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1. Introduction
Consider a firm developing an innovative product.
Due to market pressures, production must begin soon
after the product development effort is complete,
which requires that an upstream supplier invests in
capacity while the design of the product and produc-
tion process are in flux. At this point in time, the firms
cannot write a precise, court-enforceable description
of the product and production process, and therefore
cannot contract on the price, production capacity, or
production quantity. Without a contract, the supplier
faces a classic hold-up problem and will underinvest
in capacity. Fortunately, to the extent that the firms
anticipate repeated business, they can adopt an infor-
mal agreement (i.e., a relational contract) to reward
the supplier for building capacity. The relational con-
tract is sustained, not by the court system, but by
the future value of a trusting, cooperative relation-
ship. This paper characterizes the structure of an opti-
mal relational contract that maximizes total expected
profit for the innovating firm and its supplier.
This study of relational contracting is motivated

by examples from the electronics, automobile, and
semiconductor equipment industries. In the electron-
ics industry, Toshiba designs and sells innovative

consumer products. Over the course of the prod-
uct development process, the design of the prod-
uct changes, sometimes substantially. If Toshiba’s
supplier were to delay making production capac-
ity investments until the product’s characteristics
were fully specified so that the firms could write a
court-enforceable procurement contract, the resulting
delays in production would be unacceptable. Con-
sequently, Toshiba and its supplier adopt a long-
term relational contract to create incentives for the
supplier to invest in production capacity. After the
supplier’s capacity investment and just before large-
scale production, Toshiba and its supplier write a
short-term, court-enforceable procurement contract.
Because the supplier’s capacity investment is sunk,
Toshiba could negotiate a lower price, but this
would damage the long-term trading relationship
and prospects for future innovative products. Instead,
Toshiba pays a generous price as stipulated by the
relational contract (Sako 1992). Similarly, rapid inno-
vation in hybrid vehicles creates difficulties in writ-
ing court-enforceable contracts for capacity (Hoyt and
Plambeck 2006). The degree to which suppliers are
willing to set aside capacity for buyers depends on
the depth of the buyer-supplier relationship. Because
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Ford has a relatively weak relationship with its hybrid-
transmission supplier, it has had more difficulty
obtaining capacity than Japanese automakers who
have stronger relationships with the supplier (Tierney
2005). As a final example, in the semiconductor equip-
ment industry, a common practice is that the buyer, in
advance of placing a binding order, shares a demand
forecast with its supplier. The forecast serves as an
informal or soft order intended to guide the supplier’s
production decisions. Insofar as the supplier trusts the
buyer to purchase in line with the forecast or compen-
sate the supplier on canceling soft orders, the supplier
dedicates production resources to meet the buyer’s
demand forecast (Cohen et al. 2003, Johnson 2003).
The managerial contribution of this paper is to pro-

vide insight into how and when supply chain partners
should employ relational contracts to provide incen-
tives for capacity investment. To do so, we employ a
repeated newsvendor model. We provide a rich char-
acterization of the optimal relational contract. It is
complex because the buyer should, under particular
circumstances, order more than the realized demand
in order to monitor the supplier’s capacity invest-
ment. We recommend a simpler relational contract
without such monitoring and identify broad, plau-
sible conditions under which the simpler relational
contract is effective. We also characterize the more
narrow circumstances under which the more com-
plex relational contract with monitoring is warranted.
Because employing relational contracts—even simple
ones—requires significant managerial effort in fore-
thought and coordination, we characterize when rela-
tional contracts create the most value and so justify
such effort: When the cost of capacity is moderate, the
bargaining power is evenly distributed, and the firms
do business together frequently.

1.1. Literature Review
Many papers in the supply chain contracting litera-
ture examine the impact of court-enforceable contracts
on capacity investment; Cachon (2003) and Chen
(2003) review this literature. If both price and capac-
ity are contractible, then by properly specifying the
terms of the contract, the buyer can maximize the
total supply chain profit and appropriate it entirely
(Cachon and Lariviere 2001). However, Cachon and
Lariviere (2001) observe that capacity may not be con-
tractible, and van Mieghem (1999) observes that even
the per-unit price may not be contractible, prior to the
supplier’s capacity investment; it is this setting where
price and capacity are noncontractible that we study.
Macaulay (1963) documented that instead of rely-

ing on formal, court-enforced contracts, firms rely
on informal agreements in procurement. Economists’
primary model for the study of such cooperation is
the repeated game, in which players face the same

“stage game” in every time period (Fudenberg and
Tirole 1991). A repeated game typically has many pos-
sible Nash equilibria, but the players can agree to
adopt one that is mutually advantageous. For exam-
ple, in Taylor and Wiggins (1997) a buyer inspects
every shipment from his manufacturer and rejects
faulty items. Taylor and Wiggins show how the buyer
can avoid costly inspection by paying a premium
for every shipment and threatening to terminate this
practice if she later discovers faulty items. Baker
et al. (2001, 2002) consider repeated procurement and
derive insights regarding ownership structure. Levin
(2003) considers a generic, repeated agency problem
with moral hazard or hidden information. The princi-
pal promises to pay the agent based on the outcome
of his action, but cannot write a formal contract. If the
principal reneges, the agent will refuse to cooperate
in future periods. The maximum credible payment,
and hence the strength of incentives for the agent,
depends on the value of future cooperation from the
agent.
Recently, researchers have explored relational con-

tracts in settings of interest to operations management.
Taylor and Plambeck (2007) consider a modeling set-
ting similar to the one here, but focus on com-
paring the performance of relational contracts that
commit the buyer to purchase a fixed quantity ver-
sus relational contracts that only specify a per-unit
price. Debo and Sun (2004) consider a repeated game
in which the supplier sets the wholesale price and
the buyer must order before realizing demand. They
show that the firms can increase their per-period
expected profit by adopting an informal agreement
in which the supplier offers a price that is lower
than his optimal stage-game price, and the buyer
responds by ordering a quantity that is larger than her
myopically-optimal order quantity. Tunca and Zenios
(2006) model the interplay between relational con-
tracts and supply auctions, with multiple suppliers
that differ in quality. For a review of the sociology lit-
erature on relational contracts, we refer the reader to
Plambeck and Taylor (2006).
This paper is organized as follows. Section 2 intro-

duces a single-period game, and §3 considers the
model with repeated interaction. Section 4 charac-
terizes the structure and performance of an optimal
relational contract. Section 5 examines the perfor-
mance of a simpler relational contract and shows
how the optimal relational contract changes when
the buyer observes the supplier’s capacity. Section 6
explains the effects of introducing a random produc-
tion cost, nonlinear capacity costs, outside options,
private information about the cost of capacity, and
private information about the demand forecast. Sec-
tion 7 provides concluding remarks.
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2. The Single-Period Game
Consider a simple two-firm supply chain for an inno-
vative product. The downstream firm, denoted the
buyer, sells the product to a market in which demand
is uncertain. The buyer (she) purchases the product
from an upstream supplier (he). Because of long lead
times, the supplier must invest in capacity before the
firms can contract for production and before demand
is known. The firms are risk neutral. This section
describes the physical model of capacity investment
and examines the case where the firms interact only
once. Subsequent sections consider the implications
of repeated interaction. Demand � is a random vari-
able with distribution function ���� and support � .
The retail price is r , and the per-unit cost of capac-
ity is c. The assumption that the retail price is fixed
is reasonable when the buyer targets a price point.
The salvage value of excess product or capacity is
assumed to be negligible. We also assume that the
production cost is negligible, but relax this assump-
tion in §6. The demand distribution and retail price
are known to both firms. However, only the buyer
observes the realized demand �; this assumption is
motivated by the observation that a supplier often
lacks visibility into the specifics of the buyer’s end
market (e.g., individual customers, orders). Further,
the buyer does not observe the supplier’s capacity;
this assumption is reasonable if the buyer is unable
to determine what human and physical assets (and
their productivity) the supplier has dedicated to the
buyer’s product.
The sequence of events is as follows:
1. The supplier invests in production capacity K

and incurs cost cK (unobserved by the buyer).
2. The buyer observes demand � (privately).
3. The firms contract on the wholesale price per

unit w. The buyer orders, and the supplier produces
and delivers.
Because the product is ill-defined when the supplier
initiates his capacity investment (Step 1), at that time
the firms are unable to write a court-enforceable pro-
curement contract. However, close to the selling sea-
son (Step 3), the product is well-defined and the firms
can contractually specify the price.
We assume that in this single-period game, the

firms split the ex post gain from trade rmin�K
��
according to the generalized Nash bargaining solu-
tion with share � ∈ �0
1� for the supplier. Specifi-
cally, the buyer contracts to pay w = �r per unit and
purchases the efficient quantity q = min�K
��.1 The

1 Suppose that the supplier and buyer bargain noncooperatively
by making alternating offers of the per-unit price as in Rubinstein
(1982). Then in the unique subgame perfect equilibrium, by the
theorem in Rubinstein (1982, p. 106), the price �r is immediately
offered and accepted. The parameter � ∈ �0
1� depends on which

profit for the supplier (excluding the sunk cost of
capacity) is �rmin�K
��, and the profit for the buyer
is �1 − ��rmin�K
��. The Nash bargaining solution
with � = 1/2 is the unique outcome that satisfies a
set of axiomatic properties including Pareto optimal-
ity and independence of irrelevant alternatives (Nash
1950). The economics literature on incomplete con-
tracts and on relational contracts adopts the gener-
alized Nash bargaining solution (e.g., Grossman and
Hart 1986, Baker et al. 2002), and interprets � ∈ �0
1�
as the supplier’s bargaining strength. The supplier’s
bargaining strength is influenced by many factors
such as patience for negotiation, whether the buyer or
supplier makes the first offer, personal relationships,
previous experience in negotiation, relative size, and
market forces.
Anticipating the per-unit price �r , the supplier’s

expected profit when he builds K units of capacity is

�rE�min�K
���− cK�
The supplier faces a newsvendor problem, and his
optimal capacity is

K =�−1��1− c/�r�+�� (1)

The supplier’s and buyer’s expected profit are

�S = �rE�min�K
���− cK
�B = �1−��rE�min�K
����

The total expected profit rE�min�K
���−cK is max-
imized at �K =�−1��1− c/r�+�. If the supplier captures
all the gain from trade so that all system revenue
accrues to him (� = 1), then he will build the first-best
level of capacity �K. If the buyer captures a portion
of the gain from trade (� < 1), then the supplier will
build a level of capacity that is smaller than the first
best �K. This is a classic hold up problem: The sup-
plier invests too little because he will capture only a
fraction of the return on investment. If the capacity
cost is sufficiently high (c ≥ �r), then the supplier’s
incentive to invest is eliminated (K = 0).

3. A Model of Repeated Interaction
Now suppose that the firms produce and sell a
succession of distinct products, repeating the game
described in §2 in periods t = 1
2
 � � � � Because the

firm makes the first offer, the time between offers, the discount fac-
tor, and each firm’s cost for delay in bargaining. The key to extend-
ing Rubinstein’s theorem to this setting with private information is
to recognize that the expected profit after contracting on per-unit
price w is �r −w�E�min�K
��� for the buyer and wE�min�K
��� for
the supplier. The private information is embedded in the constant
multiplier E�min�K
��� and does not affect the subgame perfect
equilibrium.
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product produced in each period is distinct, the sup-
plier must make a new capacity “investment” in
each period. (This does not necessarily mean that
the supplier builds a new production facility every
period; instead, the capacity could be thought of as
reserved for the buyer’s specific product.)2 The firms
are infinitely lived. At the end of each period their
game terminates with probability �, and the common
discount factor is �′. The termination probability may
be a measure of the stability of the firms, economic
conditions, or the riskiness of the product market. The
discount factor reflects the firms’ cost of capital and
the length of time between successive products. The
effective discount factor is �= �1−���′.
With repeated interaction, the firms can adopt an

informal agreement (relational contract) that moti-
vates the supplier to build more capacity than in
the single-period game §2. For each period t =
1
2
 � � � 
	, the relational contract specifies that the
buyer makes an initial transfer payment to the sup-
plier Dt , orders quantity q = qt��� ≥ 0 contingent on
her realized demand �, and pays the supplier dt�q�
to produce and deliver the q units. The relational
contract also specifies that the supplier builds capac-
ity Kt = max�∈� �qt���� so that he can produce the
requested quantity. We do not place restrictions on the
functions qt�·� and dt�·� beyond the obvious require-
ment that the requested quantity qt�·� be nonnegative;
in particular, the functions need not be strictly increas-
ing on �0
K�. The sequence of events is as follows:
0. The buyer pays the supplier Dt .
1. The supplier invests in production capacity Kt

and incurs cost cKt (unobserved by the buyer).
2. The buyer observes demand �t (privately) and

orders quantity qt��t� from the supplier.
3. The supplier produces and delivers quantity qt ,

and the buyer pays him dt�qt�.
Although, for simplicity, we describe the payments as
being from the buyer to the supplier, the payments
may be negative, indicating that the supplier pays the
buyer. The terms �Dt
dt
 qt
Kt� for each period t may
depend on all that the firms have commonly observed
up to the beginning of period t, for t = 1
2
 � � � 
	,
and are not court-enforceable. Each firm decides dy-
namically whether or not to adhere to the terms, and
seeks to maximize its own expected discounted profit.
(The letter “d” in the initial transfer payment Dt and
in the quantity-contingent payment dt�q� is mnemonic

2 To the extent that the product is truly innovative, entirely new
capacity may be required, rendering prior capacity investment irrel-
evant. However, to the extent that prior capacity investments influ-
ence the cost of building or allocating capacity for the new product,
a richer model is required. For a model that captures the dynamic
impact of capacity investment (albeit in a context where prior
capacity investments are commonly observed) see Plambeck and
Taylor (2006).

for “discretionary.”) A trigger strategy is to adhere
to the terms until a player publicly fails to do so,3

and thereafter to play the equilibrium strategy for
the single-period game §2. In particular, if either firm
fails to adhere to the quantity-contingent payment,
the firms revert to Nash bargaining (i.e., the buyer
pays �r per unit and purchases the efficient quan-
tity q = min�K
��). The terms �Dt
dt
 qt
Kt�t=1
2
���
	
and trigger strategies must constitute a perfect public
equilibrium, and are then called a self-enforcing rela-
tional contract (Baker et al. 2001, 2002; Levin 2003).4

Once the firms coordinate on a self-enforcing rela-
tional contract, neither party will subsequently wish
to deviate from it unilaterally.
Our problem is to construct an optimal relational

contract, that is, a self-enforcing relational contract
that maximizes the firms’ total expected discounted
profit. We subsequently explain (see footnote 5) how
to set D1 to implement any allocation of the surplus
expected discounted profit generated by an optimal
relational contract.
Trigger strategies provide maximal incentives for

the firms to adhere to the specified terms of trade, be-
cause the noncooperative outcome is the most severe
punishment for cheating that is credible. Therefore
one may, without loss of generality, restrict attention
to trigger strategies in deriving optimal terms of trade
(Levin 2003). A concern with trigger strategies is that,
if one firm violated the relational contract and pun-
ishment ensued, the firms could increase their ongo-
ing profits by renegotiating to resume cooperation.
Levin (2003, p. 840) explains how to make the opti-
mal terms of trade immune to renegotiation: If one
firm cheats, the firms resume cooperation but the
cheater pays a penalty to reduce his ongoing expected
discounted profit to the noncooperative outcome. In
settings where firms cannot make such make trans-
fer payments to settle up, both firms must suffer in
order to punish the cheater. In the psychology litera-
ture, Fehr et al. (1997) and references therein provide
experimental evidence that people will forgo large
amounts of money to punish unfair behavior. Punish-
ment of unfair behavior is associated with neural acti-
vation in reward centers of the brain (Quervain et al.
2004). In a laboratory experiment using a repeated
trust game, Schweitzer et al. (2006) observed that
when a subject is deceived by its partner (the partner
promises to make a payment in return for coopera-
tive action and breaks that promise), in subsequent
periods the subject tends to distrust his partner and

3 The supplier could “cheat” by building capacityKt <max�∈� �qt����,
but publicly fail to adhere to the specified terms only in the event
qt��� > Kt that he cannot fill the buyer’s order.
4 A more formal definition of self-enforcing relational contract is pro-
vided in the appendix.
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to behave noncooperatively. This behavioral obser-
vation that deception causes significant and endur-
ing harm to trust provides support for focusing on
trigger strategies (refusal to cooperate after a partner
breaks a promise to pay or a promise to produce) as
a first approximation. Atkins et al. (2006) propose a
refinement of trigger strategies based on the plausible
behavioral assumption that the magnitude of punish-
ment will be proportional to the magnitude of devia-
tion from the relational contract.

4. Optimal Relational Contract
In §4.1 we derive an optimal relational contract and
characterize its structural properties. In §4.2 we com-
pare expected profit per period under the optimal
relational contract to expected profit in the single-
period game. Essentially, we describe how to manage
a relationship, and the benefits of doing so.

4.1. Structure of an Optimal Relational Contract
Our model has two-sided asymmetric information
and imperfect monitoring. Repeated games with
these features typically have optimal equilibria and
optimal relational contracts with complex, history-
dependent strategies (Abreu et al. 1990, Levin 2003).
In contrast, our Proposition 1 characterizes a sta-
tionary optimal relational contract, meaning that the
firms follow trigger strategies and that the payment
terms and actions are identical in every period: For
every t, �Dt
dt
 qt
Kt� = �D
d
 q
K�, where D ∈ R,
d� �0
K�→R, K ∈ R+ and q� � → �0
K�. The feasi-
ble set of self-enforcing terms of trade in any period
depends on the future value of cooperation, which
in turn depends on the terms of trade and corre-
sponding capacity investment. Therefore, the optimal
relational contract is characterized by solving a fixed-
point problem.

Proposition 1. There exists a stationary optimal rela-
tional contract with expected profit per period

�∗ =max� � f � �= �

where

f � �= max
D
d
q
K

�E�rmin�q���
 ���− cK� (2)

subject to, for � ∈ �
D− cK+E�d�q�����= −�B (3)

q��� ∈ argmax
q∈�0
K�

�rmin�q
 ��− d�q�� (4)

rmin�q���
 ��− d�q����≥ �1−��rmin�K
�� (5)

d�q����+ ��1− ��−1� −�B�

≥�rE�min�K
�1� �q��1�=q����+��1−��−1�S (6)

K ∈ argmax
K′≥0

{−cK ′ +E�1�q���>K′���rmin�K
′
 ��

+ ��1− ��−1�S��

+E�1�q���≤K′�max�d�q����+ ��1− ��−1� −�B�


�rE�min�K ′
�1� �q��1�=q����
+ ��1− ��−1�S��

}
� (7)

The stationary optimal relational contract has payment
terms, order quantity, and capacity �D∗
d∗
 q∗
K∗�
 a
solution of (2)–(7) with  =�∗.

The proof of this and the subsequent proposition
are in the appendix. Here, we simply explain how the
stationary optimal relational contract �D∗
d∗
 q∗
K∗�
works. Assuming an optimal relational contract gen-
erates total system expected profit  per period in
all future periods, problem (2)–(7) is to find the
self-enforcing terms of payment, order quantity, and
capacity investment that maximize expected profit
for the current period. If  is a fixed point  = f � �,
then the solution to (2)–(7) achieves expected profit  
in the current period and is a self-enforcing relational
contract. The converse is also true: If a relational con-
tract is self-enforcing, it corresponds to a solution to
(2)–(7) with some fixed point  = f � �. Because the
optimal relational contract is the self-enforcing rela-
tional contract that maximizes total system expected
profit, it corresponds to the largest fixed point of f �·�.
We now turn to explaining constraints (3)–(7). The

left-hand side of constraint (3) is the supplier’s single-
period expected profit under the relational contract;
the constraint sets the transfer payment D so that the
supplier has expected profit per period of �∗ − �B

and the buyer has expected profit per period of �B.
The transfer payment D is positive, indicating that the
buyer pays the supplier.5 Transferring the continua-
tion surplus to the supplier maximizes the incentives
for capacity investment.
Constraints (4) and (5) ensure that the buyer orders

q = q∗��� when her realized demand is �, and makes
the quantity-contingent payment d∗�q�. Because the
buyer receives �B in subsequent periods regardless
of whether she adheres to the proposed terms, con-
straint (5) reflects the buyer’s current-period profit;
the right-hand side is the buyer’s current-period
expected profit when she does not adhere to the pro-
posed terms, and the firms instead revert to nonco-
operative bargaining.

5 This is not the unique optimal relational contract. The firms can
initially reallocate expected discounted profit of �1 − ��−1��S +
�1 − "���∗ − �B − �S�� to the buyer and �1 − ��−1��B + "��∗ −
�B − �S�� to the supplier, for any " ∈ �0
1�, simply by decreas-
ing the first-period transfer payment by a constant: D1 = D∗ −
�1− ��−1"��∗ −�B −�S�.
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After receiving an order q = q∗���, the supplier
could refuse to deliver q units for payment d∗�q�. Con-
straint (6) ensures that the supplier’s expected dis-
counted profit is greater when he instead adheres
to the proposed terms. If the supplier does so, he
receives d∗�q� in the current period and expected
profit �∗ − �B in each subsequent period, which
explains the left-hand side of (6). To understand the
right-hand side of (6), note that if the supplier does
not adhere, the firms revert to noncooperative bar-
gaining in the current period and, because the firms
follow trigger strategies, the supplier receives �S in
subsequent periods. In the current period, given that
the supplier has capacity K and the buyer has ordered
q���, the number of units that the supplier expects to
sell at the per-unit price �r is

E�min�K
�1� � q��1�= q����

where the conditional expectation is taken with re-
spect to the random variable �1, conditional on the
event �1 ∈ ��̃� q��̃�= q����.6
Constraint (7) ensures that the supplier builds

capacity K∗. If the supplier’s capacity is not sufficient
to meet the buyer’s order K < q∗���, then, because
the supplier cannot adhere to the proposed terms,
the firms revert to noncooperative bargaining in the
current period and the supplier receives �S in sub-
sequent periods. If the supplier’s capacity is suffi-
cient to meet the buyer’s order K ≥ q∗��� = q, the
supplier will choose to either deliver the order in
return for the payment d∗�q� or refuse, whichever
maximizes his expected discounted profit.7 To max-
imize the supplier’s incentive to build the proposed
capacity K∗ and deliver the order in return for pay-
ment d∗�q�, the relational contract allocates the con-
tinuation surplus �∗ − �B to the supplier, which is,
as noted above, achieved by setting the transfer pay-
ment D appropriately.
Proposition 2 characterizes the payment terms,

order quantity and expected profit under the opti-
mal relational contract. The last part of the proposi-
tion notes that for a class of demand distributions,

6 A point of theoretical interest is that the revelation princi-
ple (Meyerson 1979), which allows for restricting attention to
mechanisms in which agents report truthfully, breaks in our
setting with relational contracting: Because max�∈� �min�K
��� ≥
max�∈� E�min�K
�1� � q��1�= q����, directly revealing the demand �
to the supplier would tighten constraints (6) and (7), increasing the
supplier’s temptation to renege on the relational contract.
7 The reader might be concerned the supplier could fail to adhere
by first delivering q units for payment d∗�q� and then offering to sell
additional units at the noncooperative price. However, (5) implies
�rmin�K
��≥ d∗�q����+ �r�min�K
��− q∗����+ for � ∈ � and K ≥
q∗���. Thus, if the supplier has built adequate capacity to meet the
buyer’s order and chooses not to adhere, he should engage in out-
right noncooperative bargaining, rather than execute the proposed
payment and quantity and subsequently bargain over any resid-
ual units.

the complexity of the optimal relational contract is
limited.

Proposition 2. The stationary optimal relational con-
tract has expected profit

�∗ = rEmin��K∗
 ���− cK∗
 (8)

initial transfer payment

D∗ =�∗ −�B + cK∗ −E�d∗�q∗�����
 (9)

order quantity

q∗���=




� for 0≤ � <K1
Km+$m for Km ≤ � ≤Km+$m

m= 1
 � � � 
M

� for Km+$m ≤ � ≤Km+1
m= 1
 � � � 
M

K∗ for � >K∗


(10)

and quantity-contingent payment

d∗�q�=




�rq for 0≤ q ≤K1
d∗�Km� for Km < q ≤Km+$m m= 1
 � � � 
M

d∗�Km�+ r�q−Km−$m�
for Km+$m
≤ q ≤min

[
Km+$m− d∗�Km�/r

1−� 
Km+1

]

m= 1
 � � � 
M

�rq for
Km+$m− d∗�Km�/r

1−� ≤ q ≤Km+1
m= 1
 � � � 
M


(11)
where M is a nonnegative integer, 0 ≤ Km < Km + $m <
Km+1 for m ∈ �1
 � � � 
M�, and KM+1 =K∗. If � is a normal
or truncated normal random variable or if � is a continuous
random variable whose density is weakly decreasing, then
the function q∗��� has at most one point of discontinuity:
M ∈ �0
1�.
Figure 1 illustrates Proposition 2 by depicting

the optimal quantity-contingent payment and order
quantity. In this example, M = 1: The order quantity
function has one discontinuity. To provide stronger
incentives for capacity investment, this optimal rela-
tional contract requires the buyer to purchase more
than she needs to fulfill demand for moderate levels
of demand. Knowing that the buyer will order this
larger amount discourages the supplier from cheat-
ing by underbuilding capacity, which would other-
wise go undetected in periods when demand was
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Figure 1 Optimal Order Quantity and Quantity-Contingent Payment
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Notes. Parameters are r = 10, c= 1�25, � = 0�1, �= 0�3, and � is an expo-
nential(1) random variable. The optimal capacity K ∗ = 2�08, and the optimal
initial payment D∗ = 8�20.

low. To maximize the supplier’s incentive for capacity
investment, the quantity-contingent payment is max-
imized subject to the constraints that the buyer is
willing to order the specified quantity (4) and make
the corresponding payment (5). The optimal quantity-
contingent payment is continuous and piecewise lin-
ear. Initially, (5) binds and the slope is �r = 1. For
moderate quantities that correspond to the buyer
ordering strictly more than realized demand, (4) binds
and the slope is zero (excess units must be free, or the
buyer will not buy them). For higher quantities that
correspond to the buyer ordering exactly her demand,
initially (4) binds so the slope is r = 10 and then (5)
binds so the slope is �r = 1.
In summary, having the buyer purchase more than

she needs so as to monitor the supplier’s capacity
investment discourages the supplier from underbuild-
ing capacity, but at the same time limits the magni-
tude of the discretionary payment, which limits the
capacity investment that will be attractive to the sup-
plier. The extent of monitoring in the optimal rela-
tional contract reflects this trade-off.

4.2. Performance of an Optimal Relational
Contract

Because undertaking the coordination activities to es-
tablish a relational contract for procurement is a non-
trivial effort, managers should assess the magnitude
of the gain that can be reaped from relational con-
tracting before undertaking the coordination effort.
This section characterizes the conditions under which
relational contracts create the most value and demon-
strates that relational contracts can substantially
increase the firms’ expected profits.
As the firms interact more frequently, so that the

discount factor � increases, cooperation is easier to
sustain (constraints (6) are (7) are relaxed), and so the
per-period expected profit under an optimal relational
contract �∗ increases. When the discount factor is suf-
ficiently large, the first best is achieved �∗ = ��. These
results, which are straightforward to verify analyti-
cally, follow the familiar “folk theorem” for repeated
games (Fudenberg and Tirole 1991).
To characterize the impact of the capacity cost and

the allocation of bargaining power on the value of
relational contracting, we conduct a numerical study.
Figure 2 depicts the gain from using an optimal rela-
tional contract, with the shaded regions indicating
this gain as a percentage of the first best: ��∗ −
�B −�S�/��. In the gray transparent region, the opti-
mal relational contract achieves the first best; in this
region, the gain from using an optimal relational con-
tract varies because the profit without a relational
contract �B +�S varies. In all panels, r = 10 and � is
a normal random variable with mean 5 and standard
deviation 3, truncated such that its probability mass
is distributed over � ≥ 0. In Figure 2(a) � = 0�5; in Fig-
ure 2(b) c= 7�5; in Figure 2(c) c= 2�5. The figure is, as
described below, representative of a larger numerical
study.
The panels depict the intuitive result, noted above,

that the gain from an optimal relational contract
increases in the discount factor. What is more surpris-
ing is that the optimal relational contract may achieve
the first best even when the discount factor is rela-
tively small, so that the first best is achieved for a
wide range of parameters. Similarly, for a wide range
of parameters, the gain from using an optimal rela-
tional contract is substantial. Figure 2(a) shows that
the gain from using an optimal relational contract is
largest when the capacity cost is moderate. The intu-
ition is that when the capacity cost is small, the sup-
plier builds substantial capacity in the single-period
game, so system performance without the relational
contract is close to the first best. This makes coop-
eration difficult to sustain because each firm knows
it will continue to do quite well if it reneges and
cooperation breaks down. When the capacity cost is
large and the discount factor is small, it is difficult to
provide credible incentives for the supplier to increase
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Figure 2 Gain from Optimal Relational Contract
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(b)
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Note. The regions indicate where the optimal relational contract achieves
the first best and the gain from using an optimal relational contract as a
percentage of the first best.

his capacity investment significantly above the nonco-
operative level K. The supplier will not comply with
a suggested capacity investment that is much higher
than K, because the high capacity cost makes doing
so painful and because the cheating supplier knows it
will be able to escape detection when the order quan-
tity is sufficiently small. In contrast, when the capacity
cost is moderate, the system performs poorly with-
out a relational contract (�B +�S � ��) and building
additional capacity is not excessively painful to the
supplier, so the gain from an optimal relational con-
tract is relatively large.
Figure 2(b) and (c) show that the gain from using

an optimal relational contract is largest when the sup-
plier’s bargaining strength in the single-period game
� is moderate. More precisely, the gain from an opti-

mal relational contract is increasing in � on �0
 c/r�
and decreasing on �c/r
1�; in Figure 2(b) c/r = 0�75
and in Figure 2(c) c/r = 0�25. When the supplier’s bar-
gaining strength is large (� > c/r), in the single-period
game the supplier will build nonzero capacity K > 0
(see (1)), and as � increases, supplier and total system
profit increase. When � is very large, system perfor-
mance is close to the first best, and the supplier appro-
priates most of the system profit. Because the scope
for gains from cooperation is limited and the supplier
knows he will continue to do quite well if he reneges
and cooperation breaks down, the gain from an opti-
mal relational contract is small. In contrast when the
supplier’s bargaining strength is small (� < c/r), in
the single-period game the supplier will not build
capacity K = 0 and so outside of a cooperative rela-
tionship the firms’ profits are zero �B =�S = 0. How-
ever, as � increases on �0
 c/r�, as described above, the
buyer is able to credibly commit to a larger quantity-
contingent payment, which induces the supplier to
invest more in capacity, increasing system profit.
Although not depicted in Figure 2, the impact of the
standard deviation of demand also depends on the
supplier’s bargaining strength, and the intuition fol-
lows what we described above: When the supplier’s
bargaining strength is large (� > c/r), as the standard
deviation decreases, the profits outside the coopera-
tive relationship �B +�S increase, so the gain from
an optimal relational contract decreases. In contrast,
when the supplier’s bargaining strength is small (� <
c/r), as the standard deviation decreases, the profits
outside the cooperative relationship �B +�S = 0 are
unaffected, so the gain from an optimal relational con-
tract increases.
The qualitative insights in Figure 2 are robust to

the remaining parameter specifications. In Figure 2(a),
when � is larger (smaller) the region with gains
shrinks and shifts up (expands and shifts down). Fur-
ther, the qualitative results continue to hold when
demand is instead a uniform�0
1� or exponential�1�
random variable. The details of the numerical study,
which substantiates these assertions, are in the elec-
tronic companion to this paper.8 To summarize, the
gains from the optimal relational contract are largest
when the capacity cost c and the supplier’s bargain-
ing strength � are moderate, and the discount fac-
tor � is large. The gain from relational contracting
may increase or decrease with the standard deviation
of demand, depending on the supplier’s bargaining
strength and the cost of capacity.

8 An electronic companion to this paper is available as part of the
online version that can be found at http://mansci.journal.informs.
org/.
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5. Simple Relational Contracts
Although we have demonstrated that an optimal rela-
tional contract has simplifying structural properties
(Propositions 1 and 2), an optimal relational con-
tract can still be rather complex and hence difficult
to implement. It would be difficult for a manager to
explain the scheme in Figure 1 in words, much less
a more complex scheme (10)–(11) with multiple dis-
continuities �M > 1�. Consequently, in this section we
examine two simpler relational contracts. Section 5.1
describes such a relational contract and compares its
performance to the optimal relational contract. Sec-
tion 5.2 shows how the optimal relational contract
simplifies when the buyer observes the supplier’s
capacity.

5.1. No-Monitoring Relational Contract
The driver of complexity in the optimal relational con-
tract is monitoring

q��� > �
 (12)

so a natural way to construct a simpler relational con-
tract is to restrict attention to relational contracts that
do not involve monitoring

q���≤ �� (13)

Then an optimal relational contract (the solution to
the fixed-point problem (2)–(7) with added constraint
(13)) has order quantity

qn���=min�Kn
��
 (14)

discretionary payments

dn�q�= �rq for q ∈ �0
Kn�
 (15)

Dn =�n−�B + cKn−�rE�min�Kn
���
 (16)

and capacity Kn the solution to

f n� �=max
K
�E�rmin�K
���− cK� (17)

subject to

K∈argmax
K′

{−cK ′ +E��rmin�K ′
��+1�min��
K�>K′�

· ��1− ��−1�S + 1�min��
K�≤K′�

· ��1− ��−1� −�B��
}

(18)

at the maximal fixed point �n =max� � f n� �= �.
We refer to (14)–(18) as the no-monitoring rela-

tional contract. It is self-enforcing and achieves total
expected discounted profit �n in each period. To
provide maximal incentives for capacity investment,
(15)–(16) are the largest discretionary payments that
are self-enforcing, given the no-monitoring order

quantity (14). The initial transfer (16) allocates the
gain from the relationship to the supplier, and with
this initial transfer, the largest payment the buyer is
willing to make (i.e., that satisfies (4) and (5)) is the
Nash bargaining payment �rmin�K
��. With order
quantity (14) and discretionary payment (15), con-
straint (7), which ensures that the supplier builds
the proposed capacity, simplifies to (18). Regardless
of the supplier’s capacity choice, the supplier receives
the Nash bargaining payment. If the supplier’s capac-
ity is not sufficient to meet the buyer’s order, then
cooperation breaks down and the supplier receives
�S in subsequent periods; if the supplier’s capacity is
sufficient, then the supplier receives the gain from the
relationship �n−�B in subsequent periods.
The no-monitoring relational contract performs

extremely well under plausible demand distributions.
However, when the demand distribution is of a boom-
bust nature (i.e., probability mass is concentrated
at widely separated levels), monitoring can greatly
increase expected profit. We establish the former with
a numerical study, and the latter with an analytic
result. We conclude this subsection by explaining the
intuition behind these diverging results.
In our numerical study, we examined the wide set

of parameters in Figure 2 (capacity cost c ∈ �0�1r

0�2r
 � � � 
0�9r�, supplier bargaining strength � ∈ �0�1

0�2
 � � � 
0�9�, and discount factor � ∈ �0�1
0�2
 � � � 
0�9�).
As in the figure, we assumed demand is a truncated
normal random variable with mean 5 and standard
deviation 3. We also considered the same distribution,
but with standard deviation 1, as well as allowing
demand to be an exponential�1� or uniform�0
1� ran-
dom variable. Subsequently, we refer to this as Param-
eter Set A. In all instances, the no-monitoring relational
contract performs extremely well relative to the optimal
relational contract: The deviation from optimal profit is less
than 1%.
In contrast, the next proposition shows that under

boom-bust demand distributions, monitoring can be
valuable. Boom-bust demand occurs when the poten-
tial customer population exhibits trend-following
behavior, so that the product is either a “star” or
“dog” (van Ryzin and Mahajan 1999). As an extreme
case of boom-bust demand, suppose the probability
mass of demand is concentrated at two levels

� =


H with probability (

L with probability 1−(

(19)

where H > L ≥ 0 and ( ∈ �0
1�. Because our focus is
on stochastic demand, we assume that the capacity
cost is sufficiently small

c < (r (20)
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so that the demand uncertainty is relevant. If (20)
were violated, the high-demand state would be irrele-
vant (because it would never be optimal to build more
than the low-demand level �K ≤ L) and so the prob-
lem would be equivalent to one with deterministic
demand (� = L with probability 1). The thresholds c1,
c2, c3, c4, L̄, and �̄ in the next proposition are provided
in closed-form, along with the proof of the result, in
the electronic companion.

Proposition 3. Suppose that demand has distribution
�19�. The optimal relational contract yields strictly greater
expected profit than the no-monitoring relational contract
if and only if the capacity cost satisfies

c ∈ �c1
 c2�∪ �c3
 c4�
 (21)

where c1 ≤ c2 ≤ c3 ≤ c4. There exist L̄ ∈ �0
H� and
�̄ ∈ �0
1� such that if either L < L̄ or � < �̄, then
c1 < c2. Further, if � < �̄, then for c ∈ �c1
 c2�, the opti-
mal relational contract achieves the first best ��∗ = ��� but
the no-monitoring relational contract is worthless ��n =
�B +�S�.

We established in §4 that the gain from an opti-
mal relational contract is largest when the capacity
cost is moderate. Although the no-monitoring rela-
tional contract performs very well when the capacity
cost is moderate, it is less effective on the periph-
ery of moderate capacity costs (21). Here, employing
the more complex optimal relational contract (which
requires monitoring), increases the range over which
relational contracts are effective and increases sys-
tem profit. The proposition establishes that the loss in
system profit can be dramatic: For some intermedi-
ate capacity costs, no-monitoring relational contracts
are useless, but the optimal relational contract (which
requires monitoring) is perfectly effective.
To see why boom-bust demand lends itself to moni-

toring being useful, consider the case where the buyer
would like the supplier to build capacity K >L. With-
out monitoring, the supplier is tempted to cheat by
building capacity L and saving the cost of capacity
c�K − L�. The concentration of demand at L and H
means that this cheating will only be detected with
probability (. With probability 1 − ( the cheating
supplier will continue to receive payment from the
buyer. The temptation to cheat is especially strong
when the low-demand state and the discount factor
are small (L< L̄, �< �̄), because the supplier’s imme-
diate gain from cheating is large and the supplier
attaches less value to future profits he could reap from
cooperation. Relational contracts with monitoring dis-
courage such cheating, by increasing the likelihood
that cheating is detected.
When the density of demand is not concentrated

at specific levels, cheating by underbuilding capac-
ity becomes much less attractive, because there are

no natural candidate cheating levels that promise
large savings in capacity costs and low probabili-
ties of detection. This explains why, in our numerical
study (with truncated normal, exponential, and uni-
form demand), monitoring is of little value. We con-
clude that the complexity of monitoring is warranted
only when the density of demand is concentrated at
widely separated levels and the capacity cost falls in
a limited range.

5.2. Capacity-Inspection Relational Contract
The optimal relational contract is complex because the
buyer should, under particular circumstances, order
more than the realized demand in order to moni-
tor the supplier’s capacity investment (12). The buyer
orders in this way because she cannot directly observe
the supplier’s capacity investment. However, Dyer
(1997) describes how a Japanese automobile manufac-
turer monitors suppliers’ investments in plant, tool-
ing and employees, productivity, and commitments to
other buyers, to ensure that each supplier can meet
a target level of production. Such capacity inspection
is costly and requires deep involvement of the buyer
in the supplier’s operations. This subsection considers
how the structure of the optimal relational contract
changes when the buyer can observe the supplier’s
capacity K and the gain in performance from using
this information.
The first main insight is that when the buyer can

observe the supplier’s capacity K, the optimal rela-
tional contract has a simple structure. The structure
closely follows that of the no-monitoring relational
contract (14)–(18). When the buyer can observe the
supplier’s capacity, under the optimal relational con-
tract, the buyer verifies that the supplier has built
the requested capacity, and then proceeds to order the
minimum of capacity and demand (14), paying the
Nash bargaining price per unit (15). The only change
from (14)–(18) is that the optimal relational contract
provides stronger incentives for capacity investment.
In the supplier’s capacity choice constraint (18), 1�K=K′�
replaces 1�min��
K�≤K′�: The supplier receives the gain
from cooperation in subsequent periods if and only if
she builds the requested capacity. In contrast, when
the buyer is unable to observe the supplier’s capacity,
the supplier has weaker incentives for capacity invest-
ment because the supplier can cheat by underbuild-
ing capacity and go undetected when the buyer’s
requested quantity is sufficiently small (the event
q���≤K ′ in constraint (7)). Consequently, the buyer’s
being able to observe the supplier’s capacity increases
the profit under the optimal relational contract.
The second main insight is that for a broad set

of parameters, capacity inspection does not signifi-
cantly increase expected profit over either the optimal
relational contract of §4 or the simple no-monitoring
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relational contract of §5.1. For the range of param-
eters in Parameter Set A, the loss in system profit
from employing either the optimal relational contract
or the simple no-monitoring relational contract aver-
ages 0.5%, is less than 0.5% in 81.7% of the prob-
lem instance, is less than 5% in 97.5% of the problem
instances, and is less than 10% in all of the problem
instances. Analogous to Proposition 3, one can estab-
lish that capacity inspection may be valuable under
special circumstances (boom-bust demand and a lim-
ited range of capacity costs). Nonetheless, our results
suggest that in most settings the firms should adopt
the simple no-monitoring relational contract: It per-
forms nearly as well as the capacity-inspection rela-
tional contract while avoiding the costs associated
with inspection.

6. Extensions
This section describes the effects on the optimal rela-
tional contract of (1) a random production cost and
a nonlinear capacity cost, (2) outside options, and
(3) asymmetric information about the cost of capacity
and demand distribution.

6.1. Random Production Cost and Nonlinear
Capacity Cost

Because the supplier initiates his capacity investment
when the product is ill-defined, it is natural that at
this point the supplier’s subsequent per-unit produc-
tion cost, denoted by p, would be uncertain. Suppose
that buyer and supplier have common information
about the distribution of p, and they both observe
the realization of p before the buyer orders.9 (This
is reasonable if the bulk of the production cost is
due to commodity material inputs or hourly labor,
or if the buyer is otherwise able to become famil-
iar with the production technology and associated
costs.) The Nash bargaining price generalizes to �r +
�1 − ��p. Proposition 1, which characterizes a
stationary optimal relational contract, extends by
incorporating the production cost and generalized
Nash bargaining price into the fixed-point problem
(2)–(7). The qualitative insight in Figure 2—that rela-
tional contracting substantially increases profit over
a wide range of parameter values—remains valid.
However, as the production cost increases, continua-
tion of the relationship becomes less valuable, which
eventually prevents first-best capacity investment

9 The latter assumption is critical. Without it, the outcome of nonco-
operative bargaining would not necessarily be the Nash bargaining
solution. In particular, if the supplier had private information
about p, the theorem on p. 106 of Rubinstein (1982) would no longer
apply. One cannot construct a self-enforcing relational contract
without understanding the noncooperative bargaining outcome,
and hence the temptation to renege on the terms of a relational
contract.

under the optimal relational contract. Incorporating
a positive production cost destroys the simplifying
threshold structure of the optimal relational contract
(Proposition 2). Nonetheless, our numerical results for
Parameter Set A (which assumed p = 0) continue to
hold with p ∈ �1
3
5�: First, the loss in system profit
from employing the simple no-monitoring relational
contract rather than the complex optimal relational
contract continues to be less than 1%. Second, the loss
in system profit from employing either the optimal
relational contract or the simple no-monitoring rela-
tional contract rather than the optimal relational con-
tract with capacity inspection continues to be small
(the loss averages 0.6%, is less than 0.5% in 80.7% of
the problem instance, is less than 5% in 97.1% of the
problem instances, and is less than 10% in 99.6% of
the problem instances). The main insight from Propo-
sition 3—that with boom-bust demand the perfor-
mance of the simple no-monitoring relational contract
can be poor—continues to hold. However, the last
sentence of Proposition 3 does not hold with p > 0
because a relational contract with monitoring cannot
achieve the first best because excess production is
costly.
Finally, Proposition 1 and all but the last line of

Proposition 2 continue to hold when the capacity cost
is any strictly increasing function of the capacity.

6.2. Outside Options
Each firm may have an alternative supply chain part-
ner, a so-called outside option. For example, at the
beginning of each period, a supplier may instead
contract to supply a different product to a differ-
ent buyer. As either firm’s outside option improves
(expected profit from working with an alternative
partner increases), the capacity investment K∗ and
per-period expected profit �∗ under an optimal rela-
tional contract decrease. The intuition is that when
a firm decides whether or not to adhere to the rela-
tional contract, the firm weighs the expected gain
from reneging against its share of the future gain from
continued cooperation. As a firm’s outside option
improves, the temptation to renege becomes more
acute.

6.3. Asymmetric Information about Capacity Cost
and Demand Distribution

Commonly in practice, the buyer has private informa-
tion about the demand distribution and the supplier
has private information about the cost of capacity.
Suppose that the supplier’s capacity cost c is a ran-
dom variable, independent and identically distributed
for periods t = 1
2
 � � � � At the beginning of each
period, the firms have common information about the
distribution of the capacity cost. They may contract to
make the initial transfer payment contingent on a cost
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report by the supplier. Then the supplier privately
realizes the capacity cost. Proposition 1 extends: There
exists a stationary optimal relational contract that cor-
responds to a generalized version of the fixed-point
problem (2)–(7). This has the supplier reporting the
capacity cost truthfully in each period.
Alternately, suppose that in each period, the buyer

privately obtains a forecast that allows her to update
the demand distribution, prior to the supplier invest-
ing in capacity. The firms may contract to make
the initial transfer payment contingent on a forecast-
report by the buyer. Again, Proposition 1 extends.
However, the buyer shares her forecast truthfully with
the supplier if and only if the discount factor is suf-
ficiently large. With a large enough discount factor,
the supplier makes the first-best capacity investment.
Ren et al. (2005) propose a multi-period-review strat-
egy to induce truthful forecast sharing; the resulting
expected discounted profit converges to the first best
as the discount factor approaches 1.

7. Discussion
The purpose of this paper is to show how managers
should structure informal agreements that motivate a
supplier to build capacity. We show that the gain from
relational contracting is substantial over a broad range
of plausible parameter values, and is greatest when
the capacity cost is moderate and bargaining power is
evenly distributed. In the special case where the buyer
is able to directly observe the capacity investment the
supplier has dedicated to her, the optimal relational
contract has a simple form. Otherwise, an optimal
relational contract may require the buyer to indirectly
monitor the supplier’s capacity investment by order-
ing more than the realized demand. We propose a
simpler relational contract in which the buyer orders
the minimum of her realized demand and requested
capacity. We show that this simple relational contract
performs extremely well. Indeed, except for rare cir-
cumstances, the simple relational contract allows the
firms to do nearly as well as they would were the
buyer able to directly observe the supplier’s capac-
ity investment. We conclude that by properly struc-
turing informal procurement agreements, the firms
can avoid having the buyer monitor the supplier’s
capacity either directly (by the costly, deep involve-
ment in the supplier’s operations required to directly
audit the supplier’s capacity investment) or indirectly
(via inflated orders). However, an important feature
that is absent from our model in obtaining this con-
clusion is asymmetry of information regarding the
supplier’s cost structure and the buyer’s demand fore-
cast. Further research is needed to identify simple-yet-
effective relational contracts in the presence of such
asymmetries.

8. Electronic Companion
An electronic companion to this paper is available as
part of the online version that can be found at http://
mansci.journal.informs.org/.
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Appendix

Definition: Self-Enforcing Relational Contract
Denote the buyer’s decision in period t to adhere (or
not) to the initial transfer payment Dt by At

B ∈ �1
0� and
the buyer’s decision to adhere (or not) to the quantity-
contingent payment dt�q� by atB ∈ �1
0�; 1 means that the
buyer adheres and 0 that she refuses to do so. Let At

S ∈
�0
1� and atS ∈ �0
1� denote the supplier’s analogous deci-
sions to adhere (or not). If either firm fails to adhere
�At

B ·At
S · atB · atS = 0�, then noncooperative bargaining occurs

as in §2: The supplier produces and delivers min�Kt
 �t� and
the buyer pays �r per unit.
A relational contract is a complete plan for the relation-

ship. Let ht = �Am
B , A

m
S , q

m, amB , a
m
S �m=1
���
t−1 denote the public

history up to the beginning of period t, and let � t denote
the set of possible public histories. A relational contract
specifies a profile of public payment terms and strategies
for the buyer and the supplier. That is, for each period t
and contingent on public history at the beginning of period
t� ht ∈� t , a relational contract describes: (i) The initial trans-
fer payment Dt and the quantity-contingent payment dt�q�;
(ii) a strategy for the buyer �At

B
 q
t
 atB�, where the order

quantity qt and adherence to the quantity-contingent pay-
ment atB may depend on the demand �

t as well as ht ; (iii)
a strategy for the supplier �At

S
K
t
 atS�, where the capac-

ity Kt may be contingent on the buyer’s adherence to the
transfer payment At

B as well as ht , and the adherence to
the quantity-contingent payment atS may be contingent on
the buyer’s At

B and order quantity q
t as well as ht . Further-

more, if qt > Kt , then atS = 0. A relational contract is self-
enforcing if the firms’ strategies constitute a perfect public
equilibrium (PPE). As defined in Fudenberg et al. (1994), a
PPE is a profile of public strategies that, for each period t
and public history ht ∈� t , constitute a Nash equilibrium
from that time onward. In constructing an optimal relational
contract—a self-enforcing relational contract that maximizes
the firms’ total expected discounted profit—we will with-
out loss of generality restrict attention to trigger strategies
in which each firm adheres to the discretionary payment
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if and only if the both firms have adhered in all previous
decision epochs

At
B =



1 if A-

B =A-
S = a-B = a-S = 1 for - = 1
 � � � 
 t− 1

0 otherwise

At
S =



1 if A-

B =A-
S = a-B = a-S = 1 for - = 1
 � � � 
 t− 1

0 otherwise

atB =




1 if A-
B =A-

S = a-B = a-S = 1
for - = 1
 � � � 
 t− 1 and At

B =At
S = 1

0 otherwise

atS =




1 if A-
B =A-

S = a-B = a-S = 1
for - = 1
 � � � 
 t− 1 and At

B =At
S = 1

0 otherwise,

and after either firm fails to adhere, the supplier builds his
equilibrium capacity for single-period game §2:

if At
B ·At

S = 0 or A-
B ·A-

S · a-B · a-S = 0

for - < t then Kt =K�

Proof of Proposition 1. The proof is achieved in three
steps. Initially, we assume that an optimal (but not necessar-
ily stationary) relational contract exists. The first step is to
transform it into a stationary optimal relational contract. The
key to this first step is to show that an optimal relational
contract must generate the same ongoing total expected
discounted profit in every period (i.e., sequentially optimal).
The proof of sequential optimality is by contradiction, tak-
ing an optimal relational contract that is not sequentially
optimal and constructing from it a self-enforcing relational
contract that achieves strictly greater expected discounted
profit. Then, having established existence of a sequentially
optimal relational contract, we convert it to a stationary
optimal relational contract. Specifically, we take the first-
period strategies and payment terms from the sequentially
optimal relational contract, to be used in every period; to
make this self-enforcing, we adjust the quantity-contingent
payment so that the firms “settle up” at the end of each
period. The implication of the first step is that in searching
for an optimal relational contract, one may restrict atten-
tion to stationary relational contracts. The second step for-
mulates the problem: Find a stationary relational contract
that maximizes expected profit, subject to the constraint that
the stationary relational contract must be self-enforcing. The
function f � � emerges in this second step. Finally, the third
step establishes that a stationary optimal relational contract
exists, corresponding to the largest fixed point  = f � �.

Step 1. Existence of a stationary optimal contract: Assume
that an optimal relational contract exists. Let P denote the
total expected discounted profit for the buyer and supplier
under the optimal relational contract, and let �∗ denote the
deterministic equivalent profit per period:

�∗ = �1− ��P �
Also let �1

B and �1
S denote the deterministic equivalent

profit per period for the buyer and supplier, respectively

(�1
B +�1

S = �∗). Consider the following terms of the rela-
tional contract for the first period; for brevity in the fol-
lowing analysis, we drop superscripts “1” denoting the first
period. The agreement specifies that both firms adhere to
the initial transfer payment D, the supplier builds capac-
ity K = max�∈� �q����, the buyer orders quantity q = q���
on observing demand �, and finally, the firms contract for
the buyer to pay d�q� and the supplier to produce and
deliver q units. Let �2

B�q� and �
2
S�q� denote the determinis-

tic equivalent profit per period starting from Period 2 with
public history h2 = �1
1
 q
1
1� for the buyer and supplier,
respectively.
The optimal relational contract is self-enforcing in trig-

ger strategies. Therefore the terms for the first period must
satisfy the following equilibrium conditions.
(i) By refusing to adhere to the initial transfer pay-

ment, the buyer (supplier) could obtain her noncooperative
expected profit �B (�S) in all periods. Therefore, both buyer
and supplier must have greater expected discounted profit
under the optimal relational contract:

�1
B ≥�B (22)

�1
S ≥�S� (23)

(ii) The supplier has an incentive to adhere to the quan-
tity-contingent payment d�q� for quantity q = q��� ≤ K for
� ∈ � ,

d�q�+ ��1− ��−1�2
S�q�

≥ �rE�min�K
�1� � q��1�= q�+ ��1− ��−1�S
 (24)

and has incentive to make the target capacity investment:
for K ′ ≥ 0,
−cK+E�d�q����+ ��1− ��−1�2

S�q�����

≥−cK ′ +E�1�q���>K′���rmin�K
′
 ��+ ��1− ��−1�S��

+E�1�q���≤K′�max�d�q����+��1−��−1�2
S�q����


�rE�min�K ′
�1� �q��1�=q����+��1−��−1�S��� (25)

(iii) The buyer has an incentive to order a quantity ac-
cording to q = q��� and adhere to the quantity-contingent
payment d�q�: for � ∈ �

rmin�q���
 ��− d�q����+ ��1− ��−1�2
B�q����

≥ rmin�q��′�
 ��− d�q��′��+ ��1− ��−1�2
B�q��

′��

for all �′ ∈ � (26)

rmin�q���
 ��− d�q����+ ��1− ��−1�2
B�q����

≥ �1−��rmin�K
��+ ��1− ��−1�B� (27)

Furthermore, under the optimal relational contract, given
that both firms adhered in the first period, they have an
incentive in the second period to adhere to the initial trans-
fer payment. That is, ongoing expected discounted profit
from Period 2 is greater than the noncooperative expected
discounted profit: for � ∈ � and q = q���,

�2
B�q�≥�B (28)

�2
S�q�≥�S� (29)
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We will now prove that an optimal relational contract is
sequentially optimal in Period 2: for � ∈ � and q = q���,

�2
B�q�+�2

S�q�=�∗� (30)

To do so, we employ the technical term continuation. By the
continuation of a relational contract in period t contingent
on history ht , we mean the terms and strategies specified
in the relational contract starting from period t that remain
relevant given the history ht . To establish (30), first observe
that if �2

B�q�+�2
S�q� >�

∗, then the continuation of the rela-
tional contract in Period 2, contingent on order quantity q
and adherence by both firms in Period 1, achieves ongo-
ing total expected discounted profit strictly greater than
the total expected discounted profit under the optimal con-
tract. Because the continuation of the relational contract in
Period 2 is self-enforcing, this contradicts the optimality of
the proposed optimal relational contract. That is, the firms
can achieve strictly greater total expected discounted profit
by starting in Period 1 with the continuation relational con-
tract specified for Period 2 after observing order quantity q
and adherence by both firms in Period 1. Therefore, we
must have �2

B�q�+�2
S�q�≤�∗. Second, define

�= �q� �2
B�q�+�2

S�q� <�
∗��

If � is empty, we have established (30). Otherwise, we can
construct a self-enforcing relational contract that achieves
greater expected profit than the optimal relational contract.
Modify the optimal relational contract as follows. For every
public history h2 = �1
1
 q
1
1� with q ∈ �, substitute the
optimal relational contract for the Period 2 continuation but
increase the transfer payment to the supplier in the second
period: D2�q�=D1+ �1− ��−1��1

B −�2
B�q��. Then reduce the

transfer payment to the supplier in the first period D1 ←
D1−��1−��−1E�1�q∈����1

S+�1
B−�2

B�q�−�2
S�q��� accordingly.

(The notation “←” in D←D− x means that the new value
of D is set equal to the previous value of D minus x.) The
resulting relational contract provides the same deterministic
equivalent profit per period starting from Period 1 for the
supplier of �1

S , but increases the corresponding profit for
the buyer to

�1
B + �E�1�q∈����∗ −�2

B�q�−�2
S�q���≥�1

B�

In contrast, the deterministic equivalent profit per period
starting from Period 2 for the buyer is unchanged at �2

B�q�,
but the corresponding profit for the supplier increases to

�2
S�q�+ 1�q∈����∗ −�2

B�q�−�2
S�q��≥�2

S�q�� (31)

These modifications relax constraints (22), (24), (25), and
(29), and do not affect (23), (26), (27), and (28), so the result-
ing relational contract is self-enforcing. In particular, the
most complex constraint (25) is relaxed because (25) and
(31) imply that for K ′ ≥ 0,
−cK+E�d�q����+ ��1− ��−1��2

S�q����

+ 1�q∈����∗ −�2
B�q����−�2

S�q�������

≥−cK ′ +E�1�q���>K′���rmin�K
′
 ��+ ��1− ��−1�S��

+E�1�q���≤K′�max�d�q����+ ��1− ��−1

· ��2
S�q����+ 1�q∈����∗ −�2

B�q����−�2
S�q������


�rE�min�K ′
 �1� � q��1�= q����+ ��1− ��−1�S���

Therefore, we conclude that an optimal relational contract
satisfies �2

B�q�+�2
S�q� ≥ �∗, which completes the proof of

(30). It follows immediately from (30) that in the first period,

E�rmin�q���
 ���− cK =�∗� (32)

We now construct a stationary contract that achieves total
expected profit per period of �∗, is self-enforcing, and is
therefore optimal. This is accomplished by shifting variation
in the firms’ continuation expected profits ��2

B�q�
�
2
S�q��

into the quantity-contingent payment d�q�. The initial trans-
fer payment is

D∗ =D
 (33)

and the supplier’s capacity is

K∗ =K� (34)

For � ∈ � , the order quantity and quantity-contingent pay-
ment are given by

q∗���= q���≤K∗ (35)

d∗�q�= d�q�+ ��1− ��−1��2
S�q�−�1

S�� (36)

By construction, assuming that the buyer will adhere to
the initial transfer payment, order according to q∗���, and
adhere to quantity-contingent payment (36), it is optimal
for the supplier to adhere to the initial transfer payment,
build capacity K∗, and adhere to quantity-contingent pay-
ment (36). Under the proposed relational contract, expected
discounted profit at the beginning of each period is the
same as the initial expected profit under the optimal rela-
tional contract: �1

S for the supplier and �1
B for the buyer.

Contingent on order quantity q, the ongoing expected dis-
counted profit for the buyer is

rmin�q∗���
 ��− d∗�q�+ ��1− ��−1�1
B

= rmin�q���
 ��− d�q�+ ��1− ��−1�2
B�q�

by substitution of (30) and the definitions (35)–(36). Then
from (22), (26), and (27), it is optimal for the buyer to adhere
to the initial transfer payment (33), order according to (35),
and adhere to the quantity-contingent payment (36). We
conclude that the stationary relational contract with pay-
ment terms and strategies �D∗
d∗
 q∗
K∗� is self-enforcing.
Together (32), (34), and (35) imply that the stationary rela-
tional contract achieves the optimal expected discounted
profit �∗.

Step 2. The optimal stationary relational contract: We have
reduced the problem of designing an optimal relational con-
tract to finding the largest scalar  that satisfies

 = max
D
d
q
K
�B
�S

�E�rmin�q���
 ���− cK� (37)

subject to, for � ∈ � ,
q��� ∈ argmax

q∈�0
K�
�rmin�q
 ��− d�q�� (38)

rmin�q���
 ��− d�q����+ ��1− ��−1�B

≥ �1−��rmin�K
��+ ��1− ��−1�B (39)

d�q����+ ��1− ��−1�S

≥ �rE�min�K
�1� � q��1�= q����+ ��1− ��−1�S (40)
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K∈argmax
K′≥0

{−cK ′ +E�1�q���>K′���rmin�K
′
��+��1−��−1�S��

+E�1�q���≤K′�max�d�q����+ ��1− ��−1�S


�rE�min�K ′
�1� �q��1�=q����
+ ��1− ��−1�S��

}
(41)

D− cK+E�d�q�����=�S (42)

�B ≥�B
 �S ≥�S
 �B +�S = � (43)

In seeking a stationary, self-enforcing relational contract that
maximizes total expected profit, we can allocate the sur-
plus generated by the relationship to the supplier. Specifi-
cally, for any feasible solution � �D
 d̂
 q̂
 �K
 ��B
 ��S�, we can
construct another feasible solution with the same objec-
tive value as follows: The transfer payment is D = �D +
�1− ��−1���B −�B� and the capacity is K = �K. For all � ∈ � ,
the order quantity is q��� = q̂��� and quantity-contingent
payment is d�q�= d̂�q�−��1−��−1���B−�B�. The profit allo-
cation is �B = �B , �S =  − �B . This simplifies problem
(37)–(43) to

 = max
D
d
q
K

�E�rmin�q���
 ���− cK�

subject to (4)–(7)�

Step 3. Existence of an optimal relational contract: Let � ⊆
��B+�S
��� denote the set of equivalent deterministic profit
per period that can be achieved with a self-enforcing rela-
tional contract. (Recall that �� is the first-best total expected
profit per period.) To prove that an optimal relational
contract exists, we need to show that sup� �  ∈ �� is an
element of �. Observe that the function f � � has the prop-
erties f ��B +�S�=�B +�S , f � �≤ ��, and f � � is weakly
increasing in  for  ∈ ��B+�S
���. Therefore Tarski’s fixed
point theorem implies that f � � has a largest fixed point
�∗ in ��B + �S
���. Mimicking Lemma 4 in Appendix D
of Levin (2003) establishes that this largest fixed point �∗

is an upper bound on the expected profit per period that
can be achieved with a self-enforcing relational contract.
From Step 2, we know that there exists a stationary, self-
enforcing relational contract that achieves expected profit
per period of �∗, corresponding to the solution of problem
(2) with  = �∗. We conclude that this is an optimal rela-
tional contract. �

Proof of Proposition 2. The proof proceeds in two
steps. The first step establishes (8)–(11). The second estab-
lishes sufficient conditions under which the optimal order
quantity has at most one point of discontinuity: M ∈ �0
1�.
The main insights behind the first step are (i) increasing
the payment D + d�q���� increases the supplier’s incentive
to build the capacity specified in the relational contract,
(ii) increasing the order quantity q��� above the level of
capacity the supplier would choose if he were to cheat on
the relational contract increases the supplier’s incentive to
build the capacity specified in the relational contract, and
(iii) the buyer will order q��� > � only if excess units are
free d�q���� ≤ d���. A relational contract with the struc-
ture (8)–(11) maximizes the supplier’s incentive to build
the specified capacity, by optimizing the trade-off between
increasing the order quantity and increasing the payment.
This optimal structure becomes apparent as we simplify the
fixed-point problem.

The fixed-point problem (2)–(7) with  =�∗ reduces to

max
d
q
K

�E�rmin�q���
 ���− cK� (44)

subject to, for � ∈ �
q��� ∈ argmax

q∈�0
K�
�rmin�q
 ��− d�q�� (45)

rmin�q���
 ��− d�q����≥ �1−��rmin�K
�� (46)

d�q����+ ��1− ��−1��∗ −�B −�S�

≥ �rE�min�K
�1� � q��1�= q���� (47)

K ∈ argmax
K′≥0

�−cK ′ +E�1�q���>K′��rmin�K
′
 ���

+E�1�q���≤K′�max�d�q����+��1−��−1��∗−�B−�S�


�rE�min�K ′
 �1� � q��1�= q�������
 (48)

with optimal initial transfer payment

D∗ =�∗ −�B + cK∗ −E�d∗�q∗������
This establishes (9). Because r > 0, any optimal solution to
(44)–(48) must satisfy

q∗���≥ � for � ≤K∗
 (49)

so min�q∗���
 �� = min�K∗
 �� in expected profit (44). This
establishes (8). Furthermore, there exists an optimal solu-
tion with nondecreasing order quantity q∗�·�. To see this,
suppose that there exist �1 and �2 such that �1 < �2 and q̄ ≡
q��1� > q��2�. Constraint (45) and (49) imply that d�q��1��=
d�q��2��� Because constraint (47) is satisfied at � = �2, it
will continue to be satisfied if q��2� is increased to q̄. Fur-
ther, increasing q��2� to q̄ relaxes constraint (48) (strengthens
the supplier’s incentive for capacity investment), without
affecting the other constraints (45)–(46) and objective (44).
Because an optimal q�·� is nondecreasing and satisfies (49),
we can restrict attention to production quantities of the
form

q���




= � for 0≤ � <K1
∈ ��
Km+$m� for Km ≤ � <Km+$m m= 1
 � � � 
M
= � for Km+$m ≤ � ≤Km+1 m= 1
 � � � 
M
=K∗ for � >K∗


(50)

where M is a nonnegative integer (possibly 0), 0 ≤ Km <
Km +$m < Km+1 for m ∈ �1
 � � � 
M� and KM+1 = K∗. Increas-
ing the payment d�q� relaxes constraints (47) and (48)
without affecting the objective, and (11) is the pointwise
maximum payment scheme that satisfies (45) and (46) with
order quantity (50). Therefore (11) is optimal. Suppose that
(47) is satisfied at � =Km+$m. Then with payment scheme
d�q� given by (11) and order quantity satisfying (50), (47) is
satisfied for all � ∈ �Km
Km+$m�. Suppose that for some � ∈
�Km
Km+$m�, q��� < Km+$m; increasing the order quantity
q��� to Km+$m relaxes constraint (48) (strengthens the sup-
plier’s incentive for capacity investment), without affecting
the other constraints (45)–(46) and objective (44). Therefore
we conclude that a solution to (44)–(48) has order quantity
and quantity-contingent payment of the form (10)–(11).
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The second step establishes sufficient conditions under
which the optimal order quantity has at most one point
of discontinuity: M ∈ �0
1�. Consider a relational contract
with the maximal discretionary payments (q���=min�K
��,
d�q� = �rq, D = �∗ − �B + cK − �rmin�K
��). Under this
contract, if the supplier intends to cheat and build less
capacity than specified in the relational contract, he will
choose capacity

Kcheat = argmax
K≥0

�cheat�K�


where

�cheat�K� = −cK+E[�rmin�K
��+ ��1− ��−1
· ��∗ −�B −�S�1��≤K�

]
�

For the remainder of the proof, we assume that � is a
normal or truncated normal random variable or that � is
a continuous random variable whose density is weakly
decreasing. We will show that this implies �cheat�K� is
strictly quasi-concave in K for K ∈ �K
 �K�. When � is
a continuous random variable whose density is weakly
decreasing,

�12/1K2��cheat�K�

=−�r2�K�+ ��1− ��−1��∗ −�B −�S��1/1K�2�K� < 0


and �cheat�·� is strictly concave. Suppose instead that � is a
normal random variable with mean 3 and standard devia-
tion s. Then

�12/1K2��cheat�K�

= e−�K−3�2/2s2√
2 s3

���1− ��−1��∗ −�B −�S��3−K�−�rs2�


which implies that �cheat�K� is strictly convex on K ∈ �0
3−
�rs2/��1− ��−1��∗ −�B −�S�� and strictly concave on K ∈
�3−�rs2/��1−��−1��∗ −�B−�S�
	�. This, combined with
the observation that

�1/1K��cheat�K��K=K = ��1− ��−1��∗ −�B −�S�2�K� > 0


implies that �cheat�K� is strictly quasi-concave in K for K ∈
�K
 �K�. The proof when � is a truncated normal random
variable is similar.
Next, we will use the quasi-concavity of �cheat�K� to show

that the optimal order quantity function has at most a single
jump (M = 1) to deter the supplier from building Kcheat and
adjacent levels of capacity. Clearly, Kcheat ≥ K. If Kcheat > �K,
then an optimal solution to (44)–(48) has order quantity
(10) and quantity-contingent payment (11) with M = 0
and K∗ = �K. (Kcheat > �K implies that (10)–(11) with M = 0
and K∗ = �K is feasible and achieves the upper bound
on the objective value of ��, the first-best expected profit
per period.) For the remainder, we suppose instead that
Kcheat ≤ �K. We relax problem (44)–(48) by substituting (52)–
(56) for the constraint (48) while including �K1
K2� as deci-
sion variables

max
d
q
K
K1
K2

�E�rmin�q���
 ���− cK� (51)

subject to (45)–(47) and

−cK+E[1�q���>K��rmin�K
��+ 1�q���≤K�
·max�d�q����+ ��1− ��−1��∗ −�B −�S�


�rE�min�K
�1� � q��1�= q�����]
≥−cK1+E

[
1�q���>K1��rmin�K1
 ��+ 1�q���≤K1�
·max�d�q����+ ��1− ��−1��∗ −�B −�S�


�rE�min�K1
 �
1� � q��1�= q�����] (52)

− cK+E[1�q���>K��rmin�K
��+ 1�q���≤K�
·max�d�q����+ ��1− ��−1��∗ −�B −�S�


�rE�min�K
�1� � q��1�= q�����]
≥−cK+E�1�q���>K2��rmin�K2
 ��+ 1�q���≤K2�

·max�d�q����+ ��1− ��−1��∗ −�B −�S�


�rE�min�K2
 �
1� � q��1�= q������ (53)

K1 ≤Kcheat ≤K2 (54)

q���=K2 for � ∈ �K1
K2� (55)

q��� < K1 for � ∈ �0
K1�� (56)

To see that this is a relaxation of (44)–(48), note that for any
solution of the form (10)–(11), there exist scalars K1 and K2
satisfying (54)–(56); also (48) implies (52) and (53). (If the
solution has Kcheat ∈ �Km
Km +$m�, then K1 = Km and K2 =
Km + $m satisfy (54)–(56); otherwise, K1 = K2 = Kcheat satis-
fies (54)–(56).) Now let us characterize the solution to the
relaxed problem (51)–(56). Again, an optimal order quantity
is nondecreasing and satisfies (49). Constraints (47), (52),
and (53) are relaxed by maximizing d�q� subject to (45) and
(46). Constraint (45) implies that setting q��� > � for any
� ∈ �0
K1� ∪ �K2
K� strictly reduces the maximum feasi-
ble d�q�. With q��� = � for � ∈ �0
K1� ∪ �K2
K�, a neces-
sary and sufficient condition for (47) to hold for � ≥ 0 is
that (47) holds for � = K+

2 . To see sufficiency, note that
for � ∈ �0
K1�, an optimal payment is d�q� = �rq; for � ∈
�K1
K2�, the constraint holds because K

+
2 >E�min�K
�� � � ∈

�K1
K2��; for � > K2 an optimal quantity-contingent pay-
ment has d′�q�≥ �r . Hence there exists an optimal solution
to the relaxed problem (51)–(56) of the form

d∗�q�=




�rq for 0≤q≤K1
�rK1 for K1<q≤K2
�rK1+r�q−K2�
for K2≤q≤min��K2−�K1�/�1−��
K∗�

�rq for �K2−�K1�/�1−��≤q≤K∗

d∗�K∗� for q>K∗

(57)

q∗���=




� for 0≤�<K1
K2 for K1≤�≤K2
� for K2≤�≤K∗

K∗ for �>K∗


(58)
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where either K1 = K2 = Kcheat and (57)–(58) is of the form
(10)–(11) with M = 0, or K1 < K2 and (57)–(58) is of the
form (10)–(11) with M = 1. To show that (57)–(58) is an
optimal solution for (44)–(48), it is sufficient to show that
(57)–(58) satisfies (48). Let �� �K

′� denote the maximand in
(48). Because for K ∈ �0
K1�, �� �K�=�cheat�K� and �cheat�K�
is increasing, (52) implies �� �K

∗� ≥ �� �K� for K ∈ �0
K1�.
Because �� �K� is decreasing on K ∈ �K1
K2� and K > K∗,
�� �K

∗� ≥ �� �K� for K ∈ �K1
K2� and K > K∗. Because for
K ∈ �K2
K∗�, �cheat�K� is decreasing and �cheat�K�−�� �K�
is increasing, �� �K� is decreasing; therefore, (53) implies
�� �K

∗� ≥ �� �K� for K ∈ �K2
K∗�. Thus, (57)–(58) satisfies
(48) and hence is an optimal solution for (44)–(48). We con-
clude that the optimal order quantity q∗��� has at most one
point of discontinuity. �
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