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Abstract We develop new semiparametric bounds on the expected payoffs and prices
of European call options and a wide range of path-dependent contingent claims. We
first focus on the trinomial financial market model in which, as is well-known, an
exact calculation of derivative prices based on no-arbitrage arguments is impossible.
We show that the expected payoff of a European call option in the trinomial model
with martingale-difference log-returns is bounded from above by the expected payoff
of a call option written on an asset with i.i.d. symmetric two-valued log-returns. We
further show that the expected payoff of a European call option in the multiperiod
trinomial option pricing model is bounded by the expected payoff of a call option in
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the two-period model with a log-normal asset price. We also obtain bounds on the
possible prices of call options in the (incomplete) trinomial model in terms of the
parameters of the asset’s distribution. Similar bounds also hold for many other con-
tingent claims in the trinomial option pricing model, including those with an arbitrary
convex increasing payoff function as well as for path-dependent ones such as Asian
options. We further obtain a wide range of new semiparametric moment bounds on
the expected payoffs and prices of path-dependent Asian options with an arbitrary dis-
tribution of the underlying asset’s price. These results are based on recently obtained
sharp moment inequalities for sums of multilinear forms and U -statistics and provide
their first financial and economic applications in the literature. Similar bounds also
hold for many other path-dependent contingent claims.

Keywords Option bounds · Trinomial model · Binomial model · Semiparametric
bounds · Option prices · Expected payoffs · Path-dependent contingent claims · Asian
options · Moment inequalities

JEL Classification G12 · C02 · C65

1 Introduction and discussion

1.1 Objectives and key results

The present paper develops new semiparametric bounds on the expected payoffs and
prices of European call options and awide range of possibly path-dependent contingent
claims. We first focus on the trinomial financial market pricing model in which, as
is well-known, calculation of derivative prices based on no-arbitrage arguments is
impossible (Theorems 2.1–3.2). Our results show, in particular, that the expected
payoff of a European call option in the trinomial model, with log-returns forming a
martingale-difference sequence, is bounded fromabove by the expected payoff of a call
option written on an asset with i.i.d. symmetric two-valued log-returns (Theorem 2.2).
Thus, the results reduce the problem of derivative pricing in the trinomial model to
the binomial case. We further show that the expected payoff of a European call option
in the multiperiod trinomial option pricing model is bounded by the expected payoff
of a call option in the two-period model with a log-normal asset price. These bounds
thus allow one to reduce the problem of pricing options in the trinomial model to the
case of two periods and the standard assumption of normal log-returns. Using the fact
that risk-averse investors require a higher rate of return on the call option than on its
underlying asset (see, e.g., Rodriguez 2003), we also obtain bounds on the possible
prices of call options in the (incomplete) trinomial model in terms of the parameters
of the asset’s distribution (Theorem 2.4).

From our results it follows that semiparametric bounds completely similar to the
case of European call options also hold for many other contingent claims in the trino-
mial option pricing model. In particular, the bounds hold for contingent claims with
an arbitrary convex increasing payoff function (Theorem 2.1) as well as for path-
dependent ones, such as Asian options written on averages of the underlying asset’s
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Bounds for path-dependent options 435

prices (Theorems 3.1, 3.2). The approach can also be applied in the analysis of Amer-
ican option pricing.

The analysis for the trinomial pricing model is based on general characteriza-
tion results for two-valued martingale difference sequences and multiplicative forms
obtained in Sharakhmetov and Ibragimov (2002) (see also de la Peña et al. 2006).
These characterization results that we review in Sect. 6 demonstrate, in particular, that
martingale-difference sequences consisting of random variables (r.v.’s) each of which
takes two values are, in fact, sequences of independent r.v.’s. The results allow one to
reduce the study of many problems for three-valued martingales to the case of i.i.d.
symmetric Bernoulli r.v.’s and provide the key to the development of semiparametric
bounds for the expected payoffs and prices of path-dependent contingent claims in
this work.

We further obtain a wide range of new semiparametric bounds on the expected
payoffs and prices of general path-dependent Asian options in terms of moments of
the underlying asset’s distribution. These bounds are based on recently obtained sharp
moment inequalities for sums of multilinear forms and U -statistics (see de la Peña
et al. 2002, 2003). The moment inequalities provide estimates for moments of sums
of U -statistics and multilinear forms in terms of “computable” quantities given by
(conditional) moments of the random summands in consideration. The results in the
paper provide the first financial and economic applications of the moment estimates
in the literature. Semiparametric moment bounds similar to those for Asian options
also hold for many other path-dependent contingent claims.

1.2 Related literature

Many approaches to contingent claim pricing have been devised, but ultimately most
belong to one of three main methodologies: exact solutions, numerical methods and
semiparametric bounds. Numerical approaches, in turn, can be classified into one of
four categories: (1) formulas and approximations, including application of transform
methods and asymptotic expansion techniques; (2) lattice and finite difference meth-
ods; (3) Monte-Carlo simulation; (4) other specialized methods (see the review in
Broadie and Detemple 2004, and references therein).

Lattice approaches to contingent claim pricing, first proposed in Parkinson (1977)
and Cox et al. (1979), use discrete-time and discrete-space approximations to the
underlying asset’s price process to compute derivative prices. In the binomial derivative
pricing model developed in Cox et al. (1979), the discrete distributions are chosen in
such a way that their first and second moments match those of the underlying asset
either exactly or in the limit as the discrete time step goes to zero. Ritchken and Trevor
(1999) use approximations to log-normal log-returns by a sequence of trivariate or
more general discrete r.v.’s for option pricingwhen the underlying asset’s price follows
a GARCH process with a massive path-dependence. Discrete approximations based
on distributions concentrated on more than two points allow one to match higher
moments of the asset’s price distribution or include additional parameters providing
greater flexibility compared to the binomial model, such as the stretch parameters λ

123



436 D. J. Brown et al.

in Boyle (1988)’s and Kamrad and Ritchken (1991)’ trinomial approach to derivative
pricing.

As discussed in, e.g., Kamrad and Ritchken (1991), the trinomial approximations
are computationally more efficient than the binomial ones in the case of European
call options. However, the additional accuracy of the trinomial method for valuing
American option prices is almost exactly balanced by the additional computational cost
(see Broadie and Detemple 1996, 2004) and one would expect the same to be the case
for path-dependent options, such as Asian options. This emphasizes the importance of
the study of bounds on the expected payoffs and prices of (possibly path-dependent)
contingent claim in the trinomial model whose values can be calculated efficiently.

The present paper provides such bounds for a wide range of general path-dependent
contingent claims written on an asset with a three-valued price process. As discussed
before, our results allow one to reduce the problem of calculating the prices of con-
tingent claims in the trinomial model with dependent returns to the case of binomial
one with i.i.d. assumptions. Furthermore, some of our results provide bounds for the
expected payoffs and prices of options in the multiperiod trinomial model in terms
of those for contingent claims written on an asset with log-normally distributed price
in the two-period model. These results essentially reduce the problem of option pric-
ing in the trinomial model to the case of two periods and the standard assumption of
normality of the underlying asset’s log-returns.

In addition to its importance in the trinomial model, the bounds approaches to con-
tingent claim pricing have a number of advantages over close analytical solutions and
Monte-Carlo techniques that make very strong assumptions concerning the underlying
asset’s price distribution (see the discussion in de la Peña et al. 2004). In particular,
semiparametric approaches to derivative pricing are more robust than the exact pricing
and Monte Carlo methods since they only assume that a specific number of the asset’s
distributional characteristics, such as moments, are known. These approaches are thus
well suited formaking inferences on contingent claims prices in the real-world settings,
including, heavy-tailed distributions and large price fluctuations typically observed in
economic, financial and insurance markets.

The restrictive assumptions needed for deriving exact analytical solutions or apply-
ing Monte-Carlo techniques introduce modeling error into the closed-form solution.
Unfortunately, these approaches usually do not lend themselves easily to the study of
the modeling error nor do they lend to the study of error propagation. Without such
error bounds it is difficult to ascertain the validity of a model and its assumptions.
The bounds approach gives upper and lower bounds to such errors and thus provide
an indirect test of model misspecification for exact or numerical methodologies.1

Motivated by the appealing properties of the semiparametric bounds approach to
derivative pricing, a number of studies in the finance literature have focused on the
problems of deriving estimates for the expected payoffs and prices of contingent claims
in the last quarter of the century. For instance,Merton (1973) establishes option pricing
bounds that requires no knowledge of the underlying asset’s price distribution, and
only imposes nonsatiation as behavioral assumption. Perrakis and Ryan (1984) and

1 In fact, Grundy (1991) notes that the problem can be inverted and estimates bounds on the parameters of
the assumed distribution can be inferred from the bounds using observed prices.
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Perrakis (1986) develop option bounds in discrete time.Although the results in Perrakis
and Ryan (1984) and Perrakis (1986) are quite general, they assume that the whole
distribution of returns is known.

Lo (1987) and Grundy (1991) extend the option bound results to semi-parametric
formulas and thus considerably weaken the necessary assumptions to apply their
bounds. Grundy (1991) uses these results to obtain lower bounds on the noncentral
moments of the underlying asset’s return distribution when option prices are observed.
The option bounds in Lo (1987) and Grundy (1991) are closely related to estimates
for a firm’s expected profit in inventory theory models (see Scarf 1958, 2002). Boyle
and Lin (1997) extend Lo’s results to contingent claims based on multiple assets. Con-
stantinides and Zariphopoulou (2001) study intertemporal bounds under transaction
costs. Frey and Sin (1999) study bounds under a stochastic volatility model. Simon
et al. (2000) show that an Asian option can be bounded from above by the price of
a portfolio of European options. Rodriguez (2003) shows that many option pricing
bounds in the literature can be derived using a single analytical framework and shows,
in particular, how the estimates for the expected payoffs of the contingent claims
produce corresponding bounds on their prices under the assumption of risk-averse
investors. de la Peña et al. (2004) obtain sharp estimates for the expected payoffs and
prices of European call options on an asset with an absolutely continuous price in
terms of the price density characteristics and also derive bounds on the multiperiod
binomial option-pricing model with time-varying moments. The bounds in de la Peña
et al. (2004) reduce the multiperiod binomial setup to a two-period setting with a
Poisson distribution of the log-returns, which is advantageous from a computational
perspective.

The financial applications presented in this paper complement the above literature
and provide, essentially, a new approach to pricing path-dependent contingent claims
in the discrete state space setting. In addition, they further provide the first financial
applications of the probabilistic moment inequalities for sums of U -statistics and
multilinear forms available in the literature.

1.3 Organization of the paper

The paper is organized as follows. Section 2 presents the main results of the paper on
semiparametric bounds for the expected payoffs and prices of contingent claims in the
multiperiod trinomial model with dependent log-returns that. These results allow one
to reduce the analysis to the i.i.d. multiperiod case of the binomial model or the two-
period case of the derivative pricing model with log-normal returns. Section 3 shows
how the approach developed in Sect. 2 can also be used to obtain bounds for path-
dependent derivatives and, as an illustration, provide estimates for Asian options in the
trinomial option pricing model. Section 4 provides semiparametric bounds for Asian
options viamoment inequalities for sums ofmultilinear forms andU -statistics. Finally,
some concluding remarks aremade in Sect. 5. Appendix 6 reviews the characterization
results for two-valued martingale difference sequences and multiplicative forms in
Sharakhmetov and Ibragimov (2002) that provide the basis for the analysis in Sects. 2
and 3. Section 5 makes some concluding remarks.
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2 Bounds in the trinomial option pricing model

In this section, we present the main results of the paper on semiparametric bounds
for the expected payoffs and prices of contingent claims in the trinomial model with
dependent log-returns.

Let {ut }∞t=1 be a sequence of nonnegative numbers and let �0 = (�,∅) ⊆ �1 ⊆
· · · �t ⊆ · · · ⊆ � be an increasing sequence of σ -algebras on a probability space
(�,�, P). Throughout the paper, we consider a market consisting of two assets. The
first asset is a risky asset with the trinomial price process

S0 = s, St = St−1Xt , t ≥ 1, (2.1)

where the (Xt )
∞
t=1 is an (�t )-adapted sequence of nonnegative r.v.’s representing the

asset’s gross returns (additional assumptions concerning the dependence structure of
X ′

t s will be made below). The second asset is a money-market account with a risk-free
rate of return r.

First, we assume that random log-returns log(Xt ) form an (�t )-martingale-
difference sequence and take on three values ut , −ut and 0:

P(log(Xt ) = ut ) = P(log(Xt ) = −ut ) = pt , P(log(Xt ) = 0) = 1 − 2pt , (2.2)

0 ≤ pt ≤ 1/2, t = 1, 2, . . . (so that, in period t , the price of the asset increases to
St = exp(ut )St−1 with probability pt , decreases to St = exp(−ut )St−1 with the same
probability or stays the same: St = St−1 with probability 1 − 2pt ). As usual, in what
follows, we denote by Et , t ≥ 0, the conditional expectation operator Et = E(·|�t ).

2

For t ≥ 0, let S̃τ , τ ≥ t, be the price process with S̃τ = St and S̃τ =
S̃τ−1exp(uτ ετ ), τ > t, where, conditionally on �t , (ετ )

∞
τ=t+1 is a sequence of i.i.d.

symmetric Bernoulli r.v.’s: P(ετ = 1|�t ) = P(ετ = −1|�t ) = 1/2 for τ > t.
The following theoremprovides bounds for the time-t expected payoff of contingent

claims in the trinomial model with an arbitrary increasing convex payoff functions φ :
R+ → R. These estimates reduce the problem of derivative pricing in the multiperiod
trinomial financial market model to the case of the multiperiod binomial model with
i.i.d. returns.

Theorem 2.1 For any increasing convex function φ : R+ → R, the following bound
holds: Etφ(ST ) ≤ Etφ(S̃T ) for all 0 ≤ t < T .

Proof The theorem follows from Theorem 6.3 in Appendix 6 applied to n = T − t
r.v. Yτ = log(Xτ ), τ = t + 1, . . . , T, and the function f (y1, . . . , yT −t ) =
φ
(

St exp
(∑T −t

k=1 yk

))
. 
�

The choice of the function φ(x) = max(x − K , 0), x ≥ 0, in Theorem 2.1 imme-
diately provides estimates for the time-t expected payoffs of a European call option
with strike price K ≥ 0 on the asset expiring at time T . Furthermore, using the results

2 The expectation is taken with respect to the true probability measure P.
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in Eaton (1974a), we also obtain bounds for the expected payoff of European call
options in the trinomial model in terms of the expected payoff of power options with
the payoff function φ(x) = [max(x − K , 0)]3 written on an asset with log-normally
distributed price. These bounds are similar in spirit to the estimates for linear com-
binations of i.i.d. symmetric Bernoulli r.v.’s and t-statistics under symmetry in Eaton
(1974a) (see also Edelman 1990; and Section 12.G in Marshall et al. 2011) and to
the estimates in the binomial model in terms of Poisson r.v.’s obtained in de la Peña
et al. (2004). These bounds essentially reduce the problem of option pricing in the
trinomial multiperiod model to the problem of pricing in the case of two-periods and
the standard assumption of log-normal returns.

Theorem 2.2 The following bounds hold:

Et max(ST − K , 0) ≤ Et max(S̃T − K , 0)

≤
{

Et

[
max

(
St e

Z
√∑T

k=t+1 u2k − K , 0

)]3}1/3

, (2.3)

where, conditionally on �t , Z has the standard normal distribution.

Remark 2.1 Analogues of the bounds in Theorems 2.1 and 2.2 also hold for price
processes with asymmetric trivariate distributions of the log-returns. For instance, evi-
dently, the bounds continue to hold in the case of the log-returns Xt with the trivariate
distributions P(log(Xt ) = ut ) = pt , P(log(Xt ) = −dt ) = qt , P(log(Xt ) = 0) =
1− pt − qt , where 0 < ut ≤ dt , 0 ≤ pt ≤ qt ≤ 1/2, t = 1, 2, . . . Similar extensions
hold as well for other results in the paper for the trinomial option pricing model. In
addition, further generalizations of the bounds in the trinomial model to the asymmet-
ric case may be obtained using symmetrization inequalities for (generalized) moments
of sums of r.v.’s (see, for instance, de la Peña and Giné 1999).

Proof As indicated before, the first inequality in (2.3) is an immediate consequence of
Theorem 2.1 applied to the increasing convex function φ(x) = max(x − K , 0), x ≥ 0.
The second estimate in (2.3) is a consequence of Jensen’s inequality and the fact that,

as follows from the results in Eaton (1974a), Et

[
max

(
St e

∑T
k=t+1 ukεk − K , 0

)]3 ≤

Et

[
max

(
St e

Z
√∑T

k=t+1 u2k − K , 0

)]3
. 
�

Bounds similar to those given by Theorems 2.1 and 2.2 hold as well for the expected
stop-loss for a sum of three-value risks that form amartingale-difference sequence (the
proof of the estimates for the expected stop-loss of a sum of risks is completely similar
to the argument for Theorems 2.1, 2.2).

Theorem 2.3 Suppose that the r.v.’s {Xt }∞t=1, form an (�t )-martingale-difference
sequence and have distributions

P(Xt = ut ) = P(Xt = −ut ) = pt , P(Xt = 0) = 1 − 2pt , (2.4)
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0 ≤ pt ≤ 1/2, t = 1, 2, . . . Further, let {εt }∞t=1 be a sequence of i.i.d. symmetric
Bernoulli r.v.’s: P(εt = 1) = P(εt = −1) = 1/2, t = 1, 2, . . . , and let Z denote a
standard normal r.v. Then the following bound holds for the expectation of any convex
function φ : R → R of the sum of the risks

∑T
t=1 Xt :

Eφ

(
T∑

t=1

Xt

)
≤ Eφ

(
T∑

t=1

utεt

)
.

In particular, the following bounds hold for the expected stop-loss E max(
∑T

t=1 Xt −
K , 0), K ≥ 0:

E max

(
T∑

t=1

Xt − K , 0

)
≤ E max

(
T∑

t=1

utεt − K , 0

)

≤

⎧⎪⎨
⎪⎩

E

⎡
⎣max

⎛
⎝Z

√√√√
T∑

k=t+1

u2
k − K , 0

⎞
⎠
⎤
⎦
3
⎫⎪⎬
⎪⎭

1/3

.

Let us now turn to the problem of making inferences on the European call option
price in the trinomial model. As is well-known, the trinomial option pricing model is
incomplete and allows for an infinite number of equivalent probability measures under
which the discounted asset price process is a martingale. The different risk-neutral
measures lead to different prices for contingent claims in the model, all of which
are consistent with market prices of the underlying assets. Therefore, the standard
no-arbitrage pricing approach breaks down.

The inequalities for the expected payoffs of contingent claims in Theorems 2.1
and 2.2 (under the true probability measure), together with estimates for the call
return over its lifetime, on the other hand, provide bounds for possible prices of the
option. Let RS and RC denote, respectively, the required gross returns (over the periods
t + 1, . . . , T ) on the underlying asset with the trinomial price process (2.1), (2.2) and
on the European call option with the strike price K on the asset expiring at time T > t.
The price of the call option at time t is given by Ct = RC Et max(ST − K , 0) (where
the expectation is taken with respect to the true probability measure) and, similarly,
the price of the asset satisfies St = RS Et ST .

As follows fromRodriguez (2003) (see alsoTheorem8 inMerton 1973), risk-averse
investors require a higher rate of return on the call option than on its underlying asset
and, therefore, RC < RS .3 Combining this with the bounds given by Theorem 2.2, we
immediately obtain estimates for the prices of European call options in the trinomial
model. Similar bounds also hold for other contingent claims with convex payoff func-
tion; they can be obtained using Theorem 2.1 and estimates for the gross return on the

3 As discussed in Jagannathan (1984) and Rodriguez (2003), this result depends critically on the Rothschild
and Stiglitz (1970) definition of risk orderings. Grundy (1991) provides an example in which the expected
return on the option is less than the risk-free rate; however the condition dC(S)/d S < 0 in his example
conflicts with theoretical models and empirical findings, see Rodriguez (2003).
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contingent claims over their lifetimes. For instance, in the case of independent returns

Xt , RS = St/Et ST =
(∏T

k=t+1 Et Xk

)−1 =
{∏T

k=t+1[1 + 2(cosh(uk) − 1)pk]
}−1

,

where cosh(x) = (exp(x) + exp(−x))/2, x ∈ R, is the hyperbolic cosine. We thus
have the following estimates for the call option prices.

Theorem 2.4 In the case of the trinomial option pricing model with risk-averse
investors and independent returns Xt with distribution (2.2), the time-t prices of the
European call option on the asset satisfy the following bounds:

Ct ≤
{

T∏
k=t+1

[1 + 2(cosh(uk) − 1)pk]
}−1

Et max(S̃T − K , 0)

≤
{

T∏
k=t+1

[1+2(cosh(uk) −1)pk]
}−1 {

Et

[
max

(
St e

Z
√∑T

k=t+1 u2k − K , 0

)]3}1/3

,

(2.5)

where, conditionally on �t , Z has the standard normal distribution.

3 Bounds for Asian options: trinomial model

The approach presented in the previous section also allows one to obtain semiparamet-
ric bounds for the expected payoffs and prices of path-dependent contingent claims in
the trinomial model. As an illustration, in the present section, we derive estimates
for the expected payoffs of Asian options written on an asset with the trinomial
price process. Similar bounds for other path-dependent contingent claims may also be
derived.

Let 0 < t ≤ T − n. Consider an Asian call option with strike price K expiring at
time T written on the average of the past n prices of the asset with price process (2.1).
The time-t expected payoff of the option is Et (An,T ), where

An,T = max

[(
T∑

k=T −n+1

Sk

)
/n − K , 0

]

= max

[
ST −n

(
T∑

k=T −n+1

XT −n+1 . . . Xk

)
/n − K , 0

]

= max

⎡
⎣St

T −n+1∏
j=t+1

X j

(
1 +

T∑
k=T −n+2

XT −n+2 . . . Xk

)
/n − K , 0

⎤
⎦ . (3.1)

Using the convexity of the payoff function of the Asian option, the results given in
Theorem 6.3 imply, similar to the proof of Theorems 2.1–2.3, the following bounds
for the trinomial Asian option pricing model.
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Theorem 3.1 If the log-returns log(Xt ) form an (�t )-martingale-difference sequence
and have the distribution (2.2), then the expected payoff of the Asian option satisfies

Et max

[(
T∑

k=T −n+1

Sk

)
/n − K , 0

]

≤ Et max

⎡
⎣St

⎛
⎝

T∑
k=T −n+1

exp

⎛
⎝

k∑
j=t+1

u jε j

⎞
⎠
⎞
⎠ /n − K , 0

⎤
⎦ . (3.2)

Estimate (3.2) becomes even simpler in the case of an Asian option written on an
asset whose gross returns form a three-valued martingale-difference sequence (so that
the model represents the trinomial financial market with short-selling where the gross
returns can take negative values):

Theorem 3.2 If the returns (Xt ) form an (�t )-martingale-difference and have the
distribution (2.4), then the expected payoff of the Asian option satisfies the inequality

Et max

[(
T∑

k=T −n+1

Sk

)
/n − K , 0

]

≤ Et max

⎡
⎣St

⎛
⎝

T∑
k=T −n+1

⎛
⎝

k∏
j=t+1

u j

⎞
⎠ εk

⎞
⎠ /n − K , 0

⎤
⎦ . (3.3)

Proof Bound (3.3) follows from Theorem 6.3 and the fact that, by Theorem 6.1, the
r.v.’s ηk = εt+1εt+2 . . . εk , k = T −n +1, . . . , T, are i.i.d. symmetric Bernoulli r.v.’s.


�
4 Bounds for Asian options: the general case

Let 0 < t ≤ T − n, 1 ≤ s < p, ak, bk > 0, a p
k ≤ bk, k = T − n + 1, . . . , T . Similar

to the previous section, consider an Asian call option with strike price K expiring at
time T , written on the average of the past n prices of an asset with the (not necessarily
identically distributed) gross returns Xt ≥ 0, t = 1, 2, . . . , such that Et Xs

k = as
k ,

Et X p
k = bk , k = T − n + 1, . . . , T, and price (2.1): S0 = s, St = S0X1 . . . Xt , t ≥ 1.

The time-t expected payoff of the option is Et (An,T ) with An,T given in (3.1).
The r.v.

Wn,T = 1

n
St

T −n+1∏
j=t+1

X j

(
1 +

T∑
k=T −n+2

XT −n+2 . . . Xk

)
(4.1)

which the payoff An,T of the Asian option in (3.1) depends upon is a particular case
of a sum of multilinear forms defined as

d0 +
N∑

c=1

∑
1≤i1<···<ic≤N

di1,...,ic Yi1 . . . Yic , (4.2)
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where d0 ∈ R, di1,...,ic ∈ R, 1 ≤ i1 < · · · < ic ≤ N , c = 1, . . . , N , are some
parameters and Y1, . . . , YN are independent nonnegative r.v.’s. This property allows
one to obtain bounds for the expected payoffs of Asian options, combining Grundy
(1991)’s results for expected payoffs of European call options in terms of moments of
the underlying asset’s price with the general sharp inequalities for power moments of
sums of multilinear forms and U -statistics obtained in de la Peña et al. (2002, 2003)
(see also Ibragimov et al. 2001). For example, the following theorem provides bounds
on the day-t expectations of the Asian options in terms of the fixed power moments
of the underlying asset’s return distribution. Using the inequalities for expectations
of general functions of sums of multilinear forms obtained in de la Peña et al. (2002,
2003), one can further obtain estimates similar to those in Theorem4.1 for the expected
payoffs of other path-dependent contingent claims.

Specifically, let VT −n+2(s, t, aT −n+2, bT −n+2), . . . , VT (s, t, aT , bT ) be indepen-
dent r.v.’s with distributions

P [Vk (s, p, ak, bk) = 0] = 1 − (at
k/bk

)s/(p−s)
,

P
[
Vk (s, p, ak, bk) = (bk/as

k

)1/(p−s)
]

= (at
k/bk

)s/(p−s)
, (4.3)

k = T − n + 2, . . . , T . It is easy to see that the bivariate r.v.’s Vk(s, p, a, b) have the
same moments of orders s and p as the gross returns Xk : Et [Vk(s, p, a, b)]s = as

k ,
Et [Vk(s, p, a, b)]p = bk , k = T − n + 1, . . . , T, For a r.v. W ≥ 0, denote by
||W |p = (EW p)1/p the L p-norm of W.

Further, denote by F(s, p, a, b) and G(s, p, a, b) the functions

F(s, p, a, b) = 1

n
St

T −n+1∏
j=t+1

b1/p
j

∣∣∣∣∣

∣∣∣∣∣1 +
T∑

k=T −n+2

VT −n+2(s, p, aT −n+1, bT −n+1) . . . Vk(s, p, ak, bk)

∣∣∣∣∣

∣∣∣∣∣
p

and

G(s, p, a, b) = 1

n
St

T −n+1∏
k=t+1

b1/p
k

⎡
⎣

n−1∑
q=0

∑
T −n+2≤ j1<···< jq≤T

(b j1 − a p
j1
) . . . (b jq − a p

jq
)

×
⎛
⎝1 +

n−1∑
l=q

∑
i1<···<il−q∈{T −n+2,...,T }\{ j1,..., jq }

ai1ai2 . . . ail−q

⎞
⎠
⎤
⎦
1/p

.

That is,

G p(s, p, a, b) = 1

n
St bt+1 . . . bT −n+1

[(
1 + aT −n+2 + aT −n+2aT −n+3

+ · · · + aT −n+2aT −n+3 . . . aT
)p
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+ (bT −n+2 − a p
T −n+2

)
(1 + aT −n+3 + aT −n+3aT −n+4 + · · · + aT −n+3 . . . aT )p

+ · · · + (bT −n+3 − a p
T −n+3

)
(1 + aT −n+2 + aT −n+2aT −n+4

+ · · · + aT −n+2aT −n+4 . . . aT )p

+ · · · + (bT − a p
T )(aT −n+2 . . . aT −1)

p

+ (bT −n+2 − a p
T −n+2

) (
bT −n+3 − a p

T −n+3

) (
1 + aT −n+4

+aT −n+4aT −n+5 . . . + aT −n+4aT −n+5 . . . aT
)p

+ (bT −n+2 − a p
T −n+2

) (
bT −n+4 − a p

T −n+4

) (
1 + aT −n+3

+aT −n+3aT −n+5 . . . + aT −n+3aT −n+5 . . . aT
)p

+ (bT −1 − a p
T −1

) (
bT − a p

T

)
(aT −n+2 + aT −n+3 . . . + aT −2)

p

+ · · · + (bT −n+2 − a p
T −n+2)(bT −n+3 − a p

T −n+3) . . . (bT − a p
T )
]
.

Evidently, the values of F(s, p, a, b) and G(s, p, a, b) depend only on s, p, St ,

and the values of the underlying asset’s returns’ moments as
k and bk only.

To illustrate the structure of the functions F(s, t, a, b) and G(s, t, a, b), consider
the case n = T = 3. In this case, the Asian option payoff in (3.1) is

A3,3 = max

(
1

3
(S1 + S2 + S3) − K , 0

)

= max

(
1

3
S0(X1 + X1X2 + X1X2X3) − K , 0

)
.

We have F(s, p, a, b) = 1
3 S0b1/p

1 ||1+ V2(s, p, a2, b2) + V2(s, p, a2, b2)V3(s, p,

a3, b3)||p, where V2(s, p, a2, b2) and V3(s, p, a3, b3) are independent r.v.’s with dis-
tribution (4.3), and

G(s, p, a, b) = 1

3
S0b1/p

1

[
(1 + a2 + a2a3)

p + (b2 − a p
2

)
(1 + a3)

p

+ (b3 − a p
3

)
a p
2 + (b2 − a p

2

) (
b3 − a p

3

) ]1/p
.

The function F(s, p, a, b) is thus exactly the L p-norm ||An,T ||p = [E(An,T )p]1/p

of the Asian option payoff An,T in (3.1) evaluated at the bivariate r.v.’s Vk(s, p, a, b)

k = T − n + 1, . . . , T, in (4.3).
The structure of the function G(s, p, a, b) is similar to the following representation

for the sum of multilinear forms
∑T

k=T −n+2 XT −n+2 . . . Xk in (4.2):

T∑
k=T −n+2

XT −n+2 . . . Xk =
n−1∑
q=0

∑
T −n+2≤ j1<···< jq ≤T

X j1 . . . X jq

×
⎛
⎝1 +

n−1∑
l=q

∑
i1<···<il−q ∈{T −n+2,...,T }\{ j1,..., jq }

Xi1 Xi2 . . . Xil−q

⎞
⎠ .

(4.4)
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In the function G p(s, p, a, b), the random terms X jr , r = 1, . . . , q, are replaced by
the function of their moments b jr − a p

jr
and the multilinear form factors in (4.4) are

evaluated at the degenerate r.v.’s Xi1 = ai1 , . . . , Xil−q = ail−q (a.s.).
We have

Theorem 4.1 Let 1 < p < 2, 0 < s ≤ p − 1 or p ≥ 2, 0 < s ≤ 1. If K ≤
p−1

p G(s, p, a, b), then

Et (An,T ) ≤ F(s, p, a, b) − K . (4.5)

If K >
p−1

p F(s, p, a, b), then

Et (An,T ) ≤ F p(s, t, a, b)
1

p

(
p − 1

pK

)p−1

. (4.6)

Let 1 < p < 2, 1 ≤ s < p or t ≥ 2, p − 1 ≤ s < p. If K ≤ p−1
p F(s, p, a, b),

then Et (An,T ) ≤ G(s, p, a, b) − K . If K >
p−1

p G(s, p, a, b), then Et (An,T ) ≤
G p(s, p, a, b) 1p

(
p−1
pK

)p−1
.

Proof From Proposition 2 in Grundy (1991) it follows that the Asian option’s day-t
expected payoff Et (An,T ) = E

[
max

( 1
n Wn,T − K , 0

)]
with An,T and Wn,T in (3.1)

and (4.1) satisfies

Et (An,T ) ≤ ||Wn,T ||p − K , (4.7)

if K ≤ p−1
p ||Wn,T ||p and

Et (An,T ) ≤ E(Wn,T )p 1

p

(
p − 1

pK

)p−1

(4.8)

for K >
p−1

p ||Wn,T ||p.

Further, from Theorem 3.3 in de la Peña et al. (2002) (see also de la Peña et al.
2003) we obtain that the following sharp inequalities hold for the moments E(Wn,T )p

in (4.7) and (4.8). If 1 < p < 2, 0 < s ≤ p − 1 or p ≥ 2, 0 < s ≤ 1, then

G p(s, p, a, b) ≤ E(Wn,T )p ≤ F p(s, p, a, b). (4.9)

If 1 < p < 2, 1 ≤ s < p or t ≥ 2, p − 1 ≤ s < p, then

F p(s, p, a, b) ≤ E(Wn,T )p ≤ G p(s, p, a, b). (4.10)

Bounds (4.7)–(4.10) imply the conclusion of the theorem. 
�
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Remark 4.1 The bounds presented in Theorem 4.1 hold for arbitrary two fixed
moments of the returns of order higher than one; the moments fixed do not have
to be, e.g., the mean and variance of the returns. In particular, the bounds hold for
assets with heavy-tailed distributions typically observed in economic, financial and
insurancemarkets (see, for instance, the reviews and results inGabaix 2008; Ibragimov
2009; Ibragimov et al. 2015; Ibragimov and Prokhorov 2016) including the infinite
fourth moment and even the infinite variance case.

In the case of the fixed first moment s = 1 and the returns Xk satisfying Et Xk = ak

and Et X p
k = bk , k = T −n+1, . . . , T, the r.v.’s VT −n+2(1, t, aT −n+2, bT −n+2), . . . ,

VT (1, t, aT , bT ) in (4.3) have distributions

P [Vk(1, p, ak, bk) = 0] = 1 − (at
k/bk

)1/(p−1)
,

P
[
Vk(1, p, ak, bk) = (bk/ak)

1/(p−1)
]

= (at
k/bk

)1/(p−1)
,

k = T −n +2, . . . , T . In this case, Theorem (4.1) implies the bounds in the following
corollary.

Corollary 4.1 If p ≥ 2 and K ≤ p−1
p G(1, p, a, b), then

Et (An,T ) ≤ F(1, p, a, b) − K . (4.11)

If 1 < p < 2 and K ≤ p−1
p F(1, p, a, b), then Et (An,T ) ≤ G(1, p, a, b) − K .

Remark 4.2 The moment bounds in (4.5)-(4.11) are functions of the bivariate price
process with the returns Vk(s, t, a, b) in (4.3). This is because, as follows from de la
Peña et al. (2002, 2003), the maxima of moments of sums of multilinear forms (4.2) in
r.v.’s Yk with fixed twomoments is achieved for r.v.’s Yk taking on at most three values.
As follows from Hoeffding (1955) and Karr (1983), an analogue of this result holds
for expectations of arbitrary continuous functions of r.v.’s with an arbitrary number
of fixed (generalized) moments. Namely, consider the problem of determining the
extrema of the expectation E f (X) over the r.v.’s X with fixed Ehs(X) = cs, where
f, hs : R → R, s = 1, . . . , m, are some continuous functions and cs ∈ R are some
constants. According to Hoeffding (1955) and Karr (1983), in the above problem, it
suffices to consider the r.v.’s X that take on at most m + 1 values.

Remark 4.3 Similar to Theorem 2.4, the results in Theorems 3.1, 3.2 and 4.1 and
Corollary 4.1, together with the lower estimates for the call return over its lifetime
provide bounds on Asian option prices. For instance, since, in the notation preceding

Theorem 3.1, RC < RS = St/Et ST =
(∏T

k=t+1 Et Xk

)−1
, from Corollary 4.1 it

follows that the following bounds hold for the time-t Asian option price Ct : Ct <(∏T
k=t+1 ak

)−1
(F(1, p, a, b) − K ) if p ≥ 2 and K ≤ p−1

p G(1, p, a, b); and Ct <
(∏T

k=t+1 ak

)−1
(G(1, p, a, b)− K ) if 1 < p < 2 and K ≤ p−1

p F(1, p, a, b),where,

as before, ak = Et Xk , k = t + 1, . . . , T . Similar to Grundy (1991), these results,
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together with the observed option prices, provide restrictions on the feasible values of
moments of the underlying asset’s returns under the true probability measure.

5 Concluding remarks

This paper presents a number of new semiparametric bounds on the expected payoffs
and prices of European call options and path-dependent contingent claims.

The first set of the obtained bounds reduces the problem of option pricing in the
trinomial model with dependent returns to the i.i.d. binomial case and the two-period
model with the standard assumption of a log-normal asset price. Similar results also
hold for Asian options written on averages of the underlying asset’s prices and other
path-dependent contingent claims.

The second set of our results provides semiparametric bounds on the expected
payoffs and prices of Asian options in terms of moments of the underlying asset’s
returns. The bounds hold for an arbitrary distribution of the underlying asset’s price.
They provide the first financial and economic applications of the recently obtained
moment inequalities for sums of multilinear forms and U -statistics in the literature.
Analogues of the results also hold for many other path-dependent contingent claims.

The advantage of the semiparametric bounds approach to option pricing is that
it does not require the knowledge of the entire distribution of the underlying asset’s
price. The bounds are easy to calculate and depend only on several parameters of
the asset’s price distribution, such as moments or the values taken by the asset’s
returns. Therefore, they provide an appealing alternative to exact option pricing and
computationally expensive numerical pricing methods.

Further research on the topic may focus on extensions of the bounds to the case of
probability weighting functions and the related prospect theory framework (see Bar-
beris and Huang 2008). In particular, it would be of interest to obtain bound analogues
of the results in Barberis and Huang (2008) for securities with skewed bivariate payoff
distributions in the case of skewed asymmetric trivariate payoffs (see Remark 2.1).4

Further generalizations and applications of the results obtained in the paper may also
focus on discrete price processes taking on more than three values and derivations of
bounds in the continuous case using discrete approximations.

6 Appendix: Probabilistic foundations for the analysis

Let (�,�, P) be a probability space equipped with a filtration �0 = (�,∅) ⊆ �1 ⊆
. . . �t ⊆ . . . ⊆ �. Further, let (at )

∞
t=1 and (bt )

∞
t=1 be arbitrary sequences of real

numbers such that at 
= bt for all t.
The key to the analysis in Sects. 2 and 3 is provided by the following theorems.

These theorems are consequences of more general results obtained in Sharakhmetov

4 The analysis of preferences over payoff distributions and the effects of skewness and other highermoments
(e.g., kurtosis) in this framework may also relate to applications of majorization theory (see Marshall et al.
2011) and heavy-tailed distributions (see, among others Embrechts et al. 1997; Gabaix 2008; Ibragimov
2009; Ibragimov et al. 2015; Ibragimov and Prokhorov 2016).
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and Ibragimov (2002) that show that r.v.’s taking k + 1 values form a multiplicative
system of order k if and only if they are jointly independent (see also de la Peña et al.
2006). These results imply, in particular, that r.v.’s each taking two values form a
martingale-difference sequence if and only if they are jointly independent.

To illustrate the main ideas of the proof, we first consider the case of r.v.’s taking
values ±1.

Theorem 6.1 If r.v.’s Ut , t = 1, 2, . . . , form a martingale-difference sequence with
respect to a filtration (�t )t and are such that P(Ut = 1) = P(Ut = −1) = 1

2 for all
t, then they are jointly independent.

For completeness, the proof of the theorem is provided below.

Proof It is easy to see that, under the assumptions of the theorem, one has that, for all
1 ≤ l1 < l2 < · · · < lk , k = 2, 3, . . . ,

EUl1 . . . Ulk−1Ulk = E
(
Ul1 . . . Ulk−1 E(Ulk |�lk−1)

) = E
(
Ul1 . . . Ulk−1 × 0

) = 0.

(6.1)

It is easy to see that, for xt ∈ {−1, 1}, I (Xt = xt ) = (1+ xtUt )/2. Consequently, for
all 1 ≤ j1 < j2 < · · · < jm , m = 2, 3, . . . , and any x jk ∈ {−1, 1}, k = 1, 2, . . . , m,

we have

P(U j1 = x j1 , U j2 = x j2 , . . . , U jm = x jm )

= E I (U j1 = x j1)I (U j2 = x j2) . . . I (U jm = x jm )

= 1

2m
E(1 + x j1U j1)(1 + x j2U j2) . . . (1 + x jm U jm )

= 1

2m

⎛
⎝1 +

m∑
c=2

∑
i1<···<ic∈{ j1, j2,..., jm }

EUi1 . . . Uic

⎞
⎠ = 1

2m

= P(U j1 = x j1)P(U j2 = x j2) . . . P(U jm = x jm )

by (6.1). 
�
The proof of the analogue of the result in the case of r.v.’s each of which takes

arbitrary two values is completely similar and the following more general result holds.

Theorem 6.2 If r.v.’s Xt , t = 1, 2, . . . , form a martingale-difference sequence with
respect to a filtration (�t )t and each of them takes two (not necessarily the same for
all t) values {at , bt }, then they are jointly independent.

Proof Let the r.v. Xt take the values at and bt , at 
= bt , with probabilities P(Xt =
at ) = pt and P(Xt = bt ) = qt , respectively. It not difficult to check that, for
xt ∈ {at , bt },
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I (Xt = xt ) = P(Xt = xt )

(
1 + (Xt − at pt − bt qt )(xt − at pt − bt qt )

(at − bt )2 pt qt

)

= P(Xt = xt )

(
1 + (Xt − E Xt )(xt − E Xt )

(at − bt )2 pt qt

)

= P(Xt = xt )

(
1 + Xt xt

(at − bt )2 pt qt

)
= P(Xt = xt )

(
1 + Xt xt

V ar(Xt )

)
,

where E Xt = at pt + bt qt = 0 and V ar(Xt ) = (bt − at )
2 pt qt are the mean and

the variance of Xt . Since the r.v.’s Xt satisfy property (6.1) with Ul j replaced by Xl j ,
j = 1, . . . , k, similar to the proof of Theorem 6.1 we have that, for all 1 ≤ j1 < j2 <

· · · < jm , m = 2, 3, . . . , and any x jk ∈ {a jk , b jk }, k = 1, 2, . . . , m,

P(X j1 = x j1 , X j2 = x j2 , . . . , X jm = x jm )

= E I (X j1 = x j1)I (X j2 = x j2) . . . I (X jm = x jm )

=
m∏

s=1

P(X js = x js )E

(
1 + X j1x j1

V ar(X j1)

)
. . .

(
1 + X jm x jm

V ar(X jm )

)

=
m∏

s=1

P(X js = x js )

×
⎛
⎝1+

m∑
c=2

∑
i1<···<ic∈{ j1, j2,..., jm }

E Xi1 . . . Xic xi1 . . . xic/(V ar(Xi1) . . . V ar(Xic))

⎞
⎠

= P(X j1 = x j1)P(X j2 = x j2) . . . P(X jm = x jm ).


�

Let Xt , t = 1, 2, . . . , be an (�t )-martingale-difference sequence consisting of r.v.’s
each of which takes three values {−at , 0, at }. Denote by εt , t = 1, 2, . . . , a sequence
of i.i.d. symmetric Bernoulli r.v.’s independent of (Xt )

∞
t=1. The following theorem

provides an upper bound for the expectation of arbitrary convex function of Xt in
terms of the expectation of the same function of the r.v.’s εt .

Theorem 6.3 If f : Rn → R is a function convex in each of its arguments, then the
following inequality holds:

E f (X1, . . . , Xn) ≤ E f (a1ε1, . . . , anεn). (6.2)

Proof Let �̃0 = �n . For t = 1, 2, . . . , n, denote by �̃t the σ -algebra spanned by the
r.v.’s X1, X2, . . . , Xn , ε1, . . . , εt . Further, let, for t = 0, 1, . . . , n, Et stand for the
conditional expectation operator E(·|�̃t ) and let ηt , t = 1, . . . , n, denote the r.v.’s
ηt = Xt + εt I (Xt = 0).
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Using conditional Jensen’s inequality, we have

E f (X1, X2, . . . , Xn) = E f (X1 + E0[ε1 I (X1 = 0)], X2, . . . , Xn)

≤ E[E0 f (X1 + ε1 I (X1 = 0), X2, . . . , Xn)]
= E f (η1, X2, . . . , Xn). (6.3)

Similarly, for t = 2, . . . , n,

E f (η1, η2, . . . , ηt−1, Xt , Xt+1, . . . , Xn)

= E f (η1, η2, . . . , ηt−1, Xt + Et−1[εt I (Xt = 0)], Xt+1, . . . , Xn)

≤ E[Et−1 f (η1, η2, . . . , ηt−1, Xt + εt I (Xt = 0), Xt+1, . . . , Xn)]
= E f (η1, η2, . . . , ηt−1, ηt , Xt+1, . . . , Xn). (6.4)

From equations (6.3) and (6.4) by induction it follows that

E f (X1, X2, . . . , Xn) ≤ E f (η1, η2, . . . , ηn). (6.5)

It is easy to see that the r.v.’sηt , t = 1, 2, . . . , n, formamartingale-difference sequence
with respect to the sequence of σ -algebras �̃0 ⊆ �̃1 ⊆ · · · ⊆ �̃t ⊆ · · · , and each
of them takes two values {−at , at }. Therefore, from Theorems 6.1 and 6.2 we get
that ηt , t = 1, 2, . . . , n, are jointly independent and, therefore, the random vector
(η1, η2, . . . , ηn) has the same distribution as (a1ε1, a2ε2, . . . , anεn). This and (6.5)
implies estimate (6.2). 
�
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