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An Empirical Test of a Two-Factor
Mortgage Valuation Model: How Much
Do House Prices Matter?
Chris Downing,∗ Richard Stanton∗∗ and Nancy Wallace∗∗∗

This article develops a two-factor structural mortgage pricing model in which
rational mortgage-holders choose when to prepay and default in response to
changes in both interest rates and house prices. We estimate the model using
comprehensive data on the pool-level termination rates for Freddie Mac Partic-
ipation Certificates issued between 1991 and 2002. The model exhibits a sta-
tistically and economically significant improvement over the nested one-factor
(interest-rate only) model in its ability to match historical prepayment data.
Moreover, the two-factor model produces origination prices that are signifi-
cantly closer to those quoted in the to-be-announced market than the one-factor
model. Our results have important implications for hedging mortgage-backed
securities.

The residential mortgage-backed security (MBS) market is one of the largest
and fastest-growing bond markets in the United States.1 Valuing and hedging
MBS requires a model for both the prepayment and default behavior of the
underlying mortgages. While our understanding of this behavior has improved
dramatically over the last two decades, significant challenges still remain. These
challenges include, for example, the persistence of model-based MBS pricing
errors (quantified in terms of the option-adjusted spread, or OAS), and the
need for improved hedging strategies demonstrated by the sizable losses on
MBS positions incurred by Askin Capital Management in the early 1990s and
by Fannie Mae’s recent problems with a large negative duration gap in its
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1 According to the Federal Reserve’s Flow of Funds accounts, at the end of the second
quarter of 2004 the outstanding stock of residential MBS in the United States was
$4.2 trillion. Residential MBS outstanding grew at an average rate of approximately
11% per annum from 1998 to 2003, about twice the rate of growth of outstanding
corporate bonds issued by U.S. corporations.
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portfolio.2 Further, for firms that participate in the MBS market, recent changes
in accounting standards now require firms to account for hedging effectiveness
directly on the income statement, raising the visibility of any hedging mistakes.3

Some of these problems stem, at least in part, from the widespread use of mod-
els for pricing and hedging MBS that focus principally on the effect of interest
rates on mortgage prepayment. While interest rates are generally acknowledged
to be the most important factor affecting prepayment, there is a substantial lit-
erature suggesting that house prices also play an important role. For example,
Stein (1995), Archer, Ling and McGill (1996), Mayer and Genesove (1997) and
Mattey and Wallace (1998, 2001) emphasize the importance of housing prices
as a determinant of regional-level household mobility. To the extent that declines
in house prices impinge on borrowers’ mobility, housing turnover and hence
prepayments would fall. In a similar vein, Longstaff (2004) suggests that de-
clining house prices reduce refinancing activity by impairing borrowers’ credit
quality, thereby hurting their chances to qualify for new loans. Conversely, sev-
eral studies have shown that gains in home equity have a significant influence
on the propensity to refinance, including, among others, Becketti and Morris
(1990), Monsen (1992), Caplin, Freeman and Tracy (1993) and Krishnamurthy,
Gabaix and Vigneron (2004). According to survey evidence reported in Canner,
Dynan and Passmore (2002), 45% of homeowners who refinanced their mort-
gages in 2001 and early 2002 used the opportunity to extract equity. In summary,
if house price movements affect mortgage prepayment in these and other ways,
then any MBS pricing model that omits house prices as a state variable is
misspecified.

A related issue is that the effects of mortgage defaults on MBS prices have
received much less attention from both practitioners and the academic literature
(notable exceptions in the literature include Kau et al. (1992, 1995), Schwartz
and Torous (1992, 1993), Kau (1995), Deng, Quigley and Van Order (2000)).
There are two basic reasons for the focus on prepayment rather than default.
First, it is well known that defaults are generally rare events, given that most

2 Askin is rumored to have lost around $400 million on MBS positions in 1993 when
mortgage interest rates rose relative to Treasury rates. The Wall Street Journal reported
on September 27, 2002, that “. . . an unprecedented boom in mortgage refinancings due
to historically low interest rates—themselves related to weak stock prices—has some
investors concerned that Fannie Mae is being tested. The refinancings have created a
bigger gap than Fannie Mae would like between the expected lifespan of mortgages on
its books and the borrowing it has done to finance them. Fannie Mae’s stock is down
about 11% because it announced the news.” Beckett and Sender (2002).
3 FAS 122 (May 1995) requires servicers to account for mortgage servicing rights on
the balance sheet on a mark-to-market basis, and FAS 133 (June 1998) has introduced
new standards for accounting for hedging effectiveness.
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MBS are backed by first-lien mortgages protected by homeowner equity equal
to 20% of the mortgage principal (80% loan-to-value ratio). Second, the bulk of
residential MBS carry a credit guarantee from Ginnie Mae, a federal government
agency, or either Freddie Mac or FannieMae, government-sponsored enterprises
generally perceived to have the implicit backing of the federal government.
Hence, for the bulk of MBS, the effect of mortgage defaults is to shift the
return of principal forward in time, much like prepayments, and given the low
incidence of defaults over recent history, a reasonable prior would seem to be
that mortgage default can be ignored when modeling MBS.

In this article, we attempt to overcome both of these problems by developing and
empirically estimating a structural two-factor mortgage valuation model that
incorporates both interest rates and house prices as state variables. The structural
approach has the potential to deliver a model that can produce informative
forecasts in economic environments unlike those seen in the past, because
mortgage terminations are the result of optimizing behavior by the agents in
the model. Second, to the extent that overall terminations are correlated with
house price movements, by incorporating house prices as a factor the model
should more accurately describe termination behavior. The model explicitly
values a borrower’s joint option to prepay or default on his or her mortgage,
thus allowing house price movements to affect both prepayment and default, and
hence MBS prices. The model also incorporates discrete-time decision making
on the part of borrowers and borrower-level heterogeneity in transaction costs,
thereby capturing the well-known “seasoning” and “burnout” patterns observed
in the termination behavior of home mortgages.

We estimate the parameters of the model using comprehensive data on termina-
tion rates for the mortgage pools backing Freddie Mac Participation Certificates
issued between 1991 and 2002. The results indicate that house prices play a
significant role in determining MBS prices. Specifically, when the two-factor
model is compared to the nested one-factor interest-rate model (similar to that
in Stanton (1995)), we find that the two-factor model produces a significantly
better fit to the observed termination behavior of the pools. In addition, predicted
MBS prices are closer to observed prices. We also use the model to examine the
sensitivity of predicted MBS prices to movements in interest rates and house
prices. This analysis indicates that, while MBS prices are primarily sensitive to
interest rate fluctuations, house price movements also have an important effect.
Movements in the value of the default option have a significant effect on the
value of a mortgage borrower’s prepayment option, and hence on the likelihood
of prepayment. These results have important implications for hedging. In par-
ticular, even a strategy of hedging an MBS position against interest rate risk
alone needs to take into account the fact that the optimal hedge ratio will vary
substantially with the level of house prices.
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The article is organized as follows. The next section reviews the existing valu-
ation literature. The third section introduces the pool-level pricing model and
the fourth section discusses how we implement the model. The fifth section
describes the Freddie Mac data used in estimating the model, and the sixth
discusses our estimation strategy and our results. The seventh section presents
our pricing results and sensitivity analysis, and the final section concludes.

Pricing Mortgages

A fixed-rate home mortgage is a callable, defaultable bond whose payments
are made by an individual borrower to a bank or other financial institution.
Although many different mortgage types exist, we will focus on 30-year, fixed-
rate mortgages—the loans backing most MBS. We will use the notation Bt to
denote the market value of the remaining scheduled payments in the absence
of any options; we refer to this stream of payments as the “underlying bond.”
Valuing a mortgage amounts to valuing this bond together with its embedded
options.

Prepayment

At any time after taking out the mortgage, the borrower may choose to stop
making the remaining scheduled payments, and instead pay off the remaining
principal amount, Ft.4 Paying off the loan is equivalent to exercising a call
option on the bond Bt, with an exercise price equal to Ft. Under a one-factor
interest-rate model, the lower current interest rates are, the higher Bt is, and
hence the more in the money the prepayment option is. In a two-factor set-
ting, movements in both interest rates and house prices determine the extent to
which the option is in the money. When interest rates and house prices reach a
boundary—the exact location of which is determined empirically for a reduced
form model, or endogenously as part of the solution to the pricing problem for
a structural model—the borrower exercises the option and pays off the loan
early.

Default

In addition to choosing whether to make the scheduled monthly payment or to
pay off the loan in full, a borrower may choose to default on the loan, handing
over the house, the value of which we denote by H t, and stopping all future
mortgage payments. This default option is another call option on Bt, this time

4 The remaining balance is calculated using the standard annuity formula:

Ft = PMT

r

[
1 − 1

(1 + c/12)12(T −t)

]
,

where PMT is the monthly payment amount, c is the contractual interest rate on the loan
and T − t is the remaining time on the loan.
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with exercise price H t. All else equal, the lower is H t, the more attractive
exercise of the default option is. However, it is important to emphasize that the
default and prepayment options are not independent of one another. Because
exercise of one option precludes exercise of the other, the options are substitutes,
and movements in the value of one affect the value of the other. Hence the
borrower holds a joint option to terminate the mortgage at any time by either
prepaying or defaulting.

Background Terminations

Prepayments and defaults can occur for reasons unrelated to interest rate and
house price movements. For example, a borrower might prepay a loan after de-
ciding to move to a different house. Default might occur following an uninsured
event that damages the house. The possibility that these types of “background”
terminations might occur affects the value of the joint option both directly and
indirectly. The direct effect is that the joint option might be exercised when it
would not be optimal if the decision were based solely on interest rates and
house prices. The indirect effect is through a change in the optimal exercise
policy for the joint option. For example, if the homeowner knows that he or
she is likely to move, and hence might exercise the joint option “suboptimally”
at some point in the future, then relative to the case where it is not possible to
exercise suboptimally it is more attractive to exercise the option immediately.

Reduced-Form and Structural Models

With the foregoing discussion in mind, we write the value of the mortgage
liability as

Ml
t = Bt − J l

t , (1)

where J l
t is the value of the joint termination option to the mortgage holder.

Valuing the mortgage requires a model for the exercise of the joint option, that
is, a model for prepayments and defaults. Two approaches have emerged in
the literature on modeling mortgage termination: reduced-form and structural
models.

Reduced-form models. In the reduced-form approach, termination behavior is
modeled as a function of a set of exogenous variables supposed to represent
factors that influence the likelihood of mortgage termination, such as changes
in interest rates, housing turnover and the like. Well-known reduced-form mort-
gage termination models include Schwartz and Torous (1989), Deng, Quigley
and Van Order (2000) and Deng and Quigley (2002), and most of the mortgage
valuation models used on Wall Street are based on reduced-form mortgage ter-
mination models. The main advantages of this approach are flexibility and the
ability to closely mimic the historical data record of mortgage terminations.
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However, as is well known, the flexibility of the reduced-form approach comes
at the cost of potentially low out-of-sample forecasting power. Moreover, these
models are often not well suited for valuation, to the extent that mortgage prices
or proxies for the prepayment and default option values are included in the set
of exogenous variables used to predict terminations.

Structural models. The structural approach treats mortgage termination as the
optimal response of a rational borrower to changes in interest rates and house
prices (and potentially other state variables). Referring to Equation (1), bor-
rowers choose when they prepay or default in order to minimize Ml

t. Under
this approach, standard contingent-claim techniques can be used to solve for
the value of Ml

t, simultaneously calculating the borrower’s optimal option ex-
ercise policy. This modeling approach was first applied to mortgages by Dunn
and McConnell (1981a,b), who modeled the optimal termination behavior of
borrowers who could costlessly prepay, but not default. More recent examples
of interest-rate-based structural MBS valuation models include Timmis (1985),
Dunn and Spatt (1986), Johnston and Van Drunen (1988) and Stanton (1995).
Several recent articles, such as Dau et al. (1992, 1995) and Kau (1995), consider
both default and prepayment but perform no empirical testing of their models.

Well-specified structural models ought to perform well out of sample because
termination behavior arises from borrowers’ optimizing behavior. However,
structural models impose significant constraints on the relation between termi-
nations and the underlying state variables. As a consequence, basic structural
models, such as Dunn and McConnell (1981a,b), produce predictions for mort-
gage prices and termination behavior that diverge in important ways from what
we observe in practice. First, these models predict that a mortgage (or MBS)
can never trade above par, because borrowers will exercise their prepayment
option the instant that the mortgage value exceeds par—what is often referred
to as “ruthless option exercise.” In practice, and as we will see below, MBS are
often observed to trade above par. Second, because all borrowers are assumed
to be identical, if any one borrower finds it optimal to refinance, so do all the
others. Hence all borrowers should prepay simultaneously. Such behavior is not
observed in actual MBS pools.

A Two-Factor Structural Model

Our objective is to develop a structural prepayment and default model that
incorporates both interest-rate and house-price dependence and also produces
termination behavior and mortgage prices close to those seen in practice. While
a simple, frictionless structural model cannot deliver on all of these dimensions,
we can overcome these shortcomings by incorporating frictions and transaction
costs, along the lines of Stanton (1995).
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Borrowers face transaction costs whenever they prepay or default on a mort-
gage, and these transaction costs probably vary across borrowers. Moreover,
borrowers facing identical transaction costs might still take up the question of
whether or not to exercise their prepayment or default option at different times.
This would be the case if, for example, it is costly for borrowers to make the
decision whether or not to prepay or default. Hence, we assume that

� borrowers face transaction costs whenever they refinance or default,

� borrowers are heterogeneous—different borrowers face different trans-
action costs and

� a borrower takes up the decision of whether or not to exercise his or her
prepayment or default option with some probability in any given period
of time.

These assumptions are similar to those in the one-factor interest-rate model
developed in Stanton (1995), except that here they also have important impli-
cations for the default component of the joint termination option.

Transaction Costs and Borrower Heterogeneity

Prepayment involves both direct monetary costs, such as origination fees and
mortgage closing costs, as well as implicit costs, such as the time required to
complete the process. We model all of these via a proportional transaction cost,
Xp ≥ 0, payable by the borrower at the time of prepayment. Prepayment is
optimal for the borrower if

Ml
t ≥ F(t)(1 + X p). (2)

Different borrowers might face different transaction costs. To account for this
possibility, we assume that the costs Xp are distributed according to a beta
distribution with parameters β5 and β6. This distribution is chosen because it
can take many possible shapes, and is bounded by zero and one. Its mean and
variance are

µ = β5

β5 + β6

σ 2 = β5β6

(β5 + β6)2(β5 + β6 + 1)
.

In the absence of transaction costs, the borrower will optimally default if the
value of the mortgage is greater than or equal to the value of the house. However,
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like prepayment, defaulting incurs significant direct and indirect costs, such as
the value of the lost credit rating. We model these costs via another proportional
transaction cost, Xd, payable by the borrower at the time of default. Default is
optimal for the borrower if:

Ml
t ≥ Ht (1 + Xd ). (3)

As we discuss below, for computational tractability, we assume that Xd = 0.05
(5% of house value).

Option Exercise

We describe the probability of a decision on option exercise with hazard func-
tions (Kalbfleisch and Prentice 1980, Cox and Oakes 1984). Informally, if the
hazard function governing some event is λ, then the probability that the event
occurs in a time interval of length δt , conditional on not having occurred prior
to t, is approximately λδt . As noted earlier, borrowers might also be forced to
prepay or default for nonfinancial reasons (such as divorce, job relocation or
sale of the house), which we assume is also described by some hazard function.
We refer to this as the “background” hazard.

We assume that the probability of prepayment or default in any time interval is
governed by the state- and time-dependent hazard function, λ. The value of λ

depends on whether it is currently optimal for the borrower to default or prepay,
which in turn is determined as part of the valuation of the mortgage. We model
the overall hazard rate governing mortgage termination as

λ(t) = β0 + β1atan

(
t

β2

)
Pt + β3atan

(
t

β4

)
Dt (4)

= λc + λp + λd , (5)

where β0 denotes the background hazard, the indicator variable Pt is one when
prepayment is optimal at time t and zero otherwise, and the indicator Dt is
one when default is optimal and zero otherwise. The atan function captures the
idea of “seasoning” (see, e.g., Richard and Roll 1989), where ceteris paribus
new loans terminate more slowly than older loans. In the prepayment region,
the termination rate rises over time at a rate governed by β1 to a maximum
rate dictated by the value of β2. Similarly, in the default region, termination
rates rise at a rate governed by β3 to a maximum given by β4. For simplicity
in what follows, we will use the notation given in Equation (5) to refer to
the hazard rates that apply in the various regions of the state space, where
λc ≡ β0, λp ≡ β1atan ( t

β2
)Pt and λd ≡ β3atan ( t

β4
)Dt .

The one-factor interest-rate model is nested within the full two-factor model
through parameter restrictions. Specifically, we set the transaction cost on
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default to a prohibitive level (Xd = 1000), and we set β3 = 0 and β4 = 1.0e +
9, which restricts the hazard rate in the default region to zero. Taken together,
these parameter restrictions guarantee that cash flows due to default cannot
occur for any realization of the state variables.

Implementing the Model

As noted earlier, in our model the state of the world is summarized by two
variables, the short-term default-free interest rate, r t, and the house price, H t.
To implement the model and calculate mortgage values, we need to make as-
sumptions about how these underlying state variables evolve through time.

Interest Rates

We assume interest rates are governed by the Cox, Ingersoll and Ross (1985)
model,5

drt = (κ(θr − rt ) − ηrt ) dt + φr
√

rt dWr,t , (6)

where κ is the rate of reversion to the long-term mean of θ r , η is the price
of interest rate risk and φr is the proportional volatility in interest rates. The
process W r,t is a standard Wiener process.

We estimated the following parameters for the model using the methodology
of Pearson and Sun (1989) and daily data on constant maturity 3-month and
10-year Treasury rates for the period 1968–1998:

κ = 0.13131
θr = 0.05740
φr = 0.06035
η = −0.07577.

It is important to emphasize that these parameter values are held fixed when we
estimate the model.

House Prices

The house price, H t, is assumed to evolve according to a geometric Brownian
motion:

d Ht = θH Ht dt + φH Ht dWH,t , (7)

where θ H is the expected appreciation in house prices and φH is the volatility
of house prices. Denoting the flow of rents accruing to the homeowner by qH ,
after risk-adjustment house prices evolve according to

d Ht = (rt − qH )Ht dt + φH Ht dWH,t . (8)

5 This model is widely used in the mortgage pricing literature. See, for example, Kau
et al. (1992) and Stanton (1995).
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We calibrate Equation (8) as follows:

qH = 0.025
φH = 0.085.

The value of qH is roughly consistent with estimates of owner-equivalent rents
from the BEA, and we estimate the annualized volatility of housing returns
from our data on house prices, discussed below. House prices and interest rates
are assumed to be uncorrelated.6

Given these models for interest rates and house prices, standard arguments show
that, in the absence of arbitrage, the value of the borrower’s mortgage liability,
Ml(H t, r t, t), paying coupon c, must satisfy the partial differential equation:

1

2
φ2

r r Ml
rr + 1

2
φ2

H H 2 Ml
H H + (κ(θr − r ) − ηr ) Ml

r + ((r − qH )Ht ) Ml
H

+ Ml
t − r Ml + (λc + λp)

(
F(t)(1 + X p) − Ml

)
+ λd

(
H (1 + Xd ) − Ml

) + c = 0. (9)

We also need to impose boundary conditions. The first three of these are

Ml(H, r, T ) = 0, (10)

lim
r→∞ Ml(H, r, t) = 0, (11)

lim
H→∞

Ml(H, r, t) = C(r, t), (12)

where C(r , t) is the value of a callable bond with the same promised cash
flows and same prepayment costs as the mortgage, but with no house price
dependence.7 Equation (10) is the terminal condition, reflecting the amorti-
zation of the mortgage. Equation (11) arises because all future payments are
worthless when interest rates approach infinity, and Equation (12) says that
when the house price gets large, default no longer occurs, so we only have to
worry about prepayment.

We need additional boundary conditions specifying the free boundary governing
optimal default and prepayment. Prepayment is optimal when interest rates

6 This assumption is made to simplify the interpretation of the results. In terms of
solving the pricing problem and carrying out our econometric estimation below, it is
straightforward to handle correlated house prices and interest rates.
7 This value is calculated following the process described in Stanton (1995).
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go below some (house price-dependent) critical level, r∗(H , t), and default
is optimal when the house price drops below some (interest rate-dependent)
critical level, H∗(r , t). At these boundaries, the mortgage value satisfies the
conditions

Ml(H, r∗(H, t), t) = F(t)(1 + X p), (13)

Ml(H∗(r, t), r, t) = H∗(r, t)(1 + Xd ). (14)

Equation (13) states that, on the optimal prepayment boundary, the mortgage
value is just equal to the remaining balance multiplied by 1 + the appropriate
transaction cost. Equation (14) states that, on the default boundary, the mortgage
is just equal to the value of the house multiplied by 1 + the default transaction
cost.8

Solving Equation (9) subject to these boundary conditions gives us the value
of the borrower’s liability, as well as the locations of the optimal default and
prepayment boundaries, which in turn determine the values of the prepayment
and default hazard rates, λp and λd .

Given these values, we can now solve for the value of the lender’s asset, Ma,
which is the solution to the following related partial differential equation:

1

2
φ2

r r Ma
rr + 1

2
φ2

H H 2 Ma
H H + (κ(θr − r ) − ηr ) Ma

r + ((r − qH )Ht ) Ma
H

+ Ma
t − r Ma + (λc + λp)(F(t) − Ma)

+ λd (H − Ma) + c = 0, (15)

subject to the boundary conditions

8 There are two additional “smooth-pasting” boundary conditions (see Merton 1973)
that ensure the optimality of the boundaries r ∗(H ) and H ∗(r ). We use a parallel hop-
scotch finite difference algorithm to solve Equation (9), in which these conditions are
automatically satisfied. The algorithm involves discretizing the PDE in (9) as discussed
in Gourlay and McKee (1979). To simplify the numeric solution, before discretizing the
problem we first transform to the state space defined by

y = r

γy + r
,

z = H

γH + H
.

The “packing factors” γ y and γ H have the interpretation that they are the centers of their
respective spatial grids in the untransformed state space. In practice, we set γ y = θ r and
γ H = 1.25. The packing factors ensure that we make efficient use of the finite set of
points on our numeric solution grid.
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Ma(H, r, T ) = 0, (16)

lim
r→∞ Ma(H, r, t) = 0, (17)

lim
H→∞

Ma(H, r, t) = C(r, t), (18)

Ma(H, r∗(H, t), t) = F(t), (19)

Ma(H∗(r, t), r, t) = H∗(r, t). (20)

The Data: Freddie Mac Mortgage Pools

Our empirical analysis focuses on the termination characteristics of Freddie
Mac pass-through residential MBS. The data for this study consist of Gold Par-
ticipation Certificate (Gold PC) pools issued by Freddie Mac between January
1991 and December 2002. The underlying mortgages in the Gold program are
primarily first-lien residential mortgage loans secured by one- to four-family
dwellings. We focus on the pools backed by newly issued, standard 30-year
fixed-rate mortgages.9 We observe pool-level mortgage termination rates from
the month of issuance for each pool until the pool is fully paid off or until we
reach the end of our observation period.10 The termination histories of the pools
have a median length of 74 months, with a range from 151 months for very low
coupon pools to just 5 months for very high coupon pools.

We measure housing values using the Office of Federal Housing Enterprise
Oversight (OFHEO) quarterly repeat sales home price indexes, computed at
the state level. The state-level series are interpolated to a monthly frequency
using standard splining techniques. Freddie Mac reports the initial origination
balances by state for each pool. Based on these balances, for each pool we
compute a unique composite house price index that is a weighted average of
the OFHEO price indexes for the states that are represented in the origination
balances. The weight on each state is equal to the state’s share of the overall
loan balance of the pool.

In Table 1, we summarize the properties of the Freddie Mac pools by year of
origination. There are a total of 1,324,898 mortgages in the 19,304 pools that

9 Specifically, we analyze the subset of pools backing 30-year Gold Participation Cer-
tificates with an original weighted average loan age of two months or less and an original
weighted average remaining maturity of 350 months or more.
10 The termination rates are computed as single-month mortality rates following standard
formulae such as that on page 205 of Bartlett (1989) for estimating terminations given
data on pool factors, time to maturity and coupon interest rates.
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we track through July 2003. The weighted average coupons (WACs) drifted
steadily downward from a high of 9.5% in 1991 to a low of 7% in 1998. WACs
rose to 7.875% in 2000 and then fell sharply to 6.375% by 2002. The volume of
mortgage originations in part reflects the dynamics of interest rates. Originations
rose to a high of 3,819 pools when rates decreased in 1992. The periods of rate
increases in 1995 and 2000 led to sizable reductions in pool originations, while
volumes increased again with the refinancing boom in 2001 and 2002 when
rates fell to 40-year lows.

For each cohort, the annualized average three-year return to housing is summa-
rized in columns 5 through 7 of Table 1. The average three-year return was only
3.2% in 1991 but grew steadily to about 8.6% in 2000 and 2001. The reported
percentile ranges indicate that there is dispersion in housing returns across the
states in 1991 through 1993. There is also considerable time series variation in
the house price indexes over the various vintages of pools. The first few years
of the 1991, 1992 and 1993 vintage pools tended to have runs of low and even
negative average three-year housing returns, as suggested by the relatively low
25th percentile returns. These pools tended to have large proportions of their
initial balances in California mortgages. The observed downward pressure on
house prices for the California pools reflects the relatively severe California
recession in the early 1990s.

We report univariate statistics for the average annual change in the 10-year
Treasury bond rate over the first three years from each pool’s origination date
in columns 8 through 10 of Table 1. The average changes in the long rate were
negative for all the cohorts, although the time series performance of the long
rate for the early 1990s vintage pools included periods of both rising and rapidly
falling rates. The pools that were originated in 1999 through 2001 experienced
continual decreases in the long rate, as is clear from the narrow interquartile
ranges for rate changes over these periods.

In column 11 of Table 1, we present the number of pools that remain outstanding
36 months after origination. The median termination rates, or single-month mor-
tality rates, are reported in column 12 and the 25th and 75th percentile ranges
for monthly termination rates appear in the last two columns of the table. As
shown, the median single-month mortality rates rise steadily over the observa-
tion period to a high of about 10% per month. The 25th and 75th percentile
ranges reflect the time-series dynamics of pool terminations. Terminations tend
to exhibit rather slow levels in the earliest months and then, depending on the
level of interest rates and house prices, often experience widely varying levels
of termination behavior over the life of the pools. As indicated by the relatively
high 75th percentile for the 1991 cohort, some of these relatively high coupon
pools exhibited rapid termination rates when interest rates fell in mid-1992 and
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1993. In contrast, the low coupon pools that were originated in late 1993 and
early 1994 exhibited markedly lower average termination rates after three years.

As an illustration of the important role that house returns play in pool termination
behavior, we graphically compare the termination speeds of pools that were
originated at the same time but experienced very different patterns of housing
returns. We define “negative return pools” to be those pools that experienced
negative average returns—as measured by each pool’s composite housing price
index—over at least one three-year period from the origination date to the
pool termination date or the end of the sample period in July 2003. The set
of “positive return pools” is the complement of the negative return pools set.
According to this definition, 17% of the pools experienced at least one spell
of negative returns to housing; these pools were primarily originated in 1991
(1,160 pools), 1992 (1,892 pools) and 1993 (308 pools). The negative-return
pools all contain a large share of California mortgages that were exposed to a
significant downturn in California house prices in the early 1990s. Most of these
pools experienced episodes of negative housing returns early in their payment
histories before their principal balances had amortized significantly.

In Figure 1, we present the average monthly termination rates for pools that were
originated in 1991. We compare the negative-return pools to the positive-return
pools originated in this same year. As can be seen, on average the negative-
return pools exhibited markedly lower termination rates in the first 30 months
of their payment histories than the positive-return pools. Interestingly, while
the mean WACs of these two sets of pools are the same, the borrowers in
the negative-return pools terminated their mortgages at much lower rates than
the borrowers in the positive-return pools when exposed to sharp decreases in
interest rates, consistent with the idea that declines in house prices dampened
refinancing behavior through a mobility or credit quality channel. It is striking
that once the composite house prices for these pools begin to rise in the later
periods, the termination speeds of the negative- and positive-return pools track
one another closely. Although not shown, the 1992 and 1993 vintage pools
also exhibited important differences in their termination behavior over the first
30 months of their payment histories.

Estimation Strategy and Results

As in Stanton (1995), we use a nonlinear least squares procedure to estimate the
coefficients of the model. For any given set of parameters, the valuation pro-
cedure described above generates a predicted termination rate for each month.
If we have the right parameters, these predicted termination rates ought to be
close, on average, to those we actually observe. Our estimation strategy in-
volves searching for the set of parameters for the model that minimizes the sum
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Figure 1 � Average single month termination rates for pools originated in
1991 that experienced positive and negative housing returns. The figure
compares mortgage termination rates for the Freddie Mac PC pools used in
our empirical analysis, where the pools are split into those that experienced
negative average annual returns to housing for any three-year period over
the life of the pool, and those that experienced only positive returns to
housing over the life of the pool. All pools were originated in 1991 and are
tracked by pool month. The set of “Negative Return” pools contains 17% of
the sample (3,360 pools); the set of “Positive Return” pools contains
the balance of our sample (15,944 pools).
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of squared differences between the termination rates predicted by our model
and those observed in the data.

Formally, let ω̂i t (�) denote the predicted proportion of the balance of pool i that
terminates in month t, as a function of the vector of coefficients to be estimated,
�. If ωi t denotes the observed proportion that terminates (the single-month
mortality rate), our objective function is

χ (�) =
N∑

i=1

Ti∑
t=1

(ωi t − ω̂i t (�))2 , (21)

where N is the number of mortgage pools and T i is the number of observations
on pool i. We use the Nelder–Mead downhill simplex algorithm to find the
vector of coefficients � that minimizes χ (�).
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Table 2 � Estimation results.

One-Factor Model Two-Factor Model

Coefficient Estimate Std. Err. Estimate Std. Err.

β0 0.03108 0.00015 0.00425 0.00016
β1 0.85900 0.00032 0.88795 0.00037
β2 1.22653 0.00087 0.79885 0.00087
β3 0.82295 0.00276
β4 0.54126 0.00870
β5 0.85284 0.00059 0.86703 0.00056
β6 3.85602 0.00202 5.09893 0.00248
χ 64.8525 64.6690
N 1,349,180 1,349,180

Note: The table displays the estimation results for the hazard specification given by

λ(t) = β0 + β1arctan(t/β2)Pt + β3arctan(t/β4)Dt .

The dummy variable Pt is one when just the prepayment option is exercised, and
zero otherwise. The dummy variable Dt is one when either the default or prepayment
options are exercised, and zero otherwise.The coefficients β5 and β6 determine the
transaction cost distribution. The mean of the transaction cost distribution is given by

µ = β5

β5 + β6

and its variance is given by

σ 2 = β5β6

(β5 + β6)2(β5 + β6 + 1)
.

Under the one-factor model, the coefficients β3 and β4 are restricted so that the hazard
rate is zero. The row labeled χ displays the objective function values under each model,
and the sample size is 1,349,180 for each estimation run.

Results

Table 2 reports parameter estimates for the one- and two-factor specifications of
the model as described in the preceding sections. For the one-factor model, we
estimate the background hazard rate, β0, the coefficients β1 and β2 that govern
the pace of terminations due to prepayments, and the coefficients that define
the prepayment transaction cost distribution, β5 and β6. The second and third
columns of Table 2 report the estimates and asymptotic standard errors for these
coefficients. For the two-factor model, we also estimate the two coefficients that
govern the pace of terminations due to default, β3 and β4. The results for the
two-factor model are displayed in columns 4 and 5.

Given that we are estimating on a sample of 1,349,180 pool-month observa-
tions, it is not surprising that all of the coefficient estimates are highly sta-
tistically significant. Moreover, with such a large sample, any restriction on
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the two-factor model will be rejected. Indeed, the standard ratio test statistic
for nonlinear least squares indicates that the reduction in the objective func-
tion shown in Table 2 is statistically significant at better than the 99% level
of significance. Following Amemiya (1985), if we let χ (1) denote the value
of the nonlinear least-squares objective function under the one-factor model
(representing two parameter restrictions) and χ (2) the value under the two-
factor model, then the quantity N [ln(χ (1)

N ) − ln(χ (2)

N )] is distributed chi-squared
with two degrees of freedom. Inserting the relevant quantities produces a test
statistic value of about 3,800, while the relevant critical value is approximately
nine.

The estimated one-factor background hazard rate, β0, is considerably smaller
than the coefficient obtained under the two-factor model. This result suggests
that the background hazard under the one-factor model is in part acting as a
proxy for the effects of default on overall terminations. The parameters β1 and
β2 govern the time-dependent seasoning component of the hazard rate (the
so-called “ramp-up”) to the maximum hazard rate for prepayment. This initial
ramp-up in the termination rate is thought to arise because borrowers may ini-
tially face liquidity constraints (having just made outlays for origination costs,
for example) and that these constraints dissipate over time. These estimates
indicate that the one-factor model predicts slower termination speeds than are
typically observed in the first months after origination for the pools.

The estimates for β1 under the two models are quite similar. Hence the ramp-up
rates are similar under the two models. The two-factor specification reaches 95%
of its maximum by the tenth month after the origination of the pool. The ramp-
up is only slightly slower under the one-factor specification, reaching about
92% of its maximum pace by the tenth month after origination. However, the
estimate of β2 for the two-factor specification is about one-third the magnitude
of the estimate for the one-factor model. As a result, the maximum pace of
prepayments under the one-factor model is only about 90% of the maximum
pace under the two-factor model. Taken together, these results indicate that
when interest rates and house prices are configured such that prepayment is
optimal under both models, the two-factor model will predict a significantly
faster pace of terminations.

The parameters β3 and β4 provide for the possibility of a ramp-up in default
terminations. As discussed earlier these parameters are restricted to zero under
the nested one-factor model. The predicted default ramp-up is relatively slow
compared to the refinancing ramp-up, not reaching its maximum pace until
about the 81st month after origination. The maximum pace of default termina-
tions is about 91% that of prepayments. These results indicate that, compared to
its action in the prepayment region, in the default region the hazard function is
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Figure 2 � Estimated refinancing cost distribution. The figure shows the estimated
cumulative distribution of refinancing costs paid by borrowers within a mortgage pool,
expressed as a fraction of the remaining principal balance on the loan. The transaction
costs are assumed to be distributed in the population according to a beta distribution
with mean and variance given by

µ = β5

β5 + β6

σ 2 = β5β6

(β5 + β6)2(β5 + β6 + 1)
.

Under the one-factor model, the mean refinancing cost is 18.1% of pool balance,
with a standard deviation of 16.1%; under the two-factor model, it is 14.5%, with a
standard deviation of 13.4%.
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doing more to damp terminations relative to what they would be under a model
of purely rational (ruthless) default.

The estimates of β5 and β6—the parameters determining the distribution of
transaction costs in the borrower pool—reveal an important difference between
the one- and two-factor models. The parameter estimates indicate that the mean
of the transaction cost distribution is somewhat lower under the two-factor
model, as illustrated in Figure 2. The estimates for the two-factor model indi-
cate that the bulk of borrowers in the pools face relatively small transactions
cost—averaging 14.5% of face value—in contrast to an average transaction
cost of 18.1% under the one-factor model. The estimated standard deviation of
transaction costs is smaller under the two-factor model: 13.4% versus 16.1%
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Figure 3 � Full sample observed and predicted single month termination rates. Note:
The figure compares actual and model-predicted monthly mortgage termination rates
by month since issue, averaged across all pools in the sample.
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for the one-factor model. These changes in the estimated transaction cost dis-
tribution suggest that house prices are a source of heterogeneity across pools
that is not controlled under the one-factor model.

Figures 3 and 4 translate the coefficient estimates for the model into average
predicted monthly termination rates. The figures display plots of the “in-sample”
paths of average predicted terminations against average observed termination
rates for pools in the full sample and for pools with different coupon levels.11

First, it is apparent that the two-factor model more closely tracks the sample
averages than the one-factor model. Under both models, predicted terminations
do not rise as rapidly as observed terminations in the first 20 months, and
they tend to overshoot observed terminations from about 25–50 months. Both
models track observed terminations from months 50 onward, though the two-
factor model is clearly closer to the observed average pace.

Panel A of Figure 4 plots the path of predicted terminations for the 9.5%
mortgage pools, where we observe the most prepayment activity. As shown,
the model somewhat underpredicts the first termination wave, and it somewhat
overpredicts terminations in the later months. The fits for the 8.5% pools, shown
in Panel B, are quite accurate for the two termination booms; however, both
models mistakenly predict a termination boom in the 45th month with the one-
factor model predicting a pace of monthly terminations about half a percentage
point above that of the two-factor model. For the 7.5% pools, shown in Panel C,
the models capture the ramp-up effectively, but in general underpredict the
spikes and overpredict the quiescent period from the 30th to 40th months from
origination.

11 The average termination rates are computed across the pools in a given month.
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Figure 4 � Observed and predicted single month termination rates by coupon.
Note: The figure compares actual and predicted monthly mortgage termination
rates by month since issue, averaged across all pools in the subsample of pools for
the indicated coupon rate.
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Prices and Sensitivity Analysis

In this section, we compare the pricing accuracy of the one- and two-factor
models, and we examine the sensitivity of the predicted prices under the two-
factor model to changes in interest rates and house prices. We compute the
predicted prices at origination for a subset of the pools in our analysis and
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compare these predictions with observed prices for Freddie Mac Gold PCs
in the to-be-announced (TBA) market. In the TBA market, buyers and sellers
decide on general trade parameters, such as coupon settlement date, par amount
and price, but the buyer does not know which pools actually will be delivered
until two days before settlement.12 Our TBA data set includes prices for Freddie
Mac Gold PCs on a 50 basis point grid of coupons spanning the range from
6.5% to 9.5%, so we subset our data to the pools with coupons that align with
the coupons available in the TBA price sample. This subsample amounts to
6,827 pools, or about one-third of the pools used to estimate the models. This
out-of-sample test of pricing performance represents a more rigorous standard
than has typically been applied in evaluating the performance of structural bond
valuation models (see Eom, Helwege and Huang 2004).

As shown in Table 3, pool by pool the two-factor model outperforms, with very
few exceptions, the pricing accuracy of the one-factor model.13 We find that the
pricing errors for the two-factor model range from a low of about 5 cents per
one hundred dollars of face amount to a high of about $4.38 per one hundred
dollars of face. These errors represent a small fraction of those obtained using
the one-factor model and on average the two-factor pricing errors represent a
30% absolute reduction in the one-factor errors.

We also compute the estimated option adjusted spread (OAS) for each coupon
group, again using observed TBA prices at the pool origination dates. We find
OAS levels that vary between zero and about 25 basis points—well within
published OAS levels for these vintages and coupons (Bloomberg reports OAS
levels as high as 300 basis points for some of these pools, though their mod-
eling technique is quite different). In summary, these results suggest that the
inclusion of house price dynamics leads to a significant improvement in the
pricing accuracy of the MBS valuation model.

Price Sensitivity

In Figure 5, we report a set of duration and convexity calculations for a repre-
sentative 30-year 8.5% coupon mortgage-backed security at origination (t = 0)
using our two-factor structural valuation model. The panels on the left display

12 We gratefully acknowledge Lakhbir Hayre at Salomon Smith Barney for providing
the TBA price data.
13 In addition, the degree of mispricing that we find here is well within the ranges
reported in studies using “in sample” tests on corporate bond pricing models, such
as Eom, Helwege and Huang (2004) and Huang and Huang (2002). We should also
note that the coefficients on the underlying SDEs in Equations (6) and (7) are held
fixed during this exercise. Presumably, if we were to re-fit the interest rate and house
price processes at every date, we could further improve on these results. However, such a
refitting procedure is computationally infeasible and is inconsistent with the equilibrium
modeling approach we take here.
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Table 3 � Average pricing errors and OAS for the two-factor model by year and coupon.

One-Factor Model Two-Factor Model

Average Average Average Average Average
TBA Predicted Pricing Average Predicted Pricing Average

Year Coupon N Price Price Error OAS Price Error OAS

1991 9.5 781 103.27 105.10 1.83 11.5 102.74 −0.54 −4.0

1992 8.5 740 103.23 104.71 1.49 7.6 101.89 −1.33 −7.7
1992 9.0 325 104.87 106.18 1.31 7.7 103.58 −1.29 −8.8
1992 9.5 10 106.25 106.28 0.03 0.0 103.88 −2.37 −20.0

1993 7.5 309 103.65 105.51 1.86 9.1 102.10 −1.56 −6.4
1993 8.0 181 104.57 105.83 1.26 7.3 102.72 −1.85 −8.4
1993 8.5 39 105.13 107.46 2.33 14.7 104.59 −0.55 −5.1
1993 9.0 7 105.94 108.78 2.84 20.0 106.06 0.12 0.0

1994 7.5 175 99.50 106.91 7.40 24.8 103.49 3.98 15.6
1994 8.0 69 99.34 105.48 6.14 21.8 102.36 3.02 14.3
1994 8.5 79 100.66 105.75 5.09 23.0 102.91 2.25 12.1
1994 9.0 29 102.53 107.05 4.52 23.5 104.42 1.89 12.0

1995 8.0 53 102.28 106.05 3.77 18.9 102.93 0.66 2.9
1995 8.5 56 102.31 105.45 3.14 15.0 102.61 0.30 1.9
1995 9.0 22 102.10 105.95 3.85 20.2 103.35 1.25 6.8

1996 7.5 69 100.42 106.36 5.94 21.9 102.94 2.52 9.8
1996 8.0 61 102.20 105.56 3.36 15.6 102.45 0.26 0.5
1996 8.5 13 104.12 107.26 3.14 18.9 104.39 0.27 0.3
1996 9.0 28 105.08 108.34 3.26 22.3 105.64 0.56 3.5

1997 7.0 8 100.30 101.99 1.68 5.0 98.18 −2.12 −5.6
1997 7.5 93 101.33 104.15 2.82 11.5 100.74 −0.60 −3.3
1997 8.0 158 102.49 105.55 3.06 15.2 102.44 −0.05 0.5
1997 8.5 9 103.50 106.73 3.22 16.1 103.87 0.37 1.1
1997 9.0 5 105.50 108.00 2.50 20.0 105.33 −0.17 0.0

1998 6.5 70 100.62 103.85 3.24 12.4 99.62 −0.99 −2.2
1998 7.0 168 101.76 105.63 3.88 16.3 101.83 0.08 1.3
1998 7.5 179 102.68 106.94 4.26 21.0 103.52 0.84 4.4
1998 8.0 14 103.65 107.69 4.04 18.6 104.54 0.89 6.0
1998 8.5 2 104.41 109.18 4.77 25.0 106.22 1.82 12.5
1998 9.0 1 106.28 109.43 3.15 25.0 106.67 0.39 5.0

1999 6.5 36 100.72 107.33 6.61 25.0 103.13 2.41 10.0
1999 7.0 27 101.94 109.22 7.28 25.0 105.42 3.48 15.0
1999 7.5 14 102.73 110.61 7.88 25.0 107.11 4.38 25.0

Pooled Averages
Errors 2.71 −0.26
Absolute Errors 2.89 1.70

Note: The table displays the average predicted price, average pricing error and average
option-adjusted spread (OAS) for the two-factor model. The pricing errors are calculated
against TBA prices for MBS pools and TBA prices for pools with coupons equal to 7.5–
9.5% in 50-basis-point increments. We use this subset of pools because TBA price data
are not available for the other coupon levels that we use in our analysis. The OAS values
are computed to the nearest five basis points for each pool. This subsample includes
6,827 pools, or about 35% of the pools used to estimate the model.
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Figure 5 � Price sensitivity measures for two-factor model: 8.5% pool at time 0. Note:
The figure reports a set of duration and convexity calculations for a representative
30-year 8.5% coupon mortgage-backed security at origination (t = 0). The sub-plots
on the left display the approximate duration and convexity of the MBS, holding house
prices fixed at $1.25 (80% LTV). The duration and convexity calculations are made at
three levels of transaction costs, zero (solid line), 10% (dashed line) and 40% (dotted
line). The sub-plots on the right display the approximate durations and convexities of
the mortgage pools holding interest rates fixed at 8.5%. Interest rate duration is
calculated according to the standard formula for effective duration, given by − 1

Ml
∂ Ml

∂r
.

Note that house price duration, computed as − 1
Ml

∂ Ml

∂ H
, is negative; in contrast to

interest rates, as house prices rise the value of the mortgage pool rises owing to a
decline in the likelihood of default.
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the approximate duration and convexity of the MBS, holding house prices fixed
at $1.25 (80% loan-to-value, or LTV). The duration and convexity calculations
are made at three levels of prepayment transaction costs: zero (solid line), 10%
(dashed line) and 40% (dotted line). Hence these calculations represent a partial
decomposition of the overall MBS duration and convexity into the contribu-
tions of sub-pools distinguished by their transaction costs. In this regard, it is
important to bear in mind that because the average prepayment transaction cost
is low—around 15%—the contributions of the zero and 10% sub-pools to the
overall MBS price sensitivity will be substantially greater than that of the 40%
sub-pool.
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The upper-left panel displays the approximate duration-yield curve holding
house prices fixed at $1.25 (holding the loan-to-value ratio fixed at 80%). As
can be seen, when prepayment transaction costs are zero, the duration-yield
curve has the characteristics typical of a callable bond: as interest rates fall and
prepayment becomes more likely, the duration of the pool shortens dramatically.
As we move to higher transaction costs, which all else equal reduce prepayment,
the duration rises for all interest rates. At the maximum level of transaction costs,
the likelihood of prepayments or defaults is very low, and the duration-yield
curve resembles that of a straight bond.

The upper-right panel of Figure 5 displays the “duration house price” curve,
which is computed as − 1

Ml
∂ Ml

∂ H .14 In contrast to interest-rate duration, house
price duration is negative: as house prices rise the value of the mortgage pool
tends to rise. Here the prepayment transaction costs are only important insofar
as shifts in the value of the prepayment option affects the value of the default
option. Hence we see that house price duration becomes more negative as pre-
payment transaction costs rise, reflecting the fact that as prepayment becomes
more expensive, the value of the default option rises and hence the sensitivity of
MBS prices to house price movements rises. While the house-price durations
are about an order of magnitude smaller in absolute value than the interest-rate
durations, it is clear that focusing solely on interest-rate duration misses an
important risk exposure.

The lower panels of Figure 5 examine the convexity at origination of our rep-
resentative 8.5% WAC pool. The lower-left panel displays the convexity-yield
curve. When transaction costs are zero, the convexity-yield curve of the mort-
gage pool resembles that of a callable bond: as interest rates fall and prepay-
ment becomes more likely, convexity becomes highly negative, in line with
the decline in duration above. At very low interest rates—below about 5%—
convexity turns up, reflecting the inflection point in the duration-yield curve
induced by its convergence to zero as interest rates fall to very low levels.
At very high levels of transaction costs, the convexity-yield curve is mono-
tonically upward-sloping but still negative, a reflection of the fact that higher
prepayment transaction costs make the default option more valuable (recall-
ing that we have fixed the default transaction cost to 5% of house value).
The medium transaction cost calculations are somewhat surprising; at inter-
est rates above about 5%, the convexity of the representative pool is above
that of the zero transaction-cost case. At interest rates below about 5%, the
convexity of the medium transaction-cost pool is well below that of the zero

14 We have followed the market convention of multiplying duration by minus one to be
consistent with the calculations of interest rate duration.
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Figure 6 � Price sensitivity measures for two-factor model by LTV: 8.5% pool at time
0. Note: The figure reports a set of duration- and convexity-yield curves for a
representative 30-year 8.5% coupon mortgage-backed security at origination (t = 0).
The upper panel compares the duration–yield curves for mortgages with average LTV
ratios of 80% and 100%. The lower panel displays a comparison of the convexity–yield
curves for this mortgage.
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transaction-cost case. Why do the convexity-yield curves cross? Recall from the
top left panel that the medium transaction-cost duration-yield curve is above
the zero transaction-cost curve over most of its range, but note that for very
low or very high interest rates, the curves are nearly identical. Hence, duration
must fall more steeply for medium transaction costs as interest rates fall—in
other words, the pool has greater convexity. The lower right panel examines
the convexity-house price curves for the three mortgage pools. As can be seen,
except at very low house prices, the convexity of the MBS in house prices
is about two orders of magnitude less negative than its convexity in interest
rates.

Nevertheless, movements in house prices and thus the value of the default
options have important hedging implications. Figure 6 compares the duration-
and convexity-yield curves for high- (100%) and low-LTV (80%) MBS. As
before, we set the coupon to 8.5%, maturity is 30 years, and we consider the
zero transaction cost sub-pool in each case. The duration-yield curve for the
high-LTV pool lies everywhere below that for the low-LTV pool; as house
prices fall and the default option moves closer to being in-the-money, interest-
rate sensitivity falls. Put another way, because prepayment and default are
substitutes, a rise in the value of the default option must be accompanied by a
fall in the value of the prepayment option. The effect is greatest when interest
rates are between about six and eight percent. In this range, interest-rate duration
falls by about 0.5 years, with somewhat smaller declines for rates below 6%
and 8%.

The duration-yield curves in Panel A of Figure 6 have different slopes, as
reflected in the convexity-yield plots shown in Panel B. Because the low-LTV
duration-yield curve rises more steeply for interest rates from about 4.5% to
about 7%, the low-LTV convexity-yield curve lies below the high-LTV curve
over this range. At very high interest rates, the prepayment option is nearly
worthless, and so the duration-yield curves at both LTV levels approach one
another. Hence, the convexity-yield curves are also nearly identical at high
rates. Nevertheless, for a wide range of interest rates movements, house prices
have important effects on interest-rate duration and convexity. Hence strategies
of hedging against interest-rate risk that do not consider how the hedge ratios
move with house prices remain exposed to an important source of risk.

Conclusions

This article develops a two-factor structural mortgage pricing model that treats
both prepayment and default as the optimal response of mortgage borrowers
to changes in interest rates and house prices. The model is estimated on a
comprehensive data set of the termination behavior of the Freddie Mac mortgage



708 Downing, Stanton and Wallace

pools backing Gold PCs issued from 1991 to 2002. Compared to a single-
factor (interest-rate only) version of the model, the two-factor model produces
significantly better fits of observed prepayment behavior and market prices. We
conclude that our model offers a tractable framework for evaluating the effects
of interest-rate and housing-price fundamentals on the valuation of mortgage-
backed securities, and that modeling mortgage termination without including
the effects of house-price changes will result in significant biases to both prices
and hedge ratios.

The model is sufficiently flexible that it is suitable for both pool-level and loan-
level mortgage applications. Furthermore, our analytical framework could also
be extended to the valuation of commercial mortgage-backed securities, col-
lateralized debt obligations and other securitization structures. All of these
bonds have similar embedded prepayment and default options, and their per-
formance is monitored using termination rates that are similar to those used in
the mortgage-backed security market.
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