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Abstract

This paper develops a new strategy for dynamically hedging mortgage-backed securities (MBSs).

The approach involves estimating the joint distribution of returns on MBSs and T-note futures, condi-

tional on current economic conditions. We show that our approach has a simple intuitive interpretation

of forming a hedge ratio by differentially weighting past pairs of MBS and T-note futures returns. An

out-of-sample hedging exercise is performed for 8%, 9% and 10% GNMAs over the 1990-1994 period for

weekly and monthly return horizons. The dynamic approach is very successful at hedging out the in-

terest rate risk inherent in all of the GNMAs. For example, in hedging weekly returns on 10% GNMAs,

our dynamic method reduces the volatility of the GNMA return from 41 to 24 basis points, whereas a

static method manages only 29 basis points of residual volatility. Moreover, only 1 basis point of the

volatility of the dynamically hedged return can be attributed to risk associated with U.S. Treasuries,

which is in contrast to 14 basis points of interest rate risk in the statically hedged return.
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Introduction

Institutions hold significant positions in mortgage-backed securities (MBSs) for a variety of rea-

sons. Whether these positions reflect trades on relative value or involve inventory holdings due

to core businesses, hedging the interest rate risk of these securities is an important concern. This

is especially true given the well-documented cases of huge monetary losses incurred by financial

institutions and investment groups with respect to their MBS portfolios.

MBS valuation, and by extension hedging, is not a straightforward exercise. While fixed-rate

MBSs issued by government agencies represent default-free claims to the interest and principal of

the underlying mortgages, the timing of these cash flows depends on the prepayment behavior of

the pool. In particular, as interest rates fall, individuals have an incentive to refinance existing

mortgages at the new lower rates. Thus, fixed-rate MBS investors are implicitly writing a call

option on the corresponding fixed-rate bond. Even though prepayments can occur for reasons

not associated with interest rate movements, interest rates are the predominant factor in valuing

MBSs. Because of this predominance, U.S. Treasury securities, or, more specifically, Treasury note

(T-note) futures, are often used to hedge MBSs. The reasons are twofold: (i) T-note futures are

very liquid derivatives, and (ii) the prices of these instruments are determined by the underlying

term structure of interest rates and thus relate directly to the value of MBSs.

There are two common approaches to hedging MBSs using T-note futures. The first is purely

empirical and involves the regression of past returns on MBSs against past returns on T-note futures.

The resulting relation can then be used to hedge the interest rate risk of MBSs using the risk in

T-notes. The advantage of this method is that it does not involve strong assumptions regarding the

underlying model for the evolution of interest rates or prepayments. The disadvantage, however, is

severe. This method is static in nature. It does not explicitly adjust the hedge ratio for changes in

interest rates and mortgage prepayments.1 That is, the observations used in the regression represent

an average of the relation between MBSs and T-note futures only over the sample period, which

may or may not representative of the current period.

As an alternative, the second approach is model-based. It involves specification of the interest

rate process and a prepayment model. These assumptions then help map an MBS pricing func-

tional to interest rates and possibly other factors.2 The approach represents a dynamic method for

determining comovements between MBS prices and T-note futures prices. Conditional on current

values of the relevant economic variables and on particular parameter values, these comovements

are completely specified. The problems with this approach are twofold. First, there is no consensus

regarding what is a reasonable specification of how the term structure moves through time, and

how these movements relate to prepayment behavior. Any model price is going to be tied down

closely to these possibly ad hoc assumptions.3 Second, and more subtle, is the recognition that
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the parameter values themselves may often be “chosen” or estimated from a static viewpoint. For

example, empirical prepayment models often reflect ad hoc projections of prepayment rates on sets

of housing and interest rate factors. Do the resulting coefficients, which represent an average of

the relation in the past, have the same link to the variables describing the current period? Many

of the well-documented MBS-hedging fiascoes would imply that this is not the case.

In this paper, we provide a first pass at bridging the gap between the regression and the model-

based approaches. Our goal is to maintain some of the distribution-free properties of the purely

empirical method, while recognizing the important dynamic properties of MBSs and other fixed

income instruments. In particular, we propose a method based on estimating the conditional proba-

bility density of MBS returns, T-note futures returns, and relevant current information (such as the

level, slope and curvature of the term structure, interest rate volatility, and prepayment history).

This method allows us to hedge MBSs with T-note futures, conditional on current information.

Thus, the hedge ratio is derived in a similar way to ones from existing empirical methods, but is

dynamically adjusted depending on the current state of the economy.

Using data over the period 1987-1994, and performing an out-of-sample analysis, we find that

this dynamic hedging method performs considerably better than the static regression method. For

example, in hedging weekly returns on 10% GNMAs, our dynamic method reduces the volatility

of the GNMA return from 41 to 24 basis points, whereas a static method manages only 29 basis

points of residual volatility. Moreover, only 1 basis point of the volatility of the dynamically hedged

return can be attributed to risk associated with U.S. Treasuries, which is in contrast to 14 basis

points of interest rate risk in the statically hedged return.

Our analysis provides several additional insights. First, the analysis is straightforward to per-

form for any return horizon; thus, the hedge can be tailored to portfolio rebalancing over any

interval, be it a day, a week, or a month. We investigate empirically this feature and comment

on the differences between the hedge ratios for weekly and monthly returns. Second, we perform

a detailed comparison between the static and dynamic empirical methods for hedging MBSs with

T-note futures. Of particular interest, we show that the dynamic hedge is much more successful

at reducing the risk associated with interest rate movements. Third, to the extent that some MBS

return volatility remains after the T-note futures hedge, an empirical analysis of the possible de-

terminants of the unexplained variation is provided. The results suggest that systematic volatility

does exist, but that it is not associated with movements in the term structure. Fourth, the MBS

hedge is created under the assumption that the relation between MBS returns and T-note futures

returns is linear. We evaluate this assumption nonparametrically, and comment on the potential

need to adjust the hedge for movements in interest rates (and thus T-note returns) of varying

magnitudes.

The paper is organized as follows. Section I describes the dynamic hedging method in some
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detail. An intuitive interpretation of the method is given vis a vis the empirical linear regression

approach. Section II describes the data used in the study, and provides a preliminary analysis.

Of particular interest, the relation between MBS returns and T-note futures returns is examined

nonparametrically. Section III provides a detailed empirical analysis of the hedge ratios and hedged

MBS returns. Section IV concludes the paper.

I. Dynamic Hedging of MBSs

In this section, we outline an approach for dynamically hedging MBSs using T-note futures. The

basic idea is to estimate a conditional hedge ratio between returns on an MBS and returns on a

T-note futures. The hedge ratio is conditional in the sense that we account for relevant current

information. This is important for MBSs because, as interest rates change, expected future pre-

payments change, and thus the timing of the future cash flows also changes. In order to estimate

this conditional hedge ratio, a structural model is usually required (as with model-based MBS val-

uation approaches). Unfortunately, this requirement involves making a number of assumptions on

the underlying processes, which may or may not be reasonable.

In this paper, we take a different approach towards estimating the conditional hedge ratio. Using

estimates of the joint and marginal probability densities of the return series and relevant variables,

we estimate the conditional hedge ratio directly.4 The advantage of this approach is that it does

not require strong, model-specific assumptions. Of course, the disadvantage is that our approach

introduces estimation error. Below, we describe the probability density estimation method, show

how it is applied to calculating hedge ratios, and explain how it relates to the regression approach.

The Multivariate Density Estimation Method

In general, multivariate density estimation (MDE) is a method for estimating the joint density

of a set of variables. Given the joint and marginal densities of these variables, the corresponding

conditional distributions and conditional moments, such as the mean, can be calculated. Thus, one

can imagine relating the expected return on an MBS to the return on a T-note futures, conditional

on relevant information available at any point in time.

Suppose we have T observations, z1, z2, ..., zT , where each zt is an m-dimensional vector. For

our application, the vector z might include the MBS and T-note futures return, as well as several

variables describing the state of the economy. One popular consistent measure of the joint density

is the Parzen (fixed window width) density estimator. The density at any point z∗ is estimated as

the average of densities centered at the actual data points zt. The further a data point is away from

the estimation point, the less it contributes to the estimated density. Consequently, the estimated

density is highest near high concentrations of data points and lowest when observations are sparse.

3



More formally,

f̂(z∗) =
1

Thm

T∑
t=1

K

(
z∗ − zt
h

)
,

where K(·) is called the kernel function (with the property that it integrates to unity) and is

often chosen to be a density function, h is the window width or smoothing parameter (which helps

determine how tight the kernel function is), and f̂(z∗) is the estimate of the probability density at

z∗.

The researcher has at his discretion the choice of kernel functions and bandwidths. For example,

one popular class of kernel functions are the symmetric Beta family which includes the normal

density, the Epanechnikov (1969) kernel and the biweight kernel as special cases. For the purposes

of this study, we use the multivariate normal density,

K(w) = (2π)−
m
2 e−

1
2
w
′
w.

Note that this choice is not equivalent to assuming that the variables of interest are jointly normally

distributed. In fact, the estimated joint density can take essentially any form. There are few,

if any, relevant results about the effects of the choice of the kernel function in small samples,

although Epanechnikov (1969) demonstrates that many reasonable kernel functions generate almost

equivalent results in terms of asymptotic efficiency.

With respect to the bandwidth, we use the following objective measure suggested by Scott

(1992),

hj = kjσ̂jT
− 1
m+4 ,

where σ̂j is the sample standard deviation of the variable zj , and kj represents an adjustment

factor related to the sparseness of the data around the evaluation points.5 Note that the choice

of bandwidths can be quite general, e.g., different bandwidths for each data point (ht) or each

dimension (hj, j = 1, . . . , m) as above. As with the choice of the kernel function, there is little

formal guidance as to which bandwidth to use for a particular application. Given this latitude,

experimentation with different kernel functions and bandwidths may improve the performance of

the MDE procedure, although we do not attempt to optimize these choices in this paper.

Let zt ≡ (Rmbst+1 , R
TN
t+1,xt), where Rmbst+1 and RTNt+1 are the 1-period returns on the MBS and T-

note futures from t to t+ 1, respectively, and xt is an (m− 2)-dimensional vector of factors known

at time t. (We defer the discussion of the details regarding these returns and factors to Section II.)

We can then obtain the conditional mean, E[Rmbst+1 |R
TN
t+1,xt], i.e., the expected MBS return given

movements in the T-note return, conditional on the current economic state as described by xt.

Specifically,

E[Rmbst+1 |R
TN
t+1,xt] =

∫
Rmbst+1

f(Rmbst+1 , R
TN
t+1,xt)

f1(R
TN
t+1,xt)

dRmbs
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=

∑t
i=1R

mbs
t+1−iK

t−i
1 (·, ·)∑t

i=1K
t−i
1 (·, ·)

(1)

where Kt−i
1 (·, ·) ≡ K1((R

TN
t+1−i −R

TN
t+1)/h

TN), (xt−i − xt)/h)).

K1(·, ·) is the marginal density,
∫
K(z)dRmbs, which is also a multivariate normal density in our

application. The expected return in equation (1) is simply a weighted average of past returns,

where the weights depend on the levels of the conditioning variables relative to their levels in the

past. We expand further on this intuition in the context of hedge ratios in the next section.

Given E[Rmbst+1 |R
TN
t+1,xt], a hedge ratio can be formed by estimating how much the return on

the MBS changes as a function of changes in the T-note futures return, conditional on currently

available information xt. That is,

∂E[Rmbst+1 |R
TN
t+1,xt]

∂RTNt+1

=

∑t
i=1R

mbs
t+1−i

∂Kt−i
1 (·,·)

∂RTNt+1∑t
i=1K

t−i
1 (·, ·)

−

∑t
i=1R

mbs
t+1−iK

t−i
1 (·, ·)

∑t
i=1

∂Kt−i
1 (·,·)

∂RTNt+1[∑t
i=1K

t−i
1 (·, ·)

]2 , (2)

where
∂Kt−i

1 (·, ·)

∂RTNt+1

= −[(RTNt+1−i −R
TN
t+1)/(h

TN)2]Kt−i
1 (·, ·).

Several comments are in order. First, equation (2) provides a formula for the hedge ratio

between an investor’s MBS position and T-note futures. For example, if
∂E[Rmbst+1 |R

TN
t+1,xt]

∂RTNt+1
equals .5,

then for every $1 of an MBS held the investor should short $.50 worth of T-note futures. Second,

this hedge ratio will change dynamically, depending on the current economic state described by

xt. For example, suppose xt is an m − 2 vector of term structure variables. As these variables

change, whether they are the level, slope, or curvature of the term structure, the hedge ratio may

change in response. Thus, the appropriate position in T-note futures will vary over time. Third, the

hedge ratio is a function of the unknown return on the T-note futures. If the conditional relation

between MBS returns and T-note futures returns is always linear, then the same hedge ratio will be

appropriate, irrespective of how T-note futures move. If the relation is not linear, then the investor

must decide what type of T-note moves to hedge. For example, the investor might want to form

the MBS hedge in the neighborhood of the conditional mean of the T-note futures return, since

many of the potential T-note futures returns will lie in that region. On the other hand, it may be

the case that the investor is concerned about the tails of the distribution of T-note futures returns,

and thus adjusts the hedge ratio to take account of potential extreme moves in interest rates and

T-note futures. Fourth, the hedge ratio is horizon specific. In contrast to the instantaneous hedge

ratio, our method’s implied hedge ratio directly reflects the distribution of MBS returns over the

relevant horizon. Thus, different hedge ratios may be appropriate for daily, weekly or monthly

horizons.
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Interpretation of the Dynamic Hedge Ratio

At first glance, equation (2) appears somewhat daunting. Its interpretation, however, is quite

simple. To see this, first consider the hedging method of regressing MBS returns on T-note futures.

The resulting regression coefficient, or hedge ratio, is given by

β =

∑t
i=1R

mbs
t+1−iR

TN
t+1−i − TµmbsµTN∑t

i=1(R
TN
t+1−i − µTN )2

, (3)

where 1
T

∑t
i=1R

mbs
t+1−i = µmbs and 1

T

∑t
i=1R

TN
t+1−i = µTN .

There is a clear interpretation of the hedge ratio implied by the β coefficient. That is, the hedge

ratio is constructed by taking pairs of past MBS and T-note returns, and then equally weighting

these pairs’ comovements (in this case, by the variability of the T-note futures return). The problem

with this approach is that all observations get equal weight. Thus, in estimating the hedge ratio

today, comovements between MBS and T-note returns in high interest rate environments get the

same weight as in low interest rate environments. A static hedge ratio, of course, is not appropriate

for hedging MBSs.

The dynamic hedging strategy outlined above also has a clear interpretation. In fact, it is

possible to rewrite equation (2) in the following form:

∂E[Rmbst+1 |R
TN
t+1,xt]

∂RTNt+1

=
t∑
i=1

Rmbst+1−i[(R
TN
t+1−i −R

TN
t+1)/(h

TN)2]ωi(t)−

[
t∑
i=1

Rmbst+1−iωi(t)][
t∑
i=1

[(RTNt+1−i −R
TN
t+1)/(h

TN)2]ωi(t)], (4)

where ωi(t) =
Kt−i

1 (·,·)∑t

i=1
Kt−i

1 (·,·)
.

Thus, the hedge ratio given in (4) is constructed by taking past pairs of MBS and T-note

futures returns, and then differentially weighting these pairs’ comovements by determining how

“close” (RTNt+1−i,xt−i) pairs are to a chosen value of RTNt+1 and current information xt. Equation (4)

then is similar in spirit to a regression hedge, except that the weights are no longer constant, but

instead depend on current information. Of course, it is possible to adapt the regression hedge to

incorporate current information by making the regression coefficient a function of variables such as

the interest rate. The problem comes in choosing the specific form of the functional relation. The

nice idea behind density estimation is that these weights are not estimated in an ad hoc manner,

but instead depend on the true (albeit estimated) underlying distribution of relevant variables.

Thus, if the current information xt is not close to xt−i in a distributional sense, then ωi puts little

weight on the observation pair Rmbst+1−iR
TN
t+1−i.

Our approach has a clear advantage over the regression hedge given by (3). The hedge ratio

in (4) explicitly takes into account the current economic state. For example, if interest rates
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are currently high, but the term structure is inverted, then more weight will be given to past

comovements between MBSs and T-note futures in that type of interest rate environment. Thus,

the hedge ratio adjusts to current economic conditions.

In the remainder of the paper, we provide a detailed analysis of the performance of dynamic

hedging strategies using data on Government National Mortgage Association (GNMA) MBSs. This

analysis is performed out-of-sample, and thus avoids familiar overfitting problems that can arise

within the estimation sample.

II. Data Description

Data Sources

In this paper, we employ three main data sources over the period January 1987 to May 1994:

(i) mortgage-backed security prices from Bloomberg Financial Markets, (ii) 10-year T-note futures

prices from Technical Tools Inc., and (iii) various term structure information, including the 3-month,

1-year, 5-year and 10-year yields from the Federal Reserve Board of Governors and Bloomberg

Financial Markets.

With respect to MBS data, we collected weekly data on 30-year fixed-rate GNMA MBSs, with

coupons of 8%, 9% 10%. The prices represent dealer-quoted bid prices on X% coupon-bearing

GNMAs traded for forward delivery on a to be announced (TBA) basis. The TBA market is most

commonly employed by mortgage originators who have a given set of mortgages that have not

yet been pooled. However, trades can also involve existing pools, on an unspecified basis. This

means that, at the time of the agreed-upon-transaction, the characteristics of the mortgage pool

to be delivered (e.g., the age of the pool, its prepayment history, etc.) are at the discretion of

the dealer. Nevertheless, as long as new mortgages with the required coupon are being originated,

these pools are likely to be delivered because seasoned pools are more valuable in the interest rate

environment that characterizes our sample period. Consequently, GNMA TBAs are best thought

of as forward contracts on generic, newly issued, securities. The extent to which the absence of

origination affects the results is briefly addressed in the latter part of Section III. The definition

of a return on a forward or futures contract is somewhat arbitrary given that no money changes

hands upfront. For the purposes of the analysis the returns on both the GNMA TBAs and the

T-note futures are defined as the change in the price over the period divided by the price at the

beginning of the period.6

With respect to the interest rate series, weekly data on the yield on the 3-month Treasury bill,

the 1-year Treasury bill, 5-year Treasury note and 10-year Treasury note were collected for the

1987-1994 sample period. From these series, we construct several potential interest rate factors

to be used in the empirical section of the paper. Litterman and Scheinkman (1991) show that
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almost all term structure movements can be explained by movements in three factors: the level of

interest rates, the slope of the term structure, and the curvature. We also include a fourth factor,

the volatility of interest rates, because of the option component of MBSs. Specifically, we relate

unhedged and hedged GNMA returns to changes in the four factors defined as follows.

• The 10-year yield (level).

• The spread between the 10-year yield and the 3-month yield (slope).

• The difference between one-half the sum of the 5-year and 3-month yields and the one-year

yield (curvature).

• Interest rate volatility measured as an exponentially smoothed sum of past daily squared

changes in the 3-month rate. We consider three different smoothing parameters — .99,

.96 and .90. The exponentially smoothed measure is often preferred to historical volatility

because it takes into account more recent information, and in fact has a representation much

like the popular GARCH(1,1) process. As an aside, this volatility measure corresponds to JP

Morgan’s RiskMetrics (θ = .96).

Data Analysis

Figure 1 graphs the 10-year yield (the conditioning variable used in our analysis) over the 1987-

1994 sample period. Throughout the paper, we denote this yield as the level of interest rates.

The figure also shows the point at which the out-of-sample analysis begins. An overall look at the

figure suggests a decline in interest rate levels throughout most of the sample. However, it is also

clear that there is substantial variation in the interest rate level over this period, which suggests it

may have important dynamic information for pricing, and thus hedging, MBSs. Since the level of

interest rates generally falls over the sample, the moneyness of the prepayment option of the MBSs

comes into play. This effect is analyzed below.

In our discussion of the MDE method in Section I, we described the issue of how MBS returns

can be estimated as a function of the unknown return on T-note futures. This is important because

it tells us under what conditions the T-note futures will hedge all movements in MBS returns.

As an illustration of the methodology, we focus on the MBS and T-note futures return relation,

conditional on the level of interest rates. Specifically, over the entire sample period, Figures 2A

and 2B graph the MDE-implied expected weekly return on the 10% and 8% GNMA respectively

against contemporaneous movements in the T-note futures return, conditional on different levels

of the 10-year yield. The graph shows the relation over ranges of T-note futures returns and 10-

year yields which occurred during the sample period. Within these ranges, the MDE approach

8



interpolates between points. Problems can occur when it is necessary to extrapolate beyond the

range of data in the sample.

Several interesting features of the relation are apparent in the figures. First, conditioning on

the current economic state does seem to matter — that is, the hedge ratio changes as a function

of the level of interest rates. For example, consider the 10% GNMA in Figure 2A. At a 10-year

yield of 6%, the line is quite flat, while at 9% it is relatively steep. When long-rates are at

6%, the prepayment option of the underlying mortgages of the 10% GNMA is deep in-the-money,

and therefore MBS returns are relatively insensitive to interest rate changes. In contrast, when

rates are 9%, the prepayment option is out-of-the-money, and MBSs behave much more like the

corresponding fixed-rate bonds. When interest rates are high, MBS returns move inversely with

interest rate changes, and therefore more closely with interest rate sensitive securities such as T-

note futures. This observation is even more apparent when we compare Figures 2A and 2B. The

underlying mortgages of the 8% GNMA become in-the-money at much lower rates than the 10%

GNMA. At each interest rate level, therefore, Figure 2B shows that the 8% GNMA return is more

sensitive to T-note futures returns, with the slope being steeper at each point. Of some interest,

the hedge ratios for the 8% GNMA are almost identical at interest rate levels of 9% and 7.5%. At

these levels, small movements in interest rates (as described by the -1.5% to 1.5% weekly return

on T-note futures) have similar effects on the MBS return because the prepayment options of the

8.5% mortgages are out-of-the-money. Note that X% GNMAs are backed by X + 1
2% underlying

mortgages due to the servicing fee associated with MBSs.

Second, for weekly T-note futures returns in the range -1.5% to 1.5%, the relation between

conditional expected returns on GNMA TBAs and T-note futures is, for the most part, linear.

Thus, the hedge ratio will not necessarily have to be adjusted for nonlinearity using T-note options

or a similar interest rate derivative. This said, however, Figures 2A and 2B do display a small

amount of concavity. For example, consider the 10% GNMA at an interest rate level of 9%. For a

T-note futures return between -1.5% and 0%, the MBS return increases by 1%; in contrast, between

0% and 1.5%, the increase is only .8%. From a theoretical viewpoint, a small amount of concavity

is to be expected. As interest rates fall, expected returns on MBSs become less sensitive to interest

rate changes via the prepayment option. Figures 2A and 2B show that, for weekly MBS returns,

this is not a first-order effect over the range of reasonable values of T-note futures returns.

III. Empirical Analysis

Because the relation between GNMA returns and T-note futures returns is approximately linear,

the hedging analysis to follow focuses on hedge ratios at the conditional mean of T-note futures

returns, conditional on the level of interest rates. To the extent there is any nonlinearity, the hedge
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ratio is still appropriate locally for realizations of T-note futures returns in the neighborhood of

the mean of its conditional distribution. Since the level of interest rates is the predominant factor

underlying both MBSs and T-notes, this variable provides a good starting point for a dynamic

hedging analysis. The strategy is to compare the unhedged GNMA returns, the static linear

hedged returns (equation (3)), and the dynamic MDE hedged returns (equation (4)), where these

returns are calculated as follows:

1. The unhedged GNMA returns are calculated for horizons of one and four weeks over the

sample period December 1989 to May 1994.

2. The static linear hedged return from t to t + 1 is given by Rmbst+1 − βtR
TN
t+1, where βt is the

coefficient from regressing the MBS return on the contemporaneous T-note futures return

over the past 150 weeks.7 βt is re-estimated every period via a rolling regression, and the

monthly horizon hedge ratios are estimated using overlapping observations.

3. The dynamic MDE hedged return takes the same form, except βt is now estimated using

MDE in a rolling estimation over the past 150 weeks of data. In this analysis, we condition

on the level of the 10-year yield; thus, βt takes a measure of the past observations of Rmbs

and RTN , nonlinearly weighted by how “close” past interest rates are to the current level.

This section is organized as follows. First, we directly compare the hedge ratios implied by the

two methods, both across different GNMA coupons and different return horizons. Second, a direct

comparison of the hedging methods is provided, with an emphasis on documenting how much of

the MBS return volatility remains, and whether this volatility is interest rate dependent. Third,

to the extent some volatility remains, we investigate the source of this volatility and whether the

MBS hedge can be improved.

The Hedge Ratio

Figures 3A–3D provide the hedge ratio, βt, for both the linear and MDE dynamic hedges for weekly

returns on GNMA 10s, weekly returns on GNMA 8s, monthly returns on GNMA 10s and monthly

returns on GNMA 8s, respectively. Over the 1990 to 1994 sample period, there is a general decline

in the hedge ratio, irrespective of the method or horizon length. This is to be expected. Interest

rates are declining during this period, and the MBS’s prepayment option is becoming more in-the-

money. As a result, MBSs are less sensitive to interest rate movements — hence, the investor needs

to hedge with smaller amounts of T-note futures.

At first glance, it may seem strange that the hedge ratio of the static linear method actually

changes through time. Note, however, that the linear regressions are performed on a rolling basis.
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Thus, as observations enter and leave the estimation window, the estimated hedge ratio may change.

Because interest rates are declining for most of the period, the hedge ratio also declines.

A comparison between the hedge ratios for the 10% GNMA (Figures 3A and 3C) and that of

the 8% GNMA (Figures 3B and 3D) is especially revealing. While the overall pattern of the hedge

ratios over time is similar, the magnitude of these ratios is quite different. In fact, the GNMA 8’s

hedge ratio is uniformly higher than the GNMA 10’s. For example, consider the hedge ratio for

weekly GNMA returns using the dynamic MDE method. In January 1990, every $1 at stake in

an investment in a GNMA 8 TBA (GNMA 10 TBA) requires a $.85 ($.50) offsetting position in

T-note futures, while in May 1994, a $.50 ($.20) offsetting position is required. The fact that the

GNMA 8s require a larger position in T-note futures reflects their greater sensitivity to interest

rates, not least the moneyness of the prepayment option.

For much of the sample, the dynamic MDE hedge requires a smaller position in T-note futures

than does the linear hedge. This again should not be surprising. The MDE method conditions on

current information; so, as interest rates fall, this fall is impounded immediately into the weights

placed on prior pairs of MBS and T-note futures returns (equation (4)). On the other hand, the

rolling linear regression method introduces this information slowly, and with equal weight, as the

estimation window changes. The speed at which information gets incorporated also explains why

the MDE dynamic hedge ratios are much more variable than the linear static hedge ratio. Since

the MDE-based hedge ratio adjusts immediately to information, the variability of the interest rate

level (see Figure 1) induces variation in the dynamic hedge ratios. These points are very apparent

over the last 70 weeks of the sample (January 1993 — May 1994). It is also a period in which

investors suffered large losses in hedged portfolios due to overestimating the underlying interest

rate sensitivity of MBSs. At least for the GNMA TBAs studied here, the dynamic method has

made an appropriate adjustment during this latter period.

One striking feature of the weekly MDE hedge ratios is the spike at the beginning of 1992.

Hedge ratios decrease in magnitude by about 0.5 and then rebound to their original levels within

a couple of weeks. This large movement and rapid reversal is a result of the contemporaneous

spike in interest rates (see Figure 1). When interest rates fall rapidly to a level that has not been

observed in the previous 150 weeks, the MDE procedure has problems extrapolating from the past,

and somewhat irrelevant, data. As soon as interest rates rebound, the MDE procedure returns

to familiar territory. If interest rates had remained low, the procedure would also have adapted

quickly.

Finally, note that the MDE dynamic hedge positions change depending on whether the position

is held for one week versus one month. For example, consider the GNMA 10 TBA. While the

hedge positions for weekly and monthly returns generally decline over the entire sample, the hedge

ratio for monthly returns is much more flat than for weekly returns during the 1993–1994 period.
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There are two possible explanations for this difference. Even though the full 150 weeks of data

are used to form monthly returns, these returns are overlapping and thus contain less information

than independent observations. Thus, the monthly hedge ratio may be less reliable than the weekly

hedge ratio, and the divergence may reflect estimation error. Alternatively, the hedge ratio may

reflect the possibility that the level of interest rates implies different conditional changes in future

interest rates over different horizons. Since it is commonly believed that interest rates are mean

reverting, this explanation has some merit. It is an empirical question, however, whether this

mean reversion implies enough differences between the conditional distribution of interest changes

at weekly and monthly horizons.

Analysis of Hedged MBS Returns

Table 1 provides the mean, volatility and autocorrelation of the unhedged, linearly hedged, and

MDE dynamically hedged 8%, 9% and 10% GNMA TBA returns for both 1- and 4-week horizons.

Consider the mean returns of these hedged and unhedged positions for 1-week horizons. The weekly

mean returns for the unhedged GNMAs are .078%, .077% and .069% respectively for the 8s, 9s and

10s, which translates to between 3.6% and 4.1% on an annual basis. Because TBAs are forward

contracts, this mean return represents a risk premium for holding MBSs. Of course, we should

note that this period is one in which interest rates generally fell, so these mean estimates may just

reflect the particular sample period, rather than an ex ante risk premium per se. Nevertheless,

since much of this premium may be compensation for bearing interest rate risk, it should not be

surprising that the mean hedged returns drop to .005%, .020% and .027% for the 8s, 9s and 10s

respectively (using MDE). This fall represents a decline in overall interest rate exposure due to the

hedge itself.

The most interesting results from Table 1 are the standard deviations of the unhedged and

hedged returns. First consider the weekly return horizons for the GNMA TBAs. The unhedged

return volatility is 68.5, 53.1 and 41.4 basis points respectively for the 8s, 9s and 10s. The decline

in the overall volatility for higher coupon GNMAs just reflects the effect of the prepayment option

vis a vis interest rate movements. Linearly hedging MBSs using T-note futures in the static regres-

sion substantially reduces this volatility risk to 31.8, 30.9 and 28.6 basis points, respectively. Of

particular interest, our dynamic method fares even better — the volatility of the hedged GNMAs

is 28.4, 24.5 and 24.2 basis points, a 10%-20% drop relative to the static approach. With respect

to using the MDE method, the largest gains are with the GNMA 9s and 10s, since the prepayment

option is much more relevant for these securities given the level of interest rates over the sample

period.

This same pattern in results carries through to the four week horizons. While the unhedged

8%, 9% and 10% GNMA returns face 136.4, 99.9 and 74.6 basis points of volatility respectively,

12



the MDE (linear) hedge reduces this risk to 58.3 (59.9), 47.2 (57.3) and 44.0 (52.4) basis points.

For example, suppose an institution with a large GNMA portfolio is faced with the possibility of a

large negative realization (say 2 standard deviations) on their GNMA position. This means that,

for a $100 million one month exposure to MBSs, the MDE hedge reduces the value at risk from

$2.38 million to only $1.04 million for the 8% GNMA.

Table 1 also gives the autocorrelation of the unhedged and hedged GNMA returns. Even if

GNMA and T-note futures returns are not serially correlated (which is true for this sample), this

does not imply that the hedged return will be serially uncorrelated. The reason is that the estimates

of the hedge ratio, βt, may be correlated through time either due to estimation error (via the rolling

regression or MDE) or due to the conditioning variable (i.e., the interest rate level). Table 1 shows,

however, that the serial dependency of βt does not necessarily lead to serial correlation in the

hedged position’s returns. For example, for weekly returns, all of the autocorrelations are below

4%. With respect to monthly returns, the MDE hedged positions pick up minor autocorrelation

— -9.6%, -8.3% and -8.5% for the 8s, 9s and 10s, respectively. The magnitudes are consistent with

the hypothesis that these autocorrelations are not significantly different from zero.

So far, our discussion has centered around how much the hedging reduces the total volatility

of the position in GNMA TBAs. While this is an important goal, it is only suggestive of how

much interest rate volatility is removed. It is of interest to find out how much of the variation of

the returns on the GNMAs is due to variation of T-note futures returns. Table 2 provides such

information.

For example, consider the weekly return on the GNMA 8 (GNMA 10). Table 2 shows that

77% (51%) of the variation of the unhedged return on GNMA 8s (GNMA 10s) can be explained by

variation in the contemporaneous T-note futures return. This translates to 60 (30) basis points of

volatility due to T-note futures returns. This is in contrast to 10% (23%) explained variation in the

static linear hedged return, which is equivalent to 10 (14) basis points of remaining volatility due

to changes in T-note futures prices. The MDE dynamic hedge fares much better. Only .2% (.3%)

of the remaining variation of the hedged return can be related to the T-note futures return — that

is, only 1 basis point of T-note risk remains in either case. If the goal of the hedging exercise is to

remove risk associated with U.S. Treasuries, the MDE method is a clear winner on that score.8

As a final comment on the comparison between the static linear and dynamic MDE hedges, note

that the correlations of the linear hedge with the weekly T-note futures return are negative (-32.1%,

-50.1% and -48.2% for GNMA 8s, 9s and 10s, respectively). This means that the static method

continually overhedges the GNMAs with T-note futures. This is because the linear method is slow

to adjust to the decline in interest rates over the sample period. As a result, the hedge is mistakenly

set-up based on data in relatively high interest rate periods, during which the prepayment option is

out-of-the-money and MBSs are more sensitive to interest rate movements. Because the dynamic
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MDE hedge conditions on the current economic state, it does not suffer from this problem (recall

also Figures 3A–3D).

If the MDE dynamic method for hedging MBSs succeeds in removing the primary source of

interest rate risk, what is the source of the remaining volatility? As a first pass, Table 3 reports

the contemporaneous correlations of the dynamically hedged and unhedged GNMA returns across

coupons for both weekly and monthly returns. The contemporaneous correlations across coupons

drops as the interest rate risk is hedged away; however, substantial cross-correlation still remains.

For example, the correlation between unhedged weekly returns on GNMA 8s and 10s is 88%, while

the correlation between their hedged counterparts is 66%.

Is this remaining 66% correlation all due to hedging error, or is there some systematic effect

across GNMA TBAs? To check this, we also calculate the correlation between the unhedged and

hedged GNMA returns. While the correlations are much smaller, they are not zero, ranging instead

from 15% to 50%. As an example, consider weekly returns on GNMA 8s and 10s. 2.2% (11.8%) of

the variation of hedged 8% GNMAs (10% GNMAs) can be explained by unhedged returns on 10%

GNMAs (8% GNMAs). This is equivalent to 4.2 (8.3) basis points of volatility risk due to variation

of MBS returns, not related to Treasury movements. This result suggests that measurement error

cannot account entirely for the remaining volatility. Below, we investigate this point in more detail.

Sources of Variation of GNMA TBA Returns

While the above results demonstrated that the MDE dynamic hedge removes the risk associated

with T-note returns, the question remains whether this hedge is sufficient to remove all types

of fundamental interest rate risk. Tables 4A (weekly) and 4B (monthly) provide the R2 and

corresponding basis points risk of unhedged, linearly hedged and MDE dynamically hedged GNMA

returns in relation to changes in the levels of various interest rate factors. These factors broadly

span four different types of information: (i) the level of interest rates, (ii) the slope of the term

structure, (iii) the curvature of the term structure, and (iv) interest rate volatility. (For more

details, recall the description of the factor variables given in Section I).

Several observations are particularly interesting. Both the unhedged and the linearly hedged

returns face considerable interest rate risk, which is consistent with the documented ex post corre-

lation with T-note futures returns (see also Table 2). This is in stark contrast to the MDE hedged

returns, which show little correlation with changes in any of the interest rate factors. That is, even

though only T-note futures are used to hedge MBS returns, the dynamic hedge reduces volatility

risk associated with the level, slope and curvature of the term structure. For example, consider the

weekly return on the 10% GNMA. The MDE dynamic hedge leaves 1.3, 0.3 and 0.4 basis points

of volatility due to these three factors respectively. In contrast, the unhedged (linearly hedged)

returns face 28.6 (13.5), 18.5 (9.2) and 3.3 (2.5) basis points of volatility. To the extent that the

14



volatility of the unhedged return is only 41.4 basis points, it is clear how successful the dynamic

hedge is.

Similar results carry through to monthly returns (Table 4B). In particular, with respect to

interest rate risk, the dynamic hedge is far superior to the static hedging method. However, there

are two main differences relative to weekly returns. First, the GNMA returns hedged using the

dynamic MDE hedge leave some residual risk which is correlated with interest rate changes. We

cannot distinguish whether this is due to estimation error in the hedge ratios (see Figures 3B and

3D versus 3A and 3C), or whether it just reflects the difficulty in hedging longer horizon returns

using only one instrument (T-note futures). Second, the curvature of the term structure now plays

a larger role. For example, of the MDE hedged 8%, 9% and 10% GNMA return’s volatility of 58.3,

47.2 and 44.0 basis points, respectively, changes in curvature from month to month explain 11.6,

13.0 and 11.1 basis points.

Tables 4A and 4B also show that regardless of the volatility measure used, contemporaneous

changes in the volatility of interest rates have very little relation with either the unhedged or hedged

GNMA returns series. Because the results are similar for all different values of the exponential

smoothing parameter, Tables 4A and 4B report the volatility using only one measure, θ = .96.

While the lack of correlation could be due to estimation error with respect to our estimate of

volatility, it should be noted that the measures used are quite standard in the literature (e.g.,

historical volatility and GARCH(1,1)).

The conclusions we reach from Tables 4A and 4B are twofold. First, the dynamic hedge removes

most, if not all, of the different types of interest rate risk inherent in MBSs. Of special interest,

this hedge is performed using just one instrument (i.e., T-note futures) and conditions on just one

economic variable (i.e., the level of interest rates). Second, this result means that the volatility

of this hedged return is not related to interest rates. It also cannot be completely explained by

errors due to either estimation or measurement of GNMA prices. This is because the hedged

GNMA returns are correlated with unhedged GNMA returns (which are not estimated), and across

different coupons (which makes systematic price errors less likely).

One possibility for explaining these correlations across GNMA returns is that interest rate

changes affect these returns nonlinearly. Recall, from Figures 2A and 2B, that due to the prepay-

ment option the relation between expected GNMA returns is concave (albeit slightly) in T-note

returns. Hence, the T-note futures return may not be able to hedge away all MBS risk associated

with large movements in interest rates. Since the correlations documented in Tables 2 and 4 may

not detect this, it seems worthwhile exploring whether the dynamically hedged returns are related

nonlinearly to interest rate movements. Given the concavity evident in Figures 2A and 2B, squared

interest rate movements are a potentially good instrument for detecting this nonlinear relation, if

it exists. The correlations of squared interest rate changes with the various GNMAs range from
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-10% to -20%, which is consistent with a concave relation. This amounts to approximately 4–5

basis points of nonlinear interest rate risk, not accounted for by the T-note futures hedge. One

possible way to avoid this risk may be to add another instrument which will allow us to capture

these nonlinear movements, e.g., options on T-note futures.

Even if this nonlinear interest rate risk is accounted for, then the question remains: is the re-

maining volatility specific to particular GNMA securities (and thus more in the realm of estimation

and GNMA price errors) or is it still systematic across all GNMAs?

If the remaining volatility is systematic, then one possible explanation is that GNMA returns

are nonstationary due to pool seasoning, and that this nonstationarity induces correlated risk

across coupons. To check this, we investigated the periods in which 8%, 9% and 10% GNMAs are

originated. In these periods, given the declining interest rate environment, the newly originated

GNMA pools are the most likely pools to be delivered in the TBA market. In contrast, when there

are no originations, seasoned pools must be delivered. A cursory look at the behavior of the hedged

GNMA returns vis a vis origination does not explain the remaining volatility. For example, from

January 1990 to November 1992, a substantial number of 9% GNMAs were originated, while very

few originations of GNMA 8s took place. The opposite situation occurred in the latter part of our

sample (12/92-5/94). If the remaining volatility is due to the seasoning of the mortgage pools, we

would expect the correlation patterns of the 8% and 9% GNMAs to be different. Though there

is a general decline in the magnitude of the correlations with unhedged GNMA returns over the

sample, the correlation patterns of the 8% and 9% GNMAs are very similar.

Of course, the residual risk of a given GNMA could be hedged using other GNMAs. We

investigated this issue by hedging GNMAs using GNMAs of nearby coupons (i.e., 10s with 91
2s, 9s

with 81
2s, and 8 with 71

2s). As expected, the volatility of the hedged returns is considerably lower

than that using T-note futures. For example, for weekly returns on the 10% GNMA, the volatility

is 11.2 basis points. Of more interest, however, is the fact that this hedged return has a correlation

of -.327 with interest rate changes, leaving 3.7 basis points of residual interest rate risk (compared

with only 1.3 for the T-note futures hedge). Moreover, there are a number of reasons why hedging

GNMAs with other GNMAs may not be practical. First, the transaction costs are higher. While

the TBA market is quite liquid (e.g., spreads of 1
32nd to 4

32nd), T-note futures often exhibit lower

spreads (e.g., between 1
64th and 1

32nd). Second, this type of hedge may not be sensible if the

institution’s core business leads to positive holdings of GNMA of all coupons, or if an institution

is trading on the price of MBSs relative to U.S. Treasuries.

If the institution/investor does not use other MBSs to hedge GNMAs, are there other securities

which can serve this function? Without addressing this question specifically, it should be clear

that the answer depends on the nature of the remaining volatility risk of GNMAs. If that risk is

systematic across the economy (though not related to interest rates), then it is probably the case
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that some other security can hedge away this risk. However, it remains an open question as to (i)

what this risk is, and (ii) what securities can effectively hedge this risk. If the risk is systematic

across only MBSs and thus idiosyncratic with respect to other securities, then the risk may not

be relevant. That is, it can be diversified away within a portfolio of fixed income instruments and

other assets.

IV. Concluding Remarks

This paper develops a new strategy for dynamically hedging mortgage-backed securities (MBSs).

The approach involves estimating the joint distribution between returns on MBSs and T-note

futures, conditional on current economic conditions. We show that our approach has a simple

intuitive interpretation of forming a hedge ratio by differentially weighting past pairs of MBS and

T-note futures returns. The weights are determined by how close, in a distributional sense, current

variables (like the level of interest rates) are to past values of these variables. As an application,

an out-of-sample hedging exercise is performed for 8%, 9% and 10% GNMAs over the 1990-1994

period for weekly and monthly return horizons. The dynamic approach is very successful at hedging

the interest rate risk inherent in all the GNMAs. For example, in hedging weekly returns on 8%,

9% and 10% GNMAs, our dynamic method reduces the risk of the GNMA returns associated with

interest rate movements to only 1.2, 2.6 and 1.3 basis points, respectively. This is in contrast to

60.2, 42.0 and 29.5 basis points of interest rate risk if no hedge had been performed.

Clearly, our approach is general enough to be applied to a number of traded derivatives, not

only MBSs. In fact, the only obstacle in practical applications is the need for past data on the

derivative. Furthermore, the uses of MDE extend to the estimation of inputs which can be used

in theoretical models. Therefore, when illiquid derivatives need to be priced and/or hedged, MDE,

in conjunction with a theoretical model can be used. This point is discussed further in Boudoukh,

Richardson and Whitelaw (1995), in the context of term structure-related inputs.
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Endnotes

1. For a discussion of some of the problems associated with static hedges, see, for example,

Breeden (1991) and Breeden and Giarla (1992). With respect to linear regression hedges in

particular, Batlin (1987) discusses the effect of the prepayment option on the hedge ratio

between MBSs and T-note futures.

2. Davidson and Herkowitz (1992) provide an analysis of the various theoretical methodologies

for valuing MBSs in practice. The advantages and disadvantages of each approach are dis-

cussed in detail. With respect to the particular issue of hedging the interest rate risk of

MBSs, Roberts (1987) gives an analysis, focusing primarily on model-based approaches to

MBS valuation.

3. Chapter 15 of Hull (1993) provides a comparison and discussion of the major term structure

models, with an emphasis on their underlying assumptions.

4. Boudoukh, Richardson, Stanton and Whitelaw (1995) develop a nonlinear, multifactor pricing

model for MBSs using density estimation techniques. Their model can also be used to hedge

MBSs. In particular, given the MBS price as a function ofK factors,K+1 securities (including

the MBS) can be used to hedge away all the relevant risks. Note, however, that within the

framework of their model, they can provide only an instantaneously riskless position. They

ignore some of the horizon-specific issues that arise in this paper.

5. One problem with multivariate density estimation is that the fixed window width density

estimator produces (i) spurious peaks at points where the observations are sparse, and (ii)

not enough resolution where the observations are dense. As discussed later in this section,

much of the analysis of the relation between MBS and T-note futures returns is conducted

at the mean T-note futures return and the level of the 10-year yield. Since many of the

past return observations are centered around the mean, we let kTN = .5 to produce greater

resolution. In contrast, as the 10-year yield tends to lie in sparse regions relative to historical

yields (due to the fall in interest rates over the sample), we let ky10 = 2 in order to avoid

spurious peaks. Note that these values are chosen ex ante, and are not necessarily the optimal

ones given the data. Nevertheless, the choice should help alleviate some, if not most, of the

spurious estimation problems.

6. Using the GNMA TBA price series, return series were calculated, with adjustments being

made once a month when the prices of the different contracts are spliced together. Note that

the adjustment is made during the splice week using a version of the Cost of Carry model,
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modified for prepayments, known as the Dollar Roll Breakeven method (see Askin and Meyer

(1986)).

7. The length of the sample period for the rolling linear regression is set at 150 weeks to coincide

with the MDE sample length. Reducing the sample period increases the responsiveness of the

linear hedge ratio to recent information at the cost of increased estimation error. No effort

was made to find the optimal sample size for either the linear hedge or the MDE hedge.

8. Table 2 shows that similar conclusions are reached for hedges using monthly returns. For the

MDE dynamic hedge, there is a little residual risk associated with T-note futures returns, but

it is substantially less than both the unhedged and static linearly hedged GNMA returns.

19



TABLE 1

Comparison of Hedging Methods

GNMA 8 GNMA 9 GNMA 10

1 wk. 4 wks. 1 wk. 4 wks. 1 wk. 4 wks.

Unhedged

Mean (%) .078 .326 .077 .316 .069 .286

Vol. (%) .685 1.364 .531 .999 .414 .746

Autocorr. .011 .138 -.019 .109 -.045 .082

Linear Hedge

Mean (%) .007 .041 .017 .086 .024 .126

Vol. (%) .318 .599 .309 .573 .286 .524

Autocorr. .015 -.107 .012 .021 .060 .039

MDE Hedge

Mean (%) .006 .123 .020 .178 .027 .189

Vol. (%) .285 .583 .245 .472 .242 .440

Autocorr. .011 -.096 .016 -.083 .036 -.085

Notes: Table 1 compares the mean, volatility and autocorrelation of unhedged returns on

GNMA TBAs and hedged returns using two different approaches. The approaches involve hedging

GNMAs with T-note futures, resulting in the hedged return, Rmbst+1 − βtR
TN
t+1, where Rmbst+1 and RTNt+1

are the out-of-sample returns on GNMAs and T-note futures respectively, and βt, the hedge ratio,

is estimated using the prior 150 weeks of data in one of two ways: (i) a linear hedge based on a

regression of past Rmbst+1 on RTNt+1, and (ii) a MDE hedge using the distribution of Rmbst+1 and RTNt+1,

conditional on the 10-year yield at time t. The estimation is performed on a rolling basis and covers

the out-of-sample period, December 1989 to May 1994. Results are reported for both weekly and

overlapping monthly returns.
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TABLE 2

The Sensitivity of Unhedged/Hedged GNMA Returns to T-note Futures Returns

GNMA 8 GNMA 9 GNMA 10

1 wk. 4 wks. 1 wk. 4 wks. 1 wk. 4 wks.

Unhedged

Correlation .878 .899 .792 .809 .711 .729

R2 .770 .808 .627 .655 .505 .532

Vol. (basis pts) 60.2 122.6 42.0 80.8 29.5 54.4

Linear Hedge

Correlation -.321 -.367 -.507 -.552 -.482 -.509

R2 .103 .134 .257 .304 .232 .259

Vol. (basis pts) 10.2 21.9 15.7 31.6 13.8 26.6

MDE Hedge

Correlation -.043 .198 -.107 -.046 -.056 -.158

R2 .002 .039 .011 .002 .003 .025

Vol. (basis pts) 1.2 11.5 2.6 2.2 1.3 7.0

Notes: Table 2 reports the correlation of returns on hedged and unhedged GNMAs with contem-

poraneous T-note futures returns, the R2 from the corresponding regression, and the magnitude of

the variation of unhedged/hedged GNMA returns explained by T-note futures returns (measured

by its volatility in basis points). GNMAs are hedged with T-note futures, resulting in the hedged

return, Rmbst+1 −βtR
TN
t+1, where Rmbst+1 and RTNt+1 are the out-of-sample returns on GNMAs and T-note

futures respectively, and βt, the hedge ratio, is estimated using the prior 150 weeks of data in of

two ways: (i) a linear hedge based on a regression of past Rmbst+1 on RTNt+1, and (ii) a MDE-based

hedge using the distribution of Rmbst+1 and RTNt+1, conditional on the 10-year yield at time t. The

estimation is performed on a rolling basis and covers the out-of-sample period, December 1989 to

May 1994. Results are reported for both weekly and overlapping monthly returns.
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TABLE 3

Contemporaneous Correlations of Unhedged/Hedged GNMA Returns

Upper Triangle (weekly)/ Lower Triangle (monthly)

Unhedged GNMA MDE Hedged GNMA

8% 9% 10% 8% 9% 10%

Unhedged GNMA 8% 1.000 .951 .876 .341 .235 .149

GNMA 9% .954 1.000 .952 .317 .372 .241

GNMA 10% .875 .951 1.000 .343 .447 .438

MDE Hedged GNMA 8% .494 .423 .382 1.000 .824 .659

GNMA 9% .258 .330 .343 .840 1.000 .836

GNMA 10% .090 .177 .335 .640 .844 1.000

Notes: Table 3 reports the contemporaneous correlation between MDE dynamically hedged

GNMA returns and unhedged GNMA returns. The GNMAs are hedged with T-note futures,

resulting in the hedged return, Rmbst+1 − βtR
TN
t+1, where Rmbst+1 and RTNt+1 are the out-of-sample returns

on GNMAs and T-note futures respectively, and βt, the hedge ratio, is estimated using the prior

150 weeks of data. This MDE-based estimate uses the distribution of Rmbst+1 and RTNt+1, conditional

on the 10-year yield at time t. The estimation is performed on a rolling basis and covers the out-of-

sample period, December 1989 to May 1994. Results are reported for both weekly returns (upper

triangular matrix) and overlapping monthly returns (lower triangular matrix).
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TABLE 4A

The Sensitivity of Unhedged/Hedged GNMA Weekly Returns to Factor Changes

GNMA 8 GNMA 9 GNMA 10

Unhdg Linear MDE Unhdg Linear MDE Unhdg Linear MDE

Level

Correlation -.863 .301 .023 -.775 .489 .092 -.691 .472 .053

R2 .745 .090 .001 .601 .240 .009 .478 .223 .003

Vol. (basis pts) 59.1 9.6 .6 41.1 15.1 2.3 28.6 13.5 1.3

Slope

Correlation -.546 .231 -.001 -.487 .357 .048 -.447 .320 .012

R2 .298 .053 .000 .237 .127 .002 .200 .103 .000

Vol. (basis pts) 37.4 7.3 0.0 25.8 11.0 1.2 18.5 9.2 0.3

Curvature

Correlation -.048 -.100 -.023 -.086 -.129 -.080 -.080 -.087 -.016

R2 .002 .010 .001 .007 .0167 .006 .006 .008 .000

Vol. (basis pts) 3.3 3.2 0.7 4.6 4.0 2.0 3.3 2.5 0.4

Volatility

Correlation .016 -.028 -.039 .022 -.016 -.012 .033 .007 .029

R2 .000 .001 .002 .001 .000 .000 .001 .000 .001

Vol. (basis pts) 1.1 0.9 1.1 1.1 0.5 0.3 1.3 0.2 0.7

Notes: Table 4A reports the correlation of returns on hedged and unhedged GNMAs with

contemporaneous changes in various factors, the R2 from the corresponding regression, and the

magnitude of the variation of unhedged/hedged GNMA returns explained by these factor changes

(measured by volatility in basis points). The factors include contemporaneous changes in the

following interest rate variables : (i) 10-year yield (i.e., level), (ii) spread between 10-year and

3-month yields (i.e., slope), (iii) one-half the sum of the 5-year and 3-month yields minus the

one-year yield (i.e., curvature), and (iv) interest rate volatility estimate based on an exponentially

θ smoothed sum of past squared changes (θ = .96). GNMAs are hedged with T-note futures,

resulting in the hedged return, Rmbst+1 − βtR
TN
t+1, where Rmbst+1 and RTNt+1 are the out-of-sample returns

on GNMAs and T-note futures respectively, and βt, the hedge ratio, is estimated using the prior

150 weeks of data in one of two ways: (i) a linear hedge based on a regression of past Rmbst+1 on RTNt+1,

and (ii) a MDE-based hedge using the distribution of Rmbst+1 and RTNt+1, conditional on the 10-year

yield at time t. The estimation is performed on a rolling basis and covers the out-of-sample period,

December 1989 to May 1994. Results are reported for weekly returns.
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TABLE 4B

The Sensitivity of Unhedged/Hedged GNMA Monthly Returns to Factor Changes

GNMA 8 GNMA 9 GNMA 10

Unhdg Linear MDE Unhdg Linear MDE Unhdg Linear MDE

Level

correlation -.888 .348 -.213 -.799 .523 .032 -.719 .488 .150

R2 .789 .121 .046 .638 .280 .001 .518 .238 .023

Vol. (basis pts) 121.1 20.8 12.4 79.8 30.3 1.5 53.6 25.6 6.6

Slope

Correlation -.534 .319 -.053 -.437 .488 .182 -.386 .436 .252

R2 .285 .102 .003 .191 .238 .033 .149 .190 .064

Vol. (basis pts) 72.8 19.1 3.1 43.7 28.0 8.6 28.8 22.8 11.1

Curvature

Correlation -.209 -.234 -.199 -.290 -.288 -.275 -.319 -.250 -.253

R2 .044 .055 .039 .084 .083 .075 .102 .063 .064

Vol. (basis pts) 28.4 14.0 11.6 29.0 16.5 13.0 23.8 13.1 11.1

Volatility

Correlation -.002 .055 -.012 .005 .032 .002 -.020 -.024 .011

R2 .000 .003 .000 .000 .001 .000 .000 .001 .000

Vol. (basis pts) 0.3 3.3 0.7 0.5 1.8 0.1 1.5 1.3 0.5

Notes: Table 4B reports the correlation of returns on hedged and unhedged GNMAs with

contemporaneous changes in various factors, the R2 from the corresponding regression, and the

magnitude of the variation of unhedged/hedged GNMA returns explained by these factor changes

(measured by volatility in basis points). The factors include contemporaneous changes in the

following interest rate variables : (i) 10-year yield (i.e., level), (ii) spread between 10-year and

3-month yields (i.e., slope), (iii) one-half the sum of the 5-year and 3-month yields minus the

one-year yield (i.e., curvature), and (iv) interest rate volatility estimate based on an exponentially

θ smoothed sum of past squared changes (θ = .96). GNMAs are hedged with T-note futures,

resulting in the hedged return, Rmbst+1 − βtR
TN
t+1, where Rmbst+1 and RTNt+1 are the out-of-sample returns

on GNMAs and T-note futures respectively, and βt, the hedge ratio, is estimated using the prior

150 weeks of data in one of two ways: (i) a linear hedge based on a regression of past Rmbst+1 on RTNt+1,

and (ii) a MDE-based hedge using the distribution of Rmbst+1 and RTNt+1, conditional on the 10-year

yield at time t. The estimation is performed on a rolling basis and covers the out-of-sample period,

December 1989 to May 1994. Results are reported for monthly overlapping returns.
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Figure 1: The yield on the 10-year Treasury note, weekly from January 1987 to May 1994.
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Figures 2A-2B: The expected weekly return on a 10% (top) and an 8% (bottom) GNMA as a

function of the contemporaneous 10-year T-note futures return, conditional on three different levels

of the 10-year T-note yield. The relation is estimated using MDE over the period January 1987 to

May 1994. Returns are in percent per week.

26



Figure 3A-3B: Hedge ratios for hedging weekly 10% (top) and 8% (bottom) GNMA returns using

the 10-year T-note futures. Hedge ratios are estimated on a 150-week rolling basis using both a

linear regression and MDE. The MDE hedge ratios condition on the level of the 10-year T-note

yield.
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Figure 3C-3D: Hedge ratios for hedging monthly 10% (top) and 8% (bottom) GNMA returns

using the 10-year T-note futures. Hedge ratios are estimated on a 150-week rolling basis using both

a linear regression and MDE. The MDE hedge ratios condition on the level of the 10-year T-note

yield.
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