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Abstract. We analyze the performance of irrational investors, who mistake expected returns of
assets in a multi-asset economy. Mistakes by probabilistically unsophisticated investors that a priori
seem small lead to severe underperformance compared with rational investors, under general con-
ditions. Our results contrast with previous studies of single-asset economies, which find modest
underperformance by irrational investors. In a calibration, an irrational investor who mistakes expected
returns by 20% loses almost 95% of his consumption and wealth in about 25 years. The welfare cost of
this underperformance is significant, about 40% of the total wealth in the economy.

JEL Classification: G0, G11

1. Introduction

The recent financial crisis has been blamed on the innovation of complex deriv-
atives and other financial instruments that allowed unsophisticated investors to take
on large risks they did not understand.1 This view stands in contrast to the rational
neoclassical view that such financial innovation increases efficiency by completing
markets.
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1 An early warning was issued by Mr Warren Buffet, calling these instruments ‘‘financial weapons of
mass destruction’’ in his 2003 newsletter to Berkshire Hathaway’s shareholders. In the letter, Mr Buffet
argues that the range of derivatives is only limited by the imagination of madmen and that investors’
biased forecasts together with fraudulent accounting impose severe systemic risk on the economy.
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That derivative markets can be hazardous to investors, given their complexity
and the potential arbitrage opportunities they offer, may not be surprising, but sub-
optimal behavior by unsophisticated individual investors has also been documented
in the stock market by several recent studies. For example, Barber et al. (2009) find
an underperformance of 2.1% per year for individual investors relative to institu-
tional investors—a 50% underperformance over a 30-year time horizon. As shown
in Calvet, Campbell, and Sodini (2007, 2009), the welfare costs of suboptimal
investments by unsophisticated investors are also significant. A solid theoretical
understanding of the equilibrium effects on consumption and wealth of investor
irrationality in stock markets is therefore important.

The equilibrium effects of investor irrationality when agents make probabilistic
mistakes can be understood by using investor survival analysis, developed in
Blume and Easley (1992, 2006) and Sandroni (2000, 2005). The starting point
is the first-order condition that in a complete market equilibrium relates the ratios
of agents’ marginal utilities to the ratios of their likelihood processes. The first-
order condition completely determines the wealth and consumption dynamics
of investors in the market and can be used to define a survival index that provides
an asymptotic result (for large time periods) for the market selection process, that is,
for the rate at which irrational investors underperform rational ones; see Blume and
Easley (2006). In Kogan et al. (2006, 2011), the framework is incorporated into
a standard asset pricing setting and used to analyze the long-term price impact and
survival of irrational investors.

Given that irrational investors eventually die out, an important quantitative ques-
tion is how much they underperform in a standard asset pricing setting.2 If the

2 Of course, as shown in several studies, irrational investors do not always die out. For example, over-
optimistic investors may invest a larger share of their wealth in risky assets and ultimately dominate the
market when prices are set exogenously (DeLong et al., 1991). Similarly, irrational investors with a lower
consumption-to-savings ratio than rational investors may come to dominate the market. Moreover, even
when rational investors eventually dominate the market measured by fraction of wealth, irrational invest-
ors may still have nonnegligible impact on prices (Kogan et al., 2006). However, when rational and
irrational investors have identical utilities, irrational investors will lose out compared with rational ones
except under special circumstances. In general equilibrium with complete markets, Sandroni (2000)
shows that rational investors will eventually dominate the market under general conditions if agents have
identical intertemporal discount factors [Blume and Easley (2006) show that in incomplete markets, this
result may not hold in general, although Sandroni (2005) shows that the result can be extended to in-
complete markets in some cases]. Loewenstein and Willard (2006) point out that models of the type of
DeLong et al., (1990, 1991) implicitly allow for real transfers of production (between risk-less storage
and risky technology), due to sentiment, and for changes in aggregate consumption. We study a general
equilibrium in a complete market, so in line with Sandroni (2000) irrational investors will eventually lose
out. The literature also relates to the original literature on market selection, see Alchian (1950) and Fried-
man (1953), Cootner (1964), and Fama (1965). Other recent contributions to the literature include
Cvitanic and Malamud (2010, 2011).
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market selection process takes many centuries, and irrationality in the stock market
thereby is only ‘‘mildly’’ punished, it could be argued that the effect is not very
important in practice. If, on the other hand, the punishment is severe and the se-
lection process therefore occurs in a matter of a few years, this may have important
policy implications.

Using the survival index approach, and building on the general equilibrium lit-
erature with heterogeneous investors (see Detemple and Murthy, 1994a; Basak,
2000; David, 2009), Yan (2008) calibrates a standard exchange economy with a rep-
resentative firm and shows that it may take several hundred years before rational
investors significantly outperform irrational investors. Similar results are derived in
Dumas, Kurshev, and Uppal (2009), under slightly different assumptions, and used
in Branger, Schlag, and Wu (2006).

One caveat with these theoretical studies that find only modest underperform-
ance by irrational investors is that they are based on representative firm economies,
that is, on economies with a single traded risky asset. Although this is a harmless
assumption when all investors are identical, since aggregate consumption is suf-
ficient for all purposes in this case, it is unclear whether the assumption is harmless
when some investors are irrational. In fact, one may suspect a source of underper-
formance to be that irrational investors hold very different portfolios compared with
rational ones. With only one firm to invest in, however, the heterogeneity in port-
folio holdings is severely limited. For example, with only one risky asset, all invest-
ors with long positions hold portfolios with the same Sharpe ratio.

In this paper, we study a general exchange economy with many risky assets. Our
main result is that in such a multi-asset economy, mistakes by an irrational investor
that a priori seem very small lead to severe underperformance, in contrast to what is
obtained in the representative firm setting, in terms of consumption, wealth, and
welfare dynamics. For example, over a 25-year horizon, a moderately irrational
investor is expected to lose about 93% of consumption and wealth to a rational in-
vestor. This result stands in stark contrast to the previous theoretical studies. In other
words, multi-asset stock markets may be as ‘‘dangerous’’ as derivative markets for
unsophisticated investors, even though no pure arbitrage opportunities exist. Some-
what surprising, the welfare costs of irrationality are also severe, even in this stan-
dard exchange economy setting in which irrational investors neither affect the total
output nor generate negative externalities by creating systemic risk. Instead, the
welfare costs arise because the consumption allocation between the rational and
irrational investor is severely suboptimal. When the initial wealth of the rational
and irrational investor is the same, the welfare cost as a fraction of total wealth is
about 40% in a 25-year horizon, highlighting the importance of financial educa-
tion in markets with a large fraction of unsophisticated investors and suggesting
that it may be welfare increasing to restrict the asset span in such markets.

MARKET SELECTION AND WELFARE IN A MULTI-ASSET ECONOMY 1181

 at U
niversity of C

alifornia, B
erkeley on M

ay 9, 2013
http://rof.oxfordjournals.org/

D
ow

nloaded from
 

http://rof.oxfordjournals.org/


The underperformance by irrational investors is proportional to the number of
risky assets in the market. For example, if it takes 1,500 years to reach a prescribed
loss in a market with one risky asset, it takes 3 years in a market with the same
aggregate dynamics but with 500 risky assets. Thus, although the model with one
representative firm qualitatively gives the same result as the multi-firm model (the
eventual extinction of irrational traders), the quantitative difference is striking.

The intuition behind these results is straightforward. The larger state space in the
multi-asset framework allows the rational investor to take advantage of the irratio-
nal investor much more efficiently than in the representative firm economy. Spe-
cifically, the rational investor invests in assets that the irrational investor is bearish
about, and which are therefore underpriced, and sells assets that the irrational is
bullish about. This portfolio strategy effectively cancels out most idiosyncratic risk
in the rational agent’s portfolio, while allowing for high expected returns. In other
words, the rational investor can ‘‘diversify’’ over the irrational investor’s mistakes
across stocks. As long as such diversification opportunities are present, the market
selection process will be fast when there are many assets. Indeed, we show that
there are two cases under which the efficiency of the market selection process
is not improved as the number of assets increases: when there is no spread of in-
vestor sentiment across assets and when the assets’ dividend processes are inde-
pendent. In these two cases, there is no opportunity for the rational investor to
diversify over the irrational investor’s mistakes, and the same slow market selection
process as in the one-asset model is obtained.

The irrational investors in our model consistently mistake the growth rates of
firms. Such behavior could, for example, arise if investors receive noisy signals
about growth rates and are overconfident about the quality of these signals. The
assumption can more generally be viewed as a reduced-form representation of
the behavior of investors who are unsophisticated in how they treat probabilities.
We show that our results are robust to several extensions and generalizations. Spe-
cifically, they continue to hold for more general risk structures in the market, when
all agents make mistakes but some agents’ mistakes are ‘‘smaller’’ than others’,
when rational agents do not know the parameters of the economy but learn about
these, and when agents also mistake covariances in addition to growth.

In our analysis, we do not consider frictions. Transaction costs, for example, may
be another source of underperformance by unsophisticated investors, as shown by
Barber and Odean (2000). A more realistic model with frictions, although clearly of
interest, is outside the scope of this paper. Also, we focus on investors who are
irrational in the way that they update their probabilistic beliefs. Irrationality in
the form of deviations from the expected utility framework is also outside the scope
of our analysis.

The paper is organized as follows. In the next section, we introduce the model. In
Section 3, we provide the main results on the consumption, wealth, and welfare of
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rational and irrational investors, in the context of a simple textbook style example.
In Section 4, we discuss robustness under variations and generalizations of the base
model. Finally, in Section 5, we make some concluding remarks. Details and proofs
are left to the Appendix.

2. Model

We closely follow the complete market approach developed in Blume and Easley
(1992, 2006) and Sandroni (2000, 2005) and further adjusted to an asset pricing
context in Kogan et al. (2006, 2011) and Yan (2008) in our analysis. The key re-
lationship that determines the dynamics of a Walrasian exchange economy equi-
librium with two agents and intermediate consumption is3

u 0
1ðc1;tÞ

u 0
2

�
c2;t

� ¼ kt: ð1Þ

Equation (1) states that the ratios of the two agents’ marginal utilities of consump-
tion in equilibrium is proportional to the ratio of their probability measures (rep-
resented by the stochastic weight kt), at all points in time and in each state of the
world. We use this equilibrium relationship and introduce a general risk structure
that can be calibrated to standard multi-asset economies.

2.1 THE ECONOMY

We assume a filtered probability space ðX;F ;F t;PÞ, 0 � t� T, and N-dimensional
F t-adapted standard Brownian motions Bt¼ (B1,t, . . ., BN,t)

0 (where 0 denotes trans-
pose) satisfying the usual assumptions. Here, T could be finite or infinite, although
we mainly focus on the infinite horizon case. We use the notation a ¼ [ai]i to
‘‘build’’ vectors from scalars and ai¼ (a)i to extract scalars from vectors. Similarly,
we define the matrix A ¼ [aij]ij and the scalars aij ¼ (A)ij.

There is an N-dimensional state vector, xt 2 RN , which evolves according to

dxt ¼ g dt þ sx dBt: ð2Þ

Here, g 2 RN and sx 2 RN�N are (smooth) functions of xt and t, so that xt is
a general diffusion process. We sometimes suppress the time dependence of var-
iables when this can be done without causing confusion, for example, writing x
instead of xt. The variance–covariance matrix of x is R ¼ sxs

0
x. We assume that

R is invertible at all points in time. There is a dynamically complete competitive

3 See Equation (6) in Kogan et al. (2011).
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market of contingent claims such that claims on each realization of x are traded,
that is, Arrow–Debreu securities exist for each state of the world.

The first M elements (where 1 � M � N) of the state vector are associated with
firms that produce consumption goods. The latter M � N elements are associated
with claims on zero net supply assets. The latter elements could, for example,
represent not only derivative markets on unspanned risk but also other claims
on idiosyncratic risk, for example, insurance contracts. Specifically, firm i instan-
taneously produces Di,tdt of a perishable consumption good, where

Di;t ¼ Di;0 exi;t ; Di;0 > 0; ð3Þ

and where xi,t ¼ (xt)i is the ith element of the vector x at time t. We define D ¼
(D1,0, D2,0, . . ., DN,0)0, where DMþ1,0, . . ., DN,0 ¼ 0. The aggregate consumption is
given by

Ct ¼
XM
i¼1

Di;t: ð4Þ

Our results do not depend on the type of securities used to implement the com-
plete market. A standard implementation, however, is to assume that there are
N securities, where security i represents a claim to the consumption stream exi;t

and where the net supply of asset i is Di,0 for 1 � i � M and 0 for M þ 1 �
i � N, and that there is also a risk-free bond available in zero net supply.4

The setup is very general and contains several interesting subcases. If M¼ N and
g and sx are constants, then the economy corresponds to a standard N-tree Lucas
economy (see Cochrane, Longstaff, and Santa-Clara 2008; Martin, 2011; Parlour,
Stanton, and Walden, 2011).5 Also, the models in Anderson and Raimondo (2008),
Santos and Veronesi (2006), Campbell and Cochrane (1999), and Bansal and
Yaron (2004) fall within this setting, with M ¼ N. The case when M ¼ 1, that
is, when there is one stock in positive net supply and many zero net supply claims,
covers the models in Dumas, Kurshev, and Uppal (2009) (with N¼ 2) and Buraschi
and Jiltsov (2006).6 Further generalizations are also possible. For example, it is
neither crucial that aggregate consumption is of the form of Equation (4) nor that

4 Sufficient conditions that ensure that such assets dynamically span all state realizations are given in
Anderson and Raimondo (2008), see also Hugonnier, Malamud, and Trubowitz. (2009).
5 Though commonly referred to as a ‘‘Lucas’’ model, the first-order conditions for this economy and
associated stochastic discount factor, qU 0ðCtþ1Þ

U 0ðCtÞ , were first derived by Rubinstein (1976) and later used
by Lucas (1978).
6 Another alternative is to have only zero net supply securities as the traded assets as in Duffie and
Huang (1985), Huang (1987), Duffie and Zame (1989), and Karatzas, Lehoczky, and Shreve. (1990).
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the underlying process x is a diffusion process. For notational simplicity, we stick
with the—already very general—setup.

Intuitively, it may be easiest to think of the situation when M ¼ N in which case
each risky asset represents a stock, that is, the claim on the dividend process of
a firm. Following this intuition, we will use the terminology N-stock or N-asset
economy going forward. The important assumption needed for this analogy to
be valid is that each stock contains idiosyncratic risk, so that a higher N corresponds
to a higher dimensionality of traded risk in the economy.

2.2 AGENTS

There are two price-taking investors, k 2 1; 2gf . Investor 1 is a rational von Neu-
mann–Morgenstern expected utility optimizer, who has a complete understanding
of parameters and dynamics in the economy. It has been repeatedly documented
that many investors deviate from the rational expected utility framework. Broadly
speaking, there are two types of deviations (see Barberis and Thaler, 2003). First,
investor behavior is not consistent with agents having a (subjective) expected utility
function. Second, investors do not update their beliefs in consistence with Bayes�
rule. We will follow Yan (2008) (see also Kogan et al., 2006, 2009; Cvitanic and
Malamud, 2011; Chen et al., 2011) and make a parsimonious assumption in line
with the second type of deviation. Specifically, we assume that investor 2 mistakes
the drift term for g2 ¼ ðg2

1; . . . ; g
2
NÞ ¼ gþ d, d 6¼ 0. We call d the irrational invest-

or’s sentiment vector.
We motivate the irrationality of Agent 2 as a strong form of overconfidence (see

Kahneman, Slovic, and Tversky, 1982). We could imagine a situation where Agent
2 at some point received a noisy signal about the true real growth rates of the firms
in the economy and, because of overconfidence, trusted the signal to be infinitely
precise. The signal was on average correct, but also contained an idiosyncratic
random component for each firm. The idiosyncratic component could, for example,
arise because the irrational agent wrongly believed that the age, accent, or fashion
tastes of the CEO, the physical location of company headquarters, the sound of the
company name, and so on were important for the future prospects of the firm.

Agent 1 may also have received such a noisy signal but correctly taken into ac-
count the signal’s noisiness and arrived at a correct estimate by filtering out the id-
iosyncratic component or by incorporating other information. Investor 2 on the other
hand, being strongly overconfident about the signal, does not update his belief.

This strong overconfidence assumption is obviously quite extreme but can be
generalized in several more realistic directions, with similar results. For example,
in Section 4.3, we extend the model to a Bayesian setting in which both investors
face uncertainty about structural parameters in the economy. In this setting, the
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rational investor is also initially mistaken about parameters. However, the rational
investor learns about the parameters over time. In contrast, the irrational investor at
some point—because of overconfidence—decides that he has learned everything
that needs to be learned.

In Section 4.4, we extend the model to explicitly take overconfidence into ac-
count, along the lines of Scheinkman and Xiong (2003) and Dumas, Kurshev, and
Uppal (2009). In this setting, the growth rates of firms in the economy are time
varying and unobservable to both agents. The irrational agent receives an uninfor-
mative idiosyncratic signal about the growth rate of each firm and chooses to trust
the signal—again because of overconfidence.

As we shall see, the results for both these extensions are very similar to what we
get in the base model in which the sentiment vector is constant over time. The
intuition behind the results is easier to communicate under the assumptions of
the base model however, and it leads to closed-form characterizations of several
quantitative measures. We therefore mainly use the base model but show robust-
ness to these (and several other) extensions in Section 4.

We further assume that investors k 2 1; 2gf have initial wealth Wk and Constant
Relative Risk Aversion (CRRA) preferences with time discount factors qk and com-
mon relative risk aversion parameter c. For expositional reasons, we mainly focus
on the case when c 6¼ 1, although our results also hold under logarithmic utility. In
Section 4.1, we generalize to agent-specific risk aversion coefficients. Thus, inves-
tor k optimizes

Uk ¼ Ek

"ðT
0

e�qk t
c1�c
k;t

1 � c
dt

#
; ð5Þ

subject to his budget constraint, where ck,t is the instantaneous consumption at t of
investor k. Here, since the two investors have different expectations, the k subscript
of the expectation operator is motivated. The total initial wealth is W ¼W1 þW2.7

The economic environment can be summarized by the quadruplet E ¼ (d, g, R, D),
whereas the agents’ preferences are summarized by the triplet (c, q1, q2).

2.3 MEASURING WELFARE

The welfare measure we use is based on an expected ex post measure [see Harris
(1978), Starr (1973), and also Hammond (1981)]. In our setting, this implies that

7 A potential extension would be to endow the two agents with idiosyncratic endowment shocks,
providing a motive for zero-net supply ‘‘insurance’’ assets (i.e., for N �M > 0).
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welfare is derived from the objective expected utilities, that is, from the objective
expectations of realized utility of consumption by the two agents,8 as opposed to an
ex ante measure that would be based on agents’ subjective probabilities. Thus, al-
though Agent 2 at t ¼ 0 may believe that he is going to be very well off, the
expected ex post utility he gets from consumption may be very low, with large
resulting welfare costs.

The expected realized utilities of consumption of the two agents are calculated
using objective probabilities, that is, using the rational agent’s probability estimates:

UOBJ
k ¼ E1

"ðT
0

e�qk t
c1�c
k;t

1 � c
dt

#
: ð6Þ

We call UOBJ
1 and UOBJ

2 the objective expected utilities of the rational and irrational
agents, respectively. The objective expected utility of the rational agent coincides
with his ‘‘personal’’ expected utility. For the irrational agent, however, the personal
and objective expected utilities differ because of his incorrect beliefs.

Measuring welfare under heterogeneous beliefs is of course not trivial, but within our
model, the ex post approach is well motivated. One critique against the ex post measure
(see, e.g., the discussion in Fleurbaey, 2010) is that, as a practical matter, choosing
objective probabilities is not trivial. However, as we shall see, within our setting a social
planner would be able to strongly reject the irrational investor’s incorrect probability
estimates. So, within the assumptions of our model, this would not be an issue.

A second critique against policies that are based on ex post welfare measures is
that such policies, if they restrict the actions of agents, could be viewed as pater-
nalistic and that being constrained may in itself dampen the well-being of agents in
the economy (see, e.g., Harris and Olewiler, 1979; Fleurbaey, 2010). This may
indeed suggest that policies that make Agent 2 better informed, so that he can him-
self correct his mistakes, are superior to policies that restrict his ability to trade
based on his own incorrect beliefs (see also our discussion in Section 3.3). The
argument does not mitigate the role of the ex post measure of welfare in our model,
though. In fact, we shall see that the welfare costs in our setting may be so drastic as
to be comparable with the analogue of ‘‘drinking a fatal poison in the mistaken
belief that it was water,’’ made in Hausman and McPherson (1994). The interpre-
tation that the ex post welfare criterion measures the potential gains from making
Agent 2 better informed—in line with the arguments for the ex post measure made
in Nakata (2009) and Fleurbaey (2010)—is therefore well suited for our setting.

Finally, a third discussion, that is unrelated to our analysis, focuses on the merits
of ex post versus ex ante welfare measures in allowing for inequality aversion, see,

8 Within our exchange economy setting, expected ex post efficiency also implies so-called universal
ex post efficiency, see Starr (1973) and Harris (1978).
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for example, Diamond (1967), Hammond (1981), and Epstein and Segal (1992).
Specifically, the classical (ex ante) social welfare measure introduced in Harsanyi
(1955) does not allow a social planner to have a preference for ‘‘equal opportunity,’’
(e.g., by randomizing who gets to be rich and who gets to be poor in an economy),
and ex post measures, and other extensions, have been suggested to allow for such
inequality aversion. The power and weaknesses of ex post welfare measures in
allowing for inequality aversion are unrelated to our paper.

2.4 EQUILIBRIUM

It follows immediately that the perceived shocks to the state variable x by agent
k ¼ 1, 2 are

dxt � gkt dt ¼ sx dBk
t ; ð7Þ

where Bk
t is a standard N-dimensional Brownian motion under agent k’s probability

measure. The relation between B1
t ¼ Bt and B2

t is

dB2
t ¼ dBt � Dt dt; ð8Þ

where D ¼ s�1
x d.

To solve for the Walrasian complete market equilibrium, we construct the social
planner’s problem with a representative agent (see Constantinidis, 1982; Dumas,
1989; Cuoco and He, 1994; Detemple and Murthy, 1994b; Wang, 1996; Basak,
2000; Gallmeyer and Hollifield, 2008) state by state and time by time from

uðCt; kt; tÞ ¼ max
c1;t ;c2;t

�
e�q1t

c1�c
1;t

1 � c
þ kt e�q2t

c1�c
2;t

1 � c

)
;

s:t:
c1;t þ c2;t ¼ Ct:

ð9Þ

Here, kt ¼ kexpð�1
2

Ð t
0D

0
sDs dsþ

Ð t
0D

0
s dBsÞ is proportional to the Radon–Nikodym

derivative of the irrational agent’s probability measure with respect to the rational
agent’s probability measure. It therefore measures how strongly the two agents
disagree about the likelihood of events.9

Our objective is to study the consumption and wealth dynamics of the two
agents. We therefore make the following definitions:

9 Formally, kt ¼ k 0gt , where gt is the Radon–Nikodym derivative of the irrational agent’s proba-
bility measure with respect to the rational agent’s probability measure, and k0 2 Rþ determines Agent
2’s weight in the social planner’s representative agent problem.
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Definition 1.
1. The consumption share (of Agent 1) is ft ¼def c1;t

Ct
.

2. The wealth share (of Agent 1) is fW ;t ¼
def W1;t

Wt
.

3. The log-consumption ratio is ht ¼
def

log½c1;t

c2;t
� ¼ log½ ft

1�ft
�:

4. The log-wealth ratio is hW ;t ¼
def

log½W1;t

W2;t
� ¼ log½ fW ;t

1�fW ;t
�.

We note that the consumption share is obtained by a simple transformation of the
log-consumption ratio, ft ¼ eht

1þeht . We will also work with the random stopping time

sf ¼ inf
t

�
t : ft � f

�
; ð10Þ

that is, sf defines the first point in time at which the consumption share of Agent 1
reaches f.

The following standard proposition, which follows directly from the agents’
Euler conditions, summarizes the dynamics of consumption, wealth, and the sto-
chastic discount factor in the complete market Walrasian equilibrium.

Proposition 1. Agent 1’s consumption share at time t is

ft ¼
1

1 þ eðq1�q2Þt=ck
1
c
t

; ð11Þ

which determines the agents’ consumption:

c1;t ¼ ftCt;
c2;t ¼ ð1 � ftÞCt:

ð12Þ

The stochastic discount factor at time t under the objective probability measure is

nt ¼
def

e�q1t

�
c1;t

c1;0

��c

¼ e�q1t

�
ft
f0

��c�Ct

C0

��c

; ð13Þ

which determines the agents’ wealth:

W1;t ¼ Et

hÐ T
t
ns
nt
c1;s ds

i
¼ Et

hÐ T
t
ns
nt
fsCs ds

i
;

W2;t ¼ Et

hÐ T
t
ns
nt
c2;s ds

i
¼ Et

hÐ T
t
ns
nt
ð1 � fsÞCs ds

i
:

ð14Þ
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We see that the consumption share, ft, together with the aggregate consumption, Ct,
completely determine the dynamics of the economy.

3. Results

We study the dynamics of consumption and wealth of the two agents in equilibrium.
The following proposition provides the key result for our analysis.

Proposition 2. Define the instantaneous transfer index

K ¼ d0R�1d: ð15Þ

Here, d 2 RN is the irrational agent’s sentiment vector and R is the instantaneous
variance–covariance matrix of x. Then, the instantaneous dynamics of the log-
consumption ratio, ht, is

dht ¼
�

1

2c
K þ q2 � q1

c

�
dt þ 1

c

ffiffiffiffi
K

p
d~Bt; ð16Þ

where ~B is a standardized Brownian motion.

Proposition 2 is valid under the most general assumptions of our model, with
time- and state-dependent diffusion coefficients in which case K will also be time
and state dependent. The transfer index is related to the survival index (see Blume
and Easley, 2006; Yan, 2008), but it is preference independent, that is, it only
depends on the economic environment. As we shall see, in multi-asset markets,
the transfer index typically dominates preferences in determining if and how market
selection takes place, that is, a large K typically implies a significant consumption
and wealth transfer from Agent 2 to Agent 1.

From Equation (16), it follows that E½dht� ¼ ð 1
2cK þ q2�q1

c Þdt, which, if K is con-
stant, immediately implies that

E½ht � h0� ¼
�

1

2c
K þ q2 � q1

c

�
t: ð17Þ

Therefore, if q2 ¼ q1, since Equation (15) implies that K > 0 (as the covariance
matrix, R, is positive definite), the log-consumption ratio is expected to increase at
each point in time. More generally, if the agents have different time preference
parameters, the log-consumption ratio is expected to increase if K > 2(q1 � q2).

If q1 ¼ q2, it is straightforward to show that the consumption share is also

expected to increase: Et½dft� ¼ eht ðcþ1þeht ðc�1ÞÞ
2ð1þeht Þ3c2

K dt: Thus, regardless of the senti-

ment of the irrational investor, he is expected to underperform (in consumption
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growth terms) the rational investor at each point in time and the larger the transfer
index is, the more severe the underperformance.

To quantify the underperformance of the irrational investor, we focus on the case
when model parameters are constant, so that K is constant. In this case, we get
closed-form expressions for most variables of interest.10 We study the expected
stopping time, E[sf], that is, the time it is expected to take for the rational investor
to reach a consumption share of f. We have the following proposition.

Proposition 3. Assume that the irrational agent’s sentiment, d, and the covariance
matrix, R, are constants and that the rational agent’s (Agent 1’s) initial consumption
share is f0. The expected time for the rational agent to reach the consumption share f,
where f > f0, is

Eðsf Þ ¼ 2cm
K þ 2ðq2 � q1Þ

; ð18Þ

and the variance is

Varðsf Þ ¼ 8cKm

ðK þ 2ðq2 � q1ÞÞ3
; ð19Þ

where m ¼ logð f
1�f Þ � logð f0

1�f0
Þ.

We note that if K is large, any difference in the investors’ discount factors will be
swamped by K. We will show that K is indeed large, so going forward, we simply
assume that the investors’ discount factors are the same, q1 ¼ q2.

3.1 AN EXAMPLE

We calibrate the model to an example. We consider a textbook style economy in
which all risky assets are affected by a market-wide shock and also by independent
idiosyncratic shocks. Specifically, we assume that [g]i ¼ g, i ¼ 1, . . ., N, and that

10 The theory of differential inequalities can be used to derive theoretical bounds on the underper-
formance when coefficients are state and/or time dependent, although the analysis becomes more
complex. Intuitively, a lower bound on the transfer index leads to a lower bound on the underper-
formance through Equation (16) in this case.
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[R]i,i ¼ 2kNs
2, i ¼ 1, . . ., N, [R]i,j6¼i ¼ kNs

2, i, j ¼ 1, . . ., N, where kN ¼ N
Nþ1 is

a scaling factor introduced to make the total risk independent of N (without it, the
aggregate consumption volatility would be higher for small N since the benefit of
diversification is lower for small N).11 For the time being, we allow M to be any
number between 1 and N. The economy thus has one systematic risk factor and, for
largeN, one half of the risk is idiosyncratic, whereas the other half is systematic. We
note that giffiffiffiffiffiffiffiffiffi

2kNs2
p ;

gffiffi
2

p
s

for large N, so the growth normalized by uncertainty for each

stock is basically independent of the number of stocks in the economy. A similar
argument will hold for the sentiment, di, normalized by uncertainty in each stock.

We will discuss several generalizations of this base example. For example, it
follows from the discussion in Section 4.7 that the results continue to hold with
random factor loadings and with multiple risk factors.

We choose a growth rate of g¼ 0.02, in line with standard practice, and a growth
volatility of s ¼ 0.03218, as found in Campbell (2003). From Equations (16) and
(18), we see that a high risk aversion coefficient will lead to a lower degree of
underperformance by the irrational investor. We therefore choose a somewhat high
risk aversion coefficient, c ¼ 6, to show that our results are robust. We use the
common personal discount rate, q1 ¼ q2 ¼ 1%. Finally, we assume that the irra-
tional investor is slightly bullish about the first half of the stocks, [d]i ¼ q� g, i¼ 1,
. . ., N/2, and slightly bearish about the other half, [d]i¼�q� g, i¼ N/2 þ 1, . . ., N,
where we for simplicity assume that N is even. We assume that q ¼ 0.2. Thus, the
irrational investor overestimates the real dividend growth rate by 20% for half of the
stocks (believing that it is 0.024) and underestimates it by the same amount for
the other half (believing that it is 0.016). Although not necessary, it is natural to think
of the case when M¼ N, and the N risky assets represent the real growth processes of
N firms.

It follows immediately from Equation (15) that the transfer index in this economy
is

K ¼ g2

s2
q2ðN þ 1Þ; N even: ð20Þ

We see that K is increasing in the real growth rate and decreasing in the real growth
volatility. Moreover, not surprisingly, it is increasing in the irrational investor’s
sentiment. What is crucial for our analysis, however, is that K is increasing in
N. Thus, all else equal, the more risky assets there are in the economy, the more
severe is the underperformance of the irrational investor. The intuition behind this

11 We note that s is a scalar that will be used in this and other symmetric examples to define the
uncertainty of each risk, whereas the sx matrix defines the variance–covariance matrix in the general
model via the relation R ¼ sxs

0
x.
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result is that it is difficult for the rational investor to take advantage of the irrational
one in a market with a restricted state space. For example, when there is only one
stock, the only difference between the rational and irrational investors’ portfolios is
the amount they invest in the market, which does not allow much separation. When
there are many stocks, more portfolio separation is possible, the rational investor
can better take advantage of the irrational one, and the irrational investors’ under-
performance therefore becomes more severe.

Equation (20) holds for even N. It is easy to check that for odd N, the formula
becomes

K ¼ g2

s2
q2

�
N þ 1 � 1

N

�
; N odd: ð21Þ

Therefore, K triples when the number of stocks increases from one to two. This
drastic increase in the transfer index occurs because with two stocks, the irrational
agent will push down the price of the stock he is pessimistic about. Similarly, he
will push the price of the other stock up. The rational agent can then take on a rel-
atively large position in the stock with the deflated price, financed with a relatively
smaller position in the stock with an inflated price. This, in turn, leads to a higher
Sharpe ratio for the rational agent than for the irrational agent. In contrast, when
there is only one stock, differences in the two agent’s portfolio holdings are
financed by different holdings of the risk-free asset and the agents therefore
hold portfolios with the same Sharpe ratio, leading to less underperformance
by the irrational agent. Thus, the representative firm setting (i.e., the setting with
N ¼ 1) severely limits the underperformance by the irrational agent, and even with
a modest number of assets, his underperformance may be much more severe. Such
a situation could, for example, arise if the irrational agent invests in a small number
of mutual funds.

In Figure 1, we show the expected time to reach different consumption shares for
N ¼ 1, 10, 50, and 100 stocks, when the rational and irrational investors have the
same initial consumption share (f0 ¼ 1/2). We see that the difference between the
representative firm (N ¼ 1) and the multi-firm (N � 1) settings is indeed drastic.
With one stock, it is expected to take 1,706 years for the rational investor’s con-
sumption share to reach 90%, whereas it takes 569 years with 2 stocks, 17 years
with 100 stocks, and only 3.4 years with 500 stocks. With N ¼ 100, the consump-
tion share of the irrational agent is expected to be 3.7% after 25 years, so in this
case the irrational agent is expected to lose (0.5 � 0.037)/0.5 ¼ 93% of his initial
consumption share of 50% to the rational agent.

The distribution of sf is thin-tailed, so the time it takes to reach f will, with high
probability, be close to E[sf]. In fact, as shown in the proof of Proposition 3, sf
has the first passage time distribution of a Brownian motion with drift K

2c and
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variance K
c2 per unit time, with a probability density function that decreases faster

than that of a normal distribution for any fixed f. In Figure 2, we show the distri-
bution of the time it takes to reach f ¼ 90%, with f0 ¼ 0.5, for N ¼ 1, N ¼ 10,
N¼ 50, and N¼ 100 stocks. For example, for N¼ 100, in which case the expected
time is 17 years, the probability that it takes more than twice the expected time
(34 years) is negligible. The expected log-consumption ratio of the rational
agent after 25 years with 100 stocks, from Equations (17) and (20) is
E½h25� ¼ 0:022

0:032182 � 0:22 � 101 � 25
2�6 ¼ 3:25.

As mentioned, the large number of stocks allows the two agents to invest in
portfolios with very different Sharpe ratios. This provides another metric for mea-
suring the irrational investor’s underperformance. In our example with N ¼ 100
stocks, the Sharpe ratio of the rational investor at t ¼ 0 is 0.65, whereas the irra-
tional investor’s Sharpe ratio at t ¼ 0 is �0.62. Since individual investors’ Sharpe
ratios are not observable in the market, it is unclear whether these numbers are
realistic. The (observable) Sharpe ratio of the market portfolio is 0.43, so the
rational agent’s Sharpe ratio is thus about 50% higher than the market’s Sharpe
ratio, whereas the irrational agent’s Sharpe ratio is substantially lower.

The severe underperformance by the irrational investor is driven by the transfer
index, K. In this example, we assumed that the personal discount rates of the two
agents were the same. If the rational agent has a higher discount rate than the

Figure 1. Expected time in years, E½sf �, for the rational investor to reach the consumption share, f, for
N ¼ 1, N ¼ 10, N ¼ 50, and N ¼ 100, when the irrational investor’s sentiment is q ¼ 20% and
the initial consumption shares are the same.
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irrational agent, the irrational agent’s underperformance will decrease since the ra-
tional agent consumes at a higher rate. However, from Equation (18) it follows that
the differences in discount rates have to be very large to offset the underperformance
generated by the transfer index. For example, in the previous example with N¼ 100,
the rational agent’s discount rate has to be 39% per year to increase the expected time
for the rational agent to reach a 90% consumption share by a factor of two, from 17 to
34 years.

We also note that the stopping time statistic may not provide the complete story
about the underperformance of the irrational investor. For example, if the consump-
tion share dynamics are ‘‘wild’’ (very volatile), it could well be that the expected
time for the rational investor to reach a specific consumption share is short but so is
the time for the irrational investor to reach the same consumption share. It turns out
that such issues are not present in our model and that the first passage time provides
a good summary statistic of the underperformance of the irrational investor. One
way of seeing this is to compare the first passage distributions of the rational and
irrational agents. Obviously, the first time the irrational agent reaches the consump-
tion share f is the first time the rational agent reaches 1 � f, so we can express the
relationship using only the rational agent’s stopping times. From the expressions
for the stopping time distribution, it is straightforward to derive the following re-
lationship when the two agents start with the same consumption share, f0 ¼ 1/2,

pdf ðs1�f Þ ¼ Zf � pdf ðsf Þ; where Z ¼
�

1 � f

f

�c

: ð22Þ

Figure 2. Probability distribution of the time it takes for rational investors to reach 90% of the con-
sumption share for N ¼ 1, N ¼ 10, N ¼ 50, and N ¼ 100, when the irrational investor’s senti-
ment is q ¼ 20% and the initial consumption shares are the same.
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Thus, the distribution of the first time the irrational agent reaches the consumption
share f > 1

2 is a constant times the distribution of the time it takes for the rational
agent to reach f, where interestingly the constant only depends on the agents’ risk
aversion coefficient but not on real variables (l and s).12

Since Zf < 1, the total probability mass of the irrational agent is less than 1,
reflecting the fact that there is a chance that he will never reach a consumption
share of f; the expected time to reach f for the irrational agent is therefore infinite.
Now, not only is Zf < 1 but also it is typically a very small number. In the example
we have studied so far, Z90% ¼ 1.88 � 10�6, so the chance that the irrational agent
will ever reach a consumption share of 90% is negligible. In fact, the chance that he
will ever reach f ¼ 60% is only Z60% ¼ 0.088. Thus, we conclude that the con-
sumption share dynamics are not ‘‘wild,’’ and the rational agent’s stopping time
provides a good representation of his overperformance. To summarize, in con-
sumption terms, the irrational agent is severely punished in the multi-asset econ-
omy. We next study the effects on wealth and welfare.

3.2 WEALTH AND WELFARE

It can be shown that the dynamics of the wealth share, fW,t, are very similar to those
of the consumption share, ft. For some special cases, we have closed-form solu-
tions, and for other cases we verify numerically that the dynamics of the consump-
tion share and the wealth share are very similar. For simplicity, we restrict ourselves
to the case when the agents have the same personal discount rates (q1 ¼ q2) and the
relative risk aversion coefficient is an integer; generalizations are straightforward.13

There are two special cases in which closed-form solutions for the wealth share
are obtainable. First, when the investors have log-utility, c ¼ 1, it immediately
follows that the dynamics of the consumption and wealth shares are identical since
both investors consume constant fractions of their wealth at all times.

Proposition 4. When the investors have logarithmic utility, c ¼ 1, ft [ fW,t for all t,
and the results for the consumption share therefore also hold for the wealth share.

Second, for general c, in the case when aggregate consumption follows a constant
coefficient geometric Brownian motion (e.g., when M ¼ 1 in the model in the pre-
vious section) we have the following proposition.

12 In the case where the initial consumption share f0 6¼ 1
2, similar results arise although the

expression is slightly less clean. We have pdfðsf̂Þ ¼ Zf � pdfðsf Þ, where Z ¼ ðf0=ð1�f0Þ
f =ð1�f Þ Þ

c,bf ¼ ð1 � f Þ=ð1 þ ððð1 � f0Þ=f0Þ2 � 1Þf Þ, and the relationship bf < f0 < f holds.
13 The proof in the Appendix covers the case with different personal discount rates and follows the
approach in Yan (2008) extended to a multi-asset case. The approach in Bhamra and Uppal (2009) can
be used to further extend the results to noninteger c’s.
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Proposition 5. When M ¼ 1, c is a positive integer, and g and R are constants, then
the wealth dynamics of Agents 1 and 2 are

W1;t ¼ Ct�
1 þ k

1
c
t

�c

Xc�1

k ¼0

	 c� 1
k



k

k
c
t

1

ak

	
1 � e�akðT�tÞ



ð23Þ

W2;t ¼ Ct�
1 þ k

1
c
t

�c

Xc�1

k ¼0

	 c� 1
k



k

kþ 1
c

t
1

ak þ 1

	
1 � e�akþ 1ðT�tÞ



; ð24Þ

where ak ¼ qþ k
2cð1 � k

cÞD
0Dþ ðc� 1Þðg1 þ 1�c

2 s0x1
sx1 þ k

cs
0
x1
DÞ and where we

have defined the vector sx1 ¼ ððsxÞ11; . . . ; ðsxÞ1N Þ
0, that is, sx1 is the transpose

of the first row of sx.

It is straightforward to use Proposition 5 to see that when M ¼ 1, the wealth and
consumption shares are similar and that the severe underperformance of the ir-
rational investor in terms of consumption therefore carries over to wealth. For
example, in Figure 3, the wealth fraction divided by the consumption fraction,
Z ¼ W1=W2

c1=c2
, is shown as a function of the consumption fraction, for N ¼ 1, 10,

50, 100 assets and M ¼ 1. The fraction is close to one, and it is greater than one
when c1 > c2, implying that W1

W2
> c1

c2
when c1 > c2. The dynamics of the wealth share

is therefore very similar to that of the consumption share in this case, and since c1

will quickly become larger than c2 when N is large, the wealth share of the rational
agent is typically even higher than the consumption share. We have also verified,
using simulations, that the dynamics of the consumption share and wealth share
when M ¼ N (i.e., for the N-tree Lucas economy) are almost identical to the case
when M¼ 1. The results are reported in the Appendix. Continuing with the example
of the previous section, with N¼ 100 trees, the wealth share of the irrational agent is
expected to be 3.24% after 25 years, that is, it is even lower than the expected
consumption share, which is 3.7%. The irrational agent is therefore expected to
lose (0.5 � 0.0324)/0.5 ¼ 93.5% of his wealth in 25 years.

It is a priori unclear whether the underperformance of the irrational investor is
associated with large welfare costs. In fact, since we are studying an exchange
economy, the actions of the irrational investor do not influence total output, so
one might suspect that the main effect of the underperformance is a transfer from
the irrational to the rational investor with no welfare effects. This intuition is
incorrect, and the welfare costs of Agent 2’s irrationality may actually be high.
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The reason is that he consumes in the wrong states of the world and at the wrong
points in time. Especially, he tends to consume too early compared with what is
objectively optimal.

In analyzing the welfare costs of Agent 2’s irrationality, we use the objective
expected utilities, as motivated in Section 2.3, that is, the expected realized utility
of consumption of the two agents. We compare the objective expected utilities of
Agents 1 and 2 with the expected utilities they could realize in an economy with the
same aggregate consumption process and utility weights but with Pareto efficient
consumption allocations in all states. We focus on the case when T<N and c> 1.14

Formally, we define the utility weight, y ¼ UOBJ
1

UOBJ
2

. A Pareto efficient allocation

with the same utility weights would be achieved by allowing Agent 1 to consume

fCt in all states of the world at all times, where f ¼ y
1

1�c

1þy
1

1�c
: Agent 2 would then

consume (1 � f)Ct. We define the expected utility of a rational representative
investor,

Figure 3. Wealth fraction divided by consumption fraction, Z ¼ W1=W2

c1=c2
, as a function of consump-

tion fraction, for N ¼ 1; 10; 50; 100, and M ¼ 1. Z is close to one, implying that the wealth fraction
is very similar to the consumption fraction. Parameters: q ¼ 20%, s ¼ 0:0328, g ¼ 0:02,
q1 ¼ q2 ¼ 1%, c ¼ 6, T ¼ N.

14 If T ¼ N, the objective utility of the irrational agent may not even be defined since it may be
negative infinity. The analysis of the case when c ¼ 1 is straightforward, although the formulas differ.
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bUOBJ ¼ E1

"ðT
0

e�qtC
1�c
t

1 � c
dt

#
: ð25Þ

The expected utilities of the two agents with this Pareto efficient allocation would then

be bUOBJ

1 ¼ f1�c bUOBJ
and bUOBJ

2 ¼ ð1 � fÞ1�c bUOBJ
. Therefore, the relative expected

utility improvements of the two agents, under the efficient allocation, would have the
same utility weights,

f1�c
bUOBJ

UOBJ
1

¼ y	
1 þ y

1
1�c


1�c

bUOBJ

yUOBJ
2

¼ 1	
1 þ y

1
1�c


1�c

bUOBJ

UOBJ
2

¼ ð1 � fÞ1�c
bUOBJ

UOBJ
2

:

It follows almost immediately that the welfare cost of Agent 2’s irrationality is

h ¼ 1 � f�1

�
UOBJ

1bUOBJ

� 1
1�c

.15 That is, given that the two agents have wealth W1 and

W2 respectively in the original economy and objective expected utilities UOBJ
1

and UOBJ
2 , the objective expected utilities they would realize in the Pareto efficient

implementation correspond to what they would realize with wealth 1
1�hW1 and 1

1�hW2

in the original economy. We rewrite and summarize this in the following proposition.

Proposition 6. Given that the objective expected utilities of Agents 1 and 2 are UOBJ
1

and UOBJ
2 and that the objective expected utility of a representative agent is bUOBJ

, the
welfare cost of Agent 2’s irrationality is

h ¼ 1 � jUOBJ
1 j

1
1�c þ jUOBJ

2 j
1

1�c�� bUOBJ�� 1
1�c

: ð26Þ

For special cases, we have closed-form solutions for the welfare cost, just as was the
case for the wealth dynamics.

Proposition 7. When M ¼ 1, and g and R are constants, the relative welfare cost in
an economy with horizon T is

h ¼ 1�

�Pc�1
k¼0

�
c� 1
k

�
k

k
c

0

	
1�e�ak T

ak


� 1
1�c

þ
�Pc�1

k ¼0

�
c� 1
k

�
k
k þ 1�c

c

0

	
1�e�ak þ 1�cT

ak þ 1�c


� 1
1�c

	
1
s0
ð1 � e�a0T Þ


 1
1�c

: ð27Þ

15 Since expected utility is homogeneous of degree 1 � c in wealth for both agents, the corresponding

relative wealth increase for both agents under a proportional sharing rule is b ¼ fðbUOBJ

UOBJ
1

Þ
1

1�c: The rel-

ative welfare of the economy with irrationality is therefore a fraction 1
b of the optimal economy, so the

welfare cost is 1 � 1
b, which takes the given form.
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Here, ak ¼ qþ k
2cð1 � k

cÞD
0Dþ ðc� 1Þðg1 þ 1�c

2 s0x1
sx1

þ k
cs

0
x1
DÞ, sx1

¼
ððsxÞ11; . . . ; ðsxÞ1N ÞÞ

0, and k0 is the social planner’s weight coefficient, defined
in Section 2.

In Figure 4, we show the welfare cost of Agent 2’s irrationality for economies with
N ¼ 1, 10, 50, 100 risky assets and M ¼ 1, as a function of the horizon of the
economy, T, given that the two agents have the same initial wealth, W1,0 ¼ W2,0.
It can indeed be high. For example, for the economy with N ¼ 100 risky assets
and a 25-year investment horizon, the welfare cost is about 40% of the total wealth
in the economy. For N ¼ 50, it is even higher in longer horizons, about 43%.16

Interestingly, the welfare cost is neither monotone in the number of risky assets,
N, nor in the time horizon, T: a higher N may lead to a lower welfare cost, given T,
as may a longer horizon, given N. The intuition is as follows. The model is cali-
brated such that the initial amount of wealth of the two agents is the same. For a low
N, the underperformance of the irrational agent is not severe and the welfare costs

Figure 4. Welfare costs as a function of time for N ¼ 1, N ¼ 10, N ¼ 50, and N ¼ 100 risky
assets and M ¼ 1. The initial amount of wealth of the two agents is the same, W1;0 ¼ W2;0, in each
calibration. Parameters: q ¼ 20%, s ¼ 0:0328, g ¼ 0:02, q1 ¼ q2 ¼ 1%, c ¼ 6.

16 The closed-form solution is valid when M ¼ 1. We have verified with simulations that the results
are almost identical in the N-tree Lucas economy, that is, in the economy with M ¼ N . The results are
available from the authors upon request.
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are therefore limited. As N grows, the severity of the irrational agent’s mistakes
increases and so do the welfare costs. For very large N, however, the rational agent
very quickly captures the bulk of the consumption and it is therefore not possible to
make him much better off than he already is. Thus, although the irrational agent can
be made drastically better off by smoothing consumption over time and would be
willing to pay almost all his wealth to the rational agent if illuminated about this, the
extra value for the rational agent—in terms of increased consumption—is quite lim-
ited for large N. This, in turn, leads to limitations on the total potential welfare gains.

A similar argument can be made for why, for a fixed high N, the welfare cost may
be nonmonotone as a function of the investment horizon, T: initially h is increasing
in T since the higher T is the easier it is to make Agent 2 better off. For larger T
however, it is not only very easy to make Agent 2 better off, since his expected
realized utility is so low, but also difficult to make Agent 1 much better off, since
even if he consumes the whole of Ct, the consumption increase is so lumped toward
early time periods that his utility does not increase that much. Of course, the larger T
is, the more ‘‘lumped’’ is the consumption increase given to Agent 1. Therefore, the
welfare cost may be decreasing in T for large T.

3.3 POTENTIAL POLICY IMPLICATIONS

As shown, in the exchange economy setting the welfare costs of agent irrationality
can be severe. In a production economy, in which the irrational agents would also
affect output, the costs may be even higher, as may also be the case if the irrational
agents’ actions create systemic risk, potentially leading to economy-wide negative
externalities. Our model is, of course, too stylized to allow for any definite con-
clusions, but it is suggestive about the presence of significant welfare costs and
potential policy responses.

The root of the welfare costs is the suboptimal behavior by the unsophisticated
investors in our model. The most straightforward approach would therefore be to
educate these investors. This approach also avoids the potential critique of an ex
post welfare measure, for example, that constraining agents’ behavior may in itself
dampen their well-being. The importance of financial education has been empha-
sized in the household finance literature; see Campbell (2006). However, Campbell
also stresses that financial education alone may not be enough and that regulation
may also be important. He writes: ‘‘As a financial educator, I am tempted to call for
an expansion of financial education. However, academic finance may have more to
offer by influencing consumer regulation, disclosure rules and the provision of in-
vestment default options . . . .’’

So what is the appropriate regulatory response to the type of irrational be-
havior studied in this paper? One potential policy would be to support delegated

MARKET SELECTION AND WELFARE IN A MULTI-ASSET ECONOMY 1201

 at U
niversity of C

alifornia, B
erkeley on M

ay 9, 2013
http://rof.oxfordjournals.org/

D
ow

nloaded from
 

http://rof.oxfordjournals.org/


management. Another policy would be to restrict the asset span. In our model, it is
the market completeness that allows the irrational agents to invest in severely sub-
optimal portfolios. If the asset span were restricted to include only claims on aggre-
gate consumption, together with a risk-free asset, that is, if the economy would have
N¼ 1 risky assets, the welfare costs would be negligible (see Figure 4).17 Thus, when
irrational agents are present, the neoclassical view that financial innovation allows
efficient risk sharing by completing markets—and thereby is welfare increasing—
may be misleading and a restricted asset span may lead to higher welfare.

In the absence of other sources of agent heterogeneity than differences in the
degree of rationality, only claims on aggregate consumption are needed and a se-
verely restricted asset span is optimal. In practice, additional sources of heteroge-
neity exist, for example, because of agents’ hedging motives for idiosyncratic risk
and heterogeneous preferences. When determining the optimal asset span, a regu-
lator would therefore have to weigh the benefits of risk sharing against the costs of
suboptimal investments, the general rule being that unsophisticated investors may
be restricted from trading in financial instruments on (disaggregated) idiosyncratic
risks that offer no or few hedging benefits. An example of such a policy may be
found in US hedge fund regulations. Only accredited investors, that is, investors
with a minimum net worth of USD 1 million are allowed to invest in hedge funds,
keeping poorer (less sophisticated) investors away from hedge funds’ volatile
returns, dynamic trading strategies, and investments in nontraditional asset classes.

4. Extensions

In this section, we show that our results are robust to several generalizations and
variations.

4.1 DIFFERENT RISK AVERSION COEFFICIENTS

Although the analysis becomes less tractable, the irrational agent also underper-
forms severely when the investors have different risk aversion coefficients, c1

and c2, respectively. For example, it is possible to derive the following bound
on the expected change in the log-consumption ratio, E[ht � h0].

Proposition 8. Given that the agents have risk aversion coefficients c1 and c2 and
personal discount rates q1 and q2, respectively, in the constant coefficient economy

17 In other settings, finding an efficient regulatory policy when irrational agents are present is often
difficult since the agents’ responses to a well-intended regulation may actually lead to a worse out-
come; see Salanie and Treich (2009) for an example.
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E ¼ (d, g, R, D), define �g ¼ maxiðgÞi and g ¼ miniðgÞi. The following inequalities
hold for the expectation of the log-consumption ratio, ht ¼ logðc1t=c2tÞ:

E½ht � h0� � f	 K
2c2

þ q2�q1

c2
þ c2�c1

c2
�g


t þ c2�c1

c2
logð1 þ e�h0Þ; c1 > c2;	

K
2c2

þ q2�q1

c2
þ c2�c1

c2
g


t � c2�c1

c2
logð2Þ � Oðe�qKtÞ; c2 > c1:

ð28Þ

Here z¼O(f(t)) means that, for large t, jzj � af(t), for some positive constant, a. The
term O(e�qKt) thus quickly becomes small as t grows, for large K.

Compared with Equation (17), which is valid when c1 ¼ c2, when c1 > c2 there
are two additional terms in this bound. The first additional term depends on the
maximum growth rate, �g. This term appears because the difference in relative risk
aversions of the two agents provides an additional motive for a transfer of consump-
tion, beyond the heterogeneous probability measures. Specifically, since Agent 1’s
marginal utility decreases at a faster rate than Agent 2’s when c1 > c2, a higher
consumption is worth relatively more for Agent 2 than for Agent 1. Agent 2 is
therefore willing to give up more of today’s consumption for future consumption,
so his current consumption is lower and his future consumption is higher compared
with what they would be if his risk aversion coefficient was c1, that is, his con-
sumption is expected to grow at a higher rate. This offsets the underperformance
that is due to irrationality. The second additional term does not depend on t. In total,
since the transfer index is large for large N, it will dominate the other terms and
the irrational agent severely underperforms also when c1 > c2. A similar argument
holds when c2 > c1. We note that Equation (28) generalizes Equation (18) in Yan
(2008) in that it shows the rate at which market selection occurs and is also valid for
multi-asset economies, N > 1.

Similar to what was shown for personal discount factors, when N is large, it
follows immediately from Equation (28) that the differences in risk aversion need
to be very large to offset the market selection generated by the transfer index. In our
example in Section 3.1, with N ¼ 100, Agent 1 needs a risk aversion coefficient of
c1 ¼ 25.5 to double the expected time it takes for him to reach 90% of the con-
sumption share (from 17 to 34 years), when c2 ¼ 6.

These results cannot be generalized to arbitrary utility functions outside of the
CRRA class, as shown in Kogan et al. (2011). Specifically, the authors show that
the irrational investor may survive in the long run when the investors have un-
bounded relative risk aversion. It is intuitively clear that the irrational investors
may survive within our setting too, as seen in Equation (28): if the economy reaches
a state where c2 � c1<<0, then market selection may not occur even if K is large.
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So, in an economy with varying risk aversion coefficients, in which K is large, we
initially expect the irrational investor to severely underperform the rational one
since K will initially dominate c2 � c1. However, if the utilities are such that even-
tually c2 � c1<<0, then eventually the irrational investor’s underperformance
slows down and he survives—although with a very small consumption share.

4.2 SEVERAL INVESTORS

The generalization to economies with L > 2 investors is also straightforward. The
following proposition generalizes Proposition 3 to economies with multiple in-
vestor groups.

Proposition 9. In the economywith L investors, define the consumption share of investor
i with respect to investor j, ft ¼

def cit
citþcjt

, the stopping time sf ¼def
inf t t : ft � f gf , and

the constants Ki ¼
def

d0iR
�1di, Kj ¼

def
d0jR

�1dj, Kij ¼
def

d0iR
�1di c If Kj > Ki, then

Eðsf Þ ¼ 2cm
Kj � Ki þ 2ðqj � qiÞ

ð29Þ

and

Varðsf Þ ¼ 8cmðKi þ Kj � 2KijÞ
ðKj � Ki þ 2ðqj � qiÞÞ3

; ð30Þ

where m ¼ logð f
1�f Þ � logð f0

1�f0
Þ.

It also immediately follows that the log-consumption ratio of investor i with
respect to j, ht ¼ logðft=ð1 � ftÞÞ, is expected to grow as

E½ht � h0� ¼
�

1

2c

�
Kj � Ki

�
þ

qj � qi
c

�
t; ð31Þ

generalizing Equation (17) to the case with multiple investors who make different
mistakes.

Thus, the severity of the underperformance of group j relative to i is decided by the
difference of their two transfer indices, Kj � Ki, in the case with multiple investors.
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4.3 BOTH AGENTS USE WRONG DRIFT TERMS—LEARNING

The assumption that Agent 1 knows the exact drift term is obviously very strong,
but it is easy to show that similar results arise if we relax this assumption.

First, we use Proposition 9 to understand what happens if both investors are
irrational (in the case with two investors) in that they both ‘‘stubbornly’’ mistake
drift terms. As seen from Equation (29), in this case it is the difference between
the two agents’ transfer indexes that is important. For example, assume that Agent
1 makes similar mistakes as Agent 2 in the one-factor model of Section 3.1 but
that his mistake in each stock is one half of Agent 2’s, that is, q

2.
In this case, using a similar argument as the one leading to Equation (20), it

follows that K2 � K1 ¼ g2

s2ðq2 � q2

4 ÞðN þ 1Þ ¼ 3
4K, where K is the transfer index

in the original example. Thus, the market selection is still fast in this case, although
it is 25% slower than in the case when Agent 1 is exactly right about the drift term.
The result can easily be extended to show that, under general conditions, fast mar-
ket selection occurs when Agent 1 also makes mistakes about the drift terms, as
long as these mistakes are ‘‘smaller’’ than the ones made by Agent 2.

It is also quite straightforward to extend the model to the case when Agent 1 is
rational, but uncertain about drift terms, and learns about g by solving a Bayesian
filtering problem.18 For simplicity, we assume that Agent 1’s beliefs about g at
t ¼ 0 are formed by observing xt for T years before trading begins (equivalently,
we could assume that he observes, but does not participate in, the market be-
tween �T� t� 0). Specifically, his beliefs at t¼ 0 are given by solving a Bayes-
ian filtering problem between �T and 0, with a diffuse prior at t ¼�T.19 At each
point in time, Agent 1 then has a posterior belief about the true g, as a normally
distributed variable, with mean bgt ¼ gþ d1

t , where d1
t ¼ 1

TsxðBt � B�T Þ, and
variance 1

TþtR. We focus on the case when the agents have the same personal
discount rate, q1 ¼ q2.

In line with our previous analysis, we assume that Agent 2 does not update but
stubbornly sticks to his initial estimate of the drift term. To focus on the effect of
learning, we assume that Agent 2’s initial estimate is the same as Agent 1’s,
d2

0 ¼ d1
0. In practice, we would expect Agent 2 to have a larger error term since

he would not be rational in forming his initial beliefs either. This would lead to even
faster market selection.

As shown in the Appendix, the expected log-consumption ratio then develops in
line with the following proposition.

18 The detailed derivation of this case is provided in the Appendix.
19 Similar results arise if we assume that his prior is not diffuse, but the formulas become more com-
plicated.
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Proposition 10. The expected log-consumption ratio, when Agents 1 and 2 start with
the same error from T periods of pre-learning, d1

0 ¼ d2
0 ¼ 1

TsxðB0 � B�T Þ, and
where Agent 1 continues to update his beliefs, but Agent 2 does not, is

E½ht � h0� ¼
N

2c

�
t

T
� log

�
1 þ t

T

��
: ð32Þ

From Equation (32), it follows that again the market selection process scales lin-
early with N. For example, using our previous example from Section 3.1, with N¼
100 stocks, c ¼ 6, and equal initial consumptions share of the two agents, and
further assuming that the learning period is T ¼ 25 years, it follows from Equation
(32) that after 25 years, E½h25� ¼ 100

2�6ð1 � logð2ÞÞ ¼ 2:56, corresponding to a con-
sumption share of 93%. Thus, the market selection process is almost as efficient
in this case as in the case when Agent 1 knows the exact drift term in which case
the rational agent’s expected consumption ratio and consumption share are
E[h25] ¼ 3.25 and 96%, respectively.

4.4 EXPLICITLY MODELING OVERCONFIDENCE

Our model for overconfidence so far has been in significantly reduced form. We
have assumed that the irrational agent receives a signal that he is completely con-
fident about, although in reality the signal is noisy. The rational agent has either
received enough information to completely know the growth rate, as in the base
model, or learns about it in a Bayesian fashion, as in the extension in the previous
section. These assumptions have allowed for tractability in the analysis, but our
results continue to hold when the analysis is extended to explicitly include dynamic
updating of the beliefs of the irrational investor, using a standard approach to mod-
eling overconfidence. We follow the assumptions made in Scheinkman and Xiong
(2003) and further developed in Dumas, Kurshev, and Uppal (2009) closely.

Specifically, the state vector evolves according to Equation (2) as before, but we
assume that expected growth is time varying and follows

dgt ¼ að�g� gtÞdt þ s dBg
t : ð33Þ

The agents in the economy observe xt but not gt. There is also an observable
N-dimensional signal process, st, that follows

dst ¼ ss dBs
t : ð34Þ

Here, all the Brownian motions are independent. Thus, the s process contains no
information about g and elements of s are pairwise independent (generalizations
to correlated signals are possible). The rational agent understands that the signal
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process is uninformative about g. The irrational agent, on the other hand, is over-
confident about the signal process and believes that it contains information about g
through the following relation:

dst ¼ /ss dBg
t þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � /2

q
ss dBs

t ; ð35Þ

where 0 < / < 1 is a constant. For simplicity, we assume that both agents know g0.
When extending the analysis to multiple assets, our main additional assumption

compared with the previous literature is that the innovations in s across stocks are
idiosyncratic (or at least not perfectly correlated). As discussed in Section 2.2, this
idiosyncratic component could, for example, represent that the irrational agent
wrongly believes that the age, accent, or fashion tastes of the CEO, the physical
location of company headquarters, the sound of the company name, and so on are
informative about the future prospects of the firm. As a specific example, the ex-
tensively documented home bias may make the irrational agent overestimate, or be
overconfident about, the prospects of firms located in a geographical proximity.
Our results may therefore apply to agents who live in regions where the density
of firms is high.

We now have the following result, which is completely analogous to our previous
results.

Proposition 11. The expected log-consumption ratio when Agent 1 is rational andAgent
2 wrongly believes in the relation expressed in Equation (35) is bounded below by

E½ht � h0� �
CN

2c
t; ð36Þ

where C > 0 is a constant, that is, does not depend on N or t.

Thus, again, the result is a market selection process that scales linearly with N.
The details of the analysis are given in the Appendix.

As an example, we use the same parameters as before, g ¼ 0.02, s ¼ 0.03218,
and c ¼ 6. We choose sg ¼ 0.005, which leads to a roughly similar ratio between
s and sg as in Dumas, Krushev, and Uppal (2009), and vary / between 0.25 (a low
degree of overconfidence) and 0.95 (a very high degree of overconfidence). The
results are shown in Table I. We see that the expected log-consumption ratio for
Agent 1 increases linearly with N, in line with Proposition 11. Furthermore, the
results for the intermediate case, when Agent 2 believes in ‘‘half’’ of the signal
(/ ¼ 0:5) are quantitatively similar to our previous results. For example, the
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expected log-consumption ratio after 25 years with 100 stocks is 4.792, which is
of similar size as in the base model, in which case it is 3.25.

Thus, our results continue to hold when the model is extended to explicitly
account for overconfidence as a source of Agent 2’s irrationality.

4.5 MISTAKES ABOUT THE COVARIANCE MATRIX

In line with the previous literature, we have focused on the irrationality of estimating
drift terms. In practice, agents in the economy also need to estimate the variance–
covariance matrix. Of course, in our continuous time setting, any disagreement about
R immediately leads to an arbitrage opportunity; the agents would take different sides
on arbitrarily large bets on the quadratic variation of the process under disagreement,
and the irrational agent would immediately become infinitely indebted to the rational
agent. The impossibility to mistake any variance or covariance term is an artifact of
the continuous time model that is not reflected in practice.

If we go outside of the continuous time setting, it is straightforward to derive
similar results when agents also mistake covariance terms. Specifically, in line with
the drift term results, an agent who mistakes covariance terms and does not update
his beliefs will severely underperform in a multi-asset market in this case too. In the
Appendix, we introduce a discrete time version of the model, following the ap-
proach in Jouini and Napp (2006), and show that the same type of increasing under-
performance with number of stocks as we have focused on so far also arise when
mistakes are made about covariances.

We leave the details of the model to the Appendix, but in summary, the state of
the world now evolves according to the discrete time random process

xtþ 1 ¼ xt þ g þ sxetþ 1;

where e has a standard multivariate normal distribution, e;Nð0; IN Þ, and dividends
[Equation (3)] and expected utility [Equation (5)] are now defined in discrete time.
We focus on the case when the agents have the same personal discount rates.

A complete market is implemented by having many assets since dynamic rep-
lication with only N þ 1 assets is no longer possible. The two agents, k 2 1; 2gf ,

Table I. Expected log-consumption share, E½ht� for Agent 1 after 25 years, with N ¼ 10; 50, and 100
stocks, when the overconfidence parameter, /, of Agent 2 varies between / ¼ 0:25 and / ¼ 0:95

N

/

0.25 0.5 0.95

10 0.114 0.478 2.096
50 0.573 2.394 10.375
100 1.147 4.792 20.744
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mistake the drift term, g, for gk ¼ gþ dk and the variance–covariance matrix
(R ¼ sxs

0
x) for Rk.

The following result governs the consumption dynamics.

Proposition 12. The expected log-consumption ratio, ht, satisfies

E½ht � h0� ¼
1

2c

�
d02R

�1
2 d2 � d01R

�1
1 d1 � log

�
jR1j
jR2j

�
þ trðR�1

2 R� R�1
1 RÞ

�
t: ð37Þ

Here, jAj denotes the determinant and tr(A) denotes the trace of a general square
matrix, A, respectively.

We see that Equation (37) contains two new terms compared with the original
expression for the expected log-consumption ratio (Equation 31), representing the
influence of irrationality about the variance–covariance matrix.

To see how irrationality about R affects the market selection process, we study
three different scenarios. In the first scenario, Agent 1 knows both g and R, whereas
Agent 2 makes mistakes aboutR. In the second scenario, Investor 1 still knows both
the drift vector and the covariance matrix, whereas Agent 2 now makes mistakes
about both g and R. Finally, in the third scenario, Agent 1 also makes mistakes
about the drift vector and covariance matrix, although these mistakes are smaller
than those made by Agent 2.

We choose the same parameters for the x process (so that the process has the
same distribution as the continuous time distribution, at the discrete points in time),
as in Section 3.1, and (in scenarios 2 and 3) make the same assumptions about
drift term mistakes for Agent 2. Thus, we assume a one-factor risk structure, with
g ¼ 0.02, s ¼ 0.03218, and irrationality parameter q ¼ 0.2 for the drift term. We
assume that the agents start with equal consumption shares.

To introduce mistakes about R, we go back to the one-factor structure, that is, we
can write

ðxtþ 1Þi¼ ðxtÞiþðgÞiþ bMnMt þ binit; ð38Þ

where nMt is the market-wide shock and nit the idiosyncratic shock to stock i, nMt
and nit are i.i.d. standard normal variables for all 1 � i � N, t ¼ 1, 2, 3, . . ., the

coefficients bM ¼ bi ¼ s

ffiffiffiffi
kN
2

q
for all i, and where kN ¼ N

Nþ1 is the scaling factor

introduced to make the total risk independent of N. It immediately follows that
this implies that the covariance matrix R has ðRÞii ¼ 2kNs

2 and ðRÞij ¼ kNs
2, in

line with the one-factor model of Section 3.1. Now, along similar lines as when
introducing drift term mistakes, we assume that Agent 2 mistakes bM and bi in
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Equation (38) for bbM ¼ ð1 þ qaM=2ÞbM and bbi ¼ ð1 þ qai=2Þbi, where aM and
ai are i.i.d. random variables with a standard normal distribution. Thus, Agent 2
makes mistakes about the factor structure of the covariance matrix, of the same
order of magnitude as the mistakes we introduced with respect to drift terms. In
the third scenario, when Investor 1 also makes mistakes, we assume that his mis-
takes are similar to Investor 2’s but that his error term is only half of Agent 2’s,
q1 ¼ q2/2 ¼ 0.1.

We calculate the expected log-consumption share of Agent 1 after 25 years in
the three different scenarios, for N ¼ 10, 50, and 100 stocks, using Monte-Carlo
simulations for Equation (38). The results are shown in Table II. We see that the
mistakes about R have very similar effects as mistakes about drift terms. In Sce-
nario 1, the expected log-consumption ratio after 25 years with 100 stocks is
4.41, which is of similar size as when the agent makes mistakes about drift terms
(in which case it is 3.25). In Scenario 2, when Agent 2 makes mistakes about both
drifts and covariances, the mistakes basically add up, and E[h25] ¼ 7.78. Finally, in
Scenario 3, when Agent 1 also makes mistakes about drifts and covariances, al-
though only half as large as the mistakes made by Agent 2, E[h25] decreases
by about 25% compared with Scenario 2, in line with the discussion in Section
4.3. Also along the lines of Section 4.3, the argument could be extended to include
Bayesian learning about covariances, although the analysis would be much less
tractable than the analysis of drift terms.

Thus, although we have focused on mistakes about drift terms in line with the
previous literature, our argument that unsophisticated probabilistic behavior may
be very costly for investors in markets with high-dimensional risk structures is not
restricted to such mistakes.

4.6 GENERAL RISK STRUCTURES

So far we have focused on a textbook style economy with one systematic source
of risk that affects all firms equally, symmetric idiosyncratic risk, and an irrational
investor with symmetric sentiments. Our results are much more general, however.
For example, the irrational investor does not need to be symmetric in his

Table II. Expected log-consumption share, E½ht� for Agent 1 after 25 years, with N ¼ 10; 50, and
100 stocks, in three different scenarios. In Scenario 1, Agent 2 mistakes covariances; in Scenario 2, he
mistakes both drifts and covariances; and in Scenario 3, Agent 1 also mistakes drifts and covariances

Scenario

N 1 2 3

10 0.403 0.764 0.577
50 2.18 3.87 2.94
100 4.41 7.78 5.91
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sentiments. To see this, consider the economy with the same growth rate and risk as
in Section 3.1 but with asymmetric sentiments. Specifically, the irrational investor
believes that the drift is g(1 þ q1) for a fraction, a, of the stocks and g(1þ q2) for the
remaining stocks, where we assume that aN and (1 � a)N are both integers. With-
out loss of generality, we assume that 0 < a < 1 (as the cases a ¼ 0 and a ¼ 1 are
covered by taking q1 ¼ q2).

From the definition of the transfer index, K, in Proposition 2, it is straightforward
to show that

K ¼ g2

s2
ðq2

1a þ q2
2ð1 � aÞ þ ðq2

1a þ q2
2ð1 � aÞ � ðq1a þ q2ð1 � aÞÞ2Þ�NÞ:

Thus, by Proposition 3, the underperformance of the irrational investor will be severe
for large N, unless the term q2

1aþ q2
2ð1 � aÞ � ðq1aþ q2ð1 � aÞÞ2 is equal to zero.

It is easy to show that this term is equal to zero if and only if q1 ¼ q2. If q1 ¼ q2,
then K ¼ g2

s2q2
1 so the irrational investor’s underperformance does not depend on

N. Effectively, since his sentiment is uniform, he holds the same portfolio as the
rational agent, and the model collapses to the representative firm model.

To study the underperformance in an even more general setting, we introduce
a sequence of economies M ¼ ðE1; . . . ; EN ; . . . Þ, where EN ¼ ðdN ; gN ;RN ;DN Þ.
The idea is now to see if the irrational investor’s underperformance becomes severe
as N tends to infinity, in the sense that the expected time to reach any prescribed
consumption share approaches zero. In this case, we say that high-speed market
selection occurs for large N. Formally, for a sequence of economies, M, we have
the following definitions.

Definition 2. High-speed market selection occurs if, in market EN , the expected time
to reach the consumption share f when the initial consumption share is f0 satisfies
Eðsf Þ � Gðf0; f ;NÞ for some function G : ð0; 1Þ � ð0; 1Þ � 1; 2; 3; . . . /Rþgf ,
which for all f0 and f > f0 satisfies

lim
N/N

Gðf0; f ;NÞ ¼ 0:

Definition 3. High-speed market selection of order m (where m > 0 is a constant)
occurs if the function, G, in Definition 2 can be written in the form Gðf0; f ;NÞ ¼
Hðf0; f Þ=N m:

We let KN denote the transfer index term in economy EN . Proposition 3 implies
that high-speed market selection of order m occurs if and only if

k ¼def
lim inf
N/N

KN

N m ; where KN ¼ d0NR
�1
N dN ;

is greater than zero, that is, if and only if 0 < k � N.
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We define q(R) to be the spectral radius of the covariance matrix, R.20 We have
a couple of immediate results, relating the spectral radius of the covariance matrix,
q(R), the sentiment, d, and the transfer index, K. From Equations (18), (20), (21), it
follows that high-speed market selection of order 1 occurs in the example in Section
3.1. The following two propositions can be used to show high-speed market se-
lection in more general economies:

Proposition 13. For a sequence of economies, M, high-speed market selection of
order m occurs if there are positive constants c and N0 such that for all N> N0:
qðRN Þ � cN�md0NdN .

Proposition 14. For an arbitrary vector, q, define Qq to be the Euclidean projection
operator onto the orthogonal complement of q and the N-vector of ones,
1N ¼ ð1; 1; . . . ; 1ÞT .21 For a sequence of economies, M, high-speed market selec-
tion of order m occurs if there are positive constants c and N0 such that the following
two conditions are satisfied for all N > N0:
d 1N is an eigenvector of RN,
d qðQ0

1N
RNQ1N Þ � cN�mðd0NdN � ð10NdN Þ

2

N Þ.

It is straightforward to check that both the example in Section 3.1 and the ex-
ample with asymmetric sentiments in this section satisfy the conditions of Prop-
osition 14 with m ¼ 1, with the exception of asymmetric sentiments with q1 ¼ q2.22

We can also use the proposition to study economies with general variance-
covariance matrices of the form RN ¼ N�1ðaIN þ b1N1

0
N Þ=ðaþ bNÞ, a > 0,

b � 0, where IN is the N � N identity matrix. For such covariance matrices, the
first condition of Proposition 14 is always satisfied. Moreover, the second condition
is satisfied with m ¼ 1, as long as b > 0, that is, as long as the economy has a sys-
tematic risk component. If there is no systematic component, there are effectively N
separate financial markets, and in each of these markets there is a representative firm.
It is easy to show that the market selection process will be slow in this case.

4.7 SEQUENCES OF RANDOM ECONOMIES

Propositions 13 and 14 can be used to prove high-speed market selection for a spe-
cific sequence of markets but do not say how ‘‘often’’ high-speed market selection
occurs. Is high-speed market selection the norm or are the previous examples just
exceptional special cases? To answer this question, we study how often high-speed

20 Since R is symmetric and positive definite, its spectral radius is simply its largest eigenvalue. We
use the standard notation qðRÞ since it should create no confusion with the personal discount rate, q.
21 That is, in matrix notation, Qq ¼ I � qq0

q0q, where I is the identity matrix.
22 If q1 ¼ q2, the second condition of Proposition 14 fails since the right-hand side is identically
equal to zero.
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market selection occurs in randomly generated economies. We look at economies
with one systematic risk component affecting all firms and random parameters. In
the Appendix, we discuss the generalization of the results to Q > 1 common risk
components.

We make several assumptions about the randomness of the economies,
EN ¼ ðdN ; gN ;RN ;DNÞ. We assume that ðgN Þi ¼ ~pNi , where ~pNi are i.i.d. random
variables,Eð~p1

1Þ ¼ �p > 0 and Varð~p1
1Þ ¼ s2

p > 0. Similarly, ðdN Þi ¼ ~qNi , where ~qNi
are i.i.d. random variables, Eð~q1

1Þ ¼ �q and Varð~q1
1Þ ¼ s2

q > 0. Furthermore, we
assume that the randomness of the ith asset, si dBit, is of the form
si dBit ¼ ðbNi dn0t þ aNi dnNit Þ, where nit are i.i.d. standard Brownian motions
and aNi and bNi are i.i.d. random variables: Eða1

1Þ ¼ �a > 0, Varða1
1Þ ¼

s2
a > 0, Eðb1

1Þ ¼ �b, and Varðb1
1Þ ¼ s2

b > 0. All random variables, ~pNi , ~qNi , bNi ,
aNi , nNit are jointly independent. For simplicity, we furthermore assume that all ran-
dom variables are absolutely continuous (with respect to Lebesgue measure) and
that the b’s are (a.s.) bounded below by a strictly positive constant, e > 0.23 We
also require the ~p’s to be strictly positive (a.s.).

For a fixed N, the economy EN will thus be characterized by gN ¼
ð~pN1 ; . . . ; ~pNN Þ

0, dN ¼ ð~qN1 ; . . . ; ~qNN Þ
0, RN ¼ ðdiagðaN1 ; . . . ;aNN Þ

2 þ bNb
0
N Þ, where

bN ¼ ðbN1 ; . . . ; bNNÞ
0 and theDN ’s are arbitrary weakly positive vectors, with at least

one nonzero element. Under these conditions, we have the following proposition.

Proposition 15. In a sequence of economies, M ¼ ðE1; E2; . . .Þ, satisfying the pre-
vious assumptions, high-speed market selection of order 1 occurs almost surely.

Thus, high-speed market selection is really the norm in such economies and the
exception is when it breaks down.

From the discussions in this and the previous section, it is clear that as long as it is
possible for the rational investor to ‘‘diversify’’ over the irrational investor’s mis-
takes across assets, the market selection process will be fast. Specifically, as long as
the risk processes are dependent, and the sentiment vector of the irrational investor
has a dispersion across stocks, the market selection process will be fast, both in
a deterministic economy, as in Section 4.6, and in a random economy, as in this
section. When the risk processes are independent or the sentiment of the irrational
investor is the same for all stocks, on the other hand, there is no opportunity for the
rational agent to diversify across the irrational agent’s mistakes, and the results
collapse to those of a one-asset model (as follows from the discussion subsequent
to Proposition 14).

23 These assumptions can be relaxed in several directions but at the expense of increased complexity.
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5. Concluding Remarks

As follows from our analysis, irrational agents who make probabilistic mistakes
that a priori seem to be very small may be severely punished in stock markets with
high-dimensional risk structures. In theory, stock markets may indeed be as dan-
gerous as derivative markets, even though they offer no pure arbitrage opportuni-
ties. In our calibration, an irrational investor loses almost 95% of his consumption
and wealth shares to a rational investor over a 25-year horizon. Moreover, the re-
alized consumption paths of the two investors are severely suboptimal. The ex post
welfare costs are about 40% of the total wealth in the economy in a 25-year horizon.
Our results therefore highlight the value of financial education and also suggest that
delegated investment management, as well as restrictions on the asset span in the
market, under some circumstances may be welfare increasing when unsophisticated
investors are present.

Although, for simplicity, strong assumptions were made in our base model, our
results are robust to several extensions and generalizations. The results also hold
when agents have different personal discount rates and risk aversion, when rational
agents learn about the parameters of the economy, when agents also mistake co-
variance terms, and for general risk structures. This suggests that severe underper-
formance by unsophisticated investors may be the norm rather than the exception in
markets with high-dimensional risk structures.

Appendix A

A.1 PROOFS

Proof of Proposition 1: To solve for equilibrium, we use the martingale approach
(Karatzas, Lehoczky, and Shreve, 1987; Cox and Huang, 1989). Each agent solves
the static optimization problem

max
ck

Ek

�Ð T
0 e�qk t

c1�c
k;t

1�cdt


s:t:

ðA:1Þ

Ek

�ðT
0
nk;tck;t dt


� fWk ;0Ek

�ðT
0
nk;tCt dt


; ðA:2Þ

where fWk ;0 is the initial wealth fraction of agent k and nk;t, k 2 1;2gf , are the agent-
specific Stochastic Discount Factors (SDFs), yet to be defined. Necessary and suf-
ficient conditions for optimality of the consumption streams are

ck;t ¼
�
yk eqk tnk;t

��1
c; ðA:3Þ
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where yk > 0 is such that the budget constraint holds with equality

Ek

�ðT
0
nk;t
�
yk eqk tnk;t

��1
c dt


¼ fWk ;0Ek

�ðT
0
nk;tCt dt


: ðA:4Þ

To solve for the optimal consumption streams of the two agents, we introduce the
central planner’s problem

uðCt; kt; tÞ ¼ max
c1;t ;c2;t

�
e�q1t

c1�c
1;t

1 � c
þ kt e�q2t

c1�c
2;t

1 � c

)
s:t:

ðA:5Þ

c1;t þ c2;t ¼ Ct; ðA:6Þ

where

kt ¼
	
y1n1;t

y2n2;t



¼ k0gt:

ðA:7Þ

Here, k0 ¼ y1

y2
as n1;0 ¼ n2;0 ¼ 1 and gt ¼ expð�1

2

Ð t
0D

0
sDs dsþ

Ð t
0D

0
s dBsÞ. From

the first-order conditions of the central planner’s problem in Equation (A.5), we
have

c2;t ¼ eðq1�q2Þt=ck
1
c
tc1;t: ðA:8Þ

Using Equations (A.6) and (A.8), we get

c1;t þ eðq1�q2Þt=ck
1
c
tc1;t ¼ Ct: ðA:9Þ

Rearranging, we get

c1;t ¼ ftCt;
c2;t ¼ ð1 � ftÞCt;

ðA:10Þ

where ft ¼ 1

1þeðq1�q2Þt=ck
1
c
t

. Finally, solving Equation (A.3) for n1;t, we get

n1;t ¼ e�q1t
	
c1;t

c1;0


�c

¼ e�q1t
	
ft
f0


�c	
Ct

C0


�c
:

ðA:11Þ

The expressions for the wealth of the two agents follow from discounting future
optimal consumption using the SDF.
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Proof of Proposition 2: From the optimal consumption allocations in Proposition 1,
we have

ht ¼ log
	
c1;t

c2;t



¼ log

�
e�ðq1�q2Þt=ck

�1
c

t

�
¼ �1

clogðeðq1�q2ÞtktÞ; so

dht ¼
�

1

2c
D0D þ 1

c
ðq2 � q1Þ

�
dt þ 1

c
D0 dBt

¼
�

1

2c
K þ 1

c
ðq2 � q1Þ

�
dt þ 1

c

ffiffiffiffi
K

p
d~Bt;

where K ¼ d0R�1d and d~Bt ¼ � 1ffiffiffi
K

p D0 dBt is a standardized Brownian motion.

Proof of Proposition 3: The first passage probability density distribution for the
time it takes for logð ft

1�ft
Þ to reach logð f

1�f Þwith initial condition logð f0
1�f0

Þ is (Ingersoll,
1987)

p:d:f :ðsf Þ ¼
log
	

f
1�f



� log

	
f0

1�f0



	

2pK
c2
t3

1=2

exp

"
�
 

log

 
f

1 � f

!
� log

 
f0

1 � f0

!

�
 

1

2c
K þ 1

c
ðq2 � q1Þ

!
t

!2,�
2
K

c2
t

�#
:

ðA:12Þ

The expected time is (see Ingersoll, 1987, p. 354)

Eðsf Þ ¼
2c
	

log
	

f
1�f



� log

	
f0

1�f0




K þ 2ðq2 � q1Þ

; ðA:13Þ

and the variance is

Varðsf Þ ¼
8cK

	
log
	

f
1�f



� log

	
f0

1�f0




ðK þ 2ðq2 � q1ÞÞ3

: ðA:14Þ

Proof of Proposition 4: The result follows from the fact that the wealth–
consumption ratio is constant for investors with logarithmic preferences.

Proof of Proposition 5: For generality, we prove the proposition for the case
when the personal discount factors are agent specific. From Equation (14),
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W1;t ¼ Et

hÐ T
t
ns
nt
fsCs ds

i
¼ Ct	

1þ eðq1�q2Þt=ck
1
c
t


c

Ð T
t e�q1ðs�tÞEt

��
1 þ eðq1�q2Þs=ck

1
c
s

�c�1	
Cs

Ct


1�c


ds

¼ Ct	
1þ eðq1�q2Þt=ck

1
c
t


c

Ð T
t e�q1ðs�tÞ Pc�1

k¼0

�
c� 1
k

�
eðq1�q2Þsk=cEt

�
k

k
c
s

	
Cs

Ct


1�c


ds

¼ Ct	
1þ eðq1�q2Þt=ck

1
c
t


c

Ð T
t e�q1ðs�tÞ Pc�1

k ¼0

�
c� 1
k

�
eðq1�q2Þsk=ck

k
c
tEt

�	
ks
kt


k
k
	
Cs

Ct


1�c


ds:

ðA:15Þ

Note that since ðksktÞ
k
c and ðCs

Ct
Þ1�c are jointly lognormal, we get Et

��
ks
kt

�k
c
�
Cs

Ct

�1�c� ¼
eAkðs�tÞ, where Ak ¼ k

2cðkc � 1ÞD0Dþ ð1 � cÞðg1 þ 1�c
2 s0x1

sx1
þ k

cs
0
x1
DÞ. Inserting

into Equation (A.15) and solving the integral, we get

W1;t ¼
Ct	

1 þ eðq1�q2Þt=ck
1
c
t


Xc�1

k ¼0

	 c� 1

k



eðq1�q2Þt=ck

k
c
t

1

ak � ðq1 � q2Þk=c

�
�
1 � e�ðak�ðq1�q2Þk=cÞðT�tÞ

�
;

where ak ¼ q1 � Ak . Following a similar calculation, we get

W2;t ¼
Ct�

1 þ eðq1�q2Þt=ck
1
c
t

�c

Xc�1

k¼0

	 c� 1
k



eðq1�q2Þtðk þ 1Þ=ck

kþ 1
c

t

� 1

akþ 1 � ðq1 � q2Þðk þ 1Þ=cð1 � e�ðakþ 1�ðq1�q2Þðk þ 1Þ=cÞðT�tÞÞ:

Proof of Proposition 7: Using a similar approach as in the proof of Proposition 5,
the objective expected utility of Agents 1 and 2 can be written as

UOBJ
1 ¼ E

�Ð T
0 e�q1t

c1�c
1;t

1�cdt


¼ 1

1�c

Ð T
0 e�q1tE

�
C1�c
t

	
1 þ k

1
c
t


c�1


dt

¼ C1�c
0

1 � c

Xc�1

k ¼0

	 c� 1
k



k

k
c

0

1

ak
ð1 � e�akT Þ
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and

UOBJ
2 ¼ C1�c

0

1 � c

Xc�1

k ¼0

	 c� 1
k



k
kþ 1�c

c

0

1

ak þ 1�c
ð1 � e�ak þ 1�cT Þ:

Using the above expressions together with Equation (26), we get

b ¼

	
1
a0
ð1 � e�a0T Þ


 1
1�c

 Xc�1

k¼0

�
c� 1
k

�
k
k
c

0

1

ak
ð1 � e�akT Þ

! 1
1�c

þ
 Xc�1

k¼0

�
c� 1
k

�
k
k þ 1�c

c

0

1

akþ 1�c
ð1 � e�ak þ 1�cT Þ

! 1
1�c

;

and since h ¼ 1 � 1
b, Equation (27) follows.

Proof of Proposition 8: Assume that c1 > c2. From the agents’ first-order con-
ditions, it follows that

ðc1tÞ�c1

ðc2tÞ�c2
¼ e�ðq2�q1Þtkt;

and therefore,

c
c1=c2

1t

c2t
¼ eðq2�q1Þt=c2k�1=c2

t ¼def
qt:

Now, cc1=c2�1
1t ¼ C

c1=c2�1
t ð1 þ c2t=c1tÞ1�c1=c2 , so we have

qt ¼ c
c1=c2

1t

c2t
¼ c1t

c2t
C
c1=c2�1
t ð1 þ c2t=c1tÞ1�c1=c2 ;

so

c1t

c2t
ð1 þ c2t=c1tÞ1�c1=c2 ¼ qtC

1�c1=c2
t ; ðA:16Þ

and therefore,�
c1t=c2t

c10=c20

�
ð1 þ c2t=c1tÞ1�c1=c2

ð1 þ c20=c10Þ1�c1=c2
¼
�
qt
q0

��
Ct

C0

�1�c1=c2

:

Since c1 > c2, it follows that ð1 þ c2t=c1tÞ1�c1=c2 � 1, and therefore,�
c1t=c2t

c10=c20

�
1

ð1 þ c20=c10Þ1�c1=c2
�
�
qt
q0

��
Ct

C0

�1�c1=c2

:
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Taking logarithms on both sides leads to

ht � h0 �
c2 � c1

c2
logð1 þ e�h0Þ � log

�
qt
q0

�
þ c2 � c1

c2
log

�
Ct

C0

�
:

Taking expectations on both sides and rearranging, using the method in the proof of
Proposition 2 for qt and that E½logðCt

C0
Þ� � �gt, the result follows.

Now, assume that c2 > c1. Define zt ¼ eht , yt ¼ logðqtÞ þ ð1 � c1=c2ÞlogðCtÞ,
and a ¼ c1=c2 < 1. From Equation (A.16), it follows that zat ð1 þ ztÞ1�a ¼ eyt , so,
taking logarithms on both sides,

yt ¼ aht þ ð1 � aÞlogð1 þ ehtÞ:

It is easily seen that y is a strictly convex function of h such that y0ð�NÞ ¼ a,
y 0ðNÞ ¼ 1, and yð0Þ ¼ ð1 � aÞlogð2Þ. Therefore, h ¼ f ðyÞ where f is a strictly
concave function such that f 0ð�NÞ ¼ 1

a, f
0ðNÞ ¼ 1, and f ðð1 � aÞlogð2ÞÞ ¼ 0.

It therefore follows that h ¼ f ðyÞ � y� ð1 � aÞlogð2Þ þ ð1
a � 1Þðy�

ð1 � aÞlogð2ÞÞ�, where ðxÞ� defines a function of x that is equal to x when x < 0
and to 0 when x � 0.

Now, since yt ¼ logðqtÞ þ ð1 � c1=c2ÞlogðCtÞ, using the same approach as in
Proposition 3, it follows that ðyt � ð1 � aÞlogð2ÞÞ� first order stochastically dom-
inates ðvt � ð1 � aÞlogð2ÞÞ�, where

vt;N

�
logðq0Þ þ ð1 � c1=c2ÞlogðC0Þ þ

�
K

2c2
þ q2 � q1

c2

�
t; 4

K

c2
t

�
;

so E½ðyt � ð1 � aÞlogð2ÞÞ�� � E½ðvt � ð1 � aÞlogð2ÞÞ��.
It is easy to show that for a random variable, x;Nðl;s2Þ, and constant b < l, it

is the case that E½ðx� bÞ�� ¼ Oð s3

ðl�bÞ2 e�
ðl�bÞ2

2s2 Þ, from which it follows that

E½ðvt � ð1 � aÞlogð2ÞÞ�� ¼ �OðK�1=2 e�qKtÞ ¼ �Oðe�qKtÞ. Therefore, E½ht� �
E½yt�� ð1 � aÞlogð2Þ � Oðe�qKtÞ.

Moreover, from Equation (A.16), it is clear that h0 þ ð1 � c1=c2Þlogð1 þ e�h0Þ ¼
y0, so h0 � y0. Together these two inequalities imply that

E½ht � h0� � E½yt � y0� � ð1 � aÞlogð2Þ � Oðe�cKtÞ;

and since

E½yt � y0� ¼
�1

c2
E

�
log

�
qt
q0

�
þ c2 � c1

c2
E

�
log

�
Ct

C0

�
� 1

c2

�
K

2
þ q2 � q1

�
t þ c2 � c1

c2
gt;

the result follows.
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Proof of Proposition 9: From the agents’ first-order conditions, it follows that

ci;t
cj;t

¼
�
ki;t
kj;t

�1
c

eðqj�qiÞt=c:

Consequently, we have that

log
	
ci;t
cj;t



¼
�

1

2c

�
Kj � Ki

�
þ 1

c

�
qj � qi

��
t þ 1

c
ðDi � DjÞ0Bt

¼
�

1

2c

�
Kj � Ki

�
þ 1

c

�
qj � qi

��
t þ 1

c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðKi þ Kj � 2KijÞ

q
~Bt;

where ~Bt ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðKiþKj�2KijÞ

p ðDi � DjÞ0Bt is a standard Brownian motion. Using the

same approach as in the proof of Proposition 3, we get

Eðsf Þ ¼ 2cm

Kj � Ki þ 2
�
qj � qi

�
and

Varðsf Þ ¼ 8cmðKi þ Kj � 2KijÞ�
Kj � Ki þ 2

�
qj � qi

��3
;

where m ¼ logð f
1�f Þ � logð f0

1�f0
Þ.

Proof of Proposition 10: From Proposition 16, we have that

ht � h0 ¼ 1

2c

ðt
0

�
K2;s � K1;s

�
ds þ 1

c

ðt
0

�
D2;s � D1;sÞ0 dBs: ðA:17Þ

Taking expectation on both sides of Equation (A.17),

Eðht � h0Þ ¼ 1
2c

Ð t
0E
�
K2;s � K1;s

�
ds

¼ 1
2c

Ð t
0E
	�

1
TsxðB0 � B�T Þ

�0
R�1

�
1
Tsx

�
B0 � B�T

��

ds

� 1
2c

Ð t
0E
	�

1
T þ ssxðBs � B�T Þ

�0
R�1

�
1

T þ ssx
�
Bs � B�T

��

ds

¼ N
2c

�
t
T � log

�
1 þ t

T

��
:

ðA:18Þ

Proof of Proposition 11: We build on the model specification in the Appendix
that led to Proposition 16. To calculate the expected log-consumption
ratio, E½ht � h0�, for our specific example with R ¼ skN (I þ 110 ), we calculate
the distributions of d1

t and d2
t (and thus the variance–covariance matrices)

for this case. To this end, define Rd1 ¼ V 10R�1V 1 þ s2
GIN�N and
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Rd2 ¼ V 20R�1V 2 þ s2
GIN�N þ /2s2

GIN�N . The variance–covariance matrix of d1
t

can then be calculated as follows:

VAR0ðd1
t Þ ¼ E½ðd1

t � E½d1
t �Þðd1

t � E½d1
t �Þ

0�
¼
Ð t

0eW
1ðt�uÞRd1

	
eW

1ðt�uÞ

0

du

¼
Ð t

0T e�K1ðt�uÞT�1TKd1T�1
	
T e�K1ðt�uÞT�1


0
du

¼ T
Ð t

0e�K1ðt�uÞKd1

	
e�K1ðt�uÞ


0
duT�1

¼ TG1ðtÞT�1;

where G1ðtÞ is a diagonal matrix with element ½G1ðtÞ�ii ¼
kd

1

i

2k1
i

ð1 � e�2k1
i tÞ with k1

and kd
1

being the vector of eigenvalues of W1 and Rd1 , respectively. In the above,
we have used the decompositions W1 ¼ TK1T�1 and Rd1 ¼ TKd1

T�1. Note that
W1 and Rd1 can both be diagonalized by the same transformation matrix, T. This
follows from the fact that the same transformation matrix T diagonalizes any matrix
of the form aI þ b110 (where a and b are arbitrary constants). We can similarly
calculate the variance–covariance matrix of d2

t :

VAR0ðd2
t Þ ¼ TG2ðtÞT�1;

where G2ðtÞ is a diagonal matrix with elements ½G2ðtÞ�ii ¼
kd

2

i

2k2
i

ð1 � e�2k2
i tÞ, where k2

and kd
2

are the vector of eigenvalues ofW2 andRd2 , respectively. Next, it is straightfor-
ward to show that the eigenvalues k1, k2, kd

1

, and kd
2

take a particularly simple form:

k1
i ¼ a þ

�
Dv1

s2

��
1 � 1

N

�
; i ¼ 1; . . . ;N � 1;

k2
N ¼ a þ

�
t1

2 þ Dt1

N

��
1

s2

�
;

k2
i ¼ a þ

�
Dt2

s2

��
1 � 1

N

�
; i ¼ 1; . . . ;N � 1;

k2
N ¼ a þ

�
t2

2 þ Dt2

N

��
1

s2

�
;

and

kd
1

i ¼ 2ðs2
G � aDt1Þ; i ¼ 1; . . . ;N � 1;

kd
1

N ¼ 2ðs2
G � aDt1 � Nat1

2Þ;
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kd
2

i ¼ 2ðs2
G � aDt2Þ þ sG/

2; i ¼ 1; . . . ;N � 1;

kd
2

N ¼ 2ðs2
G � aDt2 � Nat2

2Þ þ s2
G/

2:

It then follows that

lim
N/N

kd
2

1

k2
1

� kd
1

1

k1
1

¼ 2ðs2
G � aDv2

NÞ
a þ Dv2

N

s2

� 2ðs2
G � aDv1

NÞ
a þ Dv1

N

s2

þ s2
G/

2

a þ Dv2
N

s2

¼def
c > 0;

where it follows that c > 0 from the fact that Dv1
N � Dv2

N.
Since the covariance matrix VAR0ðd1

t Þ ¼ TGðtÞT�1 has the same off-diagonal
elements and structure as W1, we can calculate the covariance of d1

i;t and d1
j;t as

cov0ðd1
i;t; d

1
j;tÞ ¼

 
kd

1

N

2k1
N

	
1 � e�2k1

N t


� kd

1

1

2k1
1

	
1 � e�2k1

1t

!,

N :

The variance of d1
i;t is

var0ðd1
i;tÞ ¼ kd

1

1

2k1
1

	
1 � e�2k1

1t

�

1 � 1

N

�
þ kd

1

N

2k1
N

	
1 � e�2k1

N t

.

N :

Similarly, we calculate the variances and covariances of d2
t :

cov0ðd2
i;t; d

2
j;tÞ ¼

 
kd

2

N

2k2
N

	
1 � e�2k2

N t


� kd

2

1

2k2
1

	
1 � e�2k2

1t

!,

N

and

var0ðd1
i;tÞ ¼ kd

2

1

2k2
1

	
1 � e�2k2

1t

�

1 � 1

N

�
þ kd

2

N

2k2
N

	
1 � e�2k2

N t

.

N :

Note that the variance and covariances are all the same, for i ¼ 1; . . . ;N .
Since both agents start with the correct estimate of g, and thus di0 ¼ 0, we have

that

E½Ki
t � ¼ traceðR�1VAR0ðditÞÞ:

Using the above, we can calculate this as

traceðR�1VAR0ðditÞÞ ¼
�

1

s

�2�
N
�
vard

i

0 ðtÞ � covd
i

0 ðtÞ
�
þ covd

i

0 ðtÞ
�
:
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Therefore, the expected log-consumption ratio is

E½ht � h0� ¼
Ð t

0
1

2cs2

�
N
�
vard

2

0 ðuÞ � covd
2

0 ðuÞ
�
þ covd

2

0 ðuÞ
�
du

�
Ð t

0
1

2cs2

�
N
�
vard

1

0 ðuÞ � covd
1

0 ðuÞ
�
þ covd

1

0 ðuÞ
�
du

¼ N
2cs2

�
kd

2

1

2k2
1

 
t � 1

2k2
1

	
1 � e�2k2

1t

!

� kd
1

1

2k1
1

 
t � 1

2k1
1

	
1 � e�2k1

1t

!!

þ 1
2Ncs2

�
kd

2

N

2k2
N

 
t � 1

2k2
N

	
1 � e�2k2

N t

!

� kd
1

1

2k1
N

 
t � 1

2k1
N

	
1 � e�2k1

N t

!!

:

Next note that, as Dv1 > Dv2 and v1
2 > v2

2, it follows that k1
i > k2

i and kd
1

i < kd
2

i . We
then have that

E½ht � h0� � N
2cs2

 
kd

2

1

2k2
1

� kd
1

1

2k1
1

! 
t � 1

2k2
1

	
1 � e�2k2

1t

!

þ 1
2Ncs2

 
kd

2

N

2k2
N

� kd
1

N

2k1
N

! 
t � 1

2k2
N

	
1 � e�2k2

N t

!

� 1
2cs2

 
kd

2

1

2k2
1

� kd
1

1

2k1
1

! 
t � 1

2k2
1

	
1 � e�2k2

1t

!

¼ Nt
2cs2

 
kd

2

1

2k2
1

� kd
1

1

2k1
1

! 
1 � 1

2k2
1

	
1 � e�2k2

1t

!

� Nt
2cs2

 
kd

2

1

2k2
1

� kd
2

1

2k1
1

! 
1 � 1

2tk2
1

!

¼ Nt
2cs2

 
kd

2

1

2k2
1

� kd
1

1

2k2
1

!�
1 � 1

2tða þ oð1ÞÞ

�
� Nt

4cs2

 
kd

2

1

2k2
1

� kd
1

1

2k1
1

!
� c� oð1Þ

4s2
� Nt

2c
� CNt

2c

for large N and t. The second to last inequality follows since
	
kd

2

1

k2
1
� kd

1

1

k1
1



/c > 0 for

large N (where c is independent of N and t). We are done.
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Proof of Proposition 12: Taking the expectation of the expression for ht with
q1 ¼ q2 in Proposition 20 yields the result.

Proof of Proposition 13: The proof is a straightforward application of spectral
decomposition. The spectral theorem ensures that for each N, there is a real orthog-
onal transformation of RN into a diagonal matrix with strictly positive elements,
RN ¼ R0

NKNRN , KN ¼ diagðq1; . . . ;qN Þ, and R�1
N ¼ R0

N . Without loss of gen-
erality, we can assume that the q’s are ordered increasingly, so the spectral radius of
RN is qN. Standard matrix-norm theory implies that

min
d0N 6¼0N

d0NR
�1
N dN

d0NdN
¼ 1

qN
;

so d0NR
�1
N dN � d0NdN

qN
, and by our assumptions d0NdN

qN
� c�1N m, so KN ¼

d0NR
�1
N dN � c�1N m.

Proof of Proposition 14: As in the proof of the previous proposition, the spectral
theorem ensures that for each N, there is a real orthogonal transformation of RN

into a diagonal matrix with strictly positive elements, RN ¼ R0
NKNRN , K ¼

diagðq1; . . . ; qN Þ, and R�1
N ¼ R0

N . Moreover, the first assumption ensures that
there is an eigenvalue, qi, with corresponding eigenvector 1N . We define
q* ¼ qðQ0

1N
R�1
N Q1N Þ. Also, let us denote by PN, the projection operator onto

the one-dimensional subspace spanned by 1N , so Q1N ? PN . Clearly,
PNdN ¼ 10NdN

N 1N . We can decompose

d0NR
�1
N dN ¼ ðdN � PNdN þ PNdN Þ0R�1ðdN � PNdN þ PNdN Þ

¼ ðdN � PNdN Þ0Q0
1N
R�1
N Q1N

ðdN � PNdN Þ þ ðPNdN Þ0ðPNdN Þ
qi

� ðdN � PNdN Þ0Q0
1N
R�1
N Q1N

ðdN � PNdN Þ

� ðdN � PNdN Þ0ðdN � PNdN Þ
q*

¼
d0NdN � ð10NdN Þ

2

N

q*
:

By the assumptions of the proposition, we therefore have (for large enough N)

KN ¼ d0NR
�1
N dN � c�1N m:

Proof of Proposition 15: Define Ka;N ¼ diagðaN1 ; . . . ; aNN Þ and kN ¼ dN . We
use the inversion formula ðI þ xx0Þ�1 ¼ I � 1

1þx0xxx
0 for an arbitrary vector x to get
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KN

N
¼ 1

N
d0NR

�1dN ¼ 1

N
k0N ðK2

a;N þ bNb
0
N Þ

�1kN

¼ 1
NðK

�1
a;NkN Þ

0ðIN þ K�1
a;N ðbNb0N ÞK�1

a;N Þ
�1ðK�1

a;NkN Þ

¼ 1
NðK

�1
a;NkN Þ

0
�
IN � 1

1þ b0
NK

�2
a;NbN

K�1
a;N

�
bNb0N

�
K�1
a;N

��
K�1
a;NkN

�
¼

k0NK
�2
a;NkN
N

� 1

1
N þ b0

NK
�2
a;NbN

N

 
k0NK

�2
a;NbN

N

!2

:

The independence of these variables, together with the strong law of large numbers,
implies that

KN

N
/a:s: E½

�
~q1

1

�2�E½
�
a1

1

��2� � 1

E
h�
b1

1

�2
i
E
h�
a1

1

��2
i	Eh~q1

1

i
E
h
b1

1

i
E
h�
a1

1

��2
i
2

¼ E½
�
a1

1

��2�
�
E½
�
~q1

1

�2� � E½~q1
1�2E½b1

1�2
E
�
ðb1

1Þ2
� �

¼ E½ða1
1Þ�2�

E
�
ðb1

1Þ2
�ðE½�~q1

1

�2�E½
�
b1

1

�2� � E
�
~q1

1

�2
E
�
b1

1

�2Þ
¼ E½ða1

1Þ�2�
E
�
ðb1

1Þ2
�ððs2

q þ �q2Þðs2
b þ �b

2Þ � �q2�b
2Þ

¼ E½ða1
1Þ�2�

s2
b þ �b

2 ðs2
qs

2
b þ �q2s2

b þ s2
q
�b

2Þ ¼ k 2 ð0;N�:

The strict positivity of k is ensured, as sb > 0, sq > 0, and Jensen’s inequality
ensures that E½ða1

1Þ
�2� � 1

s2
aþ�a2. Thus, KN grows like kN a.s. as N becomes large.

This completes the proof. If E½ða1
1Þ

�2� < N (which is not guaranteed by our
assumptions) then k < N, so in this case the order of the natural selection process
is exactly one. Otherwise it can be faster.

We note that the argument is easy to generalize to more general random struc-
tures. For example, a similar result can be derived for Q-factor models, Q > 1,
using the same argument as above but with the inversion rule ðIN þ XX0Þ�1 ¼
IN � XðIQ þ X0XÞ�1X0. Here, X is an N � Q random matrix, representing the fac-
tor loadings of the N stocks on Q factors, IN is the N � N identity matrix, and IQ is
the Q� Q identity matrix.

A.2 LEARNING (SECTION 4.3)

We show that a Bayesian investor, who originally is uncertain about the growth
term, quickly will learn enough to avoid the severe underperformance experienced
by the irrational investor.
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The general linear filtering in continuous time is given by the system equations
and the observation equations (see Øksendal, chapter 6). The system equations are

dXt ¼ FtXt dt þ Ct dUt:

The observations equations are

dZt ¼ GtXt dt þ Dt dVt;

where F 2 Rn�n, C 2 Rn�p, G 2 Rm�n, and D 2 Rm�r. DefinebX t ¼ EtðXtÞ

and

St ¼ Et½ðXt � bX tÞðXt � bX tÞ0�:

Then, we have that

dbX t ¼ ðF � SG0ðDD0Þ�1
GÞbX t dt þ SG0ðDD0Þ�1

dZt

and

dS

dt
¼ FS þ SF 0 � SG0ðDD0Þ�1

GS þ CC0;

where bX 0 and S0 are given.
Let us now apply this to the model in the paper in which there is an

N-dimensional state vector, xt 2 RN , which evolves according to

dxt ¼ g dt þ sx dBt:

A Bayesian agent does not observe g but must estimate it from x, which he
observes from time �T and forward, where T � 0. Let bg�T ¼ gþ d�T 2 RN

and V�T 2 RN�N be the agent’s prior mean and variance matrix (i.e., the agent’s
prior at t ¼ �T is that g;Nðbg�T ;V�TÞ). Then the filtering equations look like

dbgt ¼ Vtðs0xÞ
�1

d~Bt; ðA:19Þ

and
dVt

dt
¼ �VtR

�1Vt; ðA:20Þ

where ~Bt is the ‘‘observed’’ Brownian motion. Solving the ordinary differential
equation in Equation (A.20), we get

Vt ¼
�
V�1
�T þ R�1

�
t � T

���1
; t > �T : ðA:21Þ
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Note that Equation (A.19) can be written in terms of x

dbgt ¼ �VtR
�1bgt dt þ VtR

�1 dxt: ðA:22Þ

Solving the Stochastic Differential Equation (SDE) in Equation (A.22), we getbgt ¼ VtV
�1
�Tbg0 þ VtR

�1xt:

Therefore, bgt ¼ gþ dt, where

dt ¼ VtðV�1
�Td0 þ R�1sxðBt � B�T ÞÞ: ðA:23Þ

We now use the analysis to compare the two-agent economy in which Agent 1 is Bayes-
ian and does not know the drift term (as opposed to in the main paper, where he does) and
Agent 2 is irrational. Specifically, we assume that the Bayesian agent’s beliefs at t ¼ 0
are formed by Bayesian updating for T previous years, starting with a diffuse prior at
t ¼ �T . The diffuse prior is modeled by assuming thatV�T ¼ s2I , where we formally
let s/N, which via Equations (A.21) and (A.23) leads to d1

0 ¼ 1
TsxðB0 � B�T Þ.

Agent 1 then keeps updating his beliefs, so that at t > 0, d1
t ¼ 1

TþtsxðBt � B�TÞ.
Agent 2, on the other hand, does not update but stubbornly sticks to his initial

estimate of the drift term. To focus on the effect of learning, we assume that Agent
2’s initial estimate is the same as Agent 1’s, d2

0 ¼ d1
0. In practice, we would expect

Agent 2 to have a larger error term since he would not be rational in forming his
initial beliefs either, which would imply faster market selection.

We define D1;t and D2;t as

D1;t ¼ s�1
x d1

t ; D2;t ¼ s�1
x d2

t

and the two transfer indexes K1;t ¼ D0
1;tD1;t, K2;t ¼ D0

2;tD2;t.
The central planner’s problem in this setting is

uðCt; ktÞ ¼ max
c1ðtÞ;c2ðtÞ

k1;t

c1�c
1;t

1 � c
þ k2ðtÞ

c1�c
2;t

1 � c
s:t:
c1;t þ c2;t ¼ Ct:

In the above, we have that

kk;t ¼ exp

�
� 1

2

ðt
0
D0
k;sDk;s ds þ

ðt
0
D0
k;s dBs

�
;

and solving the central planner problem, we get

c2;t ¼ ftCt;
c2;t ¼ ð1 � ftÞCt;
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where

f ðtÞ ¼ 1

1 þ k
1
c
t

;

where

kt ¼ k2;t

k1;t
:

We then have the following proposition.

Proposition 16. The dynamics of the log consumption ratio h is

dht ¼
1

2c
ðK2;t � K1;tÞdt þ

1

c
ðD1;t � D2;tÞ0 dBt:

Proof of Proposition 16: The proof is similar to the proof of Proposition 2.

A.3 EXPLICITLY MODELING OVERCONFIDENCE (SECTION 4.4)

There is an N-dimensional state vector, xt 2 RN , which evolves according to

dxt ¼ gt dt þ sx dBt:

Here, g 2 RN and sx 2 RN�N . The variance–covariance matrix of x is
R ¼ sxs

0
x. We assume that R is invertible at all points in time. The expected

growth follows

dgt ¼ að�g� gtÞdt þ sg dBg
t : ðA:24Þ

Finally, there is an N-dimensional signal process that follows

dst ¼ ss dBs
t :

All the Brownian motions are uncorrelated. There are two agents in the economy.
We assume that both investors use x and the signal processes, s, to filter out the
current value of g. Agent 1 correctly believes that the signal process is uninforma-
tive about the value of g. Agent 2 is overconfident about the signal and believes that
it follows the process

dst ¼ /ss dBg
t þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � /2

q
ss dBs

t ;

where 0 < / < 1:
Using standard filtering, one can show that the conditional expected values of g

as perceived by Agents 1 and 2 are given by
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dg1
t ¼ að�g� g1

t Þdt þ V 1R�1ðdxt � g1
t dtÞ ðA:25Þ

and

dg2
t ¼ að�g� g2

t Þdt þ V 2R�1ðdxt � g2
t dtÞ þ

�
sg

ss

�
/ dst; ðA:26Þ

where V1 and V2 are the steady-state variance–covariance matrix of g as estimated
by Agents 1 and 2, respectively. The steady-state variance is the solution to the
following Matrix Riccati equations:

V 10
R�1V 1 þ 2aV 1 � sGIN�N ¼ 0

for the rational agent and

V 20
R�1V 2 þ 2aV 2 � ð1 � /2ÞsGIN�N ¼ 0

for the irrational agent.
We focus on the solution for the rational agent; the solution for the irrational

agent follows easily from identical arguments. Note that due to the symmetry
of problem, we can reduce the Riccati equation above to a system of two equations
and two unknowns. Define v1

1 ¼ ðV 1Þii, v2
1 ¼ ðV 2Þii, and v1

2 ¼ ðV 1Þij, v2
2 ¼

ðV 2Þij for i 6¼ j. The equations then become�
v1

1

�2 þ 2

�
1 � 1

N

��
v1

2

�2�2

�
1 � 1

N

�
v1

1v
1
2 þ 2as2v1

1 � s2
Gs

2 ¼ 0; ðA:27Þ

�1

N

�
v1

1

�2 þ
�

1 � 3

N

��
v1

2

�2 þ 4

N
v1

1v
1
2 þ 2as2v1

2 ¼ 0: ðA:28Þ

Subtracting the second equation from the first yields

1

kn

�
Dv1
�2 þ 2as2Dv1 � s2

Gs
2 ¼ 0;

where kN ¼ N
Nþ1 (as before) and Dv1 ¼ v1

1 � v1
2. Solving for Dv1 leads to

Dv1 ¼ as2kN

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ

	sG
as


2 1

kN

r
� 1

�
:

Substituting v1
1 ¼ v1

2 þ Dv1 into Equation (A.28) and solving for v1
2 yield

v1
2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dv1

N
þ
�
Dv1

N
þ as2

�2
s

�
�
Dv1

N
þ as2

�
:
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Following the same procedure for the irrational agent, it follows that

Dv2 ¼ as2kN

0@ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ

	sG
as


2ð1 � /2Þ
kN

s
� 1

1A
and

v2
2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dv2

N
þ
�
Dv2

N
þ as2

�2
s

�
�
Dv2

N
þ as2

�
:

It is straightforward to show that Dv1 > Dv2, v1
2 > v2

2, and v1
1 > v2

1. This follows
intuitively from the fact that the irrational agent is overconfident and believes he is
learning from the signal and thus his posterior variance is lower.

It now follows that as N approaches infinity,

Dv1/as2

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ

	sG
as


2
r

� 1

!
¼def Dv1

N;

Dv2/as2

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ

	sG
as


2
ð1 � /2Þ

r
� 1

!
¼def Dv2

N;

and both v1
2 and v2

2 approach zero. Thus, in the steady-state limit, V1 and V2 con-
verge to diagonal matrices.

Neither of the two agents knows the true g, and consequently both agents will be
wrong on average. However, Agent 2 is overconfident and will on average be
‘‘more wrong’’ than Agent 1. Let dit ¼ git � gt be the error that agent i makes
in his estimation of the expected growth rate, g. Then, applying Itô’s lemma to
Equations (A.24)–(A.26), it follows that

dd1
t ¼ �W1d1

t dt þ V 1R�1sx dBt � sg dBg
t ; ðA:29Þ

and

dd2
t ¼ �W2d2

t dt þ V 2R�1sx dBt � sg dBg
t þ sg/ dBs

t ; ðA:30Þ

where W1 ¼ aIN�N þ V 1R�1 and W2 ¼ aIN�N þ V 2R�1. Both d1 and d2 are
N-dimensional Ornstein–Uhlenbeck processes that revert to zero. The solution
of the SDEs [Equations (A.29) and (A.30)] are given by

d1
t ¼ e�W1td1

0 þ
ðt

0
e�W1ðt�uÞV 1R�1sx dBu �

ðt
0
e�W1ðt�uÞsg dBg

u
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and

d2
t ¼ e�W2td2

0 þ
ðt

0
e�W2ðt�uÞV 2R�1sx dBu �

ðt
0
e�W2ðt�uÞsg dBg

u

þ
ðt

0
e�W2ðt�uÞsg/ dBs

u:

A similar argument as in the proofs of Propositions 2 and 10 then leads to the
following.

Proposition 17. Define the instantaneous transfer index of Agent i as

Ki
t ¼ di0t R

�1dit

and the cross transfer index between Agents 1 and 2 as

K1;2
t ¼ d10

t R
�1d2

t :

Then, the instantaneous dynamics of the log-consumption ratio, ht, is

dht ¼ 1

2c
ðK2

t � K1
t Þdt þ

1

c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2
t þ K1

t � 2K1;2
t

q
d~Bt;

where ~B is a standardized Brownian motion.

A.4. MISTAKES ABOUT THE COVARIANCE MATRIX (SECTION 4.5)

We consider a discrete time version of the model, allowing agents to disagree on the
variance–covariance matrix of the state variables, following Jouini and Napp (2006).
We consider a model with normally distributed shocks and can therefore no longer
implement equilibrium with N þ 1 long-lived assets, as we could in the continuous
time case. In line with the previous literature (see Jouini and Napp, 2006) we assume
that there are enough assets such that the agents can implement the optimal consump-
tion allocations, that is, that Arrow–Debreu securities exist for each state of the world.

We assume a filtered probability space ðX;F ; ðF tÞt2f0;...:;Tg;PÞ satisfying the
usual assumptions. As in the continuous time case, T could be finite or infinite.
There is an N-dimensional state vector, xt 2 RN , which evolves according to
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xtþ 1 ¼ xt þ g þ sxetþ 1:

Here, g 2 RN and sx 2 RN�N and et;Nð0; IN Þ. The variance–covariance matrix
of Dxtþ1 ¼ xtþ1 � xt is R ¼ sxs

0
x, and consequently Dxtþ1;Nðg;RÞ. We

assume that for each xi, there is a corresponding firm i that produces Di;t of a perish-
able consumption good, where

Di;t ¼ Di;0 exi;t ; Di;0 > 0;

and where xi;t ¼ ðxtÞi is the ith element of the vector x at time t. We define
D ¼ ðD1;0;D2;0; . . . ;DN ;0Þ0. The aggregate consumption is given by

Ct ¼
XN
i¼1

Di;t:

As in the continuous time case, there are two price-taking investors, k 2 1; 2gf .
We assume that both agents make mistakes in the expected growth and variance–
covariance matrix of x. That is, we assume that agent k believes that
Dxtþ1;Nðgþ dk ;RkÞ

We further assume that investors k 2 1; 2gf have initial wealth Wk and CRRA
preferences with time discount factors qk and common relative risk aversion
parameter, c. For expositional reasons, we mainly focus on the case when
c 6¼ 1, although our results also hold under logarithmic utility. Thus,
investor k optimizes

Uk ¼ Ek

"XT
t¼0

e�qk t
c1�c
k;t

1 � c

#
;

subject to his budget constraint, where ck;t is the consumption at t of investor k.
Here, since the two investors have different expectations, the k subscript of the
expectation operator is motivated. The total initial wealth is W ¼ W1 þW2.
The economic environment can be summarized by the tuplet
E ¼ ðd1; d2;R1;R2; g;R;DÞ, whereas the agents’ preferences are summarized
by the triplet ðc; q1;q2Þ.

We construct the social planner’s problem with a representative agent state by
state and time by time from

uðCt; kt; tÞ ¼ max
c1;t ;c2;t

�
e�q1tk2;t

c1�c
1;t

1 � c
þ k2;t e�q2t

c1�c
2;t

1 � c

)
s:t:
c1;t þ c2;t ¼ Ct:
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Here, kk;t ¼ kk;0gk;t, gk;t ¼ dPk

dP , and kk;0 2 Rþ determine agent k’s weight in the
social planner’s problem. The solution is given by the following.

Proposition 18. Agent 1’s consumption share at time t is

ft ¼
1

1 þ eðq1�q2Þt=ck
1
c
t

;

which determines the agents’ consumption:

c1;t ¼ ftCt;
c2;t ¼ ð1 � ftÞCt;

In the above, kt ¼ k2;t

k1;t
.

Proof of Proposition 18: The proof is similar to the proof of Proposition 1.

Proposition 19. The Radon–Nikodym derivative, gk;t , is

gk;t ¼ exp

�
� 1

2

�
d0kR

�1
k dk � log

�
jRj
jRk j

��
t

�
� exp

 Xt
s¼1

"
u0sR

�1
k d

þ 1

2
u0s

�
R�1 � R�1

k

�
us

#!
; ðA:31Þ

where us ¼ sxes.

Proof of Proposition 19: First note that Dxt and Dxs are independent for s 6¼ t.
The Radon–Nikodym derivative of agent k is

gk;t ¼
dPk

dP
¼
Yt
s¼1

/kðDxsÞ
/ðDxsÞ

; ðA:32Þ

where

/ðxÞ ¼ 1

ð2pÞN=2jRj1=2
exp

�
� 1

2

�
x� gÞ0R�1

�
x� g

��
ðA:33Þ

and
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/kðxÞ ¼ 1

ð2pÞN=2jRk j1=2
exp

�
� 1

2

�
x�

�
g þ dk

��0
R�1
k

�
x�

�
g þ dk

���
ðA:34Þ

Inserting Equations (A.33) and (A.34) into Equation (A.32) yields the result.

Proposition 20. The log-consumption ratio, ht ¼ logðc1;t

c2;t
Þ, is

ht ¼ h0 þ
�

1

2c

�
d02R

�1
2 d2 � d01R

�1
1 d1 � log

�
jR1j
jR2j

��
þ 1

c

�
q2 � q1

��
t

þ 1

c

Xt
s¼1

"
u0sR

�1
1 d1 þ 1

2
u0s

�
R�1 � R�1

1

�
us

#
� 1

c

Xt
s¼1

"
u0sR

�1
2 d2

þ 1

2
u0s

�
R�1 � R�1

2

�
us

#
:

ðA:35Þ

Proof of Proposition 20: From the optimal consumption allocations in
Proposition 18, we have

ht ¼ log

�
c1;t

c2;t

�
¼ log

 
e�ðq1�q2Þt=c

�
k2;t

k1;t

��1
c

!
¼ �1

c
log

�
eðq1�q2Þt

�
k2;t

k1;t

��

¼ �1

c
log

 
eðq1�q2Þt

 
k2;0g2;t

k1;0g1;t

!!

¼ h0 þ
�

1

2c

�
d02R

�1
2 d2 � d01R

�1
1 d1 � log

�����R1

R2
j
��

þ 1

c

�
q2 � q1

��
t

þ 1

c

Xt
s¼1

"
u0sR

�1
1 d1 þ 1

2
u0s

�
R�1 � R�1

1

�
us

#
� 1

c
R
t

s¼1

"
u0sR

�1
2 d2

þ 1

2
u0s

�
R�1 � R�1

2

�
us

#
:

ðA:36Þ
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