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ABSTRACT
Previous mortgage prepayment and valuation models assume that two mortgage

pools with the same observable characteristics should behave indistinguishably. How-
ever, even pools with apparently identical characteristics often exhibit markedly dif-
ferent prepayment behavior. The sources of this heterogeneity may be unobserv-
able, but we can infer information about a pool from its prepayment behavior over
time. This paper develops a methodology for using this information to calculate
pool-specific mortgage-backed security prices. Knowledge of these prices is important
both for portfolio valuation and for determining the cheapest pool to deliver when
selling mortgage-backed securities. We find that unobservable heterogeneity between
mortgage pools is statistically significant, and that pool-specific prices, calculated for
a sample of outwardly identical mortgage pools between 1983 and 1989, may differ
greatly from any single representative price.
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Most quoted mortgage-backed security prices are “generic”, rather than pool-

specific. A contract to deliver a certain face value of mortgage-backed securities on

a particular date allows the seller wide latitude in choosing which pools are actually

delivered. This gives him or her the option to deliver the least valuable pools. Generic

prices are the prices at which these contracts are written, presumably taking into

account the existence of this delivery option.1 However, to determine the optimal

pool(s) to deliver, while satisfying the terms of the contract, the seller needs to know

the separate value of each deliverable pool. Similarly, investors in mortgage-backed

securities need to know the values of the specific pools in their portfolios. It is thus

important to be able to calculate a pool-specific price, the price of a mortgage-backed

security backed by one specific mortgage pool.

Many researchers have developed models to predict the prepayment behavior of

pools of fixed rate mortgages, and to value mortgage-backed securities. Dunn and

McConnell (1981a, 1981b) model mortgage holders as rational holders of prepayment

options, who refinance immediately when interest rates fall sufficiently. However, this

model has two counterfactual implications. First, the price of a mortgage-backed

securities can never exceed par. Second, since all mortgage holders are identical, they

will all refinance simultaneously the instant interest rates fall below a certain critical

value. To allow mortgage prices to exceed par, Dunn and Spatt (1986), Johnston and

Van Drunen (1988) and Timmis (1985) add transaction costs payable on refinanc-

ing. With heterogeneous transaction costs, this also means that different classes of

borrower will refinance at different times, though all members of each class will still

refinance simultaneously. To relax this, Stanton (1994) restricts mortgage holders

to making refinancing decisions only at discrete intervals, leading to prepayment be-

havior that exhibits the “burnout” characteristic of observed prepayment behavior.2

Other authors developing rational mortgage pricing models include Kau, Keenan,

Muller and Epperson (1992), who study the optimal exercise of the mortgage holder’s

right to default as well as prepay his or her mortgage. Examples of an alternative

approach to prepayment modeling are the purely empirical models of Schwartz and

Torous (1989), and many Wall Street firms. In these models, prepayment is fitted as a

function of some set of (non-model based) explanatory variables, often including past

1There are also other options. For example, the seller may actually deliver any amount within a
5% range surrounding the agreed principal amount. See Bartlett (1989) for details.

2Burnout refers to the dependence of a pool’s prepayment behavior on cumulative historical
prepayment levels. The higher the fraction of the pool that has already prepaid, the less likely are
those remaining in the pool to prepay this period, all else being equal. See Richard and Roll (1989)
for a discussion.
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prepayment or other endogenous variables. While there are many academic mortgage

prepayment and valuation models, one feature which they all share is that they im-

plicitly assume that two mortgage pools characterized by the same coupon rate, time

to maturity, and other observable characteristics, should prepay at exactly the same

rate. However, in reality, one mortgage pool often prepays at a very different rate

from another, even after controlling for observable differences. This in turn leads to

differences in the values of mortgage-backed securities backed by the pools.

The idea that mortgages are heterogeneous is not a new one. For example, the

usual explanation for burnout is that mortgage holders are heterogeneous in their

speeds of prepayment. As a result, if a large fraction of the pool has already prepaid,

those remaining are likely to be slow prepayers.3 However, previous academic models

only address heterogeneity within a pool. In determining a pool-specific mortgage-

backed security price, we are concerned instead with heterogeneity between pools.

While these two types of heterogeneity are conceptually similar, they have different

implications for pricing. With regard to heterogeneity within a pool, we care only

about the overall distribution of the individual mortgage holders in that pool, since

security holders receive a fraction of the cash flows from all the individual mortgage

holders. In determining a pool-specific security price, taking into account heterogene-

ity between pools, we care not about the overall distribution of all pools, but about

where within that distribution lies the specific pool we are pricing.

This paper extends previous research in two main directions. First, it presents

a framework that adapts existing parametric prepayment models to handle hetero-

geneity between mortgage pools. Estimating such extended models using observed

prepayment data yields an initial distribution of possible pool types from which each

pool is assumed to be randomly drawn. Second, the paper develops an algorithm

for using the information contained in monthly prepayment rates to calculate pool-

specific mortgage backed security prices. As each monthly prepayment rate for a pool

is observed, we perform a Bayesian update of the distribution from which that pool is

drawn. This new distribution, combined with a valuation model, is used to calculate

a pool-specific mortgage backed security price. Prepayment data on a sample of more

than 1,000 GNMA mortgage pools over a 6 1/2 year period show that unobservable

heterogeneity between pools is statistically significant. More important, implementa-

tion of the valuation algorithm shows that the value of securities backed by different,

but outwardly identical, pools can differ widely. Failure to take this into account can

lead to large pricing and hedging errors.

3This is modeled explicitly in Stanton (1994).
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1 Mortgage Pool Heterogeneity

While many mortgage prepayment models assume that individual mortgages within a

single pool may differ in their prepayment behavior,4 no previous research has allowed

for possible unobservable heterogeneity between mortgage pools characterized by the

same coupon rate, issue date and other observable characteristics. However, not only

do individual mortgages differ, but so do pools of mortgages. One major reason often

cited for mortgage heterogeneity is geographical diversity.5 Several Wall Street firms

try to collect information about the location of the mortgages in a pool, and use

this in their prepayment and valuation models. However, they cannot obtain perfect

geographic information. For example, while they may know the servicing institution,

this is often a national institution, and may in any case not be the original issuer

of the mortgages. Besides, differences between pools will exist even after controlling

for observable geographic variables, such as state of issue. Location within a state

may be important; education levels may vary, which should have an impact on how

ready mortgage-holders are to prepay should it be optimal to do so; mortgage-holders

in two pools may have very different propensities to relocate for job-related reasons.

More generally, without knowing everything about every individual mortgage holder

in every mortgage pool, even after controlling for every observable factor, there will

always be some unobservable heterogeneity between pools.

To give an indication of the significance of heterogeneity between apparently iden-

tical mortgage pools, figure 1 shows pool factors6 for five 12.5% GNMA-I mortgage

pools between January 1983 and December 1989. Apart from different pool numbers,

these pools have identical observable characteristics. Each contains mortgages issued

in the same month (January 1983), with the same interest rate (12.5%), and of the

same type (30 year single family mortgages). However, the pools exhibit very different

prepayment behavior.

4Usually captured via a “burnout” factor.
5For example, Becketti and Morris (1990) present evidence that prepayment behavior varies by

state.
6A pool factor is the ratio of the current remaining principal in a pool to its initial principal. It

is not adjusted for amortization, so even with no unscheduled prepayment it drops to zero over the
life of the mortgage.
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1.1 Modeling Prepayment with Heterogeneous Mortgage Pools

1.1.1 Parametric Prepayment Models

By a parametric prepayment model we mean any model which predicts the prepay-

ment behavior of a mortgage, or pool of mortgages, over the next period in terms

of some set of (possibly endogenous) state variables, and a set of parameters. Write

fπ(π | It;θ) for the probability density function for πt, the proportion of a pool which

prepays during month t. This is a function of It, the “information set” of all relevant

variables known at the start of month t. It also depends on a vector of parameters,

θ. The expected prepayment level next period (the usual point estimate) is then

πt ≡ E[πt | It] =
∫ 1

0
π fπ(π | It;θ) dπ. (1)

Almost every mortgage prepayment model used in practice has a reduced form rep-

resentation of this type. For example, it includes the many “hazard rate” models of

mortgage prepayment, such as Schwartz and Torous (1989). This model expresses

the likelihood of prepayment over the next instant via a hazard function, π(t; v, θ).

Here, v is a vector of explanatory variables, and θ is a vector of parameters. Infor-

mally, the probability of prepayment in a time interval of length δt, conditional on

not having prepaid already, is approximately π δt. Each hazard function corresponds

to a unique likelihood function, and vice versa.7 An example of a model which does

not at first seem to be of this form, but which nevertheless possesses a reduced form

representation of this type, is the rational prepayment model of Stanton (1994).

1.1.2 Extension to Heterogeneous Mortgage Pools

Continuing to assume that prepayment for each pool is described by a parametric

prepayment model with associated probability density function fπ, we now introduce

(unobservable) heterogeneity between pools. Assume that each pool has its own set

of parameters, say θi for pool i, but that we cannot ex ante identify which pool

is which. The probability density function for πit, the proportion of pool i which

prepays during month t, is

f iπ(π) ≡ fπ(π | It;θi), (2)

7For more details on hazard functions, see Cox and Oakes (1984), or Kalbfleisch and Prentice
(1980).
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and the expected prepayment level in period t is

πit ≡ E[πit | It] =
∫ 1

0
π fπ(π | It;θi) dπ. (3)

One way to think of this is as a separate model for each pool. We can estimate one

set of parameters per pool in exactly the same way as we would estimate a model

with a single set of parameters governing all pools. The only difference is that more

parameters need to be estimated. In addition, we shall usually want to impose some

cross-pool restrictions on the parameters θi. For example, one natural restriction is

to assume that, if θi is a vector of parameters, all but one of the parameters are the

same for all pools (“common” parameters), and that just one parameter is “pool-

specific”. There is no theoretical problem with estimating the model in the presence

of such restrictions. However, there are potential computational difficulties as the

dimensionality of the problem gets large. This is discussed further in section 3.

Rather than yielding a single set of parameter values that hold for every pool,

estimating the extended model described here yields a single set of common parameter

values, and one set of pool-specific parameters per pool used in the estimation process.

1.2 Valuation with Unobservable Heterogeneity

If we knew in advance the value of the parameters θi for a given pool, valuation

would be the same as for a model with no pool-specific parameters. We would insert

the parameter vector θi into the appropriate parametric prepayment model, and this

would give us prepayment predictions for pool i, which could then be used to price

the pool. However, in practice we cannot do this. We do not know the true value

of θi. We know only the distribution from which θi is drawn.8 Valuation given a

known distribution of parameter values can be accomplished via a slight extension

of the usual valuation approach. Suppose, at time t, we know that the prepayment

parameters for mortgage pool i are drawn from some distribution f iθ,t.
9 Write Vθ,t for

the value of a mortgage-backed security backed by a pool with known prepayment

parameter(s) θ.10 Then, if we assume risk neutrality with respect to our uncertainty

over θi,11 the value of the pool is just the expected value of Vθ,t taken over all possible

8In practice, this distribution would be estimated as described above, using historical prepayment
data.

9For notational simplicity, we shall assume that this is a univariate distribution. However, there
is no theoretical reason why the distribution should not be over several parameters.

10Calculated by inserting the value θ into the appropriate prepayment/valuation model.
11This can be justified by arguing that there are many mortgage pools, so all idiosyncratic risk

can be diversified away.
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values of θi.

V i
t = Ei[Vθ,t]

≡
∫ ∞
−∞

Vθ,t f
i
θ,t dθ. (4)

The initial parameter distribution, f iθ,0, is estimated using historical prepayment data,

as above. However, the distribution changes over time. Each period we observe a new

monthly prepayment rate for mortgage pool i. This conveys further information about

the likely value of the parameter vector θi. Intuitively, if the observed prepayment

history for a pool is “relatively likely” for one parameter value, θ1, and “relatively

unlikely” for another, θ2, we should revise our beliefs after seeing the new prepayment

rate to attach a higher relative likelihood to θ1 than to θ2. More formally, this

revision in beliefs can be expressed as a Bayesian updating rule. For month t, call the

distribution of θi before we observe that month’s prepayment rate (f iθ,t) the “prior”

distribution of θ. If the distribution governing prepayment for a particular value of

θi is fπ(π | It;θi), as above, and we observe a prepayment rate πit, then by Bayes’

theorem, the “posterior” distribution for θi, fθ,t+1, is given by

fθ,t+1(θi) = fθ,t(θi)
fπ(πit | It; θi)∫∞

θ=−∞ fθ,t(θ) fπ(πit | It; θ) dθ
. (5)

Inserting this distribution into equation 4 gives a pool-specific mortgage-backed se-

curity price which takes into account both the initial distribution of prepayment

parameters, and the information contained in the sequence of monthly prepayment

rates for pool i.

2 Implementation

The methodology described in the previous section can be applied to any parametric

prepayment and valuation model. We shall implement the procedure here, starting

with the rational prepayment model developed by Stanton (1994). This model has

the attractive features of retaining the optimal option exercise framework of rational

models such as Dunn and McConnell (1981a, 1981b), while fitting observed prepay-

ment behavior as well as purely empirical models such as Schwartz and Torous (1989).

A summary of the main points of the model is presented here. For more details, see

Stanton (1994).
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2.1 Mortgage Holders’ Prepayment Decisions

Assume that each mortgage holder i must pay a transaction cost equal to some

constant Xi times the remaining principal balance on the mortgage, should he or

she prepay early. This cost in part reflects the direct monetary costs of refinancing

(points, inspections, etc.), but it also stands in for non-monetary costs associated

with the difficulty and inconvenience of filling out forms, lost productivity etc.

Mortgage prepayment arises either through interest rate driven exercise of the

prepayment option, or for some exogenous reason, such as forced relocation. Ex-

ogenous prepayment is governed by a hazard rate λ (in words, the probability of

prepayment for exogenous reasons in a time interval of length δt, conditional on not

having previously prepaid, is approximately λδt). Mortgage holders follow the pre-

payment strategy which minimizes the value of their mortgage liabilities, subject to

the transaction cost Xi, and to being able to make prepayment decisions only at ran-

dom discrete intervals,12 governed by the constant hazard rate ρ. In deciding when

to prepay, mortgage holders need to take into account possible movements in interest

rates. We shall use the Cox, Ingersoll and Ross (1985) one factor interest rate model,

in which the instantaneous risk-free interest rate satisfies the stochastic differential

equation,

drt = κ(µ− rt) dt+ σ
√
rt dzt. (6)

The long run mean interest rate is µ, with speed of convergence governed by κ.

The volatility of interest rates is σ
√
rt. One further parameter, q, summarizing risk

preferences of the representative individual, is needed to price interest rate dependent

assets. We use the parameter values estimated by Pearson and Sun (1989).

κ = 0.29368,

µ = 0.07935,

σ = 0.11425,

q = −0.12165.

In this setting, each mortgage holder’s optimal exercise strategy takes a simple form.

For a given coupon rate, parameters λ and ρ, and transaction cost Xi, there is a

critical interest rate, r∗it, such that if rt ≤ r∗it mortgage holder i optimally refinances

at time t; if rt > r∗it, mortgage holder i optimally chooses not to refinance.13 The

12This would result, for example, from mortgage holders facing a fixed cost associated with the
time and difficulty of making each prepayment decision.

13The optimal prepayment strategy for each mortgage holder is yielded as a by-product of the
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higher the transaction cost Xi, the lower r∗it, since the benefits to refinancing must be

greater before they offset the costs incurred. For each mortgage holder, this leads to

a hazard function governing prepayment, which takes on the value λ if rt > r∗it,

λ+ ρ if rt ≤ r∗it.
(7)

The hazard function governing prepayment for the pool as a whole takes on a value

somewhere between λ (when rt is so high that no mortgage holder finds it optimal

to prepay) and λ + ρ (when rt is so low that all mortgage holders find it optimal to

prepay), the exact value depending on the proportion of mortgage holders in the pool

for whom rt ≤ r∗it, which depends in turn on the value of rt and on the distribution

of mortgages within the pool. Assume the initial distribution of transaction costs in

a pool is a beta distribution, with parameters α and β.14 This implies that mortgage

holders face costs between 0 and 100% of their remaining principal balance, with a

mean of α/(α + β).

2.2 Borrower Heterogeneity and Mortgage Pools

We have described the main features of the prepayment model of Stanton (1994). We

now extend the model to introduce heterogeneity between apparently identical pools.

Maintaining the assumption of a beta distribution of costs within each pool, we shall

allow the parameters of the distribution to differ across pools. One way to achieve

this would be to allow the mean of the distribution to vary across pools, keeping the

variance fixed. However, for a given variance, the mean of a beta distribution may

take on only a restricted range of possible values. We shall instead assume that all

pools share a common parameter α, but that each pool i has a parameter βi which

is specific to that pool. This allows the mean of the transaction cost distribution to

take on its full range of possible values, as βi ranges from 0 (all mortgage holders face

transaction costs equal to 100% of the remaining principal balance, and all interest

rate driven prepayment is effectively precluded) to ∞ (no mortgage holders face any

transaction costs, so they can efficiently exercise their prepayment options).

The prepayment behavior of each pool is thus determined by the values of four

parameters. Three of these are common across pools. They are α (one of the two

parameters governing the initial distribution of transaction costs in the pool), ρ (gov-

usual binomial tree or finite difference algorithms used to value the mortgages.
14The beta distribution has the desirable feature that it can take on a wide variety of different

shapes, yet is fully described by the values of only two parameters.
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erning how long mortgage holders wait, on average, between successive prepayment

decisions), and λ (governing how likely mortgage holders are to prepay for non-interest

rate related reasons). The fourth is the pool-specific parameter, βi (which, together

with α, determines the initial distribution of transaction costs in the pool).

3 Estimation of the Model

Estimating a prepayment model consists of finding parameter values that predict

prepayment behavior that is close to observed behavior. To do this, we need to be

able to determine the optimal exercise strategies for mortgage holders with different

transaction costs, for given values of the parameters λ and ρ. We use the fact that,

under the Cox, Ingersoll and Ross interest rate model, the value V (r, t) of an interest

rate contingent claim paying coupons/dividends at rate C(r, t) is the solution to the

partial differential equation

1

2
σ2rVrr + [κµ− (κ+ q)r]Vr + Vt − rV + C = 0, (8)

subject to appropriate boundary conditions. For any given transaction cost, we use

the Crank-Nicholson finite difference algorithm15 to solve equation 8 on a rectangular

grid of possible interest rate and time values. A by-product of the valuation process

is the optimal exercise strategy for the mortgage holder. Repeating this for every

possible transaction cost yields a set of valuation grids, from which we can determine

the value of a mortgage, and whether its holder optimally chooses to prepay, for every

possible transaction cost, for every interest rate level, and for every time since the

issue date. Combining this with knowledge of the initial distribution of transaction

costs in the pool (determined by the parameters α and βi), allows us to calculate the

value of the pool and its aggregate prepayment behavior. This gives a set of predicted

prepayment rates for each pool i (as a function of the parameters α, λ, ρ and βi),

which can be compared with the observed prepayment behavior of the pool. The

empirical data used for estimation are monthly prepayment rates for 12.5% GNMA

30 year single family mortgages over the period July 1983 – December 1989, a total of

78 months. A few pools with missing data were excluded, leaving 1,156 pools in the

sample used for estimation. To focus on long-term interest rate movements,16 rather

15See McCracken and Dorn (1969).
16Since mortgages are long-term instruments, their value tends to move with long-term interest

rates. The correlation between 30 year mortgage rates and the yield on 10 year Treasury securities
is 0.98.
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than using a short rate directly, each month the Salomon Brothers yield on newly

issued 20 year Treasury bonds was used to derive a short rate series by inverting the

Cox, Ingersoll and Ross bond pricing formula.

3.1 Non-linear least squares

The model’s prepayment predictions can be written in the form

πit = πit(ρ, λ, α, βi) + vit, (9)

Et[vit | It] = 0, (10)

Et[vitviτ | It] = 0. (τ > t) (11)

Et[vitvjt | It] = 0, (i 6= j), (12)

for i = 1, 2, . . . , 1156 (number of pools) and t = 1, 2, . . . , 78 (number of months). Here

πit is the observed prepayment rate for pool i in month t, and πit is the expected

prepayment rate generated by the model, conditional on the history of interest rates.

Write y for the vector formed by stacking the 1156 vectors πi on top of each other,

and u for the vector formed similarly from the matrix vit. The new series are thus

defined by

y78(i−1)+t = πit, (13)

u78(i−1)+t = vit. (14)

All observations for a single pool appear in time order, followed by all residuals for

the next pool. Thus y1, y2, . . . y78 are the 78 monthly prepayment rates for pool 1;

y79, y80, . . . y156 are the 78 monthly prepayment rates for pool 2, and so on. The model

can now be written in the form

yk = πk(θ) + uk, (15)

E[uk] = 0, (16)

E[ukul] = 0, (k 6= l), (17)

for k = 1, 2, . . . 78× 1156 = 90, 168, where θ = (ρ, λ, α, β1, β2, . . . , β1156). Given such

a (non-linear) regression equation, the non-linear least squares (NLLS) estimator of

the true parameter value θ0, θ̂, is the value which minimizes the sum of squared
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residuals,

SK(θ) =
K∑
k=1

u2
k =

K∑
k=1

[yk − πk(θ)]2 . (18)

Assuming homoscedastic residuals with constant variance σ2
0, the NLLS estimator of

σ2
0, is

σ̂2 =
SK(θ̂)

K
, (19)

and the asymptotic variance-covariance matrix for the estimated parameter values is

SK(θ̂)

K

[
K∑
k=1

∂πk

∂θ

∂πk

∂θ′

]−1

. (20)

Estimating the model requires the minimization of SK(θ̂), a function of 1,159 vari-

ables. This is not a theoretical problem, but it is computationally burdensome, if not

infeasible, for general functions of this many variables. However, one feature of the

model greatly simplifies its estimation. Looking at equations 9–12, we see that the

residuals for pool i depend only on the value of βi, and not on the value of βj for

any other pool. Thus we do not need to consider the interaction between changes in

different β values. For given values of ρ, λ and α, changing a particular βi will only

affect the residuals for pool i, and the size and direction of this change is independent

of the values of all other β parameters. Write the sum of squares as SK(θ∗,β), where

θ∗ = (ρ, λ, α),

β = (β1, β2, . . . , β1156).

Rather than minimizing SK over 1,159 parameters simultaneously, we can minimize

it in two nested steps. Define the concentrated sum of squares

S∗K(θ∗) = SK(θ∗, β̂(θ∗)), (21)

where β̂(θ∗) is the set of βi values which minimizes the sum of squared residuals

conditional on the given values of ρ, λ, α. Choose θ̂
∗

to minimize S∗K(θ∗).

The independence of the residuals for each pool from the β value for all other

pools implies that

min
β

SK(θ∗,β) =
I∑
i=1

min
βi

Si(θ
∗, βi), (22)

where Si(θ
∗, βi) is the sum of squares for pool i only. Thus, in calculating the concen-
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trated sum of squares for a given set of parameters ρ, λ, α, we can minimize the sum

of squared residuals for each pool separately, performing a one dimensional minimiza-

tion to estimate one βi parameter at a time. We have effectively reduced the solution

of a problem in 1,159 dimensions to the solution of a problem in 4 dimensions.

3.2 Estimation Results

Table 1 shows the results of NLLS estimation of the model described in section 2.

Individual estimates for the parameters ρ, λ and α are shown, as well as summary

statistics for the estimated distribution of βi parameters, and some descriptive mea-

sures calculated from the estimated parameters. According to the parameter esti-

mates obtained, mortgage holders wait an average of 1.28 years before prepaying

their mortgage once it becomes optimal to do so. They have a probability of 4.37%

per year of prepaying their mortgages for exogenous reasons, and face an overall aver-

age transaction cost equal to 48% of the remaining principal balance on their loans.17

Figure 2 shows the full estimated empirical distribution of the pool specific parame-

ter, βi. This has a wide support, and translates into very different transaction cost

distributions for different pools. While the overall average transaction cost level is

48%, the average transaction cost in a single pool ranges between 20% and 100% of

the remaining principal balance. As a diagnostic check, table 2 shows autocorrela-

tions and cross-correlations for both the original prepayment rates, and the model’s

prediction errors. The errors exhibit little serial correlation or contemporaneous cor-

relation across pools.18 As a test for homoscedasticity, table 3 shows the results of

regressing the model’s squared prediction errors,
[
yk − πk(θ̂)

]2
, against several likely

explanatory variables. None of the estimated coefficients (except the constant term)

is significant at the 1% level, and the R2 of the regression is less than 0.0002. This

is a rather unexpected result. One might expect the variance to be roughly propor-

tional to the inverse of the number of mortgages in the pool, itself proportional to

the dollar balance in the pool. This same lack of dependence on pool size was also

documented by Becketti and Morris (1990) for mortgage pools underlying FNMA

mortgage-backed securities.

17This is rather high. See Stanton (1994) for some possible explanations.
18Regressing the errors simultaneously against lags 1–6, plus the contemporaneous residuals from

the pool with the next higher pool number, results in an R2 of 0.0016.
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3.3 Significance of Heterogeneity

To test the significance of the estimated degree of heterogeneity between outwardly

identical pools, the model was estimated again with no heterogeneity between pools,

i.e. subject to the constraint that

β1 = β2 = . . . = β1,156.

The estimated values and standard errors, reported in table 4, are close to those

reported in Stanton (1994).19 Figure 3 plots average monthly prepayment rates for the

1,156 mortgage pools between July 1983 and December 1989, together with average

predicted prepayment rates generated by the model with and without heterogeneity.

Both models fit the average prepayment rates over this period closely. The R2

values20 for the two models are both over 91%, with that for the model with hetero-

geneity being slightly higher than that for the constrained model. However, we are

not here primarily interested in the performance averaged across all pools, but rather

in the performance of the two models relative to specific pools. Comparing the results

in tables 1 and 4, the model with heterogeneity explains 15.6% of the variation in

monthly prepayment rates across pools.21 The restricted model, with no heterogene-

ity, explains only 12.6%. To test the statistical significance of this difference, we test

the statistical hypothesis,

H0 : β1 = β2 = . . . = β1,156. (23)

We can construct a test statistic for this hypothesis as a generalization of the χ2 test

19This restricted model is exactly equivalent to the model in Stanton (1994). The source of the
slightly different parameter estimates is that we are minimizing a slightly different objective function
here.

20Calculated from the 78 data points plotted in the graph, using the formula

R2 = 1−
var(Average Fitting Error)

var(Average Prepayment Rate)
.

21Calculated from all 1, 156× 78 individual pools’ monthly prepayment rates, using the formula

R2 = 1−
var(Fitting Error)

var(Prepayment Rate)
.
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used in OLS.22 We shall use

(T −K)
ST (θ)− ST (θ̂)

ST (θ̂)

A
∼ χ2

q , (24)

where q is the number of restrictions, T is the total sample size, θ̂ is the unconstrained

estimator, θ is the constrained estimator, and K is the number of parameters being

estimated. The χ2 test statistic is given by

χ2
1155 = [(1156× 78) − 1159] ×

(142.608− 137.807)

137.807
= 3101.

This is significant at the 1% level (critical value for χ2
1155 is 1270), so we can reject

the hypothesis that there is no heterogeneity among the pools, though we must note

that the χ2 distribution of the test statistic is a large sample result. The next section

analyzes the economic significance of this heterogeneity.

3.4 Valuation

We have seen that, after controlling for observable differences, the remaining hetero-

geneity between pools is statistically significant. In this section, we implement the

valuation algorithm described above, to test the economic significance of this unob-

servable heterogeneity. To implement the valuation procedure, we use the values of

α, ρ and λ estimated in section 3, and assume that each βi is randomly drawn from

the distribution estimated there (and plotted in figure 2).23 We also need to know the

distribution of the pool’s prepayment level for each possible value of βi, fπ(π | It; βi).

The model we have been using would tell us this if we knew the number of mort-

gages in each pool. However, we do not know the number of mortgages in each pool,

only the total principal balance. We could assume some fixed mortgage size, but the

posterior distribution would depend on this assumed size. Intuitively, the larger the

number of mortgages we assume are in a pool, the less likely we are to observe large

deviations from the expected prepayment level each month, the less noise there is

in the observed signal, and the more information we can extract from each monthly

22See Amemiya (1985), page 136.
23This distribution is estimated using the entire sample period, which includes information that

was not known to market participants. However, we only use this information to estimate the model’s
parameters. Market participants could have estimated these same parameters using additional
historical prepayment data that we do not have access to. In the updating procedure, we only
use information that was available to market participants.
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prepayment level.

We shall instead, therefore, use an empirically derived distribution function, as-

suming that the prepayment level for a pool with prepayment parameter βi, πt, is

normally distributed, with mean

µiπ = πit(ρ, λ, α, βi), (25)

and variance

σ2
π = σ̂2 = 1.53× 10−3, (26)

the estimated residual variance from table 1. So now we have

fπ(πit | It; ρ, λ, α, βi) = N(µiπ, σ
2
π), (27)

where N represents the normal probability density function.

The detailed implementation of the valuation methodology described in section 1

can be summarized by the following algorithm:

1. Initialize:

(a) Set t = 0.

(b) Choose a set of values β1, β2, . . . , βnβ and initial probabilities p0
1, p

0
2, . . . , p

0
nβ

to approximate the initial distribution of β values.24

(c) Pick a set of possible transaction costs K1, K2, . . . , Knk .

2. Value security at time t:

(a) For each βi, i = 1, 2, . . . , nβ, calculate wtij, the expected proportion of a

pool with prepayment parameter βi with transaction cost Kj at time t.

(b) Calculate wtj, the overall expected proportion of the pool at time t with

transaction cost Kj, using the equation

wtj =
nβ∑
i=1

ptiw
t
ij. (28)

(c) For each transaction cost level, calculate V (Kj , rt, t), the value at time

t of a mortgage with transaction cost Kj with interest rate rt.

24Using a discrete distribution makes keeping track of changes in the distribution over time merely
a matter of updating the nβ probabilities pt1, p

t
2, . . .. By making the values denser, we can approxi-

mate any arbitrary continuous distribution as closely as we like.
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(d) Calculate Vt, mortgage-backed security value, as a weighted average of

these values:

Vt =
nK∑
j=1

V (Kj , rt, t). (29)

3. Update beliefs (the probabilities pt1, p
t
2, . . . , p

t
nβ

) in light of the observed pre-

payment rate πt.

(a) Calculate likelihood for each βi,
25

L(βi) = e
−1

2

(
πt−µ

i
π

σ̂

)2

.

(b) Update probabilities pt1, p
t
2, . . . , p

t
nβ

,

pt+1
i = pti

L(βi)∑nβ
ι=1 L(βι)

4. Go back to step 2

Figure 4 shows the results of implementing this valuation process for the five

mortgage pools whose prepayment behavior was shown in figure 1. The line labelled

“Naive” shows the value that would be obtained in the absence of unobservable het-

erogeneity, i.e. assuming the same parameters for all pools, and not updating our

beliefs as prepayment information becomes available.26 The graph exhibits several

important features. The first is that between January 1983 (when the pools were

issued) and early 1986, all prices were almost exactly the same. The updating rule

made almost no difference over this period, even though figure 1 shows that the pools

did prepay at different speeds. The reason for this is that interest rates remained rel-

atively high over this period, with the result that the prepayment model predicted no

prepayment for rational (interest rate driven) reasons. Any prepayment must there-

fore have been for exogenous reasons. This does not tell us anything about the value

of βi, which only determines how much prepayment occurs for interest rate reasons.

During 1986, interest rates declined, and the model started to predict prepayment

for interest rate reasons. As a result, differences in observed prepayment did affect

25Ignoring the constant term, which does not affect the results.
26This is a price obtained using an “average” set of parameter values. Ignoring Jensen’s Inequality,

we can think of this as roughly the price of an “average” pool. It is important to note that this may
not be the same as the quoted generic price, unless traders believe all pools to be homogeneous.
Even ignoring other delivery options, the fact that the seller can choose which pools to deliver implies
that the generic price ought to reflect an estimate of the price of some of the worst available pools,
rather than the average. This is similar to Akerlof (1970).
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the posterior distribution for βi, in turn resulting in pool specific prices that started

to diverge significantly from mid-1986 onward. By the end of 1989, the smallest

pool specific price was $128.40 per $100 of principal, and the largest was $136.41, a

difference of $8.01 per $100 of remaining principal, or more than 6%.

Table 5 shows a more comprehensive summary. Both naive and pool-specific

prices are calculated for all 1,156 pools, for each month that the pool was in existence

between January 1980 and December 1989. Table 5 shows the distribution of the

difference between each month’s pool-specific price, calculated using the algorithm

above, and the naive price. One striking feature of the table is that for every pool,

within the first 2 years of its issue date, the pool-specific and naive prices differ

by less than $0.50. There are two reasons for this. First, with only a short series

of prepayment rates, the Bayesian updating rule can have only a small effect on the

distribution of the pool-specific parameter βi for any given pool. Second, as discussed

above, interest rates were relatively high prior to early 1986, leading to little predicted

interest rate driven refinancing, and hence little revision in beliefs. For older pools,

both because more data goes into the updating process and because interest rates

dropped from 1986 on (so that more interest rate driven prepayment occurred), the

difference between pool-specific and naive prices is often much larger. For pools

between 2 and 5 years from issue, only 48% of prices are within $0.50 of the naive

price, and 5% of prices are more than $5.00 higher or lower than the naive price.

For pools older than 5 years, the proportion of prices within $0.50 of the naive price

drops to 22%, and the proportion more than $5.00 higher or lower than the naive

price increases to 7% of all calculated values. This shows that, when trading on a

pool-specific basis, it is of vital importance to look not only at initially observable

characteristics of each pool, but also to incorporate information about how the pool

prepays over time. A single representative price, no matter how this is calculated,

can be a long way from the true value of any individual pool.

4 Summary and Concluding Remarks

This paper shows that, even after controlling for observable differences, there still

remains statistically significant heterogeneity in the prepayment behavior of differ-

ent mortgage pools. It shows how existing parametric prepayment models can be

adapted to handle this unobservable heterogeneity between mortgage pools with iden-

tical observable characteristics, and develops a valuation algorithm for calculating

pool-specific mortgage-backed security prices.
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Estimating the extended prepayment model using historical prepayment data

yields an initial distribution of possible types from which each pool is drawn. Each

period, a Bayesian update of this distribution is performed, to incorporate the infor-

mation contained in the observed prepayment history of a pool. This distribution can

then be used to calculate pool-specific mortgage-backed security prices.

Pool-specific prices calculated in this way are important for valuing portfolios

of mortgage-backed securities, and for determining which pools are the cheapest to

deliver when selling mortgage-backed securities. This paper shows that the values

of two pools with initially identical observable characteristics often differ greatly.

Ignoring pool-specific information may thus lead to large pricing and hedging errors.

The methodology developed here has application in the valuation of any asset

or liability whose value depends on the average behavior of a group of individuals

whose individual differences are unobservable, but whose behavior is heterogeneous.

This includes bank liabilities such as Certificates of Deposit and insurance contracts

such as Single Premium Deferred Annuities (whose value depends on their holders’

propensities to surrender their policies when alternative investments offer a relatively

higher return) and convertible bonds (whose holders do not all convert at the same

time). In each case, a basic valuation and option exercise/surrender model could be

combined with a distribution of possible investor types to calculate values that take

into account the information contained in the observed behavior of the policy/bond

holders over time to learn more about their likely behavior in future.
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Table 1: Parameter estimates for extended model

Parameter Estimated Value
(Standard Error)

ρ 0.7792
(0.0069)

λ 0.0447
(0.0003)

α 2.9605
(0.0094)

Mean estimated βi 3.154
(0.093)

Standard deviation of βi 1.326
Minimum estimated βi 0.0001
Maximum estimated βi 11.597

Sum of squared residuals, SK(θ̂) 137.807
Variance of residuals, σ̂2 .00153
Variance of dependent variable, var(yk) .00181
R2, 1− σ̂2/var(yk) .156

In this table, non-linear least squares is used to estimate the three common param-
eters, ρ (which measures how likely mortgage holders are to make a prepayment
decision in any given period), λ (which measures the probability of prepayment for
exogenous (non-interest rate) reasons), and α (one determinant of the distribution of
transaction costs among mortgage holders in each pool), plus 1,156 pool specific pa-
rameters βi (which, together with α, determines the distribution of transaction costs
in pool i). Data used for estimation are monthly prepayment rates for 1,156 12.5%
GNMA-1 mortgage pools between July 1983 and December 1989.
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Table 2: Autocorrelations and cross-correlations

Autocorrelations Prepayment Rates Model’s Residuals

ρ1 0.163153 0.008299
ρ2 0.144951 −0.006560
ρ3 0.123448 −0.020467
ρ4 0.113847 −0.016373
ρ5 0.102803 −0.014801
ρ6 0.094024 −0.011551
ρ7 0.085350 −0.009399
ρ8 0.077198 −0.008245
ρ9 0.060412 −0.016121
ρ10 0.055121 −0.014379
ρ11 0.043137 −0.018770
ρ12 0.035045 −0.016000

Cross correlation, pool i, i+ 1 0.150243 0.024494
Cross correlation, pool i, i+ 2 0.139543 0.013916

First twelve rows give monthly autocorrelation coefficients for observed monthly pre-
payment rates (column 2), and model’s prediction errors (column 3). These are
calculated from the stacked series for the 1,156 pools, yk, and uk, as corr(yk, yk−1),
corr(yk, yk−2) etc. The last two rows give the contemporaneous correlation between
different pools, calculated as corr(yk, yk−78) and corr(yk, yk−156) etc.
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Table 3: OLS regressions of squared prediction errors

Independent Variables Estimated Coefficient
(t-statistic)

Intercept −0.00156∗∗∗

(5.072)
INVSIZE, 1 / (1 + Remaining Principal Balance) 51.06∗∗

(2.56)
TIME, Months since issue −1.04e− 06

(−0.528)
SHORT, One month T-Bill return 5.51e − 05∗∗

(2.44)
LONG, 20yr T-Bond yield −4.59e− 05

(−1.446)

F-statistic 3.747
Durbin-Watson 1.839
R2 0.00017
∗ Significant at the 10% level.
∗∗ Significant at the 5% level.
∗∗∗ Significant at the 1% level.

OLS regression of model’s squared prediction errors,
[
yk − πk(θ̂)

]2
, against explana-

tory variables INVSIZE (1/(1+Remaining balance)), TIME (months since issue),
SHORT (1 month T-Bill return) and LONG (yield on newly issued 20 year Treasury
Bonds).
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Table 4: Parameter estimates for restricted model

Parameter Estimated Value
(Standard Error)

ρ 0.6615
(0.0056)

λ 0.0336
(0.0004)

α 2.9716
(0.0073)

β 4.0237
(0.0196)

Sum of squared residuals, SK(θ) 142.608
Variance of residuals, σ2 .00158
Variance of dependent variable, var(yk) .00181
R2, 1− σ2/var(yk) .126

In this table, non-linear least squares is used to estimate the model subject to the
restriction β1 = β2 = . . . = β1,156 = β. The parameters estimated are ρ (which
measures how likely mortgage holders are to make a prepayment decision in any
given period), λ (which measures the probability of prepayment for exogenous (non-
interest rate) reasons), α and β (the two parameters in the beta distribution which
describes the distribution of transaction costs in each pool). Data used for estimation
are monthly prepayment rates for 1,156 12.5% GNMA-1 mortgage pools between July
1983 and December 1989.
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Table 5: Distribution of pool-specific prices

Months Since Issue
0 – 12 13 – 24 25 – 60 61+

Mean Naive Price 108.25 103.11 120.87 129.56
σ(pool-specific - naive) 0.0002 0.0001 6.15 7.20
Proportion of prices within $0.50 1.00 1.00 0.48 0.22
Proportion between $0.51 and $1.00 0.00 0.00 0.09 0.22
Proportion between $1.01 and $2.00 0.00 0.00 0.15 0.27
Proportion between $2.01 and $3.00 0.00 0.00 0.12 0.12
Proportion between $3.01 and $4.00 0.00 0.00 0.07 0.06
Proportion between $4.01 and $5.00 0.00 0.00 0.04 0.04
Proportion outside $5.01 0.00 0.00 0.05 0.07

Distribution of pool-specific prices calculated for 1,156 12% GNMA-1 mortgage pools
over the period January 1980 – December 1989. For pools of different ages, the first
row shows the average “naive” price, calculated assuming all pools to be homogeneous.
The second row gives the standard deviation (in $) of the difference between the naive
price and the pool-specific price for each pool. The remaining rows give the proportion
of calculated pool-specific prices within different distances from the naive price.
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Figure 1: Monthly pool factors (proportion of initial principal still remaining, with no
adjustment for amortization) for a sample of five GNMA-1 mortgage pools. Each pool
contains only 12.5%, 30 year, single family mortgages. Each was issued in January 1983.

26



 

0 1 2 3 4 5 6 7 8 9
Parameter Value

0%

2%

4%

6%

8%

10%

12%

14%

16%

18%

P
ro

po
rti

on
 o

f S
am

pl
e

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

E
m

pi
ric

al
 c

.d
.f.

Figure 2: Empirical distribution of pool-specific parameter βi. Histogram shows proportion
of pools in sample (total 1,156) with estimated βi falling within ± 0.25 of value on X-axis.
The solid line depicts the empirical c.d.f. This parameter, together with the common
parameter α, determines the initial distribution of transaction costs in pool i. The average
cost level in pool i is α/(α+ βi).
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Figure 3: Average monthly prepayment rates from July 1983 to December 1989 for a
sample of 1,156 12.5% GNMA-1 mortgage pools, plotted against fitted values from base
prepayment model (all pools share a common β parameter), and extended model (each
pool i has its own pool-specific parameter, βi).
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Figure 4: Pool-specific mortgage-backed security values from January 1983 to December
1989, for securities backed by five GNMA-1 mortgage pools. Each pool was issued in January
1983, and contains only 12.5%, 30 year, single family mortgages. Prices are calculated using
a Bayesian updating rule to infer further information about the distribution of costs in each
pool from the prepayment history of that pool. The line labelled “Naive” shows prices
calculated assuming all pools to be homogeneous.
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