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Optimal Learning before Choice

Abstract

A Bayesian decision maker is choosing among multiple alternatives with uncertain payoffs and an
outside option with known payoff. Before deciding which alternative to adopt, the decision maker
can purchase sequentially multiple informative signals on each of the available alternatives. To
maximize the expected payoff, the decision maker solves the problem of optimal dynamic allocation
of learning efforts as well as optimal stopping of the learning process. We show that the optimal
learning strategy is of the type of consider-then-decide. The decision maker considers an alternative
for learning or adoption if and only if the expected payoff of the alternative is above a threshold.
Given several alternatives in the decision maker’s consideration set, we find that sometimes it is
optimal for the decision maker to learn information from an alternative that has a lower expected
payoff and less uncertainty, given all other characteristics of all the alternatives being the same. If
the decision maker subsequently receives enough positive informative signals, the decision maker will
switch to learning the better alternative; otherwise the decision maker will rule out this alternative
from consideration and adopt the currently most preferred alternative. We find that this strategy
works because it minimizes the decision maker’s learning efforts. It becomes the optimal strategy
when the outside option is weak, and the decision maker’s beliefs about the different alternatives
are in an intermediate range.

Keywords: Information; Bayesian Learning; Search Theory; Dynamic Allocation; Optimal Stopping;
Consideration Set

JEL Classification: D83, L15, M31



1. Introduction

In many circumstances, agents have the opportunity to learn sequentially about multiple different
alternatives before making a choice. Specifically, consider a decision maker who is deciding among
several alternatives with uncertain payoffs and an outside option with a known payoff. Before
deciding which one to adopt, he can gather some information on each alternative. After learning
more about an alternative, the decision maker gains more precise knowledge about its payoff, with
initial learning being more informative than later learning. It is costly to gather and process
information. Therefore, at some point, the decision maker will decide to stop learning and make a
choice on which alternative to adopt or to take the outside option.

For example, consider a consumer in the market for a car. The consumer could first learn
information about a certain model A, then choose to get information about model B, then go
back to get more information on model A again, and so on, until the consumer decides to either
purchase model A, model B, or some other model, or not to purchase a car for now. With the recent
development of information technologies, it becomes more and more important to understand this
information gathering behavior of consumers, as there is further information collected about how
consumers gather information by web browsing the Internet.

Information gathering is not unique to the consumers’ purchase process. In fact, many other
important economic activities involve similar costly gradual information acquisition: companies
allocating resources to R&D, individuals looking for jobs, firms recruiting job candidates, politicians
evaluating better public policies, manufacturers considering alternative suppliers, etc.

We study a decision maker’s optimal information gathering problem under a Bayesian frame-
work. We consider a setting in which the payoff of each alternative follows a two-point distribution,
being either high or low. The decision maker has a prior belief on the probability that an alter-
native is of high payoff. Each time he learns some information about an alternative, he incurs a
cost and gets a noisy signal on its payoff. This signal does not reveal the payoff of this alternative
completely; rather, it updates the decision maker’s belief of the distribution of the payoff. The
decision maker could buy another signal on the same alternative if he would like to learn more
about it or, alternatively, he could buy signals on other alternatives. In this setting the precision
of the decision maker’s belief is a function of his belief. Therefore, we only need to account for one
state variable per alternative during the learning process—the probability that each alternative is of
high payoff. Despite its simplicity, this setup captures the ideas that the decision maker gains more
precise information during the learning process, and that the marginal information per learning
effort decreases with the cumulative information gathered so far on an alternative. This two-point
distribution assumption also implies that the agent becomes more certain about the payoff of an
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alternative when the payoff is either relatively high or low. The decision maker solves the problem
of optimal dynamic allocation of learning efforts as well as optimal stopping of the learning process,
so as to maximize the expected payoff.

We consider a two-alternative continuous-time model with infinite time horizon, which enables
a time-stationary characterization of the optimal learning strategy when the outside option takes
relatively large or small values.1 The result is a partition of the belief space into regions, within
which it is optimal to learn each alternative, adopt each alternative, or take the outside option.

We find that if the belief on an alternative is below a threshold, the decision maker will never
consider that alternative—he will neither learn nor adopt that alternative. This then provides
an endogenous formation of a consideration set, given the decision maker’s belief on the payoff
distribution, his learning costs, the value of the outside option, and the noisiness of the signals
received. If more than one alternative has the beliefs above that threshold, then the decision maker
chooses to stop learning and adopt one alternative if the expected payoff of that alternative is
sufficiently larger than that of the next best alternative. That is, when the expected payoffs from
the alternatives are not too different, the decision maker will continue to learn.

We also investigate the effect of the value of the outside option on optimal learning behavior.
We find that when the value of the outside option is relatively high, the decision maker always
chooses to learn about the alternative with the higher expected payoff first. More interestingly, we
find that this is not necessarily the case when the value of the outside option is sufficiently low. In
this case it may be optimal to first learn about the alternative that has a lower expected payoff, all
else being equal among alternatives, with the purpose of possibly ruling it out early. If the decision
maker receives sufficiently poor signals on this alternative, he will stop learning and immediately
adopt the other alternative. We find this strategy works because it saves learning costs.

It is interesting to understand the intuition about why a decision maker’s optimal learning
strategy depends on the value of the outside option. When the outside option has a relatively high
value, it will be relevant for the decision maker’s ultimate choice at the end of the learning process.
In this case, by learning the alternative with higher expected payoff, the decision maker keeps both
the outside option and the other alternative as reservation options. Therefore, the decision maker
prefers to learn the alternative with higher expected payoff. On the other hand, when the outside
option has a relatively low value, it is no longer as relevant for the decision maker’s ultimate choice.
In this case, the decision maker is basically deciding between the two uncertain alternatives, and it
may be better to learn about the alternative with lower expected payoff first to potentially rule it

1See, for example, Bolton and Harris (1999), Moscarini and Smith (2001), for the use of the same learning process
in continuous time.
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out early, so as to make a clear distinction between the two uncertain alternatives with minimum
learning effort.

We also compute the decision maker’s likelihood to adopt each alternative given his current
belief, when he follows the optimal learning strategy. We find that the probability of choosing
either one of the alternatives can fall as there are more alternatives available. This is because
having more alternatives makes it harder for the decision maker to make a choice, and thus leads
to more learning, which can ultimately result in no adoption of any of the alternatives. Specifically,
information is ex ante neutral. It is possible that with more learning, the decision maker gets positive
information on either alternative, in which case he will, at best, adopt one of the alternatives. On
the other hand, it is equally possible that with more learning, the decision maker gets negative
information, in which case he may choose to take the outside option. We also compute the decision
maker’s expected probability of being correct ex post given his current belief, when he follows the
optimal learning strategy. Finally, we consider the optimal learning problem when alternatives have
heterogeneous learning costs or payoff distributions, when the number of alternatives are greater
than two, and when there is time discounting instead of learning costs.

The problem considered here is related to the multi-armed bandit problem (e.g., Rothschild
1974a, Gittins 1979, Whittle 1980, Bergemann and Välimäki 1996, Felli and Harris 1996, Bolton
and Harris 1999), where a decision maker learns about different options by trying them, one in each
period, while earning some stochastic rewards along the way. That problem has an elegant result
that the optimal policy is to choose the arm with the highest Gittins index, which for each arm
only depends on what the decision maker knows about that arm until then. However, the problem
considered here is different from the bandit problem in one major aspect. In our setting, a decision
maker optimally decides when to stop learning and make an adoption. Therefore, the decision
horizon is endogenous, and optimally determined by the decision maker. In contrast, multi-arm
bandit problems generally presume an exogenously given decision horizon, which could be either
finite or infinite. In fact, our problem belongs to a general class of the stoppable bandits problem,
first introduced by Glazebrook (1979), which generalizes simple bandit processes to allow for two
arms per bandit. By adding a second “stopping arm” to each bandit, extra payoff can be generated
when the stopping arm is pulled. In general, index policies are not optimal for this type of problems
(Gittins et al. 2011, Chapter 4). Glazebrook (1979) shows that an index policy can be optimal under
certain conditions. However, as shown below, Glazebrook’s sufficient conditions are not satisfied
in our setting, and the index policy is sub-optimal. We will compare our optimal policy with that
of Glazebrook (1979) below. Forand (2015) considers a revised multi-armed bandit problem where
the decision maker must incur maintenance costs to keep an alternative available for choice and
any positive signal is fully revealing. Forand finds that it may be optimal to first try the worst
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alternative to rule it out, and continue then searching the other alternative. In contrast, we consider
a decision maker that receives gradual signals on an alternative searched, either positive or negative.
If he receives enough negative signals on the worst alternative, the decision maker chooses the other
alternative immediately, without learning more about it.

The literature on search theory is also related to the results presented here. Although the
problem considered here is central to choice in a market environment, it is quite under-researched
when all of its dimensions are included. For the simpler case in which all learnable information
about an alternative can be learned in one search occasion, there is a large literature on optimal
search and some of its market implications (e.g., McCall 1970, Diamond 1971, Weitzman 1979,
Doval 2014). This literature, however, does not consider the possibility of gradual revelation of
information throughout the search process. There is also some literature on gradual learning when
a single alternative is considered or information is gathered to uncover a single uncertain value
(e.g., Roberts and Weitzman 1981, Moscarini and Smith 2001, Branco et al. 2012, Fudenberg
et al. 2015), and the choice there is between adopting the alternative or not. In the face of more
than one uncertain alternative (as is the case considered in this paper) the problem becomes more
complicated. This is because opting for one alternative in a choice set means giving up potential high
payoffs from other alternatives about which the decision maker has yet to learn more information.
This paper can then be seen as combining these two literatures, with gradual search for information
on multiple alternatives. Kuksov and Villas-Boas (2010) and Doval (2014) consider a search problem
where everything that can be learned about one alternative is learned in one search occasion, but
the decision maker can choose an alternative without search. This feature is also present here
by including an outside option and allowing for adoption of an alternative without gaining full
information about it. Doval, in particular, finds that in this case the decision maker may be
indifferent to search an alternative that does not have the highest reservation price, which can be
seen as related to the case in this paper of choosing to learn an alternative other than the best
one under some conditions. Different from Doval, this paper considers gradual learning of each
alternative, and we find that it could be strictly optimal to learn an alternative that has both lower
expected payoff and lower uncertainty.2

Ke et al. (2016) considers a stationary problem of gradual search for information with multiple
products, where the precision of beliefs does not increase with search, and where earlier learning
is not more informative than later learning. One important result in this paper is that it can be
optimal to learn about an inferior alternative, which is never optimal in Ke et al. (2016). Another

2In a concurrent paper, Che and Mierendorff (2016) consider which type of information to collect in a Poisson-type
model, when the decision maker has to choose between two alternatives with one, and only one, alternative having
a high payoff.
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important difference is that the possible payoffs are bounded here, while they are unbounded in
Ke et al. (2016).3 The problem considered here also relates to the literature studying search while
learning the payoff distribution (e.g., Rothschild 1974b, Adam 2001), but there what can be learned
about each alternative is learned in one search occasion, so there is no gradual learning on each
alternative.

The remainder of the paper is organized as follows. Section 2 presents the optimal learning
problem. Section 3 solves the problem and presents the optimal learning strategy, and Section 4
looks at the implications of the results for adoption likelihood and probability of being correct.
Section 5 presents several extensions of the main model, including heterogeneous alternatives, the
effect of the number of alternatives, and time discounting. Section 6 presents concluding remarks,
and the proofs are presented in the Appendix.

2. Optimal Learning Problem

A decision maker (DM) is uncertain about the payoffs of n alternatives. It is assumed that the
payoff of alternative i, πi, is either “high” as πi or “low” as πi, with πi > πi for i = 1, · · · , n. Besides
the n alternatives, there is an outside option with known deterministic payoff as π0. The DM is
assumed to be Bayesian and risk-neutral, or that the payoffs are in utils. To avoid trivialities, let
us assume that π0 < πi for all i, so that no alternative i will be dominated by the outside option
in all circumstances. Before deciding which alternative to adopt, the decision maker can gather
information sequentially on the n alternatives. Specifically, we consider a continuous-time setup.
At any time point t, when the DM spends extra time dt in learning some information on alternative
i, he pays cost cidt and gets an informative signal on πi. This signal does not reveal πi completely;
instead, it updates the DM’s belief of the distribution of πi according to Bayes’ rule. The DM could
buy another signal on the same alternative if he would like to learn more about it or, alternatively,
he could buy signals on other alternatives. Signals are assumed to be i.i.d. for each alternative and
across all alternatives. It is assumed that the flow learning cost ci, once paid, is sunk.4

Consider a dynamic decision process with infinite time horizon. Let us define the DM’s posterior

3This paper also provides proof of existence and uniqueness of the optimal solution, and a more complete char-
acterization of the stochastic process, which is not presented in Ke et al. (2016). With the possibility of a single
observation process one can also consider the case of choosing one among several alternatives whose payoffs depend
on the same state variable (see, for example, Moscarini and Smith 2001, Décamps et al. 2006).

4Another possible dimension, not explored here, is that the DM can also choose the intensity of effort in the
search process at each moment in time, with greater effort leading to a more precise signal (as in Moscarini and
Smith 2001).
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belief of πi being high at time t ∈ [0,∞) as xi(t).

xi(t) = Pr (πi = πi|Ft) , (1)

where {Ft}Tt=0 is a filtration that represents all the observed signals by time t. Then we have that
xi(0) is the DM’s prior belief at time zero before obtaining any signal. For the sake of simplicity, we
will just call xi(t) the belief of alternative i at time t below, and in the cases without confusion, we
will drop the argument t and write it as xi. The DM’s conditional expected payoff from adopting
alternative i at time t is then,

E [πi|Ft] = xi(t)πi + (1− xi(t))πi = ∆πi · xi(t) + πi, (2)

where ∆πi ≡ πi − πi > 0. Below, we will use ∆πi and πi to replace πi and πi as our primary
parameters. When we consider homogeneous alternatives below, we will drop the subscript i and
use ∆π and π, respectively.

At any time t, the decision maker makes a choice from 2n + 1 actions: to learn alternative
1, · · · , to learn alternative n, to adopt alternative 1, · · · , to adopt alternative n, or to take the
outside option. The decision process terminates when the DM adopts either one alternative or the
outside option. He makes the choice of which action to take based on the information acquired
so far, Ft. Since πi follows a two-point distribution, intuitively, all information about πi can be
summarized by one variable—the posterior belief xi. Formally, it is straightforward to prove that
x(t) ≡ (x1(t), · · · , xn(t)) is a sufficient statistic for the observed history Ft. Therefore, the DM’s
learning problem is essentially for each time t, to find a mapping from the belief space where x(t)

lives in to the set of 2n+ 1 actions, so as to maximize the expected payoff.

We can actually classify the 2n + 1 actions into two categories: to continue learning, and to
stop learning and make an adoption decision. From this perspective, the decision maker’s optimal
learning problem can be equivalently viewed as dynamically deciding which alternative to learn at
each time, and when to stop learning and make an adoption decision. In other words, the DM needs
to solve the problem of optimal allocation (which alternative to learn) and optimal stopping (when
to stop learning) at the same time, so as to maximize his expected payoff.

To formalize the DM’s optimal learning problem, let us introduce the allocation policy as It (x) ∈
{1, · · · , n} that specifies which alternative to learn at time t, based on the DM’s current posterior
belief x. Formally speaking, I ≡ {It(x)}Tt=0 is a progressively measurable process adapted with
respect to the natural filtration of {x(t)}Tt=0. Let us also introduce τ as the stopping time adapted
with respect to the natural filtration of {x(t)}Tt=0. Given any allocation policy I and stopping time
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τ , let us define Ti(t) as the cumulated time that alternative i has been engaged in learning until
time t ≤ τ , or formally,

Ti(t) ≡ µ (0 ≤ z ≤ t; I(x(z)) = i) , (3)

where µ(·) is the Lebesgue measure on R. The observation process for the i-th alternative is assumed
to follow the stochastic differential equation (SDE),

dsi(t) = πidTi(t) + σidWi (Ti(t)) , (4)

where Wi(t) is a standard Brownian motion, and σ2
i > 0 specifies the noise level for signals of

alternative i (see, for example, Roberts and Weitzman 1981, Karatzas 1984, Bolton and Harris
1999, Moscarini and Smith 2001, Weeds 2002, for a similar formulation). As an analog to the
discrete-time counterpart, the continuous-time signal dsi(t) consists of two parts: the “true value”
πidTi(t), and a white noise term σidWi (Ti(t)). Under this framework, if the DM keeps learning
information from one alternative continuously, his observation will be a Brownian motion with the
drift as the (unknown) payoff.

The decision maker’s expected payoff given his allocation policy I and stopping time τ can be
written as the following expression:

J(x; I , τ) = E

[
max {∆π1 · x1(τ) + π1, · · · ,∆πn · xn(τ) + πn, π0}

−
n∑
i=1

ci

∫ τ

0

1{It(x(t))=i}dt

∣∣∣∣∣x(0) = x

]
, (5)

where 1{It(x(t))=i} equals to one when It(x(t)) = i and zero otherwise. The allocation policy I

not only enters into the cost term in equation (5) directly, but also influences the belief updating
process, and thus x(τ). Starting from any belief x, it is obvious that the DM’s expected payoff is no
greater than maxi πi, so the supremum of the objective function in equation (5) exists. Therefore,
we can write the DM’s optimal learning problem as the following.

V (x) = sup
I ,τ

J(x; I , τ), (6)

where V (x) is the so-called value function. Similarly, starting from any time t ≥ 0, we can define
Vt(x) as the supremum of DM’s expected payoff, given his belief as x at time t.

Now let us formulate the DM’s optimal learning problem in equation (6) as a dynamic decision
problem. Given the signal generation process in equation (4), by applying Theorem 9.1 from Liptser
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and Shiryaev (2001), we can write down the following SDE for the belief updating process,

dxi(t) =
∆πi
σ2
i

xi(t) [1− xi(t)] {dsi(t)− E [πi|Ft] dTi(t)}

=
∆πi
σ2
i

xi(t) [1− xi(t)] {[πi − πi (1− xi(t))− πixi(t)] dTi(t) + σidWi(Ti(t))} . (7)

The equation above can be understood intuitively. The first multiplicative term on the right hand
side, ∆πi

σ2
i
, is the signal-to-noise ratio for alternative i. The second term, xi(t) [1− xi(t)] , takes the

maximal value when xi(t) = 1/2, which implies that the DM will update his belief of an alternative
most significantly when he is most uncertain about its payoff. On the other hand, xi(t) [1− xi(t)]
takes the minimal value of zero when xi(t) = 0 or 1, i.e., when he is most certain about the payoff.
For the third term, we find that dxi(t) > 0 if and only if dsi > E [πi|Ft] dTi(t). This implies that, a
DM will update his belief upward if and only if the observation process rises faster than his current
expectation. We can also see that dxi(t) does not depend on t explicitly due to time stationarity,
and therefore we can drop the argument of t in the above equation. Note also that E[dxi(t)|Ft] = 0,

and E[dxi(t)
2|Ft] = (∆πi)

2

σ2
i
xi(t)

2[1− xi(t)]2dt.

Based on the belief updating process, we can approximate continuous time by discrete time
periods of length dt > 0 to obtain the following Bellmam equation that is associated with the
optimal learning problem in equation (6).

V̂ (x) = max
{
− c1dt+ E

[
V̂ (x1 + dx1, x2, · · · , xn)|x

]
, · · · ,

−cndt+ E
[
V̂ (x1, · · · , xn−1, xn + dxn)|x

]
,

E[π1|x], · · · ,E[πn|x], π0

}
. (8)

where the 2n + 1 terms in the maximization correspond to the DM’s 2n + 1 choices of actions
respectively at any time t. By defining g(x) as the maximum payoff that can be obtained if search
were not allowed given the beliefs x, g(x) ≡ max {E[π1|x], · · · ,E[πn|x], π0}, the approximate Bell-
man equation (8) can be formally represented by the following Hamilton-Jacobi-Bellman (HJB)
equation:

max

{
max
1≤i≤n

{
(∆πi)

2

2σ2
i

x2
i (1− xi)2V̂xixi(x)− ci

}
, g(x)− V̂ (x)

}
= 0, (9)

where V̂ (x) is bounded, continuous, and with continuous first and second derivatives (see, for
example, Karatzas 1984), and V̂xixi(x) represents the second-order partial derivative of V̂ (x) with
respect to xi. Let us provide some intuition on (9). The first term in the max operator can be
obtained by using equation (7), a Taylor expansion on V̂ (x) in equation (8), and Itô’s lemma. It
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says that the DM’s maximum expected payoff should be no less than the expected payoff from
continuing learning one alternative. The second term of the max operator says that the DM’s
maximum expected payoff should be no less than the expected payoff from adopting the current
best alternative. Finally, the max operator says that at any time, the DM will choose to either stop
learning or continue learning. Applying the Itô’s lemma to V̂ (x) we can get that V̂ (x) is an upper
bound on the DM’s expected payoff, V̂ (x) ≥ J(x; I , τ) for any allocation policy I , any stoping
time τ, and any belief vector x.

We will construct, under some parameter conditions, an allocation policy I ∗ and a stopping
time policy τ ∗ that generates a value function V̂ that satisfies the partial differential equation
(9), with V̂ (x) bounded, continuous, and with continuous first derivatives. Under these policies
V̂ (x) = J(x; I ∗, τ ∗), ∀x, which means the optimality of I ∗ and τ ∗ and we obtain the value
function V (x) = V̂ (x), ∀x. To simplify the presentation, in the following, we will use the notation
V (x) to represent both V (x) and V̂ (x), as we concentrate on the case of optimality of the allocation
and stopping time policies.5 As the solution for the value function is continuous, we obtain what
is called a viscosity solution (see Crandall et al. 1992 for an extensive description of this type of
solutions). In order to show that the viscosity solution to the HJB equation (9) exists and is unique,
we show how the HJB equation (9) can be adjusted to satisfy degenerate ellipticity (one possible
property of HJB equations related to some particular monotonicity conditions), and then apply the
results in Lions (1983a) and Lions (1983b) to show existence and uniqueness of the value function.
We state next the existence and uniqueness result, and the details and sketch of the proof are
presented in the Appendix.6

Lemma 1: Under the belief updating process in equation (7), V (x) exists and is the unique solution
to the HJB equation (9).

In the next section, we present our main results on two homogeneous alternatives (n = 2). We
will study the case with heterogeneous alternatives in Section 5.1, and the case with more than two
alternatives in Section 5.2.

3. Optimal Learning Strategy

We consider two homogeneous alternatives in this section with ∆πi = ∆π, πi = π, σi = σ, and
ci = c. To solve the DM’s optimal learning problem, we will first propose a solution, and then verify
that it satisfies equation (9). Then, by Lemma 1, it must be the only solution.

5See also Peskir and Shiryaev (2006), pp. 40-49, on how to obtain the value function in stopping time problems.
6We thank Wenpin Tang for this proof. Any remaining errors are our own.
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Single Alternative

To solve the problem with two alternatives, it is illustrative to first work out the simpler case with
only one alternative, i.e. n = 1. In this case, the decision maker is solving an optimal stopping
problem—when to stop learning information and make an adoption decision. This problem, in
similar settings, has been studied by Roberts and Weitzman (1981), Moscarini and Smith (2001),
and Branco et al. (2012). For simplicity, we will drop the subscript i, since we only have one
alternative to consider. The optimal learning strategy is that there exist 0 ≤ x < x ≤ 1 such that
the DM continues learning when x ≤ x ≤ x, and he stops learning to take the outside option when
x < x or to adopt the alternative when x > x. Therefore learning is preferred only when the DM’s
belief is in the middle range, i.e., when the DM is uncertain between the outside option and the
alternative. For this one alternative case, we denote the value function as U(x), so V (x) is used
only for n ≥ 2, to make the presentation clearer.

To solve for the value function U(x), let us consider three cases. In the first case, when x ≤ x ≤ x,
equation (9) is reduced to the following second-order ordinary differential equation (ODE)

(∆π)2

2σ2
x2
i (1− x)2U ′′(x)− c = 0. (10)

The general solution to this ODE is

U(x) =
2σ2c

(∆π)2
(1− 2x) ln

(
1− x
x

)
+ C1x+ C2, (11)

where C1 and C2 are two undetermined constants. In the second case, when x < x, we have
U(x) = π0. Finally, in the third case, when x > x, we have U(x) = ∆π · x + π. To summarize the
three cases, we have the following expression for the value function

U(x) =


π0, x < x,

2σ2c

(∆π)2
(1− 2x) ln

(
1− x
x

)
+ C1x+ C2, x ≤ x ≤ x,

∆π · x+ π, x > x.

(12)

To complete the computation of the optimal policy, we need a set of boundary conditions to deter-
mine x, x, C1 and C2. In fact, U(x) has to be continuous at x and x, which implies the following
so-called value matching conditions,

U(x+) = U(x−), (13)

U(x+) = U(x−), (14)
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where U(x+) denotes the right limit of U(x) at x = x, and U(x−) denotes the left limit of U(x) at
x = x. We also have that U(x) has to be smooth at x and x (i.e., U ′(x) has to be continuous at x
and x), which implies the following so-called smooth pasting conditions,

U ′(x+) = U ′(x−), (15)

U ′(x+) = U ′(x−). (16)

Value matching and smooth pasting are standard conditions for optimal stopping problems of
diffusion processes. See, e.g., Dixit (1993), Dixit and Pindyck (1994), Chapter 9.1 of Peskir and
Shiryaev (2006) and Strulovici and Szydlowski (2015) for more discussion. We will provide more
details on these smoothness conditions when we analyze the case with two alternatives below.

By combining equations (12)-(16), we can determine x, x, C1 and C2, and thus determine U(x).
Unfortunately, this set of equations cannot be solved explicitly, and x, x can only be determined
implicitly by the following set of equations,(

1

x
+

1

1− x

)
−
(

1

x
+

1

1− x

)
= −(∆π)2(∆π + 2π − 2π0)

2σ2c
, (17)

Φ (x)− Φ (x) = −(∆π)3

2σ2c
, (18)

where,

Φ(x) ≡ 2 ln

(
1− x
x

)
+

1

x
− 1

1− x
, (19)

which is a strictly decreasing function in (0, 1). By equation (18), we immediately get that x > x.
The constants C1 and C2 can be explicitly expressed in terms of x and x.

Next, we will proceed to analyze the optimal learning problem with two homogeneous alterna-
tives. We find that the solution structure critically depends on the value of the outside option. We
will start with the case with sufficiently high outside option. This is a relatively simpler case which
allows us to clearly demonstrate the solving techniques. Then, we will also fully characterize the
case with sufficiently low outside option, and finally, we will present some results on the complicated
case with intermediate outside option.

Two Alternatives with High-Value Outside Option

In this subsection, we consider the case of two homogeneous alternatives with the value of the
outside option sufficiently high. We will propose a solution, and then verify that it satisfies the
HJB equation (9). After that, we will come back and determine the exact threshold for the outside
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option to be considered sufficiently high.

First, we note that the two alternatives are symmetric in the belief space of x1-x2, so we only
need to consider the case with x1 ≥ x2 below. We consider two cases: In the first case, when x2 ≤ x,
we propose that alternative 2 will not be considered for either learning or adoption, and one goes
back to the case with a single uncertain alternative—alternative 1. Correspondingly, we have

V (x1, x2) = U(x1), if x2 ≤ x. (20)

In the second case, when x1 ≥ x2 > x, we propose that there exists a smooth function X(·) such
that the DM learns alternative 1 when x2 ≤ x1 ≤ X(x2), and adopts alternative 1 when x1 > X(x2).
Intuitively, we call X(x2) the adoption boundary for alternative 1. Correspondingly, by applying
similar analysis for the single-alternative case above, we have V (x1, x2) that satisfies the following
partial differential equation (PDE) when x2 ≤ x1 ≤ X(x2),

(∆π)2

2σ2
x2

1(1− x1)2Vx1x1(x1, x2)− c = 0. (21)

Thanks to its simple parabolic form, equation (21) has the following general solution,

V (x1, x2) =
2σ2c

(∆π)2
(1− 2x1) ln

(
1− x1

x1

)
+ C1(x2)x1 + C2(x2), if x2 ≤ x1 ≤ X(x2), (22)

where C1(·) and C2(·) are two undetermined functions.7 On the other hand, when x1 > X(x2), we
have

V (x1, x2) = ∆π · x1 + π, if x1 > X(x2). (23)

Thus far we have proposed a solution of V (x1, x2) for each region in the belief space of x1-x2. Next,
along the same line of argument of the value matching and smooth pasting conditions in equations
(13)-(16), we will consider all the boundary conditions connecting all the regions. It remains an
open question to prove the necessity of the smoothness conditions for a two-dimensional mixed
optimal stopping and optimal control problem like ours.8 Fortunately, we do not need to prove the

7When x1 = 1, V (x1, x2) is not well defined, but the optimal learning problem is trivial. Under x1 = 1, the payoff
of alternative 1 is known to be high, therefore, the DM’s optimal strategy is to adopt alternative 1 immediately, and
V (x1, x2) = π. Similarly we can solve the case where x2 = 1. For the sake of convenience, we only consider the case
that x1 < 1 and x2 < 1 below. Later, we will show that V (x1, x2) is continuous at xi = 1.

8See Strulovici and Szydlowski (2015) for recent progress on smoothness conditions for one-dimensional mixed
optimal stopping and optimal control problems. Peskir and Shiryaev (2006), p.144, note that for optimal stopping
problems if the boundary is Lipschitz-continuous, then the smooth pasting conditions will hold at the optimum.
Caffarelli (1977), Theorem 2, shows that if the payoff for stopping is continuously differentiable, which occurs in
this case, then the boundary is Lipschitz-continuous. Caffarelli (1977), Theorem 3, also shows that if the payoff of
stopping is continuously differentiable, then the boundary is continuously differentiable. In our case, that means that
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necessity of these conditions, since we only use them to guess a solution. We follow Chernoff (1968)
and Chapter 9.1 of Peskir and Shiryaev (2006) to provide in the Appendix an intuitive argument
on the smooth pasting conditions based on a Taylor expansion.

First, we require V (x1, x2), Vx1(x1, x2) and Vx2(x1, x2) to be continuous at the adoption boundary
x1 = X(x2). By substituting equations (22) and (23) into these three conditions, we find that one
of them is redundant (see also Mandelbaum et al. 1990, p. 1016, for a similar result), and the three
conditions are equivalent to the following two equations,

C1(x) =
4σ2c

(∆π)2
ln

(
1−X(x)

X(x)

)
+

2σ2c

(∆π)2

1− 2X(x)

X(x)
(
1−X(x)

) + ∆π (24)

C2(x) = − 2σ2c

(∆π)2
ln

(
1−X(x)

X(x)

)
− 2σ2c

(∆π)2

1− 2X(x)

1−X(x)
+ π. (25)

The redundancy of one condition is not a mere coincidence. Instead, it is due to the learning problem
structure that the DM can learn only one alternative at a time. Consequently, only one Brownian
motion can move at a time and we have a parabolic PDE in equation (21).9 In the Appendix, we
show that due to the parabolic PDE, we will always end up with one redundant condition.

By substituting the expressions of C1(x) and C2(x) in equations (24) and (25) into equation
(22), we have

V (x1, x2) =
2σ2c

(∆π)2
(1− 2x1)

[
ln

(
1− x1

x1

)
− ln

(
1−X(x2)

X(x2)

)]
− 2σ2c

(∆π)2

1− 2X(x2)

1−X(x2)

X(x2)− x1

X(x2)
+ ∆π · x1 + π, if x2 ≤ x1 ≤ X(x2). (26)

Second, we require V (x1, x2), Vx1(x1, x2) and Vx2(x1, x2) to be continuous at the boundary
x1 = x2. Due to the symmetry of V (x1, x2) in x1-x2 space, it is not difficult to recognize that the
only necessary boundary condition is the continuity of Vx1(x1, x2). Based on equation (26), we can

X(x2) is continuously differentiable.
9We could generalize our learning problem to allow the DM at any time, to allocate a fraction of his effort to learn

alternative 1 and the complementary fraction of the effort to learn alternative 2. If we impose a capacity constraint
on the total number of “signals” per unit of time from the two alternatives, we can show that the optimal learning
strategy will be exactly the same as that in our main model, i.e., the DM will optimally allocate his effort to one
alternative at a time. That is to say, sequential learning is optimal. On the other hand, if we do not impose this
capacity constraint on the number of total signals per time, depending on the model setting, we may end up with
the case where it is optimal for the DM to learn multiple alternatives simultaneously. This would correspond to an
elliptic PDE instead of the parabolic PDE that occurs here.
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simplify this boundary condition as the following ODE,

X
′
(x) = −

Φ
(
X(x)

)
− Φ(x) + (∆π)3/(2σ2c)

Φ′
(
X(x)

) (
X(x)− x

) . (27)

Third, we also require V (x1, x2), Vx1(x1, x2) and Vx2(x1, x2) to be continous at x2 = x. We can
show that this set of three boundary conditions are equivalent to

X(x) = x. (28)

X(x) can then be determined by combining equations (27) and (28) as a boundary value problem of
an ODE. We are unable to solve the ODE analytically, but we prove its existence and uniqueness,
and some useful properties of the solution in the following lemma.

Lemma 2: There exists a unique continuous function X(x) in [x, 1] that solves the boundary value
problem of an ODE in equations (27) and (28). X(x) is smooth, increasing, and X(x) ≥ x with
X(1−) = 1.

Thus far we have considered all the boundary conditions which, together with the expressions
of V (x1, x2) given by equations (20), (23) and (26), entirely characterize the solution to equation
(9). Lastly, to verify this is indeed the solution, we need to guarantee that the DM prefers to learn
alternative 1 for x ≤ x2 ≤ x1 ≤ X(x2). By equation (9) and (21), we require that

x2
2(1− x2)2Vx2x2(x1, x2) ≤ 2σ2c

(∆π)2
, for ∀x ≤ x2 ≤ x1 ≤ X(x2). (29)

Without solving X(x), it is difficult to translate the inequality above into expressions in terms of
model primitives. Nevertheless, we are able to prove the following necessary and sufficient condition
for inequality (29).

Lemma 3: The DM prefers learning alternative 1 for x ≤ x2 ≤ x1 ≤ X(x2), if and only if

X
′
(x2) ≤

X(x2)
(
1−X(x2)

)
x2 (1− x2)

, for ∀x2 ∈ [x, 1). (30)

There exists a x∗0 < 1/2, such that this condition holds if and only if x0 ≡ (π0 − π)/(∆π) ≥ x∗0.

The variable x0 measures the relative value of the outside option compared with the uncertain
alternatives. This lemma implies that the solution that we just proposed exists only when the
outside option is sufficiently high.
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Finally, we have the following theorem to summarize everything so far for this subsection on the
value function (the optimal learning strategy is characterized in Theorem 2 below). The existence
and uniqueness of the solution has been established in Lemma 1 and, based on the way we construct
the solution, we have already verified that it satisfies equation (9).

Theorem 1: Consider the decision maker’s optimal learning problem in equation (6) with two
homogeneous alternatives. When the value of the outside option is relatively high, i.e., x0 ≥ x∗0, the
value function V (x1, x2) is given by

V (x1, x2) =



2σ2c
(∆π)2

(1− 2x1)
[
ln
(

1−x1
x1

)
− ln

(
1−X(x2)

X(x2)

)]
− 2σ2c

(∆π)2
1−2X(x2)

1−X(x2)

X(x2)−x1
X(x2)

+ ∆π · x1 + π, if x2 ≤ x1 ≤ X(x2), x1 ≥ x

2σ2c
(∆π)2

(1− 2x2)
[
ln
(

1−x2
x2

)
− ln

(
1−X(x1)

X(x1)

)]
− 2σ2c

(∆π)2
1−2X(x1)

1−X(x1)

X(x1)−x2
X(x1)

+ ∆π · x2 + π, if x1 ≤ x2 ≤ X(x1), x2 ≥ x

∆π · x1 + π, if x1 > X(x2)

∆π · x2 + π, if x2 > X(x1)

π0, otherwise,

(31)

where X(x) is determined by the boundary value problem in equations (27) and (28) for x ∈ [x, 1],
and X(x) = x for x ∈ [0, x].

The function X(·) was defined only on the support [x, 1) when first introduced. In the theorem
above, we have abused the notation by expanding its support to [0, 1]. By defining X(x) ≡ x for
x ∈ [0, x) and X(1) ≡ 1, we are able to define the adoption boundary and write down the value
function in a uniform way. It is easy to verify that X(x) is still smooth, increasing, and X(x) ≥ x

for x ∈ [0, 1].

Because x∗0 < 1/2 and x0 = (π0 − π)/∆π, we have the following corollary.

Corollary 1: Consider the decision maker’s optimal learning problem in equation (6) with two
homogeneous alternatives. A sufficient condition for the function defined by (31) to be the value
function is that π0 ≥ (π + π)/2.

Figure 1 shows the value function V (x1, x2), as well as the payoff from learning L(x1, x2) under
some parameter setting. The payoff from learning is defined as L(x1, x2) ≡ V (x1, x2) −max{∆π ·
x1 + π,∆π · x1 + π, π0}, which is basically the difference between a DM’s value function and his
expected payoff in the case that learning is not allowed. As expected, V (x1, x2) is increasing and
convex and L(x1, x2) is always non-negative. L(x1, x2) peaks at x1 = x2 = x0, at which point the
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DM is most uncertain between adopting alternative i and taking the outside option. This is the
point where the DM benefits most from learning.

Figure 1: Maximum expected payoff (left panel), payoff from learning (right panel), given a DM’s
current belief, with relatively high value of outside option, x0 = 0.5. cσ2/∆π = 0.1.

Based on the value function given by Theorem 1, we can construct the optimal learning strategy
that achieves the value function, and the corresponding belief updating process under the optimal
strategy. Figure 2 shows the optimal learning strategy under some parameter setting. The belief
space is divided into five regions by black lines, corresponding to the DM’s five choices of actions.
The optimal learning strategy shown in Figure 2 can be understood intuitively. When the DM’s
belief of alternative i is quite high, it is optimal to adopt the alternative immediately without
learning. When the DM’s beliefs of both alternatives are quite low, it is optimal to take the outside
option. Roughly speaking, learning becomes preferred when the DM’s beliefs of the two alternatives
are similar or take medium values.

Note that when xi < x, the DM decides only among learning j, adopting j, and taking the
outside option (j 6= i), and he never considers alternative i for learning or adoption. This means
the DM optimally uses a simple cutoff strategy when forming a consideration set of alternatives
for learning or adoption. Given both alternatives in his consideration set, i.e., x1, x2 ≥ x, the DM
always prioritizes learning about the alternative with higher belief, and adopts it when the belief is
sufficiently high. As we will show below, this learning strategy critically depends on the assumption
that the value of the outside option is sufficiently high.

Formally, the following theorem summarizes the DM’s optimal learning strategy. In the Ap-
pendix, we construct the belief updating process under the optimal learning strategy, which com-
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Figure 2: Optimal learning strategy with relatively high value of the outside option, x0 = 0.5, and
cσ2/∆π = 0.1.

pletes the analysis to show that the value function V (x1, x2) given by Theorem 1 is attainable.
Following Karatzas (1984), we show that the belief updating process has a weak, unique in distri-
bution, solution.10 As the value function is obtained by taking an expected value over the changes
in beliefs, uniqueness in distribution allows us to obtain an unique value function. Furthermore, we
show that during the learning process, min{x1, x2} falls through time with positive probability and
that it never increases. This means that starting from a prior belief in the regions that it is optimal
to learn, there is a positive probability of the outside option being chosen.

To see how min{x1, x2} falls through time with positive probability and it never increases, note
that min{x1, x2} = 1

2
(x1 + x2 − |x1 − x2|) . By Tanaka’s formula (e.g., Karatzas and Shreve 1991,

p.205) one can obtain |x1(t)− x2(t)| = |x1(0)− x2(0)|+ x1(t) + x2(t)− x1(0)− x2(0) + 2Lx1−x2(t)

where Lx1−x2(t) is the local time of x1(t) − x2(t) at x1(t) = x2(t) and is defined as Lx1−x2(t) ≡
limε↓0

1
2ε

∫ t
0
1{0≤x1(s)−x2(s)<ε}ds. We can then obtain that min{x1(t), x2(t)} = min{x1(0), x2(0)} −

Lx1−x2(t), which shows that min{x1, x2}, conditional on the DM being in the region where it is
optimal to learn more information, falls through time under the optimal learning strategy. The
Appendix presents further details.

10As discussed in the Appendix, if the belief updating processes had equal constant variance through time across
alternatives (which is not the case here), and no trend, then we would know that the learning strategy presented
here would have a strong, pathwise unique solution, using the results in Fernholz et al. (2013).
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Theorem 2: When the value of the outside option is relatively high, i.e., x0 ≥ x∗0, a decision
maker considers alternative i for learning or adoption if and only if his belief of i is sufficiently
high, i.e., xi ≥ x. Given one alternative i under his consideration, the DM keeps learning it if
x ≤ xi ≤ x, adopts it if xi > x, and takes the outside option if xi < x. Given two alternatives under
his consideration, the DM always learns information from the alternative with higher belief.11 He
stops learning and adopts it if and only if his belief of this alternative is above a threshold. This
threshold (i.e., the adoption boundary) increases with the DM’s belief of the other alternative, and
gets closer to the line x1 = x2 as x2 increases, with the threshold converging to x1 as x2 → 1.

It is interesting to revisit the index policy proposed by Glazebrook (1979) as the optimal policy
for stoppable bandits problem under some conditions. Under the index policy, a DM chooses
alternative i to act on (either learn or adopt) if it has the greatest index, which, like the Gittins
index, only depends on the state of alternative i. Given that alternative i is chosen, the DM
chooses to learn or to adopt it based on some strategy that only depends on the state of alternative
i. Here, we have shown that the DM chooses to stop learning and adopt alternative i if and only if
xi ≥ X(xj), which depends on xj as well. Therefore, Glazebrook’s index policy is suboptimal for
our problem.

It is also interesting to compare our optimal learning strategy with the Pandora’s rule in Weitz-
man (1979), which consists of a selection rule and a stopping rule. The selection rule states that
it is optimal to learn the alternative with the highest reservation value; the stopping rule states
that it is optimal to terminate learning whenever the maximum sampled alternative exceeds the
reservation value of every unsampled alternative. In our setting, by Theorem 2, we know that it
is optimal for the DM to learn an alternative if its belief is higher than the other alternative and
sufficiently high relative to the outside option. Therefore, by properly defining the reservation value
for each alternative including the outside option, the selection rule in Weitzman (1979) can still
apply to our setting. However, the stopping rule in Weitzman (1979) will not apply to our setting
in general, because in our setting, it is optimal to stop learning and adopt alternative i if and only
if xi ≥ X(xj), which not only depends on xj but also depends on the value of the outside option,
π0. Thus, the stopping rule in our setting is not a simple pairwise comparison of two alternatives.12

Furthermore, we will show below that, when the outside option is sufficiently low, both selection
and stopping rules in Weitzman (1979) will fail for our setting.

11In the case of equal beliefs, the DM is indifferent about which alternative to search, and we assume that the DM
learns alternative 1.

12This is also in contrast with Doval (2014), who considers optional learning in the setting of Weitzman (1979)
and finds that the rule derived there remains optimal when the outside option is sufficiently high (see Proposition 1
in Doval 2014).
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Lastly, we can compute the comparative statics of the optimal learning strategy with respect to
the learning costs, noise of the signals, and value of the outside option. The results are intuitive.

Proposition 1: As learning cost c increases, x increases, X(x) decreases, and V (x1, x2) decreases.
As signal noise σ increases, x increases, X(x) decreases, and V (x1, x2) decreases; as π increases,
x decreases, X(x) decreases, and V (x1, x2) increases; as π0 increases, x increases, X(x) increases,
and V (x1, x2) increases.

Two Alternatives with Low-Value Outside Option

In this subsection, we consider the opposite case where the value of the outside option is sufficiently
low such that there is essentially no outside option, i.e., π0 ≤ π, which means x0 ≤ 0. Similarly, we
propose a solution and verify that it satisfies the HJB equation (9). The following theorem presents
the solution to the DM’s optimal learning problem, with proof and value function presented in the
Appendix.

Theorem 3: Consider the decision maker’s optimal learning problem in equation (6) with two
homogeneous alternatives, and suppose that the value of the outside option is relatively low, i.e.,
x0 ≤ 0. Then there is a function X(x) with X

′
(x) > 0, X(x) > x for all x ∈ (0, 1), X(0) = 0,

and X(1) = 1, such that: (1) the DM adopts alternative i if xi ≥ X(x3−i) and continues learning
if that condition does not hold for any alternative; (2) When learning, the DM learns about the
alternative with the higher belief if x1 +x2 ≥ 1, and learns about the alternative with the lower belief
if x1 + x2 < 1.

The optimal learning strategy can be understood intuitively by Figure 3. We find that it is
optimal for the DM to learn the worse alternative when x1 + x2 ≤ 1, as shown in the starred
regions. If this alternative turns out to be really poor, the DM will adopt the other alternative
immediately; otherwise, if this alternative turns out to be not as poor as thought earlier, the DM
will switch to learn the other alternative.

It is interesting to understand why sometimes it is optimal for a DM to prioritize learning on
the worse alternative. Let us consider a DM with belief in L2* in Figure 3. One may suspect that
while alternative 2 has a lower expected payoff than alternative 1, the DM may be more uncertain
about alternative 2 and thus prefers to learn alternative 2 first. This speculation turns out to be
incorrect. In fact, given (x1, x2) in L2*, we have x1 > x2 and x1 + x2 ≤ 1, which implies that

E[π1] = ∆πx1 + π > ∆πx2 + π = E[π2], (32)

Var[π1] = (∆π)2x1(1− x1) ≥ (∆π)2x2(1− x2) = Var[π2]. (33)
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Figure 3: Optimal learning strategy with relatively low value of the outside option, x0 ≤ 0, and
cσ2/∆π = 0.1.

Therefore, the DM not only expects a higher payoff from alternative 1 but also is more uncertain
about the payoff of alternative 1.

It turns out that the reason for the DM to learn a worse and more certain alternative first is to
save expected learning costs. Here is the intuition. Given the DM’s belief (x1, x2) in region L2*,
if he learns alternative 2, he will either end the learning process by adopting alternative 1 if he
accumulates enough bad news on alternative 2, or continue to learn alternative 1 if he accumulates
enough good news on alternative 2. As the DM aims to save learning costs (the outside option is
dominated, by assumption), he would like to end the learning process as soon as possible, so he
cares about the probability of getting bad news on alternative 2, which is equal to 1− x2. On the
other hand, if the DM instead chooses to learn alternative 1, he will either end the learning process
by adopting alternative 1 if he accumulates enough good news on alternative 1, or continue to learn
alternative 2 if he accumulates enough bad news on alternative 1. With the aim of saving learning
costs, the DM would like to end the learning process as soon as possible, so he cares about the
probability of getting good news on alternative 1, which is equal to x1. To minimize future learning
costs, the DM chooses to learn alternative 2 if 1 − x2 ≥ x1, i.e., x1 + x2 ≤ 1, which is exactly the
upper-right boundary condition for L2*.13 To summarize, in the stared regions, the DM finds it
optimal to learn the worse alternative first with the possibility of ruling it out early so as to choose
the other alternative immediately.

Lastly, it is interesting to revisit the optimal learning rule under “complete learning” in Weitzman

13We have also analyzed a two-period discrete time learning problem, and find that the intuition of saving learning
costs here becomes the exact condition there. The analysis is available upon request.
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(1979), where everything learnable about an alternative is learned with the first signal. For complete
learning, one can show that the optimal rule is to learn about the alternative with the highest belief
if everything else is the same. Our result highlights that with the possibility of gradual learning,
a decision maker’s optimal learning strategy can be quite different and complex—sometimes, it is
not optimal to learn the best alternative first. It is true that under complete learning, it can be
optimal for the DM to first learn an alternative that has low expected payoff but high variance,
in the hopes of capturing its high payoff. Strictly speaking, in that possibility, the alternative
with low expected payoff is “seemingly” worse, but is, in fact, different from the other alternatives
in terms of different payoff distributions. In contrast, we find that a DM may optimally learn a
worse alternative first, given everything else between the two alternatives the same in this binary
environment. Note also that this worse alternative is also the alternative with lower variance, so
that the DM may optimally learn an alternative with lower expected value and lower variance. To
put it more simply, in our setting in region L2*, alternative 2 is indeed worse than alternative 1
and the DM optimally chooses to learn alternative 2 first. Also, our underlying mechanism works
in a different way. With complete learning, after learning an alternative with low expected payoff
and high variance, the DM will either adopt that alternative if he gets a very positive signal, or
learn other alternative if he gets a negative signal. In contrast, in our setting with gradual learning,
when learning alternative 2, the DM will either potentially switch to learning alternative 1 if he
gets enough positive signals on alternative 2, or adopt alternative 1 immediately if he gets enough
negative signals on alternative 2.

Two Alternatives with Medium-Value Outside Option

So far, we have completely solved the optimal learning problem for the cases where x0 ≥ x∗0 and
x0 ≤ 0. For the intermediate case with 0 < x0 < x∗0, we are not able to characterize the value
function analytically, but can compute it numerically. Figure 4 illustrates the optimal policy of the
learning problem under some parameter setting where the outside option takes a medium value.
The optimal learning strategy becomes more complex.14 For both high and low beliefs, it is optimal
for the DM to learn the better alternative first; however, for the medium beliefs, it is optimal for
the DM to learn the worse alternative first. For low beliefs, it is optimal for the DM to learn
about the superior alternative because the beliefs about the worse alternative could fall below the
consideration set threshold, x.

By comparing the optimal learning strategies under high, medium, and low value of the outside
options, we can evaluate numerically that the higher the outside option, the smaller the stared

14The features of this more complex learning strategy can also be obtained analytically in a two-period model.
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Figure 4: Optimal learning strategy with medium value of the outside option, x0 = 0.25, and
cσ2/∆π = 0.1.

regions. That is to say, a good outside option makes the better alternative more attractive for
learning. The reason is that with a good outside option, if the DM learns the better alternative
and ends up with bad news on it, he can use the outside option instead of the worse alternative as
the backup option. In contrast, if the DM chooses to learn the worse alternative, the outside option
may not be useful as a backup option, since it can be dominated by the better alternative.

4. Adoption Likelihood and Probability of Being Correct

In this section, we continue the analysis on the case with two homogeneous alternatives and a
high-value outside option, i.e., x0 ≥ x∗0. We derive a decision maker’s adoption likelihood of each
alternative as well as expected probability of being ex-post correct, based on his optimal learning
strategy.

It is interesting to understand the adoption likelihood in many applications. For example,
in product markets, at the aggregated level, the adoption likelihood corresponds to the demand
function of multiple products under consumer learning. Given a DM’s current posterior beliefs
as x1 and x2, we denote his adoption likelihood of alternative i as Pi(x1, x2). By symmetry, we
have P2(x1, x2) = P1(x2, x1), therefore, we only need to focus on P1(x1, x2) below. We calculate
P1(x1, x2) by invoking the Optional Stopping Theorem for martingales, and solving an ordinary
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differential equation. The adoption likelihood is presented in the following theorem, with proof in
the Appendix.

Theorem 4: Consider two homogeneous alternatives. Under the optimal learning strategy in the
case that x0 ≥ x∗0, given his current posterior beliefs as (x1, x2), a decision maker’s probability of
adopting alternative 1 is

P1(x1, x2) =



0, if x1 ≤ x or x2 ≥ X(x1)

1
2
X(x1)−x2
X(x1)−x1

[
1− e−

∫ x1
x

2dξ

X(ξ)−ξ

]
, if x < x1 ≤ x2 < X(x1)

x1−x2
X(x2)−x2

+ 1
2
X(x2)−x1
X(x2)−x2

[
1− e−

∫ x2
x

2dξ

X(ξ)−ξ

]
, if x < x2 < x1 < X(x2)

x1−x
x−x , if x < x1 < x and x2 ≤ x

1, if x1 ≥ X(x2).

(34)

The left panel in Figure 5 presents P1(x1, x2) under some parameter setting. From the figure,
we can see the intuitive result that a DM is more likely to adopt an alternative if his belief of the
alternative is higher, or his belief of the other alternative is lower.

Figure 5: Adoption likelihood of alternative 1 (left panel) and either one alternative (right panel),
given a DM’s current belief, under the parameter setting that x0 = 0.5 and cσ2/∆π = 0.1.

We are also interested in the adoption likelihood of (either) one alternative, which is defined
as P (x1, x2) ≡ P1(x1, x2) + P2(x1, x2). The right panel in Figure 5 presents P (x1, x2) under some
parameter setting. It is interesting to note that P (x1, x2) does not always increase with x1 or x2.
This means that a higher belief of one alternative may lead to a lower adoption likelihood of the two
alternatives combined. To understand the intuition, let us consider a special case. Given a DM’s
beliefs of the two alternatives as x1 and x2, if x1 is high enough such that it exceeds the adoption
boundary X(x2), the DM will adopt alternative 1 immediately. In this case, the adoption likelihood
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is one. Now consider an exogenous increase of x2 such that x1 is now below the adoption boundary
X(x2). In this case, the DM will optimally learn more information before making an adoption
decision. After obtaining more information, it is possible that the DM likes the alternatives more,
in which case, he will adopt at most one of them; it is also possible that the DM gets some negative
signals and decides to take the outside option. In general, the adoption likelihood will be lower
than one after the increase of x2.

The introduction of a new alternative can be equivalently viewed as increasing its belief from
below x to some level above x. By the same argument, we can show that more alternatives available
for learning and adoption may decrease the adoption likelihood. Applying this result to product
markets, this provides a rational explanation to consumer choice overload,15 under the circumstance
that a consumer engages in costly information gathering before making a choice. More options to
choose from may lead a consumer to exert a greater effort to distinguish the best from the rest,
resulting in a lower probability of choosing anything.

It is also interesting to investigate a decision maker’s expected probability of being correct ex
post. The DM decides whether to learn more information and which alternative to adopt based on
his current imperfect information. Therefore, it is possible that he will make mistakes in an ex post
point of view, when all the uncertainties about both alternatives have been resolved. The following
theorem characterizes a decision maker’s expected probability of being correct ex post, given his
current beliefs of the two alternatives (with proof in the Appendix).

Theorem 5: Consider two homogeneous alternatives. Under the optimal learning strategy in the
case that x0 ≥ x∗0, given his current posterior beliefs as (x1, x2), a decision maker’s expected proba-

15For lab and field experiments on choice overload, refer to a review by Scheibehenne et al. (2010). Different from
our setting, Fudenberg and Strzalecki (2015) consider a dynamic logit model with choice aversion where a consumer
may prefer to have a smaller choice set ex ante.
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bility of being correct ex post is

Q(x1, x2) =

x(x1−x)+(1−x)(x−x1)(1−x2)
x−x , if x2 ≤ x < x1 < x

x(x2−x)+(1−x)(x−x2)(1−x1)
x−x , if x1 ≤ x < x2 < x

(x1−x2)X(x2)

X(x2)−x2
+ X(x2)−x1

X(x2)−x2

[
(1− x)2e

−
∫ x2
x

2dξ

X(ξ)−ξ +
∫ x2
x
e
−

∫ x2
η

2dξ

X(ξ)−ξ 2X(η)

X(η)−ηdη
]
, if x < x2 < x1 < X(x2)

(x2−x1)X(x1)

X(x1)−x1
+ X(x1)−x2

X(x1)−x1

[
(1− x)2e

−
∫ x1
x

2dξ

X(ξ)−ξ +
∫ x1
x
e
−

∫ x1
η

2dξ

X(ξ)−ξ 2X(η)

X(η)−ηdη
]
, if x < x1 < x2 < X(x1)

x1, if x1 ≥ X(x2)

x2, if x2 ≥ X(x1)

(1− x1)(1− x2), otherwise.
(35)

Figure 6 presents Q(x1, x2) and ∆Q(x1, x2) under some parameter setting, where ∆Q(x1, x2) ≡
Q(x1, x2) − Q0(x1, x2) represents the improvement in probability of being correct ex post due to
learning, and where Q0(x1, x2) is the probability of being correct ex post when learning is not
allowed before adoption. It is straightforward to show that,

Q0(x1, x2) =


x1, x1 ≥ max{x2, x0}
x2, x2 ≥ max{x1, x0}
(1− x1)(1− x2), x0 ≥ max{x1, x2}

. (36)

Figure 6: Probability of being correct ex post (left panel) and the improvement in probability of
being correct ex post due to learning (right panel) given a DM’s current belief, under the parameter
setting that x0 = 0.5 and cσ2/∆π = 0.1.
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Figure 6 illustrates that it is easier to make mistakes ex post if two alternatives have similar
intermediate beliefs ex ante. This is also the case where optimal learning before adoption reduces
the probability of ex-post mistakes the most, similar to Figure 1.

5. Extensions

In this section we study several extensions, including heterogeneous alternatives, the effect of the
number of alternatives, and time discounting.

5.1. Heterogeneous Alternatives

We consider the case that the outside option has a sufficiently high value. We allow the two
alternatives to differ in their payoff distributions, noise levels of signals, as well as learning costs.
We aim to solve for the decision maker’s optimal learning strategy or, equivalently, we want to
understand when to switch learning between the two alternatives, and when to stop learning and
make an adoption decision. We should expect that for the heterogeneous case the solution structure
will be similar to that of the homogeneous case. We must have the adoption boundaries for the
two alternatives, X1(x2) and X2(x1), different from each other. Moreover, the boundary separating
“Learn 1” and “Learn 2” will no longer be a 45-degree line, and thus needs to be determined at the
same time. This is a more difficult problem from a technical point of view.

Let us first look at the case that one alternative is “better” than the other, in terms of a higher
information-to-noise ratio or a lower learning cost. Without loss of generality, let us assume that
alternative 1 is better, i.e., we consider the case that ∆π1 > ∆π2, or c1 < c2.16 Intuitively, in this
case, we expect that alternative 1 will be preferred for learning, and thus the boundary separating
“Learn 1” and “Learn 2” should be above the 45-degree line. We further assume that there is a point
(x∗1, x

∗
2) such that the boundary separating “Learn 1” and “Learn 2” intersects with the adoption

boundary of alternative 2 under this belief. Based on this assumption, we can characterize the
solution to the HJB equation (9) analytically, and we present the solution in the Appendix. Figure
7 illustrates the optimal learning strategy under some parameter settings. The left panel shows the
case of different learning costs between the two alternatives, c1 < c2, with everything else being the
same. The right panel shows the case with different payoff ranges between the two alternatives,
∆π1 > ∆π2, with everything else the same.

16Mathematically, σ2
1 < σ2

2 will be exactly the same as c1 < c2, because in our model only σ2
i ci is identified. To

see this note that (9) can be equivalently written with the elements in the internal max operator divided by ci (see
also the proof of Proposition 1).
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Figure 7: Optimal learning strategy with heterogeneous alternatives. For the left panel: ∆π1 = ∆π2,
(π0− π1)/∆π1 = (π0− π2)/∆π2 = 0.5, and c1σ

2
1/∆π1 = 0.1 < c2σ

2
2/∆π2 = 0.2. For the right panel:

∆π1 = 1.2∆π2, (π0 − π1)/∆π2 = (π0 − π2)/∆π2 = 0.5, and c1σ
2
1/∆π2 = c2σ

2
2/∆π2 = 0.1.

Consistent with the homogeneous case, when xi < xi, alternative i is not considered for learning
or adoption. When x1 ≥ x1 and x2 ≥ x2, both alternatives are in the consideration set, and the
decision maker’s optimal learning strategy is now slightly more complicated. When x2 ≥ x∗2, he only
learns alternative 1. The DM keeps on learning alternative 1 until either x1 exceeds the adoption
boundary of alternative 1, X1(x2), in which case he adopts alternative 1, or x1 drops below the
adoption boundary of alternative 2, X1(x2), in which case he adopts alternative 2. On the other
hand, when x∗2 > x2 ≥ x2, the DM learns alternative 1 if and only if

(
X1(x2)− x1

) [ 2σ2
1c1

(∆π1)2

(
Φ
(
X1(x2)

)
− Φ(x1)

)
+ ∆π1

]
≤
(
X2(x1)− x2

) [ 2σ2
2c2

(∆π2)2

(
Φ
(
X2(x1)

)
− Φ(x2)

)
+ ∆π2

]
, (37)

where X1(x2) and X2(x1) are the adoption boundaries for alternatives 1 and 2, respectively, for the
region that x1 ≥ x1 and x∗2 > x2 ≥ x2. While it is not intuitive to understand the condition above, it
does show that a simple index policy is not optimal. Lastly, we want to point out that the boundary
separating “Learn 1” and “Learn 2”, denoted as x2 = y(x1) in the figure, cannot be obtained with
value matching and smooth pasting conditions alone. This is intuitive, because even with the
boundary exogenously given, we find that both value matching and smooth pasting conditions are
necessary to pin down the solution. Now, to maximize the expected payoff by choosing the boundary
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optimally is equivalent to imposing an extra set of conditions, so called super contact conditions
(Dumas 1991, Strulovici and Szydlowski 2015), which guarantee that Vx1x1(x1, x2), Vx2x2(x1, x2)

and Vx1x2(x1, x2) are continuous across the boundary. We find that two of the three super contact
conditions are redundant, and we only need to guarantee Vx1x2(x1, x2) to be continuous across the
boundary that separates “Learn 1” and “Learn 2”. Similarly, we can show that the redundancy is
due to the learning problem structure that the DM can only learn one alternative at a time and
the resulting equation (21) is a parabolic PDE.

On the right panel of Figure 7, note also that because ∆π1 > ∆π2, the DM is more likely to learn
and adopt alternative 1 than alternative 2, and the adoption thresholds do not converge anymore
when the beliefs converge to (1, 1).

So far, we have characterized the DM’s optimal learning strategy when one alternative is “better"
than the other in terms of a higher information-to-noise ratio and a lower learning cost. More
generally, there are also cases where one alternative has a higher information-to-noise ratio, but at
a higher learning cost. This case is complicated with discrete “jumps” of the DM’s optimal learning
strategy with respect to the parameters (e.g., learning costs). We briefly discuss this case in the
Appendix. We have also considered heterogeneous alternatives when the outside option is very
low. In that case, it is difficult to characterize the optimal solution analytically, but with numerical
analysis, we can find that with small heterogeneity between the two alternatives, we still have the
starred regions in the optimal learning strategy where it is optimal to learn an alternative with
lower belief first.

5.2. More Than Two Alternatives

In this subsection, we consider the optimal learning problem with more than two alternatives.
Although it is difficult to solve the general problem analytically with more than two alternatives
(except for the infinite number of alternatives case presented below), we can see numerically how
the optimal policy is affected. Consider three homogeneous alternatives without an outside option.
By symmetry, we only need to obtain the optimal learning strategy under the belief x1 ≥ x2 ≥ x3.
Figure 8 illustrates the optimal learning strategy. In this case it is optimal to learn the second
best alternative (alternative 2) under some belief only when x3 is relatively low. Comparing the
three panels in Figure 8 with Figure 2, 4, and 3 respectively, we find the the impact of the third
alternative on the optimal learning strategy to be very similar to that of the outside option.

Moreover, we could not find cases where it was optimal to learn the third best alternative
(alternative 3). It is interesting that the DM only considers learning from the top two alternatives,
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and sometimes does not learn about the top alternative, in order to possibly rule out the second
best alternative, to then decide to adopt the top alternative.
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Figure 8: Optimal learning strategy with three alternatives and no outside option. cσ2/∆π = 0.1.
x3 = 0.1, 0.25, 0.5 from left to the right.

We have also numerically solved the optimal learning problem with three alternatives and an
outside option, and in that case the cutoff strategy is still valid—a decision maker considers an
alternative for learning or adoption if and only if his belief of this alternative is sufficiently high.

Lastly, we consider the optimal learning problem of infinite homogeneous alternatives with the
same prior belief x̂. By the standard analysis, we can show that the optimal learning strategy
in this setting follows a simple reservation value policy. A DM continues to learn information on
alternative i until either xi exceeds xR, in which case he adopts alternative i, or xi drops below x̂,
in which case he moves to learn the next alternative. For x̂ ≤ x ≤ xR, the value function U(x) is
given by equation (11). We can determine xR by the following set of boundary conditions:

U ′(x̂) = 0, (38)

U(xR) = ∆π · xR + π, (39)

U ′(xR) = ∆π. (40)

By combining the three equations above, we have xR as:

xR = Φ−1

(
Φ(x̂)− (∆π)3

2σ2c

)
. (41)

We also get that xR is greater than X(x̂), illustrating that with more alternatives the DM is more
demanding on what an alternative has to deliver before the DM settles on it.
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5.3. Time Discounting

In this subsection, we consider a similar problem setting with no flow cost for learning but with time
discounting. Similar to equation (8), we can write down the discrete-time-analog Bellman equation
associated with the learning problem as,

V (x1, x2) = max
{
e−rdtE [V (x1 + dx1, x2)|x1, x2] ,

e−rdtE [V (x1, x2 + dx2)|x1, x2] ,

E[π1|x1, x2],E[π1|x1, x2], π0

}
, (42)

where r is the time discounting instantaneous interest rate. Similarly, we can reduce the Bellman
equation as the following HJB equation.

max

{
max
1≤i≤n

{(∆πi)
2

2σ2
i

x2
i (1− xi)2Vxixi(x)− rV (x)}, g(x)− V (x)

}
= 0. (43)

Along the same lines as above, we can show that there exists a unique solution to this problem,
and the value function is given by Theorem A2 in the Appendix. Following an almost identical
analysis as in Section 3, we can construct the optimal allocation and stopping rule and the corre-
sponding belief updating process to attain the value function. We find that it is always optimal for
the DM to learn the alternative with higher belief whenever it is optimal to learn. Formally, we
have the following theorem that characterizes the optimal learning strategy.

Theorem 6: Consider the DM’s optimal learning problem defined in equation (6) but with time
discounting instead of a constant flow learning cost. Given one alternative i under his consideration,
the DM keeps learning it if x

˜
≤ xi ≤ x̃, adopts it if xi > x̃, and takes the outside option if

xi < x
˜
. Given two alternatives under his consideration, the DM always learns information from

the alternative with higher belief. He stops learning and adopts it if and only if his belief of this
alternative is above a threshold, which increases with his belief of the other alternative.

Figure 9 presents a DM’s optimal learning strategy under some parameter setting. Now it is
always optimal to learn the best alternative first. The reason is that it does not help to minimize the
learning costs by learning an inferior alternative. Specifically, with time discounting, the learning
cost depends on the current expected payoff. By learning the inferior alternative first, if the DM
receives negative signals, he will adopt the other alternative immediately. On the other hand, if he
receives positive signals, he will continue learning. However, his learning cost is also high because
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he just received positive signals. Therefore, the DM will not save any cost by not learning the best
alternative first.
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Figure 9: Optimal learning strategy with time discounting under the parameter setting that π/∆π =
0, π0/∆π = 0.5, σ/∆π = 1, and r = 0.2.

6. Conclusion

This paper examines a general problem of optimal information gathering. We allow gradual learning
on multiple alternatives before one’s choice decision. The decision maker solves the problem of
optimal dynamic allocation of learning efforts as well as optimal stopping of the learning process, so
as to maximize the expected payoff. We show that the optimal learning strategy is of the consider-
then-decide type. The decision maker considers an alternative for learning or adoption if and only if
the expected payoff of the alternative is above a threshold. Given several alternatives in the decision
maker’s consideration set, we find that sometimes it is not optimal for him to learn information from
the alternative with the highest expected payoff, given that all other characteristics of the other
alternatives are the same. If the decision maker subsequently receives enough positive informative
signals, the decision maker will switch to learn the better alternative; otherwise the decision maker
will rule out this inferior alternative from consideration and adopt the better alternative. We find
that this strategy works because it minimizes the decision maker’s learning efforts. It becomes the
optimal strategy when the outside option is weak, and the decision maker’s beliefs about different
alternatives are in an intermediate range.
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APPENDIX

Sketch of the Proof of Lemma 1: Existence and Uniqueness of the

Solution:
Consider a nonlinear second-order PDE of the form

H(x, u,Du,D2u) = 0, (i)

where Du ∈ Rn is the differential of u (at x), D2u ∈ Sn(R) is the Hessian matrix of u (at x), and
H : Rn × R × Rn × Sn(R) → R, with Sn(R) the set of symmetric n × n matrices. The function
H is said to satisfy degenerate ellipticity if and only if H(x, u, p,X) ≤ H(x, v, p, Y ) for all u ≤ v

and (X, Y ) such that X − Y is positive semi-definite or X = Y . To see that the HJB equation (9)
satisfies degenerate ellipticity, it is equivalent to consider

max

{
max
1≤i≤n

{
−âi(x)V xixi(x)− ci

}
, g(x) + V (x)

}
= 0. (ii)

where âi(x) ≡ (∆πi)
2

2σ2
i
x2
i (1− xi)2 and V (x) ≡ −V (x), for all x.

A continuous function u is said to be a viscosity solution to (i) if for all twice continuously
differentiable functions φ : Rn → R : (1) if u − φ attains a local maximum at x0 ∈ Rn and
u(x0) = φ(x0) then H(x0, φ(x0), Dφ(x0), D2φ(x0)) ≤ 0; (2) if u − φ attains a local minimum at
x0 ∈ Rn and u(x0) = φ(x0), then H(x0, φ(x0), Dφ(x0), D2φ(x0)) ≥ 0. Note that this definition uses
the fact that (i) satisfies degenerate ellipticity.

Lions (1983a,b) showed that if the HJB equation (i) satisfies degenerate ellipticity then it has
a unique viscosity solution. Let us outline it in our situation. Observe that the HJB equation (ii)
can be rewritten as:

max
1≤i≤n+1

{−âi(x)V xixi(x)− ci + gi(x) + λiV V (x)} = 0, (iii)

with ân+1(x) ≡ 0, cn+1 ≡ 0, and

gi(x) ≡ 0 for all 1 ≤ i ≤ n and gn+1(x) ≡ g(x),

λi ≡ 0 for all 1 ≤ i ≤ n and λn+1 ≡ 1.
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We can further simplify the HJB equation (iii) as:

max
1≤i≤n+1

{AiV (x)− fi(x)} = 0, (iv)

where Ai ≡ −âi∂xixi + λi, and fi(x) ≡ ci − gi(x).

Consider the stochastic differential equation

dXt = σ(Xt, It)dWt and X0 = x, (v)

where It = Ĩ(Xt) ∈ {1, 2, · · · , n+ 1} is the control, with Ĩ : Rn → {1, 2, · · · , n+ 1}, (Wt; t ≥ 0) is a
n-dimensional Brownian motion, and σ is a n×n diagonal matrix, where element i in the diagonal,
σii : Rn × {1, 2, · · · , n+ 1} → R+. If It = n+ 1 it means that the DM stopped learning. Take

σii(x, j) ≡
∆πi
σi

xi(1− xi) for all 1 ≤ i ≤ n, 1 ≤ j ≤ n+ 1 if i = j

and σii(x, j) = 0 otherwise. Let λ(x, i) ≡ λi, f(x, i) ≡ fi(x), for all 1 ≤ i ≤ n+ 1 and

J(x, Ĩ) ≡ E

[∫ ∞
0

f(Xt, Ĩ(Xt)) exp

(∫ t

0

−λ(Xs, Ĩ(Xs))ds

)
dt

]
.

Lions (1983a) shows that the value function V (x) ≡ minĨ J(x, Ĩ) is continuous (Theorem II.2, p.
1136), and is a viscosity solution to the HJB equation (iv) (Theorem I.2, p. 1120), when this
equation satisfies degenerate ellipticity. Furthermore, Lions (1983b) shows that this solution is
unique (Theorem II.1, p. 1250).

Smooth Pasting Conditions at the Adoption Boundary and Derivation

of Equations (24) and (25):
We will provide an intuitive argument below for the smooth-pasting condition at the adoption
boundary of alternative 1. Consider a DM spending time dt in learning alternative 1 at the boundary(
X(x2), x2

)
. The corresponding belief update dx1 can be either positive or negative, with equal

odds. If dx1 ≥ 0, the DM will adopt alternative 1 immediately; otherwise if dx1 < 0, the DM will
stay in the market learning more information on alternative 1. Therefore, the DM’s expected payoff
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given that he will spend dt to learn alternative 1 would be:

V1

(
X(x2), x2

)
≡ −cdt+

1

2

[
∆π
(
X(x2) + E[dx1|dx1 ≥ 0]

)
+ x
]

+
1

2
E
[
V (X(x2) + dx1, x2)|dx1 < 0

]
= V

(
X(x2), x2

)
+

∆π

2σ
X(x2)

[
1−X(x2)

]√ dt

2π

[
∆π − Vx1

(
X(x2), x2

)]
+ o(
√
dt),

where we have used that (1) E[dW |dW ≥ 0] = −E[dW |dW < 0] =
√

dt
2π

for {W (t)|t ≥ 0} being a
standard Brownian motion; (2) the value matching condition V

(
X(x2), x2

)
= ∆πX(x2) + π.

On the other hand, let us consider a DM who spends dt in learning alternative 2 at the boundary(
X(x2), x2

)
. If the resulting belief update dx2 ≥ 0, the DM’s adoption threshold for alternative

1 increases, so he will continue to learn alternative 1; otherwise, if dx2 < 0, the DM will adopt
alternative 1 immediately. Therefore, the DM’s expected payoff given that he will spend dt to learn
alternative 2 would be:

V2

(
X(x2), x2

)
≡ −cdt+

1

2

[
∆πX(x2) + x

]
+

1

2
E
[
V (X(x2), x2 + dx2)|dx2 < 0

]
= V

(
X(x2), x2

)
− ∆π

2σ
x2 (1− x2)

√
dt

2π
Vx2
(
X(x2), x2

)
+ o(
√
dt),

The DM chooses which alternative to learn on based on expected payoff maximization. By
definition, his value function should satisfy:

V
(
X(x2), x2

)
= max{V1

(
X(x2), x2

)
, V2

(
X(x2), x2

)
}.

By substituting the expression of V1

(
X(x2), x2

)
and V2

(
X(x2), x2

)
into the above equation, we

have

max{X(x2)
[
1−X(x2)

] [
∆π − Vx1

(
X(x2), x2

)]
, x2 (1− x2)Vx2

(
X(x2), x2

)
} = 0.

Meanwhile, by taking derivative of both sides of the value matching condition V
(
X(x2), x2

)
=

∆πX(x2) + π with respect to x2, we have

X
′
(x2)

[
∆π − Vx1

(
X(x2), x2

)]
= Vx2

(
X(x2), x2

)
. (vi)

Combining the above two equations, we obtain that Vx1
(
X(x2), x2

)
= ∆π and Vx2

(
X(x2), x2

)
= 0,

which are the smooth pasting conditions at the adoption boundary of alternative 1. It is straightfor-
ward to derive equations (24) and (25) based on the value matching and smooth pasting conditions.
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Redundancy of One Smoothness Condition:
As shown in equation (22), the general solution to the parabolic PDE in equation (21) can be
written as the following:

V (x1, x2) = C0(x1) + C1(x2)x1 + C2(x2),

where C0(x1) = 2σ2c
(∆π)2

(1−2x1) ln
(

1−x1
x1

)
. The value matching and smooth pasting conditions at the

adoption boundary of alternative 1 x1 = X(x2) are:

C0(X(x2)) + C1(x2)X(x2) + C2(x2) = ∆πX(x2) + π, (vii)

C ′0(X(x2)) + C1(x2) = ∆π, (viii)

C ′1(x2)X(x2) + C ′2(x2) = 0. (ix)

We will show that given equations (vii) and (viii), equation (ix) is redundant. In fact, taking
derivative of both sides of equation (viii) with respect to x2, we have,

C ′0(X(x2))X
′
(x2) + C ′1(x2)X(x2) + C1(x2)X

′
(x2) + C ′2(x2) = ∆πX

′
(x2).

i.e., [
C ′0(X(x2)) + C1(x2)−∆π

]
X
′
(x2) + C ′1(x2)X(x2) + C ′2(x2) = 0.

By substituting equation (viii) to the above equation, we get equation (ix).

Proof of Lemma 2: Existence and Uniqueness of a Solution to the

ODE:
Proof. According to the Picard-Lindelöf theorem, to prove the existence and uniqueness of the
solution in the neighborhood of [x, x+ ε0] for a small enough ε0 > 0, we only need to show that the
right hand side of equation (27) is uniformly Lipschitz continuous in X and continuous in x. This
is obviously true, because X(x) = x > x.

Our objective is to show that the solution exists uniquely for all x ∈ [x, 1). To prove this, we
can apply the argument above iteratively. Consequently, there are two possibilities: (1) X(x) > x

for x ∈ [x, 1), and in this case, the solution exists uniquely and the proof is complete; (2) there
exists x′ ∈ [x, 1) such that the solution does not exist or there are multiple solutions at x′.

Let us understand the implication of the case (2); we will show that this case is impossible. First,
let us define x̂ as the infimum of all x′ that satisfies the condition in case (2). By definition, we must
have that X(x) > x for x ∈ [x, x̂). Moreover, limx→x̂− X(x) = x̂; otherwise, the solution will exist
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uniquely at x̂, and X(x̂) > x̂. Meanwhile, by equation (27), we have that limx→x̂− X
′
(x) = +∞.

This implies that there exists ε > 0, such that X ′(x) > 1 for x ∈ [x̂− ε, x̂). As a result, we have,

lim
x→x̂−

X(x)− x̂ = X(x̂− ε)− (x̂− ε) +

∫ x̂−

x̂−ε
(X
′
(x)− 1)dx > 0, (x)

which contradicts the fact that limx→x̂− X(x) = x̂. Therefore, we have proved that the solution
exists uniquely for x ∈ [x, 1).

Smoothness of X(x) is easy to verify by taking derivatives. Let us prove the monotonicity of
X(x). By equation (31) and the monotonicity of V (x1, x2), we have

∂V (x1, x2)

∂x2

=
2σ2c

(∆π)2

(
X(x2)− x1

)
X
′
(x2)

X(x2)2
(
1−X(x2)

)2 ≥ 0, for x ≤ x2 ≤ x1 ≤ X(x2)

which implies X ′(x2) ≥ 0. Now let us prove X(1) = 1. In fact, by definition, 1 ≥ X(x) ≥ x for any
x ∈ [x, 1]. This implies that 1 ≥ X(1) ≥ 1, so X(1) = 1. It is easy to verify that X(1) = 1 also
satisfies the differential equation (27).

Proof of Lemma 3:
Proof. Let us first derive inequality (30) from inequality (29). In fact, when x ≤ x2 ≤ x1 ≤ X(x2),
V (x1, x2) is given by equation (26). We have

Vx2(x1, x2) =
2cσ2

(∆π)2

(X(x2)− x1)X
′
(x2)

X(x2)2(1−X(x2))2
=

2cσ2

(∆π)2

X(x2)− x1

X(x2)− x2

(
Φ
(
X(x)

)
− Φ(x) +

(∆π)3

2σ2c

)
,

where the second equality is by equation (28). By taking the partial derivative with respect to x2

and using equation (28) again, we have

Vx2x2(x1, x2) =
2cσ2

(∆π)2

[
X(x2)− x1

X(x2)− x2

1

x2
2(1− x2)2

+
(x1 − x2)X(x2)2

(
1−X(x2)

)2(
X(x2)− x2

)3

(
Φ
(
X(x)

)
− Φ(x) +

(∆π)3

2σ2c

)2 ]

Using this expression of Vx2x2(x1, x2), inequality (29) can be written as

X(x2)− x1

X(x2)− x2

+
(x1 − x2)x2

2(1− x2)2X(x2)2
(
1−X(x2)

)2(
X(x2)− x2

)3

(
Φ
(
X(x)

)
− Φ(x) +

(∆π)3

2σ2c

)2

≤ 1
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By multiplying
(
X(x2)− x2

)
and rearranging, the inequality above is equivalent to

(x1 − x2)

[
x2

2(1− x2)2X(x2)2
(
1−X(x2)

)2(
X(x2)− x2

)2

(
Φ
(
X(x)

)
− Φ(x) +

(∆π)3

2σ2c

)2

− 1

]
≤ 0.

Because x1 ≥ x2, this is equivalent to

x2
2(1− x2)2X(x2)2

(
1−X(x2)

)2(
X(x2)− x2

)2

(
Φ
(
X(x)

)
− Φ(x) +

(∆π)3

2σ2c

)2

≤ 1,

which is equivalent to

x2(1− x2)X(x2)
(
1−X(x2)

)
X(x2)− x2

(
Φ
(
X(x)

)
− Φ(x) +

(∆π)3

2σ2c

)
≤ 1,

which in turn, is equivalent to

H(x2) ≡ x2(1− x2)

(
Φ
(
X(x2)

)
− Φ(x2) +

(∆π)3

2σ2c

)
− X(x2)− x2

X(x2)
(
1−X(x2)

) ≤ 0. (xi)

By using equation (28) again, the inequality above can be equivalently written as inequality (30).

Now we prove the existence of x∗0 from inequality (xi). To guarantee inequality (xi) for any
x2 ∈ [x, 1], we need

max
x≤x2≤1

H(x2) ≤ 0. (xii)

Note that H(x) = −(x − x)/ [x(1− x)] < 0 and H(x) is continuous, so the inequality (xii) will
be violated if and only if there exists x∗2 ≡ minx≤x2≤1{x2|H(x2) = 0}, such that H ′(x∗2) > 0. By
using the equation (27) and the condition that H(x∗2) = 0, we can simplify and get the following
expression,

H ′(x∗2) = −2

(
Φ
(
X(x∗2)

)
− Φ(x∗2) +

(∆π)3

2σ2c

)(
x∗2 +X(x∗2)− 1

)
.

From the proof of Lemma 2, we know that Φ
(
X(x∗2)

)
− Φ(x∗2) + (∆π)3

2σ2c
≥ 0. Let us define h(x) ≡

x+X(x)− 1. Therefore, the equality above implies that

H ′(x∗2) > 0⇔ h(x∗2) < 0.

Meanwhile, from equations (17) and (18), it is easy to show that

x+ x ≥ 1⇔ x0 ≥ 1/2.
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Therefore, when x0 ≥ 1/2, h(x) = x + x− 1 ≥ 0. According to Lemma 2, we also know that h(x)

is strictly increasing. This implies that when x0 ≥ 1/2, h(x) ≥ 0 for any x ∈ [x, 1]. This in turn
implies that h(x∗2) ≥ 0, and inequality (xii) must hold. Therefore, if x∗0 exists, it must be less than
1/2.

Next, we will prove the existence of x∗0. We also note that

dh(x∗2)

dπ0

=
∂X(x)

∂π0

∣∣∣∣
x=x∗2

+
[
1 +X

′
(x∗2)

] dx∗2
dπ0

=
∂X(x)

∂π0

∣∣∣∣
x=x∗2

− 1 +X
′
(x∗2)

H ′(x∗2)
× dH

dX

∣∣∣∣
x=x∗2

× ∂X(x)

∂π0

∣∣∣∣
x=x∗2

=

{
1−

[
(X(x∗2)− x∗2)2 + 2x∗2(1− x∗2)

] [
X(x∗2)

(
1−X(x∗2)

)
+ x∗2(1− x∗2)

]
2h(x∗2)

(
X(x∗2)− x∗2

)
X(x∗2)

(
1−X(x∗2)

) }
∂X(x)

∂π0

∣∣∣∣
x=x∗2

As shown in Proposition 1, ∂X(x)/∂π0 ≥ 0, so dh(x∗2)/dπ0 ≥ 0 when h(x∗2) < 0. Consider x′0 > x′′0.
If under x′0, inequality (xii) is violated, then there exists x∗2 ∈ [x, 1] such that H ′(x∗2) > 0, which
implies that h(x∗2) < 0, which in turn implies that dh(x∗2)/dπ0 ≥ 0. This implies that under x′′0 < x′0,
h(x∗2) will get even smaller, and inequality (xii) will also be violated. In summary, to guarantee
inequality (xii), we must have x0 ≥ x∗0 for some x∗0.

The threshold x∗0 can be obtained as the x0 that makes maxx2 H(x2) = 0, which is a function of
x0 as X(.) is a function of both x and x and both x and x are a function of x0.

Construction of The Belief Updating Process under The Optimal

Learning Strategy:
Consider the case of Theorem 2 when the value of the outside option is relatively high. We have
already divided the belief space of x1-x2 into five regions corresponding to the DM’s five choices
of action. Updating the beliefs of both alternatives ceases when entering the regions where it is
optimal to adopt 1, or adopt 2, or take the outside option. Therefore, we only need to construct
the belief updating process for the regions where it is optimal to learn 1 or learn 2. Equation (7)
can be equivalently rewritten as the following:

dxi(t) =
∆π

σ2
xi(t) [1− xi(t)]1Li (x1(t), x2(t)) {[πi − π (1− xi(t))− πxi(t)] dt+ σdWi(t)} , (xiii)

where 1Li (x1(t), x2(t)) is an indicator function. It is equal to one when (x1(t), x2(t)) ∈ Li, i.e., when
the DM’s beliefs are in the region where it is optimal to learn alternative i; it takes zero other-
wise. We have L1 ≡

{
x1, x2|x2 ≤ x1 ≤ X(x2), x1 ≥ x

}
and L2 ≡

{
x1, x2|x1 < x2 ≤ X(x1), x2 ≥ x

}
.
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{Wi(t); t ≥ 0} is a standard Brownian motion, and W1(·) is independent of W2(·). Now in equation
(xiii), we have a set of SDE’s in the standard form of dxi(t) = ai(x1(t), x2(t))dt+bi(x1(t), x2(t))dWi(t),
which is first studied formally by Itô (1951). As shown in Stroock and Varadhan (1979), solving the
SDE in equation (xiii) amounts to solving a martingale problem for a diffusion operator. Karatzas
(1984) considers this problem for multi-arm bandits for diffusion processes. Because here we only
consider the regions where it is optimal to learn alternative 1 or 2, by defining the “allocation index”
in their setting as the belief in our setting, we can directly apply Theorem 6.1 in Karatzas (1984)
to show that there exists a unique-in-distribution solution to equation (xiii).17 See also Bass and
Pardoux (1987) for a general solution to this problem.

It is also interesting to see what happens to the stochastic process when we are at x1 = x2. In
particular, given the optimal learning strategies, let us investigate what happens to min{x1(t), x2(t)}
conditional on the DM’s belief being in L1 or L2. In terms of the SDE in equation (xiii), let us define
ãi(xi(t)) ≡ ∆π

σ2 xi(t)[1−xi(t)][πi−π(1−xi(t))−πxi(t)], for i = 1, 2, and b̃(xi(t)) ≡ ∆π
σ
xi(t)[1−xi(t)]

such that we can write equation (xiii) as

dxi(t) = 1Li(x1(t), x2(t))[ãi(xi(t))dt+ b̃(xi(t))dWi(t)] (i = 1, 2).

The particular case where ã1 = ã2, and b̃ are constants is considered in Fernholz et al. (2013), which
presents pathwise unique solutions for x1(t) and x2(t).

To see the stochastic behavior of min{x1(t), x2(t)}, we follow the presentation in Fernholz et al.
(2013), p.357, with the adjustments that ã1(x1(t)) 6= ã2(x1(t)), and ãi(xi(t)) for i = 1, 2, and b̃(xi(t))
are bounded and continuous functions of xi(t), and where x1(t) and x2(t) are unique-in-distribution
solutions to (xiii) for i = 1, 2. Let us define Y (t) ≡ x1(t)− x2(t). Then we can obtain

Y (t) = Y (0) +

∫ t

0

ã1(x1(s))1[Y (s)≥0]ds−
∫ t

0

ã2(x2(s))1[Y (s)<0]ds+ W̃ (t), (xiv)

where W̃ (t) ≡
∫ t

0
b̃(x1(s))1[Y (s)≥0]dW1(s)−

∫ t
0
b̃(x2(s))1[Y (s)<0]dW2(s). We can also obtain

x1(t) + x2(t) = x1(0) + x2(0) +

∫ t

0

ã1(x1(s))1[Y (s)≥0]ds+

∫ t

0

ã2(x2(s))1[Y (s)<0]ds+ Ŵ (t), (xv)

where Ŵ (t) ≡
∫ t

0
b̃(x1(s))1[Y (s)≥0]dW1(s)+

∫ t
0
b̃(x2(s))1[Y (s)<0]dW2(s). The processes W̃ (t) and Ŵ (t)

are continuous martingales, and then Y (t) is a semimartingale. Using the definitions W̃ (t) and Ŵ (t)

17Note that, given the optimal learning strategy, the dispersion coefficient in (xiii) is always strictly positive with
probability one if both beliefs start in (0, 1) when a belief is being updated.
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we can also obtain
Ŵ (t) =

∫ t

0

sgn(Y (s))dW̃ (s), (xvi)

where the signum function is defined as sgn(y) ≡ 1[0,∞)(y)− 1(−∞,0)(y).

Note now that
|Y (t)| = |Y (0)|+

∫ t

0

sgn(Y (s))dY (s) + 2LY (t) (xvii)

by Tanaka’s formula (Karatzas and Shreve 1991, p. 205) applied to semimartingales, and where
LY (t) is the local time of Y (t) at Y (t) = 0, which is defined as LY (t) ≡ limε↓0

1
2ε

∫ t
0
1{0≤Y (s)<ε}ds.

Substituting the derivative of equation (xiv) and equation (xvi) into equation (xvii) we can obtain

|Y (t)| = |Y (0)|+
∫ t

0

ã1(x1(s))1[Y (s)≥0]ds+

∫ t

0

ã2(x2(s))1[Y (s)<0]ds+ Ŵ (t) + 2LY (t). (xviii)

Noting that min{x1(t), x2(t)} = 1/2[x1(t) + x2(t) − |x1(t) − x2(t)|], we can then use equation
(xv) and equation (xviii) to obtain

min{x1(t), x2(t)} = min{x1(0), x2(0)} − LY (t), (xix)

which shows that min{x1(t), x2(t)}, conditional on the DM being in the region where it is optimal
to learn more information, falls through time under the optimal learning strategy.

By the same argument we can also look at the evolution of the stochastic process in the regions
L∗i when the outside option has a relatively low or medium value (see Figures 3 and 4). In those
cases, the evolution close to x1(t) = x2(t) has to do with the max{x1(t), x2(t)} and we can obtain
that, given the optimal learning in those regions, max{x1(t), x2(t)} = max{x1(0), x2(0)} + LY (t),

increases through time. In the case of medium value of the outside option, there are also two
negatively sloped frontiers surrounding the region L∗1 ∪L∗2. In these frontiers the stochastic process
would evolve towards x1(t) = x2(t) in the upper frontier, and away from x1(t) = x2(t) for the lower
frontier.

Proof of Proposition 1: Comparative Statics:
Proof. We first show the comparative statics with respect to c. Let us initially show that x
increases with c. In fact, by taking derivative with respect to c on both sides of equations (17) and
(18) and combining the two resulting equations to cancel ∂x/∂c, we have

∂x

∂c
=
x2(1− x)2

x− x
(∆π)2 (∆π · x+ π)

2σ2c2
.
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To show ∂x/∂c > 0, we only need ∆π · x+ π > 0. In fact, let us consider any x ∈ (x, x). First, we
know U(x) ≥ 0, because the DM can always take the outside option and get zero. Also, by following
the optimal strategy, the DM ends up either adopting the alternative, or taking the outside option,
after paying the learning cost, so we have

U(x) = P (x) (∆π · x+ π) + (1− P (x)) (∆π · x+ π)− cT (x) ≥ 0,

where P (x) is the probability that the DM ends up adopting the alternative given his current
posterior belief as x, and T (x) is the expected time spent on learning. By the inequality above and
x > x, we know that ∆π · x+ π > 0. Therefore, ∂x/∂c > 0.

Then, let us show that V (x1, x2) decreases with c. This is straightforward by a simple argument.
Consider c′ > c′′. Under learning cost c′′, the DM can always replicate the optimal strategy under
c′′ but now incurs less learning cost.

Lastly, we prove that X(x) decreases with c. In fact, let us consider any x1 and x2 satisfying
x2 ≤ x1 ≤ X(x2) and x1 ≥ x. By equation (31), we have,

∂V (x1, x2)

∂c
=
V (x1, x2)− (∆π · x1 + π)

c
+

2σ2c

(∆π)2

X(x2)− x1

X(x2)2
(
1−X(x2)

)2

X(x2)

∂c
≤ 0,

Since V (x1, x2) ≥ ∆π · x1 + π, the inequality above implies that X(x2)/∂c ≤ 0 for ∀x2 ∈ [0, 1].

Now, notice that the HJB equation (9) can be equivalently written as,

max

{
max
1≤i≤n

{
(∆πi)

2

2σ2
i ci

x2
i (1− xi)2V̂xixi(x)− 1

}
, g(x)− V̂ (x)

}
= 0,

so only σ2c is identified in the model. Therefore, the comparative statics with respect to σ will be
the same with that with c.

Next, we prove the comparative statics with respect to π. Let us first show that ∂V (x1, x2)/∂π ≤
1. In fact, given ∆π fixed, consider an increase of π by ∆π > 0. If the outside option π0 also increased
∆π, then obviously, V (x1, x2) would be shifted upward by exactly ∆π. Since the outside option is
kept unchanged, V (x1, x2) must increase no more than ∆π. This implies that ∂V (x1, x2)/∂π ≤ 1.
Consider any x1 and x2 satisfying x2 ≤ x1 ≤ X(x2) and x1 ≥ x. By equation (31), we have,

∂V (x1, x2)

∂π
= 1 +

2σ2c

(∆π)2

X(x2)− x1

X(x2)2
(
1−X(x2)

)2

X(x2)

∂π
≤ 1.

This implies that ∂X(x2)/∂π ≤ 0 for x2 ∈ [0, 1]. Because X(x2) = x for x2 ∈ [0, x], we have
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∂x/∂π ≤ 0. By taking derivative with respect to π on both sides of equation (18), we have

∂x

∂π
=
x2(1− x)2

x2(1− x)2

∂x

∂π
≤ 0.

Finally, we prove the comparative statics with respect to π0. Obviously, V (x1, x2) increases with
the outside option π0, so we have,

∂V (x1, x2)

∂π0

=
2σ2c

(∆π)2

X(x2)− x1

X(x2)2
(
1−X(x2)

)2

X(x2)

∂π0

≥ 0.

This implies that ∂X(x)/∂π0 ≥ 0 for x ∈ [0, 1], which in turn implies that ∂x/∂π0 ≥ 0. So we also
have

∂x

∂π0

=
x2(1− x)2

x2(1− x)2

∂x

∂π0

≥ 0.

Proof of Theorem 3
Proof. We state first the value function V (x1, x2) for this case and then prove how this value
function can be obtained, which leads to the optimal learning strategies stated in the theorem. The
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value function is

V (x1, x2) =



2σ2c
(∆π)2

(1− 2x1)
[
ln
(

1−x1
x1

)
− ln

(
1−Y (x2)

Y (x2)

)]
− 2σ2c

(∆π)2
1−2Y (x2)

1−Y (x2)

Y (x2)−x1
Y (x2)

+ ∆π · x1 + π, if 1/2 ≤ x2 ≤ x1 ≤ Y (x2)

2σ2c
(∆π)2

(1− 2x1)
[
ln
(

1−x1
x1

)
− ln

(
1−Z(x2)

Z(x2)

)]
− 2σ2c

(∆π)2
1−2Z(x2)

1−Z(x2)

Z(x2)−x1
Z(x2)

+ ∆π · x1 + π, if 1/2 ≤ 1− x2 ≤ x1 ≤ Z(x2)

2σ2c
(∆π)2

(1− 2x2)
[
ln
(

1−x2
x2

)
+ ln

(
1−Y (1−x1)

Y (1−x1)

)]
+ 2σ2c

(∆π)2
1−2Y (1−x1)

1−Y (1−x1)

1−Y (1−x1)−x2
Y (1−x1)

+ ∆π · x1 + π, if 1/2 ≤ 1− x1 ≤ 1− x2 ≤ Y (1− x1)

2σ2c
(∆π)2

(1− 2x2)
[
ln
(

1−x2
x2

)
+ ln

(
1−Z(1−x1)

Z(1−x1)

)]
+ 2σ2c

(∆π)2
1−2Z(1−x1)

1−Z(1−x1)

1−Z(1−x1)−x2
Z(1−x1)

+ ∆π · x1 + π, if 1/2 ≤ x1 ≤ 1− x2 ≤ Z(1− x1)

2σ2c
(∆π)2

(1− 2x2)
[
ln
(

1−x2
x2

)
− ln

(
1−Y (x1)

Y (x1)

)]
− 2σ2c

(∆π)2
1−2Y (x1)

1−Y (x1)

Y (x1)−x2
Y (x1)

+ ∆π · x2 + π, if 1/2 ≤ x1 ≤ x2 ≤ Y (x1)

2σ2c
(∆π)2

(1− 2x2)
[
ln
(

1−x2
x2

)
− ln

(
1−Z(x1)

Z(x1)

)]
− 2σ2c

(∆π)2
1−2Z(x1)

1−Z(x1)

Z(x1)−x2
Z(x1)

+ ∆π · x2 + π, if 1/2 ≤ 1− x1 ≤ x2 ≤ Z(x1)

2σ2c
(∆π)2

(1− 2x1)
[
ln
(

1−x1
x1

)
+ ln

(
1−Y (1−x2)

Y (1−x2)

)]
+ 2σ2c

(∆π)2
1−2Y (1−x2)

1−Y (1−x2)

1−Y (1−x2)−x1
Y (1−x2)

+ ∆π · x2 + π, if 1/2 ≤ 1− x2 ≤ 1− x1 ≤ Y (1− x2)

2σ2c
(∆π)2

(1− 2x1)
[
ln
(

1−x1
x1

)
+ ln

(
1−Z(1−x2)

Z(1−x2)

)]
+ 2σ2c

(∆π)2
1−2Z(1−x2)

1−Z(1−x2)

1−Z(1−x2)−x1
Z(1−x2)

+ ∆π · x2 + π, if 1/2 ≤ x2 ≤ 1− x1 ≤ Z(1− x2)

∆π ·max{x1, x2}+ π, otherwise,

(xx)

where Y (x) is determined by the following boundary value problem of an ordinary differential
equation,

Y
′
(x) = −

Φ
(
Y (x)

)
− Φ(x) + (∆π)3/(2σ2c)

Φ′
(
Y (x)

) (
Y (x)− x

) , (xxi)

Y

(
1

2

)
= Φ−1

(
−(∆π)3

4σ2c

)
, (xxii)

and Z(x) is determined by

Z
′
(x) = −

Φ
(
Z(x)

)
+ Φ(x)

Φ′
(
Z(x)

) (
1− x− Z(x)

) , (xxiii)

Z

(
1

2

)
= Φ−1

(
−(∆π)3

4σ2c

)
. (xxiv)
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Define x∗ as the solution to the equation x∗ + Z(x∗) = 1. X(x) is then given by

X(x) =



1− Y −1
(1− x), if 0 ≤ x < 1− Φ−1

(
−(∆π)3

4σ2c

)
1− Z−1

(1− x), if 1− Φ−1

(
−(∆π)3

4σ2c

)
≤ x < x∗

Z(x), if x∗ ≤ x <
1

2
Y (x), otherwise.

(xxv)

The proof follows almost the exactly same steps as the proof of Theorem 1 in the main context.
First, it is easy to verify all the boundary conditions have been satisfied—actually this is how
we come up with the expression of equation (xx). Therefore, the only thing we need to verify is
the second inequality of equation (9). By symmetry, we only need to verify this inequality when
1/2 ≤ x2 ≤ x1 ≤ Y (x2) and when 1/2 ≤ 1− x2 ≤ x1 ≤ Z(x2). The proofs are very similar for the
two cases. Below, we provide the proof for the case that 1/2 ≤ x2 ≤ x1 ≤ Y (x2). In fact, similar to
the proof of Lemma 3, we can show that this inequality will be satisfied as long as

Y
′
(x2) ≤

Y (x2)
(
1− Y (x2)

)
x2 (1− x2)

, for ∀x2 ∈ [1/2, 1).

By equation (xxi), we can write the inequality above equivalently as

J(x2) ≡ x2(1− x2)

(
Φ
(
Y (x2)

)
− Φ(x2) +

(∆π)3

2σ2c

)
− Y (x2)− x2

Y (x2)
(
1− Y (x2)

) ≤ 0, for ∀x2 ∈ [1/2, 1).

(xxvi)
Let us define m = (∆π)3/(4σ2c). By equation (xxii), we can calculate that J(1/2) = m/4 −
(Φ−1(−m)−1/2)/ [Φ−1(−m)(1− Φ−1(−m))]. Using the definition of Φ(·), it is not difficult to show
that J(1/2) < 0. Let us prove by contradiction. Suppose the inequality (xxv) does not hold.
Since J(x) is continuous, this implies that there exists x∗2 ≡ min1/2≤x2≤1{x2|J(x2) = 0} such that
J ′(x∗2) > 0. By using the equation (xxv) and (xxi) and the condition that J(x∗2) = 0, we can simplify
and get the following expression:

J ′(x∗2) = −2

(
Φ
(
Y (x∗2)

)
− Φ(x∗2) +

(∆π)3

2σ2c

)(
x∗2 + Y (x∗2)− 1

)
> 0.

However, we know that Φ
(
Y (x∗2)

)
− Φ(x∗2) + (∆π)3

2σ2c
≥ 0, and x∗2 + Y (x∗2)− 1 ≥ 2x∗2 − 1 ≥ 0. This is

a contradiction to the inequality above, which implies that inequality (xxv) will always hold.
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Proof of Theorem 4: Adoption Likelihood:
Proof. When x1 ≥ X(x2), the DM adopts alternative 1 immediately, so P1(x1, x2) = 1. When
x1 ≤ x or x2 ≥ X(x1), the DM will never adopt alternative 1, therefore P1(x1, x2) = 0. Otherwise
when x < x1 < X(x2) and x2 < X(x1), there are two cases, depending on the value of x2.

In the first case with x2 ≤ x, the DM considers alternative 1 only. Given his current belief x1,
he will continue learning until his belief equals either x or x. According to the Optional Stopping
Theorem, we have x1 = P1(x1, x2)x+ [1− P1(x1, x2)]x, therefore

P1(x1, x2) =
x1 − x
x− x

, x < x1 ≤ x, x2 ≤ x.

In the second case, x2 > x. When x1 ≥ x2, the DM keeps learning alternative 1 until his belief
reaches either X(x2) or x2. Let us define the probability of reaching X(x2) as q1(x1, x2). Then by
invoking the Optional Stopping Theorem, we similarly get

q1(x1, x2) =
x1 − x2

X(x2)− x2

.

According to symmetry, the probability of reaching X(x1), starting from (x1, x2) with x1 < x2,

would be q1(x2, x1). Let us further define P0(x) as the probability of taking the outside option,
given the DM’s current beliefs as (x, x). Let us consider an infinitesimal learning on alternative 1

at (x, x), with belief update as dx. By conditioning on the sign of dx, we have

P0(x) ≡ Pr[outside option|(x, x)]

=
1

2
Pr[outside option|(x, x), dx ≥ 0] +

1

2
Pr[outside option|(x, x), dx < 0]

=
1

2
[1− q1(x+ dx, x)]P0(x) +

1

2
[1− q1(x, x− dx)]P0(x− dx)

= P0(x)− dx

2

[
P ′0(x)−

(
∂q1(x1, x2)

∂x2

− ∂q1(x1, x2)

∂x1

) ∣∣∣∣
x1=x2=x

P0(x)

]
+ o(dx),

where the last equality is obtained by doing a Taylor expansion of q1(x+ dx, x), q1(x, x− dx), and
P0(x − dx). By canceling out P0(x), dividing by dx and taking limit of dx going to zero for the
equation above, we have

P ′0(x)

P0(x)
=

(
∂q1(x1, x2)

∂x2

− ∂q1(x1, x2)

∂x1

) ∣∣∣∣
x1=x2=x

= − 2

X(x)− x
.

Combining the differential equation above with the initial condition P0(x) = 1, we can solve P0(x)
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as
P0(x) = e

−
∫ x
x

2
X(ξ)−ξ dξ.

Starting from (x1, x2) with x1 ≥ x2, the DM learns information on alternative 1. With proba-
bility q1(x1, x2), he reaches the adoption boundary X(x2), and immediately adopts alternative 1.
With probability 1 − q1(x1, x2), he reaches x2. Then starting from (x2, x2), he eventually adopts
alternative 1 with probability 1/2[1− P0(x2)]. Therefore, we have

P1(x1, x2) = q1(x1, x2) + [1− q1(x1, x2)]
1

2
[1− P0(x2)], x < x2 < x1 < X(x2).

Similarly, starting from (x1, x2) with x1 < x2, the DM learns information on alternative 2.
With probability 1− q1(x2, x1), he reaches x1, upon which, he eventually adopts alternative 1 with
probability 1/2[1− P0(x1)].

P1(x1, x2) = [1− q1(x2, x1)]
1

2
[1− P0(x1)], x < x1 < x2 < X(x1).

By combining all the scenarios above, we proved the theorem.

Proof of Theorem 5: Probability of Being Correct:
Proof. By symmetry, we only need to consider the case that x1 ≥ x2. There are four cases to
consider.

In the first case, when x1 ≥ X(x2), the DM adopts alternative 1 right away. In this case, he will
be correct if and only if the alternative 1 turns out to be of high value. Therefore, Q(x1, x2) = x1.

In the second case, when x2 ≤ x1 ≤ x, the DM will adopt the outside option, which is ex-post
correct if and only if both alternatives are of low value, i.e., Q(x1, x2) = (1− x1)(1− x2).

In the third case, when x2 ≤ x ≤ x1 ≤ x, the DM will continue learning until his belief equals
either x or x. Therefore,

Q(x1, x2) =
x1 − x
x− x

x+

[
1− x1 − x

x− x

]
(1− x)(1− x2),

=
x(x1 − x) + (1− x)(x− x1)(1− x2)

x− x
.

In the last case, when x < x2 < x1 < X(x2), the DM keeps learning alternative 1 until his belief
reaches either X(x2) or x2. Let us define Q̂0(x) as the probability of being correct, given the DM’s
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beliefs as (x, x). Let us consider infinitesimal learning on alternative 1 at (x, x), with belief update
as dx. By conditioning on the sign of dx, we have

Q̂0(x) ≡ Pr[correct|(x, x)]

=
1

2
Pr[correct|(x, x), dx ≥ 0] +

1

2
Pr[correct|(x, x), dx < 0]

=
1

2
q1(x+ dx, x)X(x) +

1

2
[1− q1(x+ dx, x)] Q̂0(x)

+
1

2
q1(x, x− dx)X(x− dx) +

1

2
[1− q1(x, x− dx)] Q̂0(x− dx).

Similar to the proof of Theorem 4, by doing a Taylor expansion of q1(x + dx, x), q1(x, x − dx),,
Q̂0(x− dx), and X(x− dx), and simplifying, we have

Q̂′0(x) =
[
X(x)− Q̂0(x)

](∂q1(x1, x2)

∂x1

− ∂q1(x1, x2)

∂x2

) ∣∣∣∣
x1=x2=x

=
2
[
X(x)− Q̂0(x)

]
X(x)− x

.

Combining the differential equation above with the initial condition Q̂0(x) = (1− x)2, we can solve
Q̂0(x) as

Q̂0(x) = (1− x)2e
−

∫ x
x

2dξ

X(ξ)−ξ +

∫ x

x

e
−

∫ x
η

2dξ

X(ξ)−ξ
2X(η)

X(η)− η
dη.

Given Q̂0(x), we have,

Q(x1, x2) = q1(x1, x2)X(x2) + [1− q1(x1, x2)] Q̂0(x2).

By combining all the scenarios above, we proved the theorem.

Solution to the Problem with Two Heterogeneous Alternatives:
The following theorem characterizes the optimal learning strategy in the case of two heterogeneous
alternatives under the assumption that alternative 1 is “better” than alternative 2, and (x∗1, x

∗
2)

exists. Similar to the proof of Theorem 1, it is straightforward but tedious to show that the
variational inequalities in equation (9) are satisfied. The details are thus omitted here.

Theorem A1: Consider the Decision Maker’s optimal learning problem in equation (6) with two
heterogeneous alternatives, ∆π1 > ∆π2 (or c1 < c2). Suppose that (x∗1, x

∗
2) exits. When the value of
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the outside option is relatively high, the value function V (x1, x2) is given by

V (x1, x2) =



2σ2
1c1

(∆π1)2
(1− 2x1)

[
ln
(

1−x1
x1

)
− ln

(
1−X(x2)

X(x2)

)]
− 2σ2

1c1
(∆π1)2

1−2X(x2)

1−X(x2)

X(x2)−x1
X(x2)

+ ∆π1 · x1 + π1, x1, X1(x2) ≤ x1 ≤ X1(x2), x2 ≤ y(x1)
2σ2

2c2
(∆π2)2

(1− 2x2)
[
ln
(

1−x2
x2

)
− ln

(
1−X(x1)

X(x1)

)]
− 2σ2

2c2
(∆π2)2

1−2X(x1)

1−X(x1)

X(x1)−x2
X(x1)

+ (∆π2)x2 + π2, x2 ≤ x2 ≤ X2(x1), x2 > y(x1)

∆π1 · x1 + π1, x1 > X1(x2)

∆π2 · x2 + π2, x2 > X2(x1) or x1 < X1(x2)

π0, otherwise.

The adoption boundary of alternative 1, X1(x2) is given by

X1(x2) =


χ1(x2) x2 ≥ x∗2

χ̃1 (y−1(x2)) , x∗2 > x2 ≥ x2

x1, otherwise.

The adoption boundary of alternative 2, X2(x1) supported in [0, x∗1] is given by

X2(x1) =

{
χ2(x1), x∗1 ≥ x1 ≥ x1

x2, x1 < x1.

The adoption boundary of alternative 2, X1(x2), and χ1(x2), both supported in [x∗2, 1], are given by
the following equations:

F (χ1(x2))− F (X1(x2)) = −(∆π1)3

2σ2
1c1(

1

χ1(x2)
+

1

1− χ1(x2)

)
−
(

1

X1(x2)
+

1

1−X1(x2)

)
=

(∆π1)2 [2 (∆π2 · x2 + π2 − π1)−∆π1]

2σ2
1c1

.

χ2(x1), χ̃1(x1), and y(x1), all supported in [x1, x
∗
1], are determined by the following boundary value
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problem:

dF (χ2(x1))

dx1

= −
2σ2

1c1
(∆π1)2

(F (χ̃1(x1))− F (x1)) + ∆π1

2σ2
2c2

(∆π2)2
(χ2(x1)− y(x1))

,

dF (χ̃1(x1))

dx1

= −y′(x1)

2σ2
2c2

(∆π2)2
(F (χ2(x1))− F (y(x1))) + ∆π2

2σ2
1c1

(∆π1)2
(χ̃1(x1)− x1)

,

(χ̃1(x1)− x1)

[
2σ2

1c1

(∆π1)2
(F (χ̃1(x1))− F (x1)) + ∆π1

]
= (χ2(x1)− y(x1))

[
2σ2

2c2

(∆π2)2
(F (χ2(x1))− F (y(x1))) + ∆π2

]
,

χ2(x1) = x2,

χ̃1(x1) = x̃1,

y(x1) = x2.

Case of Heterogeneous Alternatives with ∆π1 > ∆π2 and c1 > c2:
Now, let us have a look at the more complicated case that alternative 1 may have a higher
information-to-noise ratio, while at the same time a higher learning cost. Figure A1 shows the
optimal learning strategy under some parameter settings. As we can see, the solution structure
remains mostly unchanged. We still have a simple cutoff policy to construct consideration set, but
the boundary separating “Learn 1” and “Learn 2” can become more complicated now, and can be
sensitive to the parameter setting.
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A2

L1

L2

O

0.0 0.2 0.4 0.6 0.8 1.0
0.0
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0.6
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L2

O

0.0 0.2 0.4 0.6 0.8 1.0
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0.8

1.0

x1

x 2

Figure A1: Optimal learning strategy with heterogeneous alternatives. We have c1σ
2
1/∆π = 0.33

for the left panel and c1σ
2
1/∆π = 0.34 for the right panel. For both panels: ∆π1 = 1.2∆π2 = 1.2∆π,

(π0 − π1)/∆π = (π0 − π2)//∆π = 0.5, and c2σ
2
2/∆π = c2σ

2
2/∆π = 1.
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Solution to the Problem with Time Discounting:
Theorem A2: There exists a unique solution V (x1, x2) to equation (43):

V (x1, x2) =



[
α−1
2α
πZ(x2)

α+1
2 + α+1

2α
πZ(x2)

α−1
2

]
x
α+1
2

1 (1− x1)−
α−1
2

+
[
α−1
2α
πZ(x2)−

α+1
2 + α+1

2α
πZ(x2)−

α−1
2

]
x
−α−1

2
1 (1− x1)

α+1
2 , x2 ≤ x1 ≤ X̃(x2), x1 ≥ x

˜[
α−1
2α
πZ(x1)

α+1
2 + α+1

2α
πZ(x1)

α−1
2

]
x
α+1
2

2 (1− x2)−
α−1
2

+
[
α−1
2α
πZ(x1)−

α+1
2 + α+1

2α
πZ(x1)−

α−1
2

]
x
−α−1

2
2 (1− x2)

α+1
2 , x1 ≤ x2 ≤ X̃(x1), x2 ≥ x

˜
∆π · x1 + π, x1 > X̃(x2)

∆π · x2 + π, x2 > X̃(x1)

π0, otherwise,

where α ≡
√

1 + 8rσ2

(∆π)2
> 1, and X̃(x) is given by

X̃(x) =


1

Z(x)+1
, x ≥ x

˜
x̃, otherwise.

Z(x) is determined by the following boundary value problem:

(
α2 − 1

)
x(1− x)

Z ′(x)

Z(x)
= α2 + α(1− 2x)

Z(x)α +
(

1−x
x

)α
Z(x)α −

(
1−x
x

)α − (1− 2x)
Z(x)− π

π

Z(x) + π
π

− α

[
Z(x)α +

(
1−x
x

)α)
]
[
Z(x)− π

π

]
[
Z(x)α −

(
1−x
x

)α] [
Z(x) + π

π

] ,
Z(x

˜
) =

1− x̃
x̃

.

x̃ and x
˜
are determined by the following equations:

 x̃
x
˜

−α−1
2
1− x̃

1− x
˜

α+1
2

=
∆π(α− 1)x̃+ π(α + 1− 2x̃)

π0(α + 1− 2x
˜
)

,

 x̃
x
˜

α+1
2
1− x̃

1− x
˜

−α−1
2

=
∆π(α + 1)x̃+ π(α− 1 + 2x̃)

π0(α− 1 + 2x
˜
)

.

The proof to Theorem A2 follows similar steps to the proof of Theorem 1, and thus is omitted.
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