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ABSTRACT

This article presents a technique for nonparametrically estimating continuous-time diffusion

processes which are observed at discrete intervals. We illustrate the methodology by using daily

three and six month Treasury Bill data, from January 1965 to July 1995, to estimate the drift and

diffusion of the short rate, and the market price of interest rate risk. While the estimated diffusion

is similar to that estimated by Chan, Karolyi, Longstaff and Sanders (1992), there is evidence of

substantial nonlinearity in the drift. This is close to zero for low and medium interest rates, but

mean reversion increases sharply at higher interest rates.
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Modern asset pricing theory allows us to value and hedge a wide array of contingent

claims, given a continuous-time model for the dynamics of the underlying state variables.1

Many such models have been developed to describe a range of economic variables, including

stock prices (for pricing options and other derivatives) and real investment returns. Given the

importance of valuing and hedging the huge institutional holdings of fixed income securities

and derivatives, it is not surprising that one of the most common uses of continuous-time

models has been in describing the dynamics of the short term riskless interest rate, rt.

Unfortunately, while the theory tells us what to do once we have a model for the under-

lying variable, it gives us little or no guidance in choosing the right model in the first place.

For example, researchers have proposed many different parametric models of short rate dy-

namics, each attempting to capture particular features of observed interest rate movements.

Moreover, empirical tests of these models have yielded mixed results. As a result, several

recent researchers have used nonparametric techniques to reduce the number of arbitrary

parametric restrictions imposed on the underlying process. For example, Aı̈t-Sahalia (1996a)

estimates the diffusion, σ, nonparametrically, given a linear specification for the drift, µ.

This article avoids making parametric assumptions about either the drift or the diffusion.

We develop a procedure for estimating both functions nonparametrically from data observed

only at discrete time intervals. The procedure, which can be extended to a multivariate

setting, involves first constructing a family of approximations to the true drift and diffu-

sion. These approximations converge pointwise to µ and σ at a rate ∆k, where ∆ is the

time between successive observations, and k is an arbitrary positive integer. We investigate

the performance of these approximations for some commonly used parametric interest rate

models, and find that with daily data, even the simplest, first order approximations are

almost indistinguishable from the true functions over a wide range of values. As the sam-

pling frequency decreases, the performance of all the approximations deteriorates. However,

the higher order approximations remain indistinguishable from the true functions even with

monthly data. This suggests that the approximation errors introduced should be small, as

long as the series being studied is observed monthly or more often.

These approximations to the drift and diffusion of the underlying process can easily be

estimated nonparametrically from discretely sampled data. We illustrate the methodology

by estimating a diffusion process for the three month U.S. Treasury Bill rate, using daily

data from 1965 to 1995. We find that the drift, µ, shows evidence of substantial nonlinearity.

For low and medium interest rates, there is only very slight mean reversion. However, as

interest rates continue to climb, the degree of mean reversion increases dramatically. The

estimated volatility is similar to that estimated (parametrically) by Chan, Karolyi, Longstaff

1For an overview, see Merton (1992) or Duffie (1988).
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and Sanders (1992).

To price assets which depend on some underlying state variable, we need to know not

only the dynamics of that variable, but also the associated market price of risk, λ (the excess

return required for an investor to bear each extra unit of risk). Most previous research

assumes a specific parametric form for λ, often λ ≡ 0.2 Our estimation procedure allows us

to determine this price of risk nonparametrically. We illustrate this by explicitly estimating

the functional relationship between the market price of interest rate risk and the level of

interest rates, using daily excess returns on six month versus three month Treasury Bills over

the period January 1965 to July 1995. Combining this with the estimated dynamics of the

three month Treasury Bill rate to price interest rate dependent securities, we obtain results

that differ substantially from those obtained assuming the price of risk to be identically zero.

While our methodology yields valuable insights when used to study interest rate dynam-

ics, it is likely to prove even more useful for other, less studied, economic variables. As just

one example, it is common to use large numbers of macroeconomic variables in predicting

mortgage prepayment rates a few months in the future.3 Since prepayment rates determine

the cash flows received by mortgage-backed security (MBS) holders, any variable that affects

prepayment should also affect the value of the MBS. However, valuation models typically

ignore all but a few interest rate variables. This is in part because little is known about

either the dynamics or the price of risk of the other explanatory variables. The estimation

methodology described in this article offers a convenient way of estimating models for these

variables.

The remainder of this article is organized as follows. Section I discusses the estimation of

diffusion processes, and reviews existing parametric and nonparametric approaches to this

problem. Section II uses Taylor series expansions to construct a family of approximations

to the drift and diffusion of a diffusion process, and investigates the performance of these

approximations for some common parametric interest rate models. Section III derives sim-

ilar approximations to the market price of interest rate risk. Section IV shows how these

approximations can be estimated nonparametrically from data observed only at discrete time

intervals, and the results of this estimation using Treasury Bill data are given in Section V.

Section VI concludes the article.

2i.e. that the local expectations hypothesis holds (see Cox, Ingersoll and Ross (1981)).
3These variables include housing starts, unemployment etc.
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I. Estimating Diffusion Models

In valuing contingent claims, it is convenient to represent the underlying state variable(s)

as a continuous-time diffusion process, satisfying a time-homogeneous stochastic differential

equation,

dXt = µ(Xt) dt+ σ(Xt) dZt. (1)

Here, Zt is a standard Brownian motion, and µ and σ, the drift and diffusion of the pro-

cess {Xt}, are functions only of the contemporaneous value of Xt. Examples include the

interest rate models of Cox, Ingersoll and Ross (CIR) (1985), Vasicek (1977), Brennan and

Schwartz (1979, 1982), and Chan, Karolyi, Longstaff and Sanders (CKLS) (1992). The main

difference between these models (and many others) lies in their assumed functional forms

for µ and σ in equation (1). For example,

CIR: drt = (α0 + α1rt) dt+ σ
√
rt dZt,

Vasicek: drt = (α0 + α1rt) dt+ σ dZt,

CKLS: drt = (α0 + α1rt) dt+ σrγt dZt.

Some recent interest rate models (including Hull and White (1990), Ho and Lee (1986), Black,

Derman and Toy (1990), and Black and Karasinski (1991)), while possessing continuous-

time representations similar to equation (1), do not assume time-homogeneity. Instead, they

allow arbitrary time dependence in certain parameters to match the current term structure

exactly. Although such “arbitrage-free” models are in common use by practitioners, they

often imply counterfactual behavior for the future behavior of interest rates. In addition,

to retain their exact fit to the term structure they need to be re-estimated each period,

undermining the assumptions under which they are valid (see Backus, Foresi and Zin (1995)

and Canabarro (1995)). This article concentrates only on time-homogeneous representations.

A. Parametric Models

In estimating the functions µ and σ in equation (1), the usual approach is first to specify

parametric forms for the functions µ and σ (as in the examples above), then to estimate the

values of the parameters. Given functions µ and σ, the transition density from value x at

time t to value y at some later time s, p(s, y | t, x), must satisfy the Kolmogorov forward

equation,

∂p(s, y | t, x)

∂s
= − ∂

∂y
(µ(y)p(s, y | t, x)) +

1

2

∂2

∂y2

(
σ2(y)p(s, y | t, x)

)
, (2)
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and the Kolmogorov backward equation (see Øksendal (1985)),

−∂p(s, y | t, x)

∂t
= µ(x)

∂

∂x
(p(s, y | t, x)) +

1

2
σ2(x)

∂2

∂x2
(p(s, y | t, x)) . (3)

In principle, for a given parametrization of µ and σ, we can solve equation (2) for the

conditional density p as a function of the parameters, then use maximum likelihood to

estimate the model’s parameters (see, for example, Lo (1988)). This approach was followed

by Pearson and Sun (1994) in estimating the parameters of the CIR interest rate model, using

the fact that, under this process, interest rates are conditionally distributed as a multiple of

a non-central χ2 random variable (see Feller (1951)).

Unfortunately, except in a few cases such as this, equation (2) can only be solved numeri-

cally, making implementation of maximum likelihood extremely inconvenient. Hansen’s (1982)

Generalized Method of Moments (GMM) can often be used instead of full maximum like-

lihood, either when the full likelihood function is too complicated or time-consuming to

calculate, or where we wish to specify only certain properties of the distribution, rather than

the full likelihood function. Duffie and Singleton (1993) use simulation to calculate arbitrary

population moments as functions of the parameters of the process being estimated, which can

be compared with sample moments estimated from the data. Gallant and Tauchen (1994)

also use simulation, generating moment conditions from the score function of an auxiliary

(quasi) maximum likelihood estimation. Hansen and Scheinkman (1995) show how to de-

rive analytic moment restrictions from equation (1) using the infinitesimal generator (see

Øksendal (1985)) of Xt, L, defined by

Lf(x, t) = lim
τ↓t

E (f(Xτ , τ ) | Xt = x)− f(x, t)

τ − t ,

=
∂f(x, t)

∂t
+
∂f(x, t)

∂x
µ(x) +

1

2

∂2f(x, t)

∂x2
σ2(x). (4)

For example, their first class of moment conditions (C1) can be obtained by noting that, if

Xt is stationary, E [φ(Xt)] must be independent of calendar time for any function φ. This

implies that its unconditional expected rate of change must be zero, i.e.

C1: E [Lφ(Xt)] = E
[
φ′(Xt)µ(Xt) + 1

2
φ′′(Xt)σ2(Xt)

]
,

= 0.

While these moment conditions are less computationally intensive than those of Duffie and

Singleton (1993) or Gallant and Tauchen (1994), they do not take advantage of all of the in-

formation contained in the discretely observed data. An alternative approach is to use GMM
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with approximate moment conditions. A well-known example is Chan, Karolyi, Longstaff

and Sanders (1992). In estimating their continuous-time interest rate model,

drt = (α+ βrt) dt+ σrγ dZt, (5)

they use approximate conditional moments of the form

Et (εt+∆) = 0, (6)

Et
(
ε2t+∆

)
= σ2r2γ

t ∆, where (7)

εt+∆ = rt+∆ − rt − (α + βrt) ∆. (8)

While these are only approximately correct, this approach is the simplest of all to implement,

and as we shall show later, the approximation errors introduced are likely to be small in

practice, as long as reasonably frequent data are available.

B. Nonparametric Methods

One potentially serious problem with any parametric model, particularly when there is no

economic reason why we should prefer one functional form over another, is misspecification.

Even if a model fits interest rate movements well in-sample, this does not necessarily imply

that it will price securities well. This is because the price today of an interest rate depen-

dent security depends not on past interest rates, but on the entire distribution of possible

future interest rates between today and the maturity of the security. Fitting historical data

well is no guarantee of matching this entire distribution, leading to the possibility of large

pricing and hedging errors. In fact, existing parametric interest rate models do not even fit

historical data well. Aı̈t-Sahalia (1996b) rejects “. . . every parametric model of the spot rate

[previously] proposed in the literature” by comparing the marginal density implied by each

model with that estimated from the data. The results of Backus, Foresi and Zin (1995) and

Canabarro (1995) further show that misspecification of the underlying interest rate model

can lead to serious pricing and hedging errors.

To avoid misspecification, recent research has used nonparametric estimation techniques

in order to avoid having to specify (arbitrary) functional forms for µ and/or σ. By letting

t→ −∞ in the Kolmogorov forward equation (2), we obtain

d2

dx2

(
σ2(x)π(x)

)
= 2

d

dx
(µ(x)π(x)) , (9)

a relationship between the drift (µ), the diffusion (σ), and the stationary density (π). Given
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any two of these functions, equation (9) allows us to determine the third. For example,

Banon (1978) integrates this equation to obtain

µ(x) =
1

2π(x)

d

dx

[
σ2(x)π(x)

]
, (10)

which allows us to estimate the drift nonparametrically, given a nonparametric estimate of

the stationary density, π, but only if we know the diffusion, σ. Aı̈t-Sahalia (1996a) assumes

a linear drift,

µ(x) = κ [θ − x] ,

which can be estimated using OLS, then estimates σ nonparametrically, by integrating equa-

tion (10) one more time to obtain4

σ2(x) =
2

π(x)

∫ x

0
µ(u)π(u)du. (11)

However, just as we have no economic motivation for fully parametrizing both µ and σ,

we have no particular basis for parametrizing either one. While misparametrizing the drift

would not matter (at least for pricing purposes) if the underlying state variable were itself

an asset price, this is not the case otherwise.5 In particular, both the drift and the diffusion

are important in pricing interest rate derivatives. Moreover, there is mounting evidence that

the drift of the short rate is not linear (see, for example, Conley, Hansen, Luttmer and

Scheinkman (1996), Aı̈t-Sahalia (1996b), and Pfann, Schotman and Tschernig (1996)). To

avoid imposing parametric restrictions on either µ or σ, the next section derives a family of

approximations to these functions, which

1. Can easily be identified and estimated (parametrically or nonparametrically) given

only discrete observations on Xt.

2. Converge pointwise to the true functions µ and σ at a rate ∆k, where ∆ is the time

between successive observations, and k is an arbitrary positive integer.

4With this parametrization of the drift,

Et (Xt+∆) = θ
[
1− e−κ∆

]
+ e−κ∆Xt,

independent of σ.
5When the underlying state variable is an asset price, its drift is replaced by the riskless interest rate in

the partial differential equation for derivative security prices. However, as Lo and Wang (1995) point out,
misspecifying the drift may lead to misestimation of the diffusion.

7



II. Constructing Approximations to µ and σ

A. Taylor Series

Consider a diffusion process, Xt, which satisfies the stochastic differential equation

dXt = µ(Xt) dt+ σ(Xt) dZt.

Under suitable restrictions on µ, σ, and an arbitrary function f (see, for example, Hille and

Phillips (1957), Chapter 11), we can write the conditional expectation Et [f(Xt+∆, t)] in the

form of a Taylor series expansion,

Et [f(Xt+∆, t+ ∆)] = f(Xt, t)+Lf(Xt, t)∆+
1

2
L2f(Xt, t)∆

2+. . .+
1

n!
Lnf(Xt, t)∆

n+O(∆n+1),

(12)

where L is the infinitesimal generator of the process {Xt} (see equation (4)). Note that, if

we set σ ≡ 0, this reduces to a standard non-stochastic Taylor series.

The most common use of equation (12) is in the construction of numerical approximations

to the expectation on the left hand side, given known functions µ and σ (see, for example,

Milshtein (1978), and Duffie and Singleton (1993)). Our aim here is, in a sense, the opposite.

We do not know the functions µ and σ, but given a long enough interest rate series we can

estimate the expectation on the left hand side of equation (12). Given suitable choices of

the function f , equation (12) can then be used to construct approximations to µ and σ.

B. Approximating µ and σ

We can rewrite equation (12) in the following form,

Lf(Xt, t) =
1

∆
Et [f(Xt+∆, t+ ∆)− f(Xt, t)]−

1

2
L2f(Xt, t)∆−

1

6
L3f(Xt, t)∆

2 − . . . . (13)

Ignoring all terms except the first on the right hand side gives us a first order approximation

for Lf ,

Lf(Xt, t) =
1

∆
Et [f(Xt+∆, t+ ∆)− f(Xt, t)] +O(∆). (14)

We can also construct higher order approximations, despite the fact that higher order terms

in equation (13) involve derivatives of µ and σ, which are themselves unknown. To see this,
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consider equation (13) with a time step of 2∆,

Lf(Xt, t) =
1

2∆
Et [f(Xt+2∆, t+ 2∆) − f(Xt, t)]−

1

2
L2f(Xt, t)(2∆)− 1

6
L3f(Xt, t)(2∆)2−. . . .

(15)

Multiplying equation (13) by 2, and subtracting equation (15), yields the second order ap-

proximation

Lf(Xt, t) =
1

2∆
{4Et [f(Xt+∆, t+ ∆)− f(Xt, t)]− Et [f(Xt+2∆, t+ 2∆)− f(Xt, t)]}

+O(∆2), (16)

an approximation to Lf in terms of expectations of functions of only observed values of

{Xt}, which converges to the true function at a rate ∆2 as ∆ → 0. We can continue this

process, generating approximations of successively higher order. For example, repeating the

process once more, using a time step of 3∆, yields the third order approximation

Lf(Xt, t) =
1

6∆
{18Et [f(Xt+∆, t+ ∆)− f(Xt, t)]− 9Et [f(Xt+2∆, t+ 2∆)− f(Xt, t)]

+ 2Et [f(Xt+3∆, t+ 3∆) − f(Xt, t)]}+O(∆3). (17)

To approximate a particular function g(x, t), we now need merely to find a specific function

f satisfying

Lf(x, t) = g(x, t). (18)

Drift To derive approximations to the drift, µ, consider the function

f(1)(x, t) ≡ x. (19)

From the definition of L, we have

Lf(1)(x, t) = µ(x). (20)

Substituting successively into equations (14), (16) and (17) leads to the following approxi-

mations for µ,

µ(Xt) =
1

∆
Et [Xt+∆ −Xt] +O(∆), (21)

µ(Xt) =
1

2∆
{4Et [Xt+∆ −Xt]−Et [Xt+2∆ −Xt]}+O(∆2), (22)

µ(Xt) =
1

6∆
{18Et [Xt+∆ −Xt]− 9Et [Xt+2∆ −Xt] + 2Et [Xt+3∆ −Xt]}
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+O(∆3), (23)

etc.

Diffusion To construct approximations to the diffusion, σ, consider the function

f(2)(x, t) ≡ (x−Xt)
2 . (24)

From the definition of L, we have

Lf(2)(x, t) = 2(x−Xt)µ(x) + σ2(x), and so (25)

Lf(2)(Xt, t) = σ2(Xt). (26)

Substituting into equations (14), (16) and (17) yields approximations for σ2,

σ2(Xt) =
1

∆
Et
[
(Xt+∆ −Xt)

2
]

+O(∆), (27)

σ2(Xt) =
1

2∆

{
4Et

[
(Xt+∆ −Xt)

2
]
−Et

[
(Xt+2∆ −Xt)

2
]}

+O(∆2), (28)

σ2(Xt) =
1

6∆

{
18Et

[
(Xt+∆ −Xt)

2
]
− 9Et

[
(Xt+2∆ −Xt)

2
]

+ 2Et
[
(Xt+3∆ −Xt)

2
]}

+O(∆3). (29)

Note that the first order approximations, equations (21) and (27), correspond to the “naive”

discretization used by many previous authors, such as Chan, Karolyi, Longstaff and Sanders (1992).6

Taking square roots leads to approximations of the same order for σ(Xt),7

σ(Xt) =

√
1

∆
Et [(Xt+∆ −Xt)2] +O(∆), (30)

σ(Xt) =

√
1

2∆

{
4Et

[
(Xt+∆ −Xt)

2
]
−Et

[
(Xt+2∆ −Xt)

2
]}

+O(∆2), (31)

6In related work, Siddique (1994) constructs an alternative first order approximation in his nonparamet-
ric estimation of interest rate dynamics. Chesney, Elliott, Madan and Yang (1993) use Milshtein (1978)
approximations to generate point by point estimates of diffusion coefficients.

7Suppose σ2(Xt) = A+ O(∆k). Then, using a binomial approximation,

σ(Xt) =
√
A
[
1 + O(∆k)

] 1
2 ,

=
√
A
[
1 + 1

2O(∆k) − 1
8O(∆2k) + . . .

]
,

=
√
A+ O(∆k),

an approximation to σ with the same rate of convergence.
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σ(Xt) =

√
1

6∆

{
18Et

[
(Xt+∆ −Xt)

2
]
− 9Et

[
(Xt+2∆ −Xt)

2
]

+ 2Et
[
(Xt+3∆ −Xt)

2
]}

+O(∆3). (32)

As an alternative, we can replace the terms in Et [(Xt+j∆ −Xt)2] with the conditional vari-

ance, vart(Xt+j∆), leading to the following set of approximations for σ(Xt),

σ(Xt) =

√
1

∆
vart (Xt+∆) +O(∆), (33)

σ(Xt) =

√
1

2∆
[4 vart (Xt+∆)− vart (Xt+2∆)] +O(∆2), (34)

σ(Xt) =

√
1

6∆
[18 vart (Xt+∆)− 9 vart (Xt+2∆) + 2 vart (Xt+3∆)] +O(∆3), (35)

etc. This does not affect the order of convergence, but may improve the approximation for a

given time step, ∆. We shall use these latter approximations in the empirical analysis below.

C. Performance of the Approximations

The higher the order of the approximation, the faster it will converge to the true drift and

diffusion of the process given in equation (1), as we observe the variable Xt at finer and finer

time intervals. Eventually, if we can sample arbitrarily often, higher order approximations

must outperform lower order approximations. However, we may only observe Xt relatively

infrequently, say monthly. Even when we have more frequent observations, we may wish to

avoid market microstructure issues (such as bid-ask bounce) by not sampling too frequently.

It is therefore useful to know how the approximations perform over different sampling inter-

vals. In general, the approximation error of Taylor series expansions involves higher order

derivatives of the functions µ, σ and f , which we do not know. To get some idea for the

performance of the approximations with interest rate models that we might wish to estimate,

we consider the Cox, Ingersoll and Ross (1985) model, and a version of the Black, Derman

and Toy (1990) model. These take the form:

CIR: drt = κ (θ − rt) dt+ s
√
rt dZt, (36)

BDT: dyt = κ (θ − yt) dt+ s dZt, where (37)

yt = ln rt, so (38)

drt = r
[
κ (θ − ln rt) +

1

2
s2
]
dt+ s r dZt. (39)
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Under the CIR model, interest rates are conditionally distributed as a multiple of a non-

central χ2 random variable. In the BDT model, interest rates are conditionally lognormal.

For both models, we can therefore calculate conditional means and variances in closed form,

allowing us to compare the approximations derived above with the true values of µ and σ.

Table I shows first, second, and third order approximations to the drift of the CIR

process with parameter values κ = 0.5, θ = 0.07, and s = 0.1 (these roughly match estimates

obtained by previous authors). Using daily data, it can be seen that first, second, and

third order approximations are all essentially indistinguishable from the true drift for values

of rt between 1 and 30 percent. As the sampling frequency decreases, the performance of

all of the approximations deteriorates, although this deterioration is worse for the lower

order approximations. Even so, with weekly and even monthly data, the second and third

order approximations are still indistinguishable from the true drift; even the first order

approximation is extremely close for values of rt below about 10 percent.

Table II shows first, second, and third order approximations to the drift of the BDT

process with parameter values κ = 0.5, θ = −2.75, and s = 0.43. Despite the nonlinearity

of the drift, the results are very similar to those for the CIR model. Again the higher order

approximations do better. For daily data, all results are indistinguishable from the true

drift. For weekly data, the second and third order approximations still match the true drift

very closely. For monthly data, the third order approximation is still almost identical to the

true µ, and the second order approximation is very close.

Tables III and IV look at the corresponding approximations to the diffusion, σ(r), for

the two interest rate processes. The results are similar to those for the drift. For the CIR

model (Table III), all of the approximations are virtually indistinguishable from the true

diffusion function as long as the data are sampled at least weekly. The second and third

order approximations are indistinguishable from the true σ even with monthly data. For

the BDT model (Table IV), the results are similar. Again, the third order approximation is

almost indistinguishable from the true diffusion for data observed at least monthly.

Overall, these results indicate that, at least for models similar to these two, as long as

we sample the data monthly or better, the errors introduced by using approximations rather

than the true drift and diffusion are extremely small, especially when compared with the

likely magnitude of estimation error. They also show that, even with daily or weekly data,

we can achieve gains by using higher order approximations compared with the traditional

first order discretizations, equations (21) and (33).8

8The performance of the approximations to both the drift and diffusion of the nonparametric model
estimated below, in Section V, is very similar to that obtained here for the CIR and BDT models.
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III. Valuation and the Market Price of Risk

Knowing the process governing movements in a state variable such as the short rate is not

enough by itself to allow us to price contingent claims whose payoffs depend on that variable.

Focusing on interest rates, assume an asset’s price can be written as V (r, t), depending only

on the short rate and time. Then, by Ito’s Lemma,

dV (r, t)

V (r, t)
= m(r, t) dt+ s(r, t) dZ, (40)

where

m(r, t)V = Vt + µ(r)Vr +
1

2
σ2(r)Vrr, (41)

s(r, t)V = σ(r)Vr. (42)

This equation holds for any asset V . With a one factor interest rate model, the instantaneous

returns on all interest rate contingent claims are perfectly correlated. As a result, the risk

premium on any asset must be proportional to the standard deviation of its return, to prevent

arbitrage.9 If the asset pays out dividends at rate d, we can thus write

m = r − d

V
+ λ(r, t)

Vr

V
, (43)

where λ(r, t) is the price of interest rate risk. Substituting equation (43) into equation (41),

assuming that the market price of interest rate risk is a function only of rt, yields a partial

differential equation that must be satisfied by any interest rate contingent claim,

1

2
σ(r)2Vrr + [µ(r) − λ(r)]Vr + Vt − rV + d = 0, (44)

subject to appropriate boundary conditions, and some technical regularity conditions (see, for

example, Duffie (1988)). To price interest rate dependent assets, we therefore need to know

not only the functions µ and σ, but also the price of risk, λ. While previous authors have

assumed various functional forms for λ(r), the fact that µ and λ only appear in equation (44)

as the difference (µ− λ) means that misspecifying λ can lead to pricing and hedging errors

of exactly the same magnitude as misspecifying µ.10

9Suppose this did not hold for two risky assets. We could then create a riskless portfolio of these two
assets with a return strictly greater than r, leading to an arbitrage opportunity (see Ingersoll (1987)).

10For example, in Chan, Karolyi, Longstaff and Sanders (1992), λ(r) = 0; in Cox, Ingersoll and Ross (1985),
λ(r) = qr; in Vasicek (1977), λ(r) = q; in Äıt-Sahalia (1996a), λ(r) = qσ(r).
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A. Approximating the Market Price of Risk

The approximation methodology developed in Section II can be used to construct approx-

imations to λ(r) in a manner analogous to those for µ and σ. Remembering that λ(r) is

related to the excess return on interest rate dependent securities, let V (1)(r, t) and V (2)(r, t)

be the prices of two non-dividend paying securities, and consider the function

f(3)(r, s) ≡
V (1)(r, s)

V (1)(rt, t)
− V (2)(r, s)

V (2)(rt, t)
, (45)

the excess return on asset 1 over asset 2. From the definition of L, we have

Lf(3)(rt, t) =
1

V (1)(rt, t)

[
V

(1)
t + V (1)

r µ(rt) +
1

2
V (1)
rr σ

2(rt)
]

− 1

V (2)(rt, t)

[
V

(2)
t + V (2)

r µ(rt) +
1

2
V (2)
rr σ

2(rt)
]
. (46)

Using equation (44) to substitute for each of the bracketed expressions, we obtain

Lf(3)(rt, t) = λ(rt)

[
V (1)
r

V (1)
− V (2)

r

V (2)

]
. (47)

Using equation (42), this can be rewritten as

Lf(3)(rt, t) =
λ(rt)

σ(rt)

[
σ(1)(rt)− σ(2)(rt)

]
, (48)

where

σ(i)(rt) ≡
V (i)
r σ(rt)

V (i)
, (49)

the instantaneous volatility of asset i. Substituting in equation (12), and rearranging terms,

yields

λ(rt) =
σ(rt)

σ(1)(rt)− σ(2)(rt)

[
1

∆
Et
(
R

(1)
t,t+∆ −R

(2)
t,t+∆

)
− 1

2
L2f(3)(rt, t)∆−

1

6
L3f(3)(rt, t)∆

2 − . . .
]
,

(50)

where R
(i)
t,t+∆ is the holding period return on asset i between times t and t+ ∆. This leads

immediately to a first order approximation for λ,

λ(rt) =
σ(rt)

∆ (σ(1)(rt)− σ(2)(rt))
Et
(
R

(1)
t,t+∆ −R

(2)
t,t+∆

)
+ O(∆). (51)
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Higher order approximations can be obtained as above.11

B. Absence of Arbitrage

If the short term riskless rate, rt, really does follow the one factor model described by

equation (1), and if the market price of interest rate risk really is a function only of rt,

then given enough data our estimates will get arbitrarily close to the true functions µ, σ

and λ, which must automatically preclude any possibility of arbitrage. However, given only

a finite amount of data, we only have estimates of these functions, and it is well-known

that an arbitrary specification of the function λ(r) may lead to arbitrage opportunities

(see, for example, Cox, Ingersoll and Ross (1985), p. 398, or Ingersoll (1987), pp. 400–401).

Fortunately, we can quite simply avoid this possibility. To preclude arbitrage in a one factor

world, the excess return on any asset must be proportional to its standard deviation. From

equations (41) and (42), this is equivalent to the drift restriction given in equation (43),

as long as σ(r) 6= 0. However, from equation (42), when σ(r) = 0, the value Vr/V is

indeterminate, yet the standard deviation of any interest rate contingent claim is zero. Its

excess return must therefore also be zero. To preclude arbitrage, we therefore need the pair

of restrictions

m = r − d

V
+ λ(r)

Vr

V
, (52)

λ(r) = 0 if σ(r) = 0. (53)

The arbitrage opportunity noted by Cox, Ingersoll and Ross (1985) arises through failure

to impose this second condition. Fortunately, the estimate of λ(r) in equation (51) auto-

matically satisfies this second restriction, since it involves multiplying by the corresponding

estimator of σ(r). As a result, we can be sure that, in using the estimated functions µ, σ

and λ to price interest rate derivatives, we are using a model which precludes the possibility

of arbitrage.

11We do not actually know the functions σ(rt) and σ(i)(rt) which appear on the right hand side of equa-
tion (51). However, as long as we have O(∆) approximations of these functions, the error term in equa-
tion (51) is still O(∆). In constructing a second order approximation to λ, we need O(∆2) approximations
for σ(rt) and σ(i)(rt), and so on.
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IV. Implementation

A. Kernel Density Estimation

To implement the procedure, we need a means of nonparametrically estimating the condi-

tional expectations (regression functions) in equations (21), (22), (23), (33)–(35), and (51).

We use a kernel estimation procedure for doing this. Kernel estimation is a nonparametric

method for estimating the joint density of a set of random variables. Given m-dimensional

vectors z1, z2, ..., zT , from an unknown density f(z), a kernel estimator of this density is

f̂(z) =
1

Thm

T∑
t=1

K

(
z− zt
h

)
, (54)

where K(·) is a suitable kernel function and h is the window width or smoothing parameter.

The density at any point is estimated as the average of densities centered at the actual data

points. The further away a data point is from the estimation point, the less it contributes to

the estimated density, and hence the estimated density is highest near high concentrations

of data points, and lowest when observations are sparse. The kernel density estimator in

equation (54) is similar to a (multidimensional) histogram. Just as with a histogram, for each

of the T points in the sample, we add a “block” of total volume 1/T . Unlike a histogram,

however, the blocks are not (in general) rectangular, and they are centered at each data

point, rather than at the center of a fixed number of bins.

The econometrician has at his or her discretion the choice of K(·) and h. Results in the

kernel estimation literature suggest that any reasonable kernel gives almost optimal results

(see Epanechnikov (1969)). Here we use a normal kernel function. The other parameter, the

window width, is chosen based on the dispersion of the observations. Scott (1992) suggests

the window width,

ĥi = σ̂iT
−1
m+4 , (55)

where σ̂i is the standard deviation estimate of each variable zi, T the number of observations,

and m the dimension of the variables. This window width has the property that, for certain

joint distributions of the variables, it minimizes the asymptotic mean integrated squared

error of the estimated density function.

Given the estimated density in equation (54), we can calculate any moments we desire

from the distribution. For example, the conditional expectation which appears in the first

16



order approximation to µ (equation (21)) is estimated as

E [rτ+∆ − rt|rτ = r] ≈
∑T−1
t=1 (rt+∆ − rt)K

(
r−rt
h

)
∑T−1
t=1 K

(
r−rt
h

) , (56)

where K(z) = (2π)−
1
2e−

1
2
z2

. This is a weighted average of the observed interest rate changes,

the weight depending on how far each observation is from the value r. Similar expressions

yield estimates for the other conditional expectations required, as well as other statistics,

such as variances, covariances and other moments. For further discussion of kernel estimators

and their properties, see Scott (1992) or Silverman (1986).

B. Data Description

To apply the methodology to interest rate dynamics, daily values of the secondary market

yields on three and six month Treasury Bills between January 1965 and July 1995 are

obtained, and converted from discounts to annualized interest rates. The three month yield

is used in estimating the dynamics of the short term riskless rate, and the market price of

interest rate risk is calculated using the six month and three month Treasury Bills as assets

1 and 2 respectively in equation (51). No specific adjustments are made for weekends or

holidays.

The annualized three month yield is plotted in Figure 1, and Figure 2 shows a scatter

plot of daily changes in the short rate plotted against the previous day’s rate.12 It shows

distinct evidence of heteroskedasticity, with the range of the changes increasing markedly

as the level of interest rates increases. As an illustration of the kernel methodology, and to

give some idea for the distribution of interest rates, Figure 3 shows the estimated marginal

density of the short rate, calculated using equation (54). This figure also shows pointwise

95 percent confidence bands for the estimated density, calculated using 10,000 iterations of

the Künsch (1989) block bootstrap algorithm.

V. Results

A. Estimation of µ, σ and λ

First, second, and third order approximations to the drift, µ(rt), diffusion, σ(rt), and market

price of interest rate risk, λ(rt), together with pointwise 95 percent confidence bands, are

12Note that estimating the conditional expectation E[rt+∆ − rt | rt = r] in equation (56), where ∆
corresponds to one day, is equivalent to determining a (nonlinear) regression line through Figure 2.
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shown in Figures 4 and 5.13 The first thing to notice about both figures is that the first,

second, and third order approximations all yield very similar estimates, which is what we

would expect if the approximation errors are as small as the experiments above suggest.

Looking first at Figure 4, we see that the estimated drift does not look linear. For low

and medium values of the interest rate rt, there is only very slight mean reversion. For

example, the expected change in rt over the next year, conditional on its being 0 percent

this period, is only 0.44 percent. As rt increases beyond about 14 percent, however, the

estimated drift drops sharply. Figure 5 shows the estimated diffusion function, σ(rt). This

looks neither linear (as in Vasicek (1977)), nor like a square root function (as in Cox, Ingersoll

and Ross (1985)), but appears closer to the r1.5 estimated by Chan, Karolyi, Longstaff and

Sanders (1992). However, our drift estimate is very different. Their estimated diffusion,

combined with the assumed linear drift, results in an interest rate process that is actually

non-stationary. The dramatic decline in the drift that we estimate at high interest rates has

the effect of preventing interest rates from exploding towards infinity, despite the increase in

volatility.

Figure 6 shows the estimated market price of interest rate risk, λ(rt). This function

takes on negative values (corresponding to a positive premium for bearing interest rate risk),

is decreasing in rt, and decreases more rapidly as rt increases (thus behaving differently from

the linear specification in Cox, Ingersoll and Ross (1985)).

Looking at the 95 percent pointwise confidence bands around the estimated functions,

we see that the bands are fairly tight for all three functions at low interest rates (where

there are many observations). However, as interest rates rise and the data become sparser,

the bands become much wider, especially for the market price of risk, reflecting the lower

confidence we have in our estimates here. This emphasizes the greater data requirements of

nonparametric techniques compared with their parametric counterparts.

B. Economic Significance of Price of Risk

The estimated market price of interest rate risk is different from zero.14 However, this does

not necessarily translate into a significant difference in pricing interest rate dependent assets.

To examine this, and to demonstrate how the estimated interest rate process can be used

to price assets, the process estimated above, and shown in Figures 4 and 5, is used to value

zero-coupon bonds of different maturities. Given this interest rate model, the price of a zero

13Confidence bands are calculated (for the first order approximation) using 10,000 iterations of the
Künsch (1989) block bootstrap algorithm; results for second and third order approximations are similar.

14This is consistent with the results of Ronn and Wadhwa (1995), and with the extensive literature
documenting relationships between bond maturity and expected return (see, for example, Fama (1984),
Fama and Bliss (1987), and Fama and French (1993)).
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coupon bond with a payoff of $1 at time T , Pt(T ), can be written in the form

Pt(T ) = Et

[
e−
∫ T
t
r̂u du

]
, (57)

where

r̂t = rt, (58)

dr̂t = [µ(r̂t)− λ(r̂t)] dt + σ(r̂t) dZt. (59)

The expectation in equation (57) can be calculated numerically using Monte Carlo simula-

tion. This entails repeatedly simulating paths for the risk-adjusted interest rate process r̂t

using (a discrete version of) the dynamics described by equations (58) and (59), calculating

the integral inside the expectation in equation (57) for each path, and averaging over the

values obtained for each path to obtain an estimate of the value Pt(T ).15 Table V compares

the prices obtained using the price of risk estimated and plotted in Figure 6, with prices

obtained using the same interest rate model, but assuming λ(rt) = 0. It can be seen that

incorporating the estimated market price of interest rate risk makes a significant difference

to the results, the size of the difference increasing as the maturity of the bond increases.

One year bond prices differ very little; however, there is greater dispersion in the two year

bond prices, and a difference of 5 percent in the prices of three year bonds when the short

rate is 5 percent. If zero-coupon bond prices differ this much, we can expect even greater

differences for more complex interest rate derivatives.

C. Constraints on Volatility

By not specifying a particular parametric form, nonparametric techniques avoid the possibil-

ity of misspecification, but at the expense of greater estimation error than their parametric

counterparts. Given enough data, our estimates will eventually satisfy any constraints satis-

fied by the true functions, µ, σ and λ. However, this is not necessarily true in any particular

finite sample. This is a generic feature of nonparametric estimators, and is the price that we

pay for their flexibility.

On the other hand, if we know that the functions ought to satisfy some constraints, and

if we can impose these constraints on our estimation, this can only improve our results.

As an example, there is currently some very interesting research underway (see Goldman

and Ruud (1995)) into nonparametric estimation subject to monotonicity and convexity

15In performing the simulations here, 10,000 interest rate paths are simulated using 100 time periods per
day, and the variability of the results is reduced using the antithetic variate approach (see Boyle (1977)).
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constraints. We cannot be sure, in the present setting, that the functions µ, σ and λ

necessarily satisfy either of these constraints, but it is natural to assume that σ(0) = 0,

a condition which prevents interest rates from becoming negative.16 This constraint is not

imposed in the estimation above and, indeed, the estimated value of σ(0) is greater than

zero. However, we can easily modify the estimation procedure to impose this constraint.

Instead of approximating σ2 using the function f(2) defined in Section II, define the related

function

f(2′)(x) ≡ (x−Xt)
2

Xt

. (60)

From the definition of L, we have

Lf(2′)(x) = 2(x−Xt)/Xtµ(x) + σ2(x)/Xt, and so (61)

Lf(2′)(Xt) = σ2(Xt)/Xt. (62)

Using this function in the approximation methodology of Section II, we obtain a series of

approximations to σ2(rt)/rt, which can be converted to approximations to σ2(rt) by mul-

tiplying by rt. This guarantees that the estimated value for σ2(0) must be zero. Figure 7

shows the result of using this procedure to estimate the diffusion, subject to the constraint

that σ(0) = 0.

VI. Summary

It is convenient to represent financial series, such as interest rates, as continuous-time diffu-

sion processes, satisfying stochastic differential equations of the form

dXt = µ(Xt) dt+ σ(Xt) dZt. (63)

However, the specific parametric forms selected for µ and σ often reflect considerations of

analytic tractability or computational convenience, more than any real economic motivation.

Even for the short term riskless interest rate, one of the most modeled series, empirical tests

of existing models have yielded disappointing results. This article presents a technique for

nonparametrically estimating continuous-time diffusion processes which are observed only

at discrete time intervals, and illustrates the methodology with an application to the term

structure of interest rates. The procedure involves estimating approximations to the true

drift and diffusion. We derive a family of such approximations, which converge to the

true functions at a rate ∆k, where ∆ is the time between successive observations, and k

16Negative nominal interest rates are ruled out by a simple arbitrage argument.
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is an arbitrary positive integer. For some commonly used parametric interest rate models,

the approximations and the true functions are almost indistinguishable for any observed

interest rate value, as long as the sampling frequency is monthly or greater. This suggests

that the approximation errors introduced may not be of practical relevance. Using these

approximations to estimate the drift and diffusion of the short rate, we find that while

the diffusion function looks similar to the (parametric) function estimated by Chan, Karolyi,

Longstaff and Sanders (1992), the drift exhibits substantial nonlinearity. For low and medium

interest rates, there is only very slight mean reversion. However, as interest rates continue

to climb, the degree of mean reversion increases dramatically.

While knowing the process governing movements in a financial variable is important for

forecasting and hedging, it is not enough by itself to price contingent claims whose payoffs

depend on that variable (such as interest rate derivatives). We also need to know the market

price of risk, the excess return required for an investor to bear each additional unit of risk.

Previous research has either assumed a specific functional form for the price of risk, or

assumed it to be identically zero. Our nonparametric procedure for estimating µ and σ can

also be used to estimate the market price of risk associated with a variable. We illustrate

this by nonparametrically estimating the functional relationship between the market price

of interest rate risk and the level of interest rates, looking at excess returns on six month

versus three month Treasury Bills over the period 1965 to 1995. We combine the estimated

price of risk with the estimated short rate model to price interest rate dependent securities,

and find that the results are very different from those obtained assuming the price of risk to

be identically zero.

There are many economic series which are much less studied than the three month Trea-

sury Bill rate, and for which we have little idea of the appropriate model, yet are still

potentially important for asset pricing. For example, empirical evidence suggests that bond

default likelihood and severity are related to macroeconomic factors, which should therefore

be important in pricing defaultable bonds and other credit related assets. In most cases,

however, we do not have a good model for the dynamics of these factors, let alone the as-

sociated price of risk. Besides shedding valuable new light on the dynamics of the short

rate and the market price of interest rate risk, the estimation procedure described in this

article (which can easily be extended to a multivariate context) offers a convenient way of

estimating such models.
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1996, Short-term interest rates as subordinated diffusions, Working paper, Northwestern

University.

Cox, John C., Jonathan E. Ingersoll, Jr., and Stephen A. Ross, 1981, A re-examination of

traditional hypotheses about the term structure of interest rates, Journal of Finance 36,

769–799.

Cox, John C., Jonathan E. Ingersoll, Jr., and Stephen A. Ross, 1985, A theory of the term

structure of interest rates, Econometrica 53, 385–467.

Duffie, Darrell, 1988, Security Markets: Stochastic Models (Academic Press, Boston, MA).

Duffie, Darrell, and Kenneth J. Singleton, 1993, Simulated moments estimation of Markov

models of asset prices, Econometrica 61, 929–952.

Epanechnikov, V. A., 1969, Nonparametric estimates of multivariate probability density,

Theory of Probability and Applications 14, 153–158.

Fama, Eugene F., 1984, Term premiums in bond returns, Journal of Financial Economics

13, 529–546.

Fama, Eugene F., and Robert R. Bliss, 1987, The information in long-maturity forward

rates, American Economic Review 77, 680–692.

Fama, Eugene F., and Kenneth R. French, 1993, Common risk factors in the returns on

stocks and bonds, Journal of Financial Economics 33, 3–56.

Feller, William, 1951, Two singular diffusion problems, Annals of Mathematics 54, 173–182.

Gallant, A. Ronald, and George E. Tauchen, 1994, Which moments to match?, Econometric

Theory, forthcoming.

Goldman, Steven, and Paul A. Ruud, 1995, Nonparametric multivariate regression subject

to constraint, Working paper, U.C. Berkeley.

Hansen, Lars Peter, 1982, Large sample properties of generalized method of moments esti-

mators, Econometrica 50, 1029–1054.
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Table I
CIR Drift Approximations

The table shows first, second, and third order Taylor series approximations to the drift of
the Cox, Ingersoll and Ross interest rate process,

drt = κ (θ − rt) dt+ s
√
rtdZt,

with parameter values κ = 0.5, θ = 0.07, and s = 0.1. Approximations used are:

1 : µ(rt) = 1
∆
Et(rt+∆ − rt) +O(∆),

2 : µ(rt) = 1
2∆

[4Et (rt+∆ − rt)− Et (rt+2∆ − rt)] +O(∆2),
3 : µ(rt) = 1

6∆
[18Et (rt+∆ − rt)− 9Et (rt+2∆ − rt) + 2Et (rt+3∆ − rt)] +O(∆3).

Approximation to value of drift, µ(rt)
Order of ∆ = 0.004 ∆ = 0.02 ∆ = 0.08 ∆ = 1.0 ∆ = 5.0

rt Approximation (daily) (weekly) (monthly) (annual) (5 year)
0.0100 1 0.0300 0.0299 0.0294 0.0236 0.0110

2 0.0300 0.0300 0.0300 0.0283 0.0161
3 0.0300 0.0300 0.0300 0.0295 0.0192

Limiting Value 0.0300 0.0300 0.0300 0.0300 0.0300
0.0500 1 0.0100 0.0100 0.0098 0.0079 0.0037

2 0.0100 0.0100 0.0100 0.0094 0.0054
3 0.0100 0.0100 0.0100 0.0098 0.0064

Limiting Value 0.0100 0.0100 0.0100 0.0100 0.0100
0.1000 1 −0.0150 −0.0149 −0.0147 −0.0118 −0.0055

2 −0.0150 −0.0150 −0.0150 −0.0141 −0.0080
3 −0.0150 −0.0150 −0.0150 −0.0147 −0.0096

Limiting Value −0.0150 −0.0150 −0.0150 −0.0150 −0.0150
0.1500 1 −0.0400 −0.0398 −0.0392 −0.0315 −0.0147

2 −0.0400 −0.0400 −0.0400 −0.0377 −0.0214
3 −0.0400 −0.0400 −0.0400 −0.0393 −0.0256

Limiting Value −0.0400 −0.0400 −0.0400 −0.0400 −0.0400
0.2000 1 −0.0649 −0.0647 −0.0637 −0.0512 −0.0239

2 −0.0650 −0.0650 −0.0650 −0.0612 −0.0348
3 −0.0650 −0.0650 −0.0650 −0.0639 −0.0415

Limiting Value −0.0650 −0.0650 −0.0650 −0.0650 −0.0650
0.3000 1 −0.1149 −0.1144 −0.1127 −0.0905 −0.0422

2 −0.1150 −0.1150 −0.1149 −0.1083 −0.0616
3 −0.1150 −0.1150 −0.1150 −0.1130 −0.0735

Limiting Value −0.1150 −0.1150 −0.1150 −0.1150 −0.1150
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Table II
Black, Derman and Toy Drift Approximations

The table shows first, second, and third order Taylor series approximations to the drift of
the Black, Derman and Toy interest rate process,

dyt = κ (θ − yt) dt+ sdZt, where
yt = ln rt,

with parameter values κ = 0.5, θ = −2.75, and s = 0.43. Approximations used are:

1 : µ(rt) = 1
∆
Et(rt+∆ − rt) +O(∆),

2 : µ(rt) = 1
2∆

[4Et (rt+∆ − rt)− Et (rt+2∆ − rt)] +O(∆2),
3 : µ(rt) = 1

6∆
[18Et (rt+∆ − rt)− 9Et (rt+2∆ − rt) + 2Et (rt+3∆ − rt)] +O(∆3).

Approximation to value of drift, µ(rt)
Order of ∆ = 0.004 ∆ = 0.02 ∆ = 0.08 ∆ = 1.0 ∆ = 5.0

rt Approximation (daily) (weekly) (monthly) (annual) (5 year)
0.0100 1 0.0102 0.0102 0.0104 0.0120 0.0100

2 0.0102 0.0102 0.0102 0.0115 0.0141
3 0.0102 0.0102 0.0102 0.0105 0.0163

Limiting Value 0.0102 0.0102 0.0102 0.0102 0.0102
0.0500 1 0.0108 0.0107 0.0106 0.0084 0.0037

2 0.0108 0.0108 0.0108 0.0101 0.0055
3 0.0108 0.0108 0.0108 0.0106 0.0065

Limiting Value 0.0108 0.0108 0.0108 0.0108 0.0108
0.1000 1 −0.0131 −0.0131 −0.0130 −0.0111 −0.0055

2 −0.0131 −0.0131 −0.0131 −0.0130 −0.0080
3 −0.0131 −0.0131 −0.0131 −0.0134 −0.0095

Limiting Value −0.0131 −0.0131 −0.0131 −0.0131 −0.0131
0.1500 1 −0.0500 −0.0498 −0.0487 −0.0363 −0.0150

2 −0.0501 −0.0501 −0.0500 −0.0450 −0.0220
3 −0.0501 −0.0501 −0.0501 −0.0479 −0.0264

Limiting Value −0.0501 −0.0501 −0.0501 −0.0501 −0.0501
0.2000 1 −0.0954 −0.0947 −0.0923 −0.0646 −0.0246

2 −0.0956 −0.0956 −0.0954 −0.0819 −0.0363
3 −0.0956 −0.0956 −0.0956 −0.0886 −0.0437

Limiting Value −0.0956 −0.0956 −0.0956 −0.0956 −0.0956
0.3000 1 −0.2037 −0.2019 −0.1954 −0.1269 −0.0441

2 −0.2042 −0.2041 −0.2036 −0.1649 −0.0653
3 −0.2042 −0.2042 −0.2041 −0.1813 −0.0788

Limiting Value −0.2042 −0.2042 −0.2042 −0.2042 −0.2042
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Table III
CIR Diffusion Approximations

The table shows first, second, and third order Taylor series approximations to the diffusion
of the Cox, Ingersoll and Ross interest rate process,

drt = κ (θ − rt) dt+ s
√
rtdZt,

with parameter values κ = 0.5, θ = 0.07, and s = 0.1. Approximations used are:

1 : σ(rt) =
√

1
∆

vart(rt+∆) +O(∆),

2 : σ(rt) =
√

1
2∆

[4vart (rt+∆)− vart (rt+2∆)] +O(∆2),

3 : σ(rt) =
√

1
6∆

[18vart (rt+∆)− 9vart (rt+2∆) + 2vart (rt+3∆)] +O(∆3).

Approximation to value of diffusion, σ(rt)
Order of ∆ = 0.004 ∆ = 0.02 ∆ = 0.08 ∆ = 1.0 ∆ = 5.0

rt Approximation (daily) (weekly) (monthly) (annual) (5 year)
0.0100 1 0.0100 0.0101 0.0104 0.0125 0.0110

2 0.0100 0.0100 0.0100 0.0122 0.0131
3 0.0100 0.0100 0.0100 0.0115 0.0142

Limiting Value 0.0100 0.0100 0.0100 0.0100 0.0100
0.0500 1 0.0223 0.0223 0.0220 0.0186 0.0115

2 0.0224 0.0224 0.0223 0.0209 0.0140
3 0.0224 0.0224 0.0224 0.0217 0.0154

Limiting Value 0.0224 0.0224 0.0224 0.0224 0.0224
0.1000 1 0.0316 0.0314 0.0309 0.0242 0.0122

2 0.0316 0.0316 0.0316 0.0283 0.0150
3 0.0316 0.0316 0.0316 0.0299 0.0167

Limiting Value 0.0316 0.0316 0.0316 0.0316 0.0316
0.1500 1 0.0387 0.0385 0.0378 0.0287 0.0128

2 0.0387 0.0387 0.0387 0.0341 0.0160
3 0.0387 0.0387 0.0387 0.0363 0.0180

Limiting Value 0.0387 0.0387 0.0387 0.0387 0.0387
0.2000 1 0.0447 0.0444 0.0436 0.0326 0.0134

2 0.0447 0.0447 0.0447 0.0390 0.0169
3 0.0447 0.0447 0.0447 0.0418 0.0191

Limiting Value 0.0447 0.0447 0.0447 0.0447 0.0447
0.3000 1 0.0547 0.0544 0.0533 0.0392 0.0144

2 0.0548 0.0548 0.0547 0.0474 0.0185
3 0.0548 0.0548 0.0548 0.0509 0.0213

Limiting Value 0.0548 0.0548 0.0548 0.0548 0.0548
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Table IV
Black, Derman and Toy Diffusion Approximations

The table shows first, second, and third order Taylor series approximations to the diffusion
of the Black, Derman and Toy interest rate process,

dyt = κ (θ − yt) dt+ sdZt, where
yt = ln rt,

with parameter values κ = 0.5, θ = −2.75, and s = 0.43. Approximations used are:

1 : σ(rt) =
√

1
∆

vart(rt+∆) +O(∆),

2 : σ(rt) =
√

1
2∆

[4vart (rt+∆)− vart (rt+2∆)] +O(∆2),

3 : σ(rt) =
√

1
6∆

[18vart (rt+∆)− 9vart (rt+2∆) + 2vart (rt+3∆)] +O(∆3).

Approximation to value of diffusion, σ(rt)
Order of ∆ = 0.004 ∆ = 0.02 ∆ = 0.08 ∆ = 1.0 ∆ = 5.0

rt Approximation (daily) (weekly) (monthly) (annual) (5 year)
0.0100 1 0.0043 0.0044 0.0046 0.0077 0.0121

2 0.0043 0.0043 0.0043 0.0037 0.0140
3 0.0043 0.0043 0.0043 0.0000 0.0146

Limiting Value 0.0043 0.0043 0.0043 0.0043 0.0043
0.0500 1 0.0215 0.0215 0.0215 0.0206 0.0138

2 0.0215 0.0215 0.0215 0.0223 0.0168
3 0.0215 0.0215 0.0215 0.0225 0.0184

Limiting Value 0.0215 0.0215 0.0215 0.0215 0.0215
0.1000 1 0.0429 0.0427 0.0419 0.0313 0.0146

2 0.0430 0.0430 0.0429 0.0372 0.0180
3 0.0430 0.0430 0.0430 0.0398 0.0201

Limiting Value 0.0430 0.0430 0.0430 0.0430 0.0430
0.1500 1 0.0644 0.0638 0.0618 0.0400 0.0151

2 0.0645 0.0645 0.0642 0.0493 0.0188
3 0.0645 0.0645 0.0645 0.0541 0.0211

Limiting Value 0.0645 0.0645 0.0645 0.0645 0.0645
0.2000 1 0.0858 0.0848 0.0815 0.0477 0.0155

2 0.0860 0.0860 0.0855 0.0598 0.0194
3 0.0860 0.0860 0.0859 0.0667 0.0219

Limiting Value 0.0860 0.0860 0.0860 0.0860 0.0860
0.3000 1 0.1285 0.1267 0.1203 0.0610 0.0160

2 0.1290 0.1289 0.1277 0.0783 0.0202
3 0.1290 0.1290 0.1288 0.0888 0.0229

Limiting Value 0.1290 0.1290 0.1290 0.1290 0.1290
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Table V
Effect of Price of Risk on Bond Valuation

The table shows values of zero coupon bonds of different maturities, calculated using Monte
Carlo simulation from the following formula for the value of a bond paying $1 at time T :

Pt(T ) = Et

[
e−
∫ T
t
r̂u du

]
,

where
r̂t = rt,
dr̂t = [µ(r̂t)− λ(r̂t)] dt + σ(r̂t) dZt.

Values in the first column are calculated imposing λ ≡ 0. Values in the second column use
the estimated function λ(r), shown in Figure 6.

Value of Bond
Zero Price Estimated Price

Maturity r of Risk of Risk
1 year 1% 0.9885 0.9870

5% 0.9500 0.9456
2 years 1% 0.9737 0.9668

5% 0.9001 0.8817
3 years 1% 0.9558 0.9390

5% 0.8509 0.8115
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Figure 1
Three month Treasury Bill rate, January 1965 to July 1995
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Annualized yield on three month Treasury bills, January 1965 to July 1995.
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Figure 2
Daily interest rate changes, January 1965 to July 1995
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Daily changes in the three month Treasury Bill yield plotted against yield on preceding day.
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Figure 3
Estimated marginal density of short rate

0

2

4

6

8

10

12

14

16

18

20

22

24

0 0.05 0.1 0.15 0.2

D
en

si
ty

r

Density
95% conf.

Estimated marginal density of the three month Treasury Bill yield, calculated using daily
data, January 1965 to July 1995. Pointwise 95 percent confidence bands are calculated using
10,000 iterations of the Künsch (1989) block bootstrap algorithm.
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Figure 4
Estimated drift of short rate process
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Estimates of first, second, and third order approximations to the drift, µ(r), are shown, cal-
culated using daily data, January 1965 to July 1995. Pointwise 95 percent confidence bands
(for the first order approximation) are calculated using 10,000 iterations of the Künsch (1989)
block bootstrap algorithm.
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Figure 5
Estimated diffusion of short rate process
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Estimates of first, second, and third order approximations to the diffusion, σ(r), are shown,
calculated using daily data, January 1965 to July 1995. Pointwise 95 percent confidence
bands (for the first order approximation) are calculated using 10,000 iterations of the
Künsch (1989) block bootstrap algorithm.
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Figure 6
Estimated market price of interest rate risk
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Estimates of first, second, and third order approximations to the market price of interest
rate risk, λ(r), are shown, calculated from daily excess returns on six month Treasury Bills,
January 1965 to July 1995. Pointwise 95 percent confidence bands (for the first order ap-
proximation) are calculated using 10,000 iterations of the Künsch (1989) block bootstrap
algorithm.
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Figure 7
Constrained estimate of short rate diffusion
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Estimates of first, second, and third order approximations to the diffusion, σ(r), are shown,
calculated using daily data, January 1965 to July 1995. All estimates are constrained to be
zero at r = 0. Pointwise 95 percent confidence bands (for the first order approximation) are
calculated using 10,000 iterations of the Künsch (1989) block bootstrap algorithm.
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