Figure 4: Empirical density functions of estimates of an autocorrelation coefficient

One thousand weeks of data are generated by the model yt = ρ0yt−1 + εt, εt ∼ N(0, 1).
The parameter ρ0 is either 0.8522 (a half life of one month), 0.9868 (one year) or 0.9978
(six years). The panels display empirical densities of estimates of ρ produced using full
maximum likelihood (ML), efficient method of moments (EMM), and asymptotic indirect
inference. The auxiliary model for EMM and indirect inference is a simple SNP specification.
The densities are based on 5,000 Monte Carlo simulations. The solid lines are the densities of
the ML estimates, the dotted lines are the densities of EMM estimates, and the dashed lines
are the densities of asymptotic indirect inference estimates. The true value of ρ is denoted
with a ‘p’ in each panel.
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