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A Multifactor, Nonlinear, Continuous-Time Model
of Interest Rate Volatility

Abstract

This paper presents a general, nonlinear version of existing multifactor models,

such as Longstaff and Schwartz (1992). The novel aspect of our approach is that

rather than choosing the model parameterization out of “thin air”, our processes are

generated from the data using approximation methods for multifactor continuous-time

Markov processes. In applying this technique to the short- and long-end of the term

structure for a general two-factor diffusion process for interest rates, a major finding is

that the volatility of interest rates is increasing in the level of interest rates mostly for

sharply upward sloping term structures. In fact, the slope of the term structure plays a

larger role in determining the magnitude of the diffusion coefficient. As an application,

we show how this method can be used to value fixed-income contingent claims.



1 Introduction

When one sees so many coauthors on a single paper and they are not from the hard sciences,

the natural question is why? Looking at both the number and quality of contributors to this

volume and how much econometric talent Rob Engle has helped nurture through his career,

however, it becomes quite clear that the only way we could participate in Rob’s Festschrift

is to pool our limited abilities in Financial Econometrics. Given Rob’s obvious importance

to econometrics, and in particular to finance via his seminal work on volatility, it is quite

humbling to be asked to contribute to this volume.

Looking over Rob’s career, it is clear how deeply rooted the finance field is in Rob’s

work. When one thinks of the major empirical papers in the area of fixed income, Fama and

Bliss (1987), Campbell and Shiller (1991), Litterman and Scheinkman (1991), Chan, Karolyi,

Longstaff and Sanders (1992), Longstaff and Schwartz (1992), Pearson and Sun (1994), Aı̈t-

Sahalia (1996b) and Dai and Singleton (2000) come to mind. Yet in terms of citations, all

of these papers are dominated by Rob’s 1987 paper with David Lilien and Russell Robins,

“Estimating Time Varying Risk Premia in the Term Structure: The ARCH-M Model.” In

this paper, further expanded upon in Engle and Ng (1993), the authors present evidence

that the yield curve is upward sloping when interest rate volatility is high via an ARCH-M

effect on term premia. The result is quite natural to anyone who teaches fixed income and

tries to relate the tendency for the term structure to be upward sloping to the duration of

the underlying bonds. Given this work by Rob, our contribution to this Festschrift is to

explore the relation between volatility and the term structure more closely.

It is now widely believed that interest rates are affected by multiple factors.1 Nevertheless,

most of our intuition concerning bond and fixed-income derivative pricing comes from stylized

facts generated by single-factor, continuous-time interest rate models. For example, the

finance literature is uniform in its view that interest rate volatility is increasing in interest

rate levels, though there is some disagreement about the rate of increase (see, for example,

Chan, Karolyi, Longstaff and Sanders (1992), Aı̈t-Sahalia (1996b), Conley, Hansen, Luttmer

and Scheinkman (1995), Brenner, Harjes and Kroner (1996) and Stanton (1997)). If interest

rates possess multiple factors such as the level and slope of the term structure (Litterman

1See, for example, Stambaugh (1988), Litterman and Scheinkman (1991), Longstaff and Schwartz (1992),
Pearson and Sun (1994), Andersen and Lund (1997), Dai and Singleton (2000) and Collin-Dufresne, Goldstein
and Jones (2006) to name a few. This ignores the obvious theoretical reasons for multi-factor pricing, as in
Brennan and Schwartz (1979), Schaefer and Schwartz (1984), Heath, Jarrow and Morton (1988), Longstaff
and Schwartz (1992), Chen and Scott (1992), Duffie and Kan (1996), Ahn, Dittmar and Gallant (2002) and
Piazzesi (2005), among others.
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and Scheinkman (1991)), and given the Engle, Lilien and Robins (1987) finding, then this

volatility result represents an average over all possible term structure slopes. Therefore,

conditional on any particular slope, volatility may be severely misestimated, with serious

consequences especially for fixed-income derivative pricing.

Two issues arise in trying to generate stylized facts about the underlying continuous-

time, stochastic process for interest rates. First, how do we specify ex ante the drift and

diffusion of the multivariate process for interest rates so that it is consistent with the true

process underlying the data? Second, given that we do not have access to continuous-time

data, but instead to interest rates/bond prices at discretely sampled intervals, how can

we consistently infer an underlying continuous-time multivariate process from these data?

In single-factor settings, there has been much headway at addressing these issues (see, for

example, Aı̈t-Sahalia (1996a, 2007a), Conley, Hansen, Luttmer and Scheinkman (1995), and

Stanton (1997)). Essentially, using variations on nonparametric estimators with carefully

chosen moments, the underlying single-factor, continuous-time process can be backed out of

interest rate data.

Here, we extend the work of Stanton (1997) to a multivariate setting and provide for

the non-parametric estimation of the drift and volatility functions of multivariate stochas-

tic differential equations.2 Basically, we use Milshtein’s (1978) approximation schemes for

writing expectations of functions of the sample path of stochastic differential equations in

terms of the drift, volatility and correlation coefficients. If the expectations are known (or, in

our case, estimated nonparametrically) and the functions are chosen appropriately, then the

approximations can be inverted to recover the drift, volatility and correlation coefficients.

In this paper, we apply this technique to the short- and long-end of the term structure for a

general two-factor, continuous-time diffusion process for interest rates. Our methods can be

viewed as a nonparametric alternative to the affine class of multifactor continuous-time in-

terest rate models studied in Longstaff and Schwartz (1992), Duffie and Kan (1996), Dai and

Singleton (2000) and Aı̈t-Sahalia and Kimmel (2007b), the quadratic term structure class

studied in Ahn, Dittmar and Gallant (2002), and the non-affine parametric specifications of

Andersen and Lund (1997). As an application, we show directly how our model relates to

the two-factor model of Longstaff and Schwartz (1992).

Our paper provides two contributions to the existing literature. First, in estimating this

multi-factor diffusion process, some new empirical facts emerge from the data. Of particular

2An exception is Aı̈t-Sahalia (2007b) and Aı̈t-Sahalia and Kimmel (2007b) who provide closed form
expansions for the log-likelihood function for a wide class of multivariate diffusions.

2



note, while the volatility of interest rates increases in the level of interest rates, it does so

primarily for sharply upward sloping term structures. Thus, the results of previous studies,

suggesting an almost exponential relation between interest rate volatility and levels, are due

to the term structure on average being upward sloping, and is not a general result per se.

Moreover, our volatility result holds for both the short- and long-term rates of interest.

Thus, conditional on particular values of the two factors, such as a high short rate of interest

and a negative slope of the term structure, the term structure of interest rate volatilities is

generally at a lower level across maturities than implied by previous work.

The second contribution is methodological. In this paper, we provide a way of linking

empirical facts and continuous-time modeling techniques so that generating implications for

fixed-income pricing is straightforward. Specifically, we use nonparametrically estimated

conditional moments of “relevant pricing factors” to build a multifactor continuous-time

diffusion process which can be used to price securities. This process can be considered a

generalization of the Longstaff and Schwartz (1992) two-factor model. Using this estimated

process, we then show how to value fixed-income securities, in conjunction with an estimation

procedure for the functional for the market prices of risk. Since the analysis is performed

nonparametrically without any priors on the underlying economic structure, the method

provides a unique opportunity to study the economic structure’s implications for pricing. Of

course, ignoring the last twenty-five years of term structure theory and placing more reliance

on empirical estimation, with its inevitable estimation error, may not be a viable alternative

on its own. Nevertheless, we view this approach as helpful for understanding the relation

between interest rate modeling and fixed-income pricing.

2 The Stochastic Behavior of Interest Rates: Some Ev-

idence

In this section, we provide some preliminary evidence for the behavior of interest rates across

various points of the yield curve. Under the assumption that there are two interest-rate de-

pendent state variables, and that these variables are spanned by the short rate of interest and

the slope of the term structure, we document conditional means and volatilities of changes in

the 6-month through 5-year rates of interest. The results are generated nonparametrically,

and thus impose no structure on the underlying functional forms for the term structure of

interest rates.
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2.1 Data Description

Daily values for constant maturity Treasury yields on the 3-year, 5-year and 10-year U.S.

government bond were collected from Datastream over the period January 1983 to Decem-

ber 2006. In addition, 3-month, 6-month and 1-year T-bill rates were obtained from the

same source, and converted to annualized yields. This provides us with over 6,000 daily

observations.

The post-1982 period was chosen because there is considerable evidence that the period

prior to 1983 came from a different regime (see, for example, Huizinga and Mishkin (1984),

Sanders and Unal (1988), Klemkosky and Pilotte (1992), and Torous and Ball (1995)). In

particular, these researchers argue that the October 1979 change in Federal Reserve operating

policy led to a once-and-for-all shift in the behavior of the short term riskless rate. Since

the Federal Reserve experiment ended in November 1982, it is fairly standard to treat only

the post late 1982 period as stationary.

In estimating the conditional distribution of the term structure of interest rates, we

employ two conditioning factors. These factors are the short rate of interest — defined here

as the 3-month yield — and the slope of the term structure — defined as the spread between

the 10-year and 3-month yields. These variables are chosen to coincide with interest rate

variables used in other studies (see Litterman and Scheinkman (1991) and Chan, Karolyi,

Longstaff and Sanders (1992), among others). Figure 1 graphs the time series of both the

short rate and spread. Over the 1983 to 2006 period, the short rate ranges from 1% to

11%, while the spread varies from -1% to 4%. There are several distinct periods of low and

high interest rates, as well as spread ranges. Since the correlation between the short rate

and spread is −0.31, there exists the potential for the two variables combined to possess

information in addition to a single factor.

Figure 2 presents a scatter plot of the short rate and term structure slope. Of particular

importance to estimating the conditional distribution of interest rates is the availability of

the conditioning data. Figure 2 shows that there are two holes in the data ranges, namely at

low short rates (i.e., from 1–4%) and low spreads (i.e., from -1–2%), and at high short rates

(i.e., from 9.5–11.5%) and low spreads (i.e., from -1–1%). This means that the researcher

should be cautious in interpreting the implied distribution of interest rates conditional on

these values for the short rate and spread.
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2.2 The Conditional Distribution of Interest Rates: A First Look

In order to understand the stochastic properties of interest rates, consider conditioning the

data on four possible states: (i) high level (i.e., of the short rate)/high slope, (ii) high

level/low slope, (ii) low level/low slope, and (iv) low level/high slope. In a generalized

method of moments framework, the moment conditions are:3

E



(∆iτt,t+1 − µτ
hr:hs)× It,hr:hs

(∆iτt,t+1 − µτ
hr:ls)× It,hr:ls

(∆iτt,t+1 − µτ
lr:ls)× It,lr:ls

(∆iτt,t+1 − µτ
lr:hs)× It,lr:hs

[(∆iτt,t+1 − µτ
hr:hs)

2 − στ
hr:hs

2]× It,hr:hs

[(∆iτt,t+1 − µτ
hr:ls)

2 − στ
hr:ls

2]× It,hr:ls

[(∆iτt,t+1 − µτ
lr:ls)

2 − στ
lr:ls

2]× It,lr:ls

[(∆iτt,t+1 − µτ
lr:hs)

2 − στ
lr:hs

2]× It,lr:hs



= 0, (1)

where ∆iτt,t+1 is the change in the τ -period interest rate from t to t + 1, µτ
·|· is the mean

change in rates conditional on one of the four states occurring, στ
·|· is the volatility of the

change in rates conditional on these states, and It,·|· = 1 if [·|·] occurs, zero otherwise. These

moments, µτ and στ , thus represent coarse estimates of the underlying conditional moments

of the distribution of interest rates.

These moment conditions allow us to test a variety of restrictions. First, are στ
hr:hs = στ

hr:ls

and στ
lr:hs = στ

lr:ls? That is, does the slope of the term structure help explain volatility at

various interest rate levels? Second, similarly, with respect to the mean, are µτ
hr:hs = µτ

hr:ls

and µτ
lr:hs = µτ

lr:ls? Table 1 provides estimates of µτ
·|· and στ

·|·, and the corresponding test

statistics. Note that the framework allows for autocorrelation and heteroskedasticity in the

underlying squared interest rate series when calculating the variance-covariance matrix of

the estimates. Further, the cross-correlation between the volatility estimates is taken into

account in deriving the test statistics.

Several facts emerge from Table 1. First, as documented by others (e.g., Chan, Karolyi,

Longstaff and Sanders (1992), and Aı̈t-Sahalia (1996a)), interest rate volatility is increasing

in the short rate of interest. Of some interest here, this result holds across the yield curve.

That is, conditional on either a low or high slope, volatility is higher for the 6-month, 1-

year, 3-year and 5-year rates at higher levels of the short rate. Second, the slope also plays

3We define a low (high) level or spread as one that lies below (above) its unconditional mean. Here, this
mean is being treated as a known constant, though, of course, it is estimated via the data.
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an important role in determining interest rate volatility. In particular, at high levels of

interest rates, the volatility of interest rates across maturities is much higher at steeper

slopes. For example, the 6-month and 5-year volatilities rise from 5.25 and 6.35 to 7.65

and 7.75 basis points, respectively. Formal tests of the hypothesis στ
hr:hs = στ

hr:ls provide

1% level rejections at each of the maturities. There is some evidence in the literature that

expected returns on bonds are higher for steeper term structures (see, for example, Fama

(1986) and Boudoukh, Richardson, Smith and Whitelaw (1999a, 1999b)); these papers and

the finding of Engle, Lilien and Robins (1987) may provide a link to the volatility result

here. Third, the effect of the slope is most important at high interest rate levels. At low

short rate levels, though the volatility at low slopes is less than that at high slopes, the

effect is much less pronounced. This is confirmed by the fact that a number of the p-values

are no longer significant at conventional levels for the test of the hypothesis, στ
lr:hs = στ

lr:ls.

Fourth, the conditional means, though not in general reliably estimated, are consistent with

existing results in the literature (e.g., Chan, Karolyi, Longstaff and Sanders (1992), Aı̈t-

Sahalia (1996a), and Stanton (1997)). That is, at low levels of interest rates, the mean

tends to be greater than at high interest rates, which can be explained by mean reversion.

However, the table also provides an interesting new result, namely that the effect of the

slope is of higher magnitude than the level. Further, low slopes tend to be associated with

negative changes in rates, while high slopes are linked to positive interest rate changes.

2.3 The Conditional Distribution of Interest Rates: A Closer Look

In order to generalize the results of Section 2.2, we employ a kernel estimation procedure for

estimating the relation between interest rate changes and components of the term-structure

of interest rates. Kernel estimation is a nonparametric method for estimating the joint

density of a set of random variables. Specifically, given a time series ∆iτt,t+1, irt and ist (where

ir is the level of interest rates, and is is the slope), generated from an unknown density

f(∆iτ , ir, is), then a kernel estimator of this density is

f̂(∆iτ , ir, is) =
1

Thm

T∑
t=1

K

(
(∆iτ , ir, is)− (∆iτt,t+1, i

r
t , i

s
t)

h

)
, (2)

where K(·) is a suitable kernel function and h is the window width or smoothing parameter.

We employ the commonly used independent multivariate normal kernel for K(·). The

other parameter, the window width, is chosen based on the dispersion of the observations.
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For the independent multivariate normal kernel, Scott (1992) suggests the window width,

ĥ = kσ̂iT
−1

m+4 ,

where σ̂i is the standard deviation estimate of each variable zi, T is the number of obser-

vations, m is the dimension of the variables, and k is a scaling constant often chosen via

cross-validation. Here, we employ a cross-validation procedure to find the k which provides

the right trade-off between the bias and variance of the errors. Across all the data points,

we find the k’s which minimize the mean-squared error between the observed data and the

estimated conditional data. This mean-squared error minimization is implemented using a

Jackknife-based procedure. In particular, the various implied conditional moments at each

data point are estimated using the entire sample, except for the actual data point and its

nearest neighbors.4 Once the k is chosen, the actual estimation of the conditional distri-

bution of interest rates involves the entire sample, albeit using window widths chosen from

partial samples. To coincide with Section 2.2., we focus on the first two conditional moments

of the distribution, and it is possible to show that

µ̂∆iτ (i
r, is) =

T∑
t=1

wt(i
r, is)∆iτt (3)

σ̂2
∆iτ (i

r, is) =
T∑

t=1

wt(i
r, is)(∆iτt − µ̂∆iτ (i

r, is))2, (4)

where wt(i
r, is) = K

(
(ir,is)−(irt ,ist )

h

)
/
∑T

t=1 K
(

(ir,is)−(irt ,ist )

h

)
. The weights, wt(i

r, is), are deter-

mined by how close the chosen state, i.e., the particular values of the level and slope, ir and

is, is to the observed level and slope of the term structure, irt and ist .

As an illustration, using equation (4), Figure 3 provide estimates of the volatility of daily

changes in the 1-year rate, conditional on the current level of the short rate and the slope

of the term structure (i.e., irt and ist). While Figure 3 represents only the 1-year rate, the

same effects carry through to the rest of the yield curve and have therefore been omitted

for purposes of space. The figure maps these estimates to the relevant range of the data, in

particular, for short rates ranging from 3% to 11% and slopes ranging from 0.0% to 3.5%.

The volatility is maximized at high interest rate levels and high slopes though the more

4Due to the serial dependence of the data, we performed the cross-validation omitting 100 observations,
i.e., four months in either direction of the particular data point in question. Depending on the moments in
question, the optimal k’s range from roughly 1.7 to 27.6, which implies approximately twice to twenty eight
times the smoothing parameter of Scott’s asymptotically optimal implied value.
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dramatic changes occur at high slopes.

To see this a little more clearly, Figures 4 and 5 present cut-throughs of Figure 3 across

the term structure at short rates of 8.0% and 5.5%, respectively. From Figure 2, these

levels represent data ranges in which there are many different slopes; thus, conditional on

these levels, the estimated relation between the volatility of the 6-month, 1-year, 3-year and

5-year rates as a function of the slope is more reliable. Several observations are in order.

First, as seen from the figures, volatility is increasing in the slope for all maturities, though

primarily only for steep term structures, i.e., above 2.0%. Second, volatility is also higher

at greater magnitudes of the short rate albeit less noticeably. These results suggest that

any valuation requiring a volatility estimate of interest rates should be done with caution.

For example, estimating volatility when the term structure is flat relative to upward sloping

should lead to quite different point estimates. Third, the relation between volatility and the

slope is nonlinear, which, as it turns out in Section 3.3, will lead to a nonlinear continuous-

time diffusion process. This feature can be potentially important as the majority of the

multifactor, term structure pricing models are derived from the affine class. Alternatively,

Figures 6 and 7 provide cut-throughs of Figure 3 across the term structure at slopes of 2.75%

and 1.00%, respectively. These slopes represent data ranges in which there are a number of

observations of the interest rate level. The figures show that the estimated relation between

the volatility of the 6-month, 1-year, and especially the 3-year and 5-year rates as a function

of the level depends considerably on the slope of the term structure. For example, the

volatility of the 6-mth and 1-year interest rate change are almost flat over levels of 3.0% to

6.0% at low slopes, whereas it increases roughly 200 basis points at high slopes. Similarly,

even at the long end of the yield curve, the increase in volatility is higher at high versus low

slopes.

3 Estimation of a Continuous-Time Multi-factor Dif-

fusion Process

The results of Section 2 suggest that the volatility of changes in the term structure of interest

rates depends on at least two factors. Given the importance of continuous-time mathematics

in the fixed income area, the question arises as to how these results can be interpreted in a

continuous-time setting. Using data on bond prices, and explicit theoretical pricing models

(e.g., Cox, Ingersoll and Ross (1985)), Brown and Dybvig (1989), Pearson and Sun (1994),
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Gibbons and Ramaswamy (1994) and Dai and Singleton (2000) all estimate parameters of the

underlying interest-rate process in a fashion consistent with the underlying continuous-time

model. These procedures limit themselves, however, to fairly simple specifications.

As a result, a literature emerged which allows estimation and inference of fairly gen-

eral continuous-time diffusion processes using discretely sampled data. Aı̈t-Sahalia (2007a)

provides a survey of this literature and we provide a quick review here. First, at a para-

metric level, there has been considerable effort in the finance literature at working through

maximum likelihood applications of continuous-time processes with discretely sampled data,

starting with Lo (1988) and continuing more recently with Aı̈t-Sahalia (2002) and Aı̈t-Sahalia

and Kimmel (2007a, 2007b). Second, by employing the infinitesimal generators of the un-

derlying continuous-time diffusion processes, Hansen and Scheinkman (1995) and Conley,

Hansen, Luttmer and Scheinkman (1995) construct moment conditions that also make the

investigation of continuous-time models possible with discrete time data. Third, in a non-

parametric framework, Aı̈t-Sahalia (1996a, 1996b) develops a procedure for estimating the

underlying process for interest rates using discrete data by choosing a model for the drift

of interest rates and then nonparametrically estimating its diffusion function. Finally, as an

alternative method, Stanton (1997) employs approximations to the true drift and diffusion of

the underlying process, and then nonparametrically estimates these approximation terms to

back out the continuous-time process (see also Bandi (2002), Chapman and Pearson (2000)

and Pritsker (1998)). The advantage of this approach is twofold: (i) similar to the other

procedures, the data need only be observed at discrete time intervals, and (ii) the drift and

diffusion are unspecified, and thus may be highly nonlinear in the state variable.

In this section, we extend the work of Stanton (1997) to a multivariate setting and pro-

vide for the non-parametric estimation of the drift and volatility functions of multivariate

stochastic differential equations. Similar to Stanton (1997), we use Milshtein’s (1978) ap-

proximation schemes for writing expectations of functions of the sample path of stochastic

differential equations in terms of the drift and volatility coefficients. If the expectations

are known (albeit estimated nonparametrically in this paper) and the functions are chosen

appropriately, then the approximations can be inverted to recover the drift and volatility

coefficients.
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3.1 Drift, Diffusion and Correlation Approximations

Assume that no arbitrage opportunities exist, and that bond prices are functions of two state

variables, the values of which can always be inverted from the current level, Rt, and a second

state variable, St. Assume that these variables follow the (jointly) Markov diffusion process

dRt = µR(Rt, St) dt + σR(Rt, St) dZR
t (5)

dSt = µS(Rt, St) dt + σS(Rt, St) dZS
t , (6)

where the drift, volatility and correlation coefficients (i.e., the correlation between ZR and

ZS) all depend on Rt and St. Define the vector Xt = (Rt, St).

Under suitable restrictions on µ, σ, and a function f , we can write the conditional

expectation Et [f(Xt+∆)] in the form of a Taylor series expansion,5

Et [f(Xt+∆)] = f(Xt) + Lf(Xt)∆ +
1

2
L2f(Xt)∆

2 + . . . +
1

n!
Lnf(Xt)∆

n + O(∆n+1), (7)

where L is the infinitesimal generator of the multivariate process {Xt} (see Øksendal (1985)

and Hansen and Scheinkman (1995)), defined by

Lf(Xt) =

(
∂f(Xt)

∂Xt

)
µX(Xt) +

1

2
trace

[
Σ(Xt)

(
∂2f(Xt)

∂Xt∂X ′
t

)]
,

where

Σ(Xt) =

(
σ2

R(Rt, St) ρ(Rt, St)σR(Rt, St)σS(Rt, St)

ρ(Rt, St)σR(Rt, St)σS(Rt, St) σ2
S(Rt, St)

)
.

Equation (7) can be used to construct numerical approximations to Et[f(Xt+∆)] in the

form of a Taylor series expansion, given known functions µR, µS, ρ, σR and σS (see, for

5For a discussion see, for example, Hille and Phillips (1957), Chapter [11]. Milshtein (1974, 1978) gives
examples of conditions under which this expansion is valid, involving boundedness of the functions µ, σ, f
and their derivatives. There are some stationary processes for which this expansion does not hold for the
functions f that we shall be considering, including processes such as

dx = µdt + x3 dZ,

which exhibit “volatility induced stationary” (see Conley, Hansen, Luttmer and Scheinkman (1995)). How-
ever, any process for which the first order Taylor series expansion fails to hold (for linear f) will also fail if
we try to use the usual numerical simulation methods (e.g. Euler discretization). This severely limits their
usefulness in practice.
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example, Milshtein (1978)). Alternatively, given an appropriately chosen set of functions

f(·) and nonparametric estimates of Et[f(Xt+∆)], we can use equation (7) to construct

approximations to the drift, volatility and correlation coefficients (i.e., µR, µS, ρ, σR and

σS) of the underlying multifactor, continuous-time diffusion process. The nice feature of this

method is that the functional forms for µR, µS, ρ, σR and σS are quite general, and can be

estimated nonparametrically from the underlying data. Rearranging equation (7), and using

a time step of length i∆ (i = 1, 2, . . .), we obtain

Êi(Xt) ≡ 1

i∆
Et [f(Xt+i∆)− f(Xt)] ,

= Lf(Xt) +
1

2
L2f(Xt)(i∆) + . . . +

1

n!
Lnf(Xt)(i∆)n−1 + O(∆n). (8)

From equation (8), each of the Êi is a first order approximation to Lf ,

Êi(Xt) = Lf(Xt) + O(∆).

Now consider forming linear combinations of these approximations,
∑N

i=1 αiÊ
i(Xt). That is,

from equation (8),

N∑
i=1

αiÊ
i(Xt) =

[
N∑

i=1

αi

]
Lf(Xt) +

1

2

[
N∑

i=1

αii

]
L2f(Xt)∆ +

1

6

[
N∑

i=1

αii
2

]
L3f(Xt)∆

2 + . . . . (9)

Can we choose the αi so that this linear combination is an approximation to Lf of order

N?

For the combination to be an approximation to Lf , we require first that the weights

α1, α2, . . . , αN sum to 1. Furthermore, from equation (9), in order to eliminate the first

order error term, the weights must satisfy the equation

N∑
i=1

αii = 0.

More generally, in order to eliminate the nth order error term (n ≤ N−1), the weights must

satisfy the equation,
N∑

i=1

αii
n = 0.
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We can write this set of restrictions more compactly in matrix form as



1 1 1 · · · 1

1 2 3 · · · N

1 4 9 · · · N2

...
...

...
. . .

...

1 2N−1 3N−1 · · · NN−1


α ≡ V α =



1

0

0
...

0


.

The matrix V is called a Vandermonde matrix, and is invertible for any value of N . We can

thus obtain α by calculating

α = V −1


1

0
...

0.

 . (10)

For example, for N = 3, we obtain

α =


1 1 1

1 2 3

1 4 9


−1

1

0

0

 , (11)

=


3

−3

1

 . (12)

Substituting α into equation (9), and using equation (8), we get the following third order

approximation of the infinitesimal generator of the process {Xt}:

Lf(Xt) =
1

6∆
[18Et (f(Xt+∆)− f(Xt))− 9Et (f(Xt+2∆)− f(Xt)) + 2Et (f(Xt+3∆)− f(Xt))]

+ O(∆3).

To approximate a particular function g(x), we now need merely to find a specific function f

satisfying

Lf(x) = g(x).

12



For our purposes, consider the functions

f(1)(R) ≡ R−Rt,

f(2)(S) ≡ S − St,

f(3)(R) ≡ (R−Rt)
2 ,

f(4)(S) ≡ (S − St)
2 ,

f(5)(R,S) ≡ (R−Rt) (S − St) .

From the definition of L, we have

Lf(1)(R) = µR(R,S),

Lf(2)(S) = µS(R,S),

Lf(3)(R) = 2(R−Rt)µR(R,S) + σ2
R(R,S),

Lf(4)(S) = 2(S − St)µS(R,S) + σ2
S(R,S),

Lf(5)(R,S) = (S − St)µR(R,S) + (R−Rt)µS(R,S) + ρ(R,S)σR(R,S)σS(R,S).

Evaluating these at R = Rt, S = St, we obtain

Lf(1)(Rt) = µR(Rt, St),

Lf(2)(St) = µS(Rt, St),

Lf(3)(Rt) = σ2
R(Rt, St),

Lf(4)(St) = σ2
S(Rt, St),

Lf(5)(Rt, St) = ρ(Rt, St)σR(Rt, St)σS(Rt, St).

Using each of these functions in turn as the function f above, we can generate approximations
to µR, µS, σR, σS and ρ respectively. For example, the third order approximations (taking
square roots for σR and σS) are

µR(Rt, St) =
1

6∆
[18Et (Rt+∆ −Rt)− 9Et (Rt+2∆ −Rt) + 2Et (Rt+3∆ −Rt)]

+ O(∆3), (13)

µS(Rt, St) =
1

6∆
[18Et (St+∆ − St)− 9Et (St+2∆ − St) + 2Et (St+3∆ − St)]

+ O(∆3),

σR(Rt, St) =

√
1

6∆

(
18Et

[
(Rt+∆ −Rt)

2
]
− 9Et

[
(Rt+2∆ −Rt)

2
]

+ 2Et

[
(Rt+3∆ −Rt)

2
])
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σS(Rt, St) =

√
1

6∆

(
18Et

[
(St+∆ − St)

2
]
− 9Et

[
(St+2∆ − St)

2
]

+ 2Et

[
(St+3∆ − St)

2
])

σRS(Rt, St) =
1

6∆
(18Et [(Rt+∆ −Rt) (St+∆ − St)]− 9Et [(Rt+2∆ −Rt) (St+2∆ − St)]

+ 2Et [(Rt+3∆ −Rt) (St+3∆ − St)]) .

The approximations of the drift, volatility and correlation coefficients are written in

terms of the true first, second and cross moments of multiperiod changes in the two state

variables. If the two-factor assumption is appropriate, and a large stationary time series is

available, then these conditional moments can be estimated using appropriate nonparametric

methods. In this paper, we estimate the moments using multivariate density estimation, with

appropriately chosen factors as the conditioning variables. All that is required is that these

factors span the same space as the true state variables.6 The results for daily changes were

provided in Section 2. Equation (13) shows that these estimates are an important part

of the approximations to the underlying continuous-time dynamics. By adding multiperiod

extensions of these nonparametric estimated conditional moments, we can estimate the drift,

volatility and correlation coefficients of the multifactor process described by equations (5)

and (6).

Figure 8 provides the first, second and third order approximations to the diffusion of

the short rate against the short rate level and the slope of the term structure.7 The most

notable result is that a first order approximation works well; thus, one can consider the

theoretical results of this section as a justification for discretization methods currently used

in the literature. The description of interest rate behavior given in Section 2, therefore,

carries through to the continuous-time setting. Our major finding is that the volatility of

interest rates is increasing in the level of interest rates mostly for sharply upward sloping

term structures. The question then is what does Figure 8, and more generally the rest of

the estimated process, mean for fixed-income pricing?

6See Duffie and Kan (1996) for a discussion of the conditions under which this is possible (in a linear
setting).

7Figures showing the various approximations to the drift of the short rate, the drift and diffusion of the
slope, and the correlation between the short rate and the slope are available upon request.
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4 A Generalized Longstaff and Schwartz (1992) Model

Longstaff and Schwartz (1992) provide a two-factor general equilibrium model of the term

structure. Their model is one of the more popular versions within the affine class of models

for describing the yield curve (see also Cox, Ingersoll and Ross (1985), Chen and Scott (1995),

Duffie and Kan (1996) and Dai and Singleton (2000)). In the Longstaff and Schwartz setting,

all fixed-income instruments are functions of two fundamental factors, the instantaneous

interest rate and its volatility. These factors follow diffusion processes, which in turn lead

to a fundamental valuation condition for the price of any bond, or bond derivative. As an

alternative, here we also present a two-factor continuous-time model for interest rates. The

results of Section 2 suggest that the affine class may be too restrictive.

While our results shed valuable light on the factors driving interest rate movements,

however, there are potential problems in using this specification to price interest rate con-

tingent claims. A general specification for Rt and St (and the associated prices of risk) may

allow arbitrage opportunities if either of these state variables is a known function of an asset

price.8 Of course, this point is true of all previous estimations of continuous-time processes

to the extent that they use a priced proxy as the instantaneous rate. If we are willing to

assume that we have the right factors, however, then there is no problem in an asymptotic

sense. That is, since we are estimating these processes nonparametrically, as the sample

size gets larger, our estimates will converge to the true functions, which are automatically

arbitrage-free (if the economy is). Nevertheless, this is of little consolation if we are trying

to use the estimated functions to price assets.

To get around this problem, we need to write the model in a form in which neither state

variable is an asset price or a function of asset prices. In this paper, we follow convention by

using the observable 3-month yield as a proxy for the instantaneous rate, Rt. Furthermore,

suppose that the mapping from (R,S) to (R, σR) is invertible,9 so we can write asset prices

as a function of R and σR, instead of R and S.10 Since σR is not an asset price, using this

8See, for example, Duffie, Ma and Yong (1995). The problem is that, given such a model, we can price
any bond, and are thus able to calculate what the state variable “ought” to be. Without imposing any
restrictions on the assumed dynamics for Rt and St, there is no guarantee that we will get back to the same
value of the state variable that we started with.

9That is, for a given value of Rt, the volatility, σR, is monotonic in the spread, S. This is the case in
most existing multifactor interest rate models, including, for example all affine models, such as Longstaff
and Schwartz (1992).

10This follows by writing
V (R,S) = V (R,S(R, σR)) ≡ U(R, σR).
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variable avoids the inconsistency problem.

Specifically, suppose that the true model governing interest rate movements is a general-

ization of the two factor Longstaff and Schwartz (1992) model,

dRt = µR(R, σ) dt + σ dZ1, (14)

dσt = µσ(R, σ)dt + ρ(R, σ)s(R, σ) dZ1 +
√

1− ρ2s dZ2, (15)

where dZ1 dZ2 = 0.11 In vector terms,

d(Rt, σt) = M dt + θ dZ,

where

M ≡

 µR

µσ

 ,

θ ≡

 σ 0

ρs
√

1− ρ2s

 .

Asset prices, and hence the slope of the term structure, can be written as some function of

the short rate and instantaneous short rate volatility, S(R, σ).

From equations (14) and (15), how do we estimate the underlying processes for R and

σ given the estimation results of Section 3? Although the short rate volatility, σ, is not

directly observable, it is possible to estimate this process. Specifically, using Ito’s Lemma,

together with estimates for µR, σR, µS, σS and ρ, it is possible to write

dσt = σRdRt+σSdSt+
1

2

[
σRRσ2(Rt, St) + σSSσ2

S(Rt, St) + 2σRSσ(Rt, St)σS(Rt, St)ρ(Rt, St)
]
dt.

Given this equation, and the assumption that the function S(R, σ) is invertible, the dynamics

of σt can be written as a function of the current level of R and σ in a straightforward way.

This procedure requires estimation of a matrix of second derivatives. Although there are

well-known problems in estimating higher-order derivatives using kernel density estimation

techniques, it is possible to link the results of Section 2 and 3 to this generalized Longstaff and

Schwartz (1992) model. In particular, using estimates of the second derivatives (not shown),

11This specification is the most convenient to deal with, since we now have orthogonal noise terms. The
correlation between the diffusion terms is ρ, and the overall variance of σ is s2 dt.
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several facts emerge. First, due to the small magnitudes of the estimated drifts of the state

variables R and S, the drift of σ depends primarily on the second order terms. Consequently,

the importance of the second factor (the slope) is determined by how much the sensitivity

of short rate volatility to this factor changes relative to the changes in the sensitivity to the

first factor (the level). The general pattern is that volatility increases at a slower rate for

high levels and a faster rate for high slopes. Consequently, for high volatilities and levels,

the drift of volatility is negative, generating mean reversion. The effect of the second factor

however is to counter this phenomenon. Second, the diffusion of σ is determined by the

sensitivities of short rate volatility to the two factors and the magnitudes of the volatilities

of the factors. Based on the estimates of the volatilities and derivatives, the slope has the

dominant influence on this effect. In particular, the volatility of σ is high for upward sloping

term structures, which also correspond to states with high short rate volatility. Moreover,

sensitivity of this diffusion to the two factors is larger in the slope direction than in the level

direction.

As an alternative to the above method, we can estimate an implied series for σ by

assuming that the function S(R, σ) is invertible, i.e., that we can equivalently write the

model in the form

dRt = µR(Rt, St)dt + σ(Rt, St)dZ
∗
1

dSt = µS(Rt, St)dt + σS(Rt, St)dZ
∗
2 ,

where Z∗
1 and Z∗

2 may be correlated. To estimate the function σ(R,S), we apply the method-

ology described in Section 3.1 to the function f(3)(R,S) ≡ (R−Rt)
2. Applying the estimated

function to each observed (R,S) pair in turn yields a series for the volatility σ, which we can

then use in estimating the generalized Longstaff and Schwartz (1992) model given in equa-

tions (14) and (15).12 This procedure is in stark contrast to that of Longstaff and Schwartz

(1992), and others, who approximate the dynamics of the volatility factor as a Generalized

Autoregressive Conditional Heteroskedasticity (GARCH) process. The GARCH process is

not strictly compatible with the underlying dynamics of their continuous-time model; here,

the estimation is based on approximation schemes to the diffusion process and is internally

consistent. Due to the difficulties in estimating derivatives, we choose this second approach

12Although the use of an estimated series for σ rather than the true series may not be the most efficient
approach, this procedure is consistent. That is, the problem will disappear as the sample size becomes large,
and our pointwise estimates of σ converge to the true values.
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to estimate the continuous-time process.13

4.1 A General Two Factor Diffusion Process: Empirical Results

Figures 10–12 show approximations to equation (15) for the generalized Longstaff and

Schwartz (1992) process as a function of the two factors, the instantaneous short rate and

its volatility. It is important to point out that there is little available data at low short

rates/high volatilities and high short rates/low volatilities, which corresponds to the earlier

comment about interest rates and spreads (see Figure 9). Therefore, results in these regions

need to be treated cautiously.

Figures 10 and 11 provide the estimates of the continuous-time process for the second in-

terest factor, namely its volatility. Several observations are in order. First, there is estimated

mean-reversion in volatility; at low (high) levels of volatility, volatility tends to drift upward

(downward). The effect of the level of interest rates on this relation appears minimal. Sec-

ond, and perhaps most important, there is clear evidence that the diffusion of the volatility

process is increasing in the level of volatility, yet is affected by the level of interest rates only

marginally. Moreover, volatility’s effect is nonlinear in that it takes effect only at higher

levels. This finding suggests extreme caution should be applied when inputting interest rate

volatility into derivative pricing models. Most of our models take the relation between the

level and volatility for granted; however, with increases from 3% to 11% in the interest rate

level, both volatility’s drift and diffusion exhibit only mild increases. On the other hand,

changes in the volatility level of much smaller magnitudes have a much larger impact on the

volatility process. This finding links the term structure slope result documented earlier in

the paper to a second factor, namely the volatility of the instantaneous rate, and provides

a close connection to the Engle, Lilien and Robins (1987) paper mentioned throughout this

article.

As the final piece of the multifactor process for interest rates, Figure 12 graphs a first

order approximation of the correlation coefficient between the short rate and the volatil-

ity, given values of the two factors. Taken at face value, the results suggest a complex

variance-covariance matrix between these series in continuous-time. In particular, while the

correlation decreases in the volatility for most interest rate levels, there appears to be some

nonmonotonicity across the level itself. Why is correlation falling as volatility increases?

13Though the first approach provides similar results to the second approach, the functional forms under-
lying the second method are more smooth and thus more suitable for analysis.
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Perhaps, high volatility, just like the corresponding high term structure slope, is associated

with aggregate economic phenomena that are less related to the level of interest rates. Given

that interest rates are driven by two relatively independent economic factors, namely expec-

tations about both real rates and inflation, this argument seems reasonable. It remains an

open question, however, what the exact relation is between Figure 12 and these economic

factors.

4.2 Valuation of Fixed-Income Contingent Claims

Given the interest rate model described in equation (15), we can write the price of an

interest rate contingent claim as V (r, σ, t), depending only on the current values of the two

state variables plus time. Then, by Ito’s Lemma,

dV (r, σ, t)

V (r, σ, t)
= m(r, σ, t) dt + s1(r, σ, t) dZ1 + s2(r, σ, t) dZ2, (16)

where

m(r, σ, t) V = Vt + µr(r, σ)VR + µσ(r, σ)Vσ +
1

2
trace

[
θT ∇2V (r, σ) θ

]
,

= Vt + µr(r, σ)Vr + µσ(r, σ)Vσ +
1

2
σ2Vrr +

1

2
s2Vσσ + ρσsVrσ, (17)

s1(r, σ, t) V = σVr + ρsVσ,

s2(r, σ, t) V =
√

1− ρ2sVσ.

The volatility of the asset, σV , is given by

σV V =
√

(σVr + ρsVσ)2 + (1− ρ2) s2V 2
σ ,

=
√

σ2V 2
r + 2ρσsVrVσ + s2V 2

σ .

With a one factor interest rate model, to prevent arbitrage, the risk premium on any asset

must be proportional to its standard deviation.14 Similarly, with two factors, absence of

arbitrage requires the excess return on an asset to be a linear combination of its exposure

14Suppose this did not hold for two risky assets. We could then create a riskless portfolio of these two
assets with a return strictly greater than r, leading to an arbitrage opportunity (see Ingersoll (1987)).
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to the two sources of risk. Thus, if the asset pays out dividends at rate d, we can write

m = r − d

V
+ λr(r, σ)

Vr

V
+ λσ(r, σ)

Vσ

V
, (18)

where λr and λσ are the prices of short rate risk and volatility risk respectively. Substituting

equation (18) into equation (17), and simplifying, leads to a partial differential equation

that must be satisfied by any interest rate contingent claim, assuming the usual technical

smoothness and integrability conditions (see, for example, Duffie (1988)),

1

2
σ2Vrr + [µr − λr] Vr +

1

2
s2Vσσ + [µσ − λσ] Vσ + ρσsVrσ + Vt − rV + d = 0, (19)

subject to appropriate boundary conditions. To price interest rate dependent assets, we need

to know not only the processes governing movements in r and σ, but also the prices of risk,

λr and λσ.

Equation (18) gives an expression for these functions in terms of the partial derivatives

Vr and Vσ, which could be used to estimate the prices of risk, given estimates of these

derivatives for two different assets, plus estimates of the excess return for each asset. As

mentioned above, it is difficult to estimate derivatives precisely using nonparametric density

estimation. Therefore, instead of following this route, one could avoid directly estimating

the partial derivatives, Vr and Vσ, by considering the instantaneous covariances between the

asset return and changes in the interest rate/volatility, cV r and cV σ. From equations (14),

(15) and (16) (after a little simplification),

 cV r

cV σ

 ≡

 dV dr/V dt

dV dσ/V dt

 =

 σ2 ρσs

ρσs s2

 Vr/V

Vσ/V

 . (20)

This can be inverted, as long as |ρ| < 1, to obtain

 Vr/V

Vσ/V

 =

 σ2 ρσs

ρσs s2

−1 cV r

cV σ

 ,

=
1

1− ρ2

 1/σ2 −ρ/σs

−ρ/σs 1/s2

 cV r

cV σ

 .

To preclude arbitrage, the excess return on the asset must also be expressible as a linear

20



combination of cV r and cV σ,

m = r − d

V
+ λ∗

r(r, σ)cV r + λ∗
σ(r, σ)cV σ. (21)

Given two different interest rate dependent assets, we can estimate the instantaneous co-

variances for each in the same way as we estimated ρ(r, σ) above. We can also estimate the

excess return for each asset, mi(r, σ) − r as a function of the two state variables. The two

excess return can be expressed in the form

 m1 − r

m2 − r

 =

 c1
V r c1

V σ

c2
V r c2

V σ

 λ∗
r

λ∗
σ

 ,

which can be inverted to yield an estimate of the prices of risk,

 λ∗
r

λ∗
σ

 =

 c1
V r c1

V σ

c2
V r c2

V σ

−1 m1 − r

m2 − r

 .

Finally, for estimates of the more standard representation of the prices of risk, λr and λσ,

equate equations (18) and (21), using equation (20), to obtain

 λr

λσ

 =

 σ2 ρσs

ρσs s2

 λ∗
r

λ∗
σ

 .

Given estimates for the process governing movements in r and σ, and the above procedure

for the functions λr and λσ, we can value interest rate dependent assets in one of two ways.

The first is to solve equation (19) numerically using a method such as the Hopscotch method

of Gourlay and McKee (1977). The second is to use the fact that we can write the solution

to equation (19) in the form of an expectation. Specifically, we can write V , the value of an

asset which pays out cash flows at a (possibly path dependent) rate Ct, in the form

Vt = E

[∫ T

t
e−
∫ s

t
(r̂u) duCs ds

]
, (22)

where r̂ follows the “risk adjusted” process,

dr̂τ = [µr(r̂τ , σ̂τ )− λr(r̂τ , σ̂τ )] dτ + σ̂τ dZ1, (23)

dσ̂τ = [µσ(r̂τ , σ̂τ )− λσ(r̂τ , σ̂τ )] dτ + ρs(r̂tau, σ̂τ ) dZ1 +
√

1− ρ2s dZ2, (24)
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for all τ > t, and where

r̂t = rt,

σ̂t = σt.

This says that the value of the asset equals the expected sum of discounted cash flows paid

over the life of the asset, except that it substitutes the risk adjusted process (r̂, σ̂) for the

true process (r, σ).

This representation leads directly to a valuation algorithm based on Monte Carlo simu-

lation. For a given starting value of (rt, σt), simulate a number of paths for r̂ and σ̂ using

equations (23) and (24). Along each path, calculate the cash flows Ct, and discount these

back along the path followed by the instantaneous riskless rate, r̂t. The average of the sum

of these values taken over all simulated paths is an approximation to the expectation in

equation (22), and hence to the security value, Vt. The more paths simulated, the closer the

approximation.

5 Conclusion

This paper provides a method for estimating multifactor continuous-time Markov processes.

Using Milshtein’s (1978) approximation schemes for writing expectations of functions of the

sample path of stochastic differential equations in terms of the drift, volatility and correlation

coefficients, we provide non-parametric estimation of the drift and diffusion functions of

multivariate stochastic differential equations. We apply this technique to the short- and

long-end of the term structure for a general two-factor, continuous-time diffusion process

for interest rates. In estimating this process, several results emerge. First, the volatility

of interest rates is increasing in the level of interest rates, only for sharply, upward sloping

term structures. Thus, the result of previous studies, suggesting an almost exponential

relation between interest rate volatility and levels, is due to the term structure on average

being upward sloping, and is not a general result per se. Second, the finding that partly

motivates this paper, i.e., the link between slope and interest rate volatility in Engle, Lilien

and Robins (1987), comes out quite naturally from the estimation. Finally, the slope of

the term structure, on its own, plays a large role in determining the magnitude of the

diffusion coefficient. These volatility results hold across maturities, which suggests that a

low dimensional system (with nonlinear effects) may be enough to explain the term structure
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of interest rates.

As a final comment, there are several advantages of the procedure adopted in this paper.

First, there is a constant debate between researchers on the relative benefits of using equi-

librium versus arbitrage-free models. Here, we circumvent this issue by using actual data to

give us the process and corresponding prices of risk. Since the real world coincides with the

intersection of equilibrium and arbitrage-free models, our model is automatically consistent.

Of course, in a small sample, statistical error will produce estimated functional forms that

do not conform. This problem, however, is true of all empirical work. Second, we show how

our procedure for estimating the underlying multifactor continuous-time diffusion process

can be used to generate fixed income pricing. As an example, we show how our results can

be interpreted within a generalized Longstaff and Schwartz (1992) framework, that is, one

in which the drift and diffusion coefficients of the instantaneous interest rate and volatility

are both (nonlinear) functions of the level of interest rates and the volatility. Third, and

perhaps most important, the pricing of fixed-income derivatives depends crucially on the

level of volatility. The results in this paper suggest that volatility depends on both the level

and slope of the term structure, and therefore contains insights into the eventual pricing of

derivatives.
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Table 1: Conditional Moments of Daily Interest Rate Changes (Basis Points)

The table presents summary statistics for daily changes in the 6-month, 1-year, 3-year, and 5-year
yields on U.S. government securities over the 1983 to 2006 period. Specifically, the table provides
the mean, volatility, and cross-correlation of these series, conditional on whether the level of the
short rate and slope of the term structure are either low or high (and the associated standard
errors). These states of the world are labeled HR and LR for high and low short rates, respectively,
and HS and LS for high and low slopes, respectively, and they occur with the probabilities given in
the first row of the table. A Wald test that the conditional moments are equal (and the associated
p-value), holding the short rate state fixed but varying the state for the slope of the term structure,
is also provided for the mean and volatility of these series.

HR,HS HR,LS χ2
HR,HS=HR,LS LR,HS LR,LS χ2

LR,HS=LR,LS

Probability 22.76% 26.83% 27.45% 22.96%
Mean (bp/day)

6-month 0.032 -0.292 1.747 0.031 0.056 0.033
(s.e.)/[p-value] (0.207) (0.131) [0.186] (0.092) (0.108) [0.857]

1-year 0.032 -0.365 2.339 0.060 0.069 0.003
(s.e.)/[p-value] (0.215) (0.147) [0.126] (0.120) (0.119) [0.957]

3-year 0.032 -0.365 1.462 0.063 0.082 0.007
(s.e.)/[p-value] (0.211) (0.158) [0.227] (0.167) (0.149) [0.932]

5-year -0.070 -0.371 1.304 0.017 0.110 0.170
(s.e.)/[p-value] (0.210) (0.158) [0.254] (0.167) (0.149) [0.680]

Volatility (bp/day)
6-month 7.645 5.248 35.314 3.715 4.006 0.862

(s.e.)/[p-value] (0.364) (0.165) [0.000] (0.163) (0.265) [0.353]
1-year 7.928 5.869 24.452 4.879 4.428 2.024

(s.e.)/[p-value] (0.367) (0.187) [0.000] (0.168) (0.266) [0.155]
3-year 7.928 5.869 13.564 6.784 5.520 18.173

(s.e.)/[p-value] (0.341) (0.187) [0.000] (0.180) (0.229) [0.000]
5-year 7.746 6.347 13.567 6.761 5.571 20.389

(s.e.)/[p-value] (0.329) (0.179) [0.000] (0.180) (0.229) [0.000]
Average Correlation

0.840 0.823 0.807 0.796
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Figure 1: Time series plot of the 3-month rate and term structure slope (i.e., the spread
between the 10-year and 3-month rate) over the 1983–2006 period.
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Figure 2: Scatter plot of the 3-month rate vs. the term structure slope over the 1983–2006
period.
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Figure 3: The volatility of the daily change in the 1-year yield (in basis points), conditional
on the short rate and the slope of term structure.
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Figure 4: The volatility of the daily change in yields vs. the spread, with the short rate fixed
at 8%.
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Figure 5: The volatility of the daily change in yields vs. the spread, with the short rate fixed
at 5.5%.
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Figure 6: The volatility of the daily change in yields vs. the short rate, with the spread fixed
at 2.75%.
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Figure 7: The volatility of the daily change in yields vs. the short rate, with the spread fixed
at 1%.
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Figure 8: First, second and third order approximations to the diffusion (annualized) of the
short rate vs. the short rate and the slope of the term structure.
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Figure 9: Scatter plot of the 3-month rate vs. the term structure volatility over the 1983–2006
period.
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Figure 10: First order approximation to the drift (annualized) of the volatility vs. the short
rate and the volatility of the term structure.

Volatility (sigma)

 0.03  0.04  0.05  0.06  0.07  0.08  0.09  0.1  0.11
r  0.005

 0.006
 0.007

 0.008
 0.009

 0.01
 0.011

 0.012
 0.013

 0.014
 0.015

Sigma

 0

 0.001

 0.002

 0.003

 0.004

 0.005

 0.006

 0.007

 0.008

 0.009

Figure 11: First order approximations to the diffusion (annualized) of the volatility vs. the
short rate and the volatility of the term structure.
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Figure 12: First order approximation to the correlation coefficient between changes in the
short rate and the volatility vs. the short rate and the volatility of the term structure.

35


