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1 Introduction

How does industry-level firm strategic interaction influence the aggregate economy? Al-

though the effects of strategic interaction have been thoroughly analyzed in the Indus-

trial Organization literature, the aggregate implications have typically been ignored. In

this paper we develop a general equilibrium model in which oligopolistic intra-industry

competition generates markup dispersion across heterogeneous industries, which leads to

resource misallocation (see Lerner [34]) and hence affects aggregate consumption. Fol-

lowing standard asset pricing insights, changes in aggregate consumption affect agents’

marginal utilities across states and thereby the valuation of firms’ future cash flows; this

in turn feeds back into the firms’ ability to sustain collusion, leading to a rich set of

implications.

We study a discrete time, infinite horizon general equilibrium economy with a con-

tinuum of industries, each of which is defined by a production technology. Within each

industry, a finite number of identical strategic firms hire labor to produce a homogeneous

good. The price of the good in each industry is determined by the outcome of a dynamic

pricing game similar to Rotemberg and Saloner [43]. A representative agent consumes all

goods, supplies all labor, and owns all the firms; thus all profits are valued by her pref-

erences over consumption. We allow industries to differ cross-sectionally, both in their

number of firms and their exposure to productivity shocks. These sources of hetero-

geneity allow us to capture industry-specific strategic behavior, generate heterogeneous

markups, and analyze how industry-specific productivity shocks are transmitted to the

aggregate economy.

Firms in each industry maximize profits subject to intertemporal incentive compati-

bility constraints: In each period, each firm weighs the value of high short-term profits

that can be obtained by aggressive pricing against the long-term profits that are obtained

when all firms cooperate. The value of such long-term profits is determined by the pref-

erences of the representative agent. In general equilibrium, the representative agent’s

consumption bundle depends on the sum of all outputs produced in each industry. If

markups are heterogeneous across industries, relative goods’ prices are distorted com-

pared to the first-best outcome, leading to a) misallocation of labor to industries and b)

a reduction in aggregate consumption. Such changes in consumption affect the represen-

tative agent’s marginal utility across states and hence her valuation of each industry’s

profits, and therefore feed back into each firm’s ability to sustain collusion. Thus, while

each industry takes the macro dynamics as given, industries jointly affect these macro dy-
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namics through changes in the representative agent’s consumption. Our paper therefore

provides a tight link between strategic industry behavior and aggregate outcomes.

We make three theoretical contributions. First, we focus on one industry. We char-

acterize markups and derive conditions under which they are procyclical and counter-

cyclical, respectively. Countercyclical markups are often associated with oligopolistic

competition, based on Rotemberg and Saloner [43]. In their framework, high product

demand in good times increases firms’ incentives to undercut competitors to reap imme-

diate rewards; therefore equilibrium markups narrow in good times. Our paper shows

that this intuition can be overturned. Our arguments follow from the fundamental in-

sights of consumption based asset pricing that market discount rates vary with the state

of the economy, in contrast to the risk-neutral setting of Rotemberg and Saloner [43]. If

discount rates are sufficiently low in good times, then the present value of future cooper-

ation compared to current period profits is higher in booms, making procyclical markups

possible. This insight is general. Within our model, market discount rates can be endoge-

nously countercyclical if the representative agent’s intertemporal elasticity of substitution

is low. With constant relative risk aversion, the threshold level for procyclicality is given

by a coefficient of relative risk aversion of 1, i.e., for logarithmic utility.

While the cyclicality of the “average industry” is ambiguous, following the previ-

ous logic, we also show that one can decompose an industry’s profit variations into

an aggregate and an industry-specific component and that the source of ambiguity lies

in the aggregate component. Markups are always countercyclical with respect to the

industry-specific component, i.e., controlling for the aggregate shock. This is natural,

since industry-specific shocks do not affect the marginal utility of consumption and hence

discount rates.

It is important to understand how and why markups vary over the business cycle in

the design of optimal monetary policy. The cyclicality of markups is a key building block

of leading Neo-Keynesian macroeconomic models (see e.g., Goodfriend and King [25],

Woodford [49], and Christiano et al. [13]). As Nekarda and Ramey [38] highlight, most

Neo-Keynesian models share the feature that markups fall in response to positive demand

shifts, while providing empirical evidence that this prediction does not hold up in the US

post-war data: Average markups are slightly procyclical (see Figure 1 of Nekarda and

Ramey [38]). Using asset-pricing insights, our model can generate procyclical markups for

the average industry using reasonable parameter values. In addition, our multi-industry

framework allows for the possibility of heterogeneous markup cyclicality across industries.

We provide first-pass evidence that this heterogeneity is empirically relevant. We estimate
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a panel of price-cost margins (PCM) for 451 industries between 1959 and 2009 using the

NBER manufacturing productivity database of Bartelsman and Gray.1 Figure 1 plots

the resulting histogram of time-series correlation coefficients of industry markups with

industrial output growth (GDP). Some industries exhibit strong countercyclical markups

while others exhibit strong procyclical markups, a pattern that our model can replicate

by allowing for industry-specific shocks.2
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Figure 1. This graph plots a histogram of the distribution of markup cyclicality across industries.
Specifically, the term ρ∆y∆pcm(z) refers to the time-series correlation coefficient of yearly log changes
of the price cost margin of a particular industry z with yearly log changes in industrial output. Since
the average industry features ρ∆y∆pcm(z) > 0, the evidence suggests slightly procyclical markups. See
Appendix A for data description and variable definitions.

Our second, theoretical contribution is to analyze how the heterogeneous oligopolis-

tic industry-level firm behavior may amplify technological shocks or even be the only

source of aggregate volatility in the economy. Misallocation arises because incentive con-

straints of heterogeneous industries are not synchronized across industries, either due

to industry-specific shocks or different levels of competitiveness. Misallocation dynamics

occur because the heterogeneity of the incentive problem (and hence markups) varies

1While (average) price cost margins only correspond to precise markup estimates under special as-
sumptions, e.g., if labor is the only factor input and production is constant returns to scale, they should
be interpreted as a reasonable first pass proxy. (See Nekarda and Ramey [38] for more advanced meth-
ods.)

2See also Bils et al. [8], who provide evidence on variation of relative markups of durables and non-
durables over the business cycle.
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across states. While misallocations originate in industry-specific shocks, interesting feed-

back effects may arise. Small changes in a few industries may become amplified if they

affect other industries’ ability to sustain collusive outcomes through the effects they have

on the representative agents future valuation of consumption. In several examples we

show that the amplification effects can be large. We also highlight that shock amplifi-

cation occurs whenever the endogenous cross-sectional dispersion of markups is higher

during recessions than in good times, and that dampening of shocks is also theoretically

possible in equilibrium, if markup dispersion is sufficiently procyclical.

Our third contribution is technical: We characterize the existence and qualitative

behavior of equilibrium in our model. Given the complete generality of our set-up,

allowing for full heterogeneity across industries and states, existence of equilibrium is by

no means clear, a priori. Our main result in this part of the paper is Proposition 4, which

shows the existence of equilibrium under minimal assumptions.

Literature We are certainly not the first researchers to address these issues and to

explore micro foundations of macro shocks. Furthermore, as our approach straddles mul-

tiple fields, it draws on various literatures including the industrial organization literature,

the literature on misallocations and the literature on the propagation of macro shocks.

Our partial equilibrium results are most closely related to the Industrial Organization

literature on strategic competition over the business cycle following the seminal paper

by Rotemberg and Saloner [43] (see, e.g., Chevalier and Scharfstein [11], Chevalier and

Scharfstein [12], Bagwell and Staiger [4], and Haltiwanger and Harrington [26]). Synthe-

sizing the literature and our contribution in a nutshell, one can identify three distinct and

intuitive channels governing the cyclicality of markups: current period industry demand,

future industry demand growth, and discount rates. Rotemberg and Saloner [43] find

that higher current period demand (ceteris paribus) increases the incentive to deviate

and lowers equilibrium markups. Haltiwanger and Harrington [26] as well as Bagwell

and Staiger [4] make the important observation that higher future demand (growth) de-

creases the incentive to deviate since high future collusion profits make deviation today

less attractive. The discount rate channel that we propose affects the tradeoff between

today’s profits and future profits: In good aggregate states, the representative agent val-

ues an additional consumption unit less than in bad times, which effectively lowers her

discount rate and hence increases valuations, systematically leading to (more) procyclical

markups for the average industry.3

3dal Bo [14] considers stochastic interest rates in a collusion model, but since these fluctuations are
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We extend this partial equilibrium literature by incorporating strategic behavior into

a general equilibrium framework with multiple industries, thereby endogenizing aggregate

consumption and the pricing of risk. Our general equilibrium framework is built on the

seminal paper by Rotemberg and Woodford [44] although the analysis focuses on different

effects of markups. In their model, countercyclical markups can transmit aggregate

demand shocks by the government to the real economy. In our paper, we shut down the

real effects of markup levels by excluding government expenditures and assuming inelastic

labor supply. Instead, we focus on the misallocation resulting from markup dispersion,

which is absent from their model due to the assumption of symmetric industries. Our

extension to allow for cross sectional variation of industry concentration and productivity

makes it possible to generate dynamics of markup dispersion in a completely real model,

microfounded by value-maximizing strategic behavior at the industry level.

Since misallocations are the only source of inefficiencies in our general equilibrium

framework, our paper features similar distortions as classical sticky-price models in the

spirit of Calvo [9]. In contrast to sticky-price models, however, prices in our model are

fully flexible and are determined endogenously as the outcome of a strategic game of

optimizing, heterogeneous industries. As Bilbiie et al. [6] point out, the fundamental

economics behind misallocation can be traced back to early essays of Lerner [34] and

Samuelson [45]. Misallocation of labor via markup dispersion is particularly relevant for

the literature on international trade since competition from abroad naturally affects in-

dustries in a heterogeneous way (see Epifani and Gancia [20], Holmes et al. [27], Edmond

et al. [19], and Dhingra and Morrow [16]). From a modeling perspective, the literature

on misallocation also highlights the special role of CES preferences under monopolistic

competition in that market outcomes are efficient due to markups synchronization (see in

particular Bilbiie et al. [6] and Dhingra and Morrow [16]).4 Instead, our paper shows that

inefficiencies can arise even in settings with CES preferences (and inelastic labor supply)

by allowing for oligopolistic competition with heterogeneous industries. This allows us

to keep the tractability and standard aggregation results of CES preferences, while being

able to match relevant heterogeneity across industries.

Empirical studies suggest that losses from misallocation can be quantitatively large; at

least in emerging market countries. Hsieh and Klenow [28] estimate static losses ranging

from 30% − 50% in China and 40% − 60% in India. In a dynamic setting, Peters [41]

considers the joint effect of misallocation, endogenous entry (see also Bilbiie et al. [7]) and

exogenous (i.i.d.), the paper does not address pro- or countercyclicality of markups.
4See Zhelobodko et al. [51] for a generalization of CES preferences.
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incentives to innovate (see also Kung and Schmid [32]). Using a sample of manufacturing

firms in Indonesia, he finds that a large proportion of the welfare gains from reducing

barriers to entry results from the effect on the equilibrium growth rate rather than the

reduction in (static) misallocation.

Since our paper combines real technology shocks with the just described endogenous

misallocations, our paper also relates to an extensive literature on business cycles (e.g.,

Kydland and Prescott [33]; Long and Plosser [35]; Gabaix [22]; Acemoglu et al. [2]). In

contrast to the real business cycle literature, however, significant aggregate fluctuations

may arise even when aggregate “technological” shocks are small. A recent strand of

literature has aimed at explaining how technological shocks at the individual firm or

industry level do not diversify out, but may affect aggregate productivity. Gabaix [22]

notes that if the distribution of firm size is heavy-tailed, firm-specific shocks may indeed

affect aggregate productivity. Acemoglu et al. [2], suggest that inter-sectoral input-output

linkages between industries may lead to “cascades effects” where a shock in one industry

spreads through the economy and thereby becomes an aggregate shock. In our setup,

such “cascade effects” may arise through the channel of the pricing kernel even if there is

no direct input-output linkage between sectors. The mechanism in our model is also quite

different, more along the lines suggested in Jovanovic [31], who shows that idiosyncratic

shocks may not cancel out in strategic games with a large number of players. We develop

examples in which aggregate productivity is close to constant across states, but because

it varies at the sectoral level, the strategic behavior of firms leads to aggregate shocks in

equilibrium.

Our results highlight how strategic interaction between firms can generate endogenous

fluctuations. These results are related to Gali [24] and Schmitt-Grohe [46] who, building

on Woodford [48] and Woodford [50], study stationary sunspot equilibria in models with

markups and investments. Both papers focus on the symmetric case with monopolistic

competition, in which case the multiplicity of equilibria arises because of self-fulfilling

expectations about future growth rates.5 In contrast, our model features a unique equi-

librium under symmetric behavior, i.e., homogeneous industries. Our key contribution is

to allow for heterogeneous sectors in which welfare distortions arise from the dispersion

of markups across industries. Multiplicity of equilibria can only occur if feedback effects

are sufficiently strong.

The rest of the paper is organized as follows. In Section 2 we present the economic

5In Jaimovich [29], sunspot equilibria and countercyclical markups arise via entry and exit decisions
(also see Jaimovich and Floetotto [30]).
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framework of the model. The equilibrium analysis of each industry and their joint effect

on aggregate outcomes is presented in Section 3. Section 4 shows the existence of gen-

eral equilibrium under general conditions and discusses how endogenous misallocation

dynamics may arise. Section 5 discusses the empirical implications of our paper. All

proofs are delegated to the Appendix.

2 Model Framework

2.1 Physical Environment

Consider an infinite horizon, discrete time, discrete state economy in which time is in-

dexed by t ∈ Z+ and the time t state of the world is denoted by st ∈ {1, 2, . . . S}.6 Each

period there is a transition between states, which is governed by a Markov process with

time invariant transition probabilities:

P(st+1 = j|st = i) = Φi,j. (1)

Here, Φi,j refers to the element on the ith row and jth column of the matrix Φ ∈ RS×S
+ .

We assume that Φ is irreducible and aperiodic, so that the process has a unique long-term

stationary distribution.

2.1.1 Production

There is a continuum of industries, indexed by z ∈ [0, 1], each consisting of N(z) ≥ 1

identical strategic firms that produce and sell a unique non-storable consumption good.

The nature of the strategic environment is discussed in Section 2.2. The production

technology for each good z at time t is linear in labor with stochastic productivity

A (z, t) = Ast (z) (1 + g)t. Here, with some abuse of notation, Ast (z) represents a state-

dependent and sector-specific productivity component, whereas g ≥ 0 represents a com-

mon long-term productivity growth rate across all sectors. For ease of exposition, we

set g = 0 in the main text and refer the reader to Appendix C, which shows the minor

modifications necessary for the general case g > 0. Also, for tractability we assume that

A : S × [0, 1]→ R++ is a function that satisfies standard integrability conditions so that

6Here, Z+ = {0} ∪ N = {0, 1, . . .} is the set of non-negative integers. Also, we follow the standard
convention that R+ is the set of nonnegative real numbers, whereas R++ is the set of strictly positive
real numbers.
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aggregation across industries is possible. Labor is supplied inelastically by a representa-

tive agent, who in each period allocates her one unit of human capital across industries,

earning a competitive wage, w (t), in return.7

2.1.2 Preferences / Demand

The representative agent possesses iso-elastic preferences over aggregate consumption

with risk aversion parameter γ and subjective discount factor δ, i.e.,

U = E

[
∞∑
t=0

δt
C(t)1−γ

1− γ

]
, (2)

where C(t) represents the Dixit-Stiglitz CES consumption aggregator of goods (see Dixit

and Stiglitz [17]).8 Thus,

C(t) =

(∫ 1

0

c(z, t)
θ−1
θ dz

) θ
θ−1

. (3)

The parameter θ > 1 is the (constant) elasticity of substitution across goods. While

industries are thus assumed to be symmetric on the demand side, a more general state

dependent utility specification can be easily mapped into our model, which would allow

us to capture industry heterogeneity in demand, say cyclical vs. countercyclical goods.9

The CES specification leads to standard period-by-period demand functions as a func-

tion of prices p(z, t) and real income y (t):10

c(z, t) =
y (t)

p(z, t)θP (t)−θ
, (4)

7We deliberately shut down the channel of endogenous labor supply to sharpen our findings of factor
misallocation across heterogeneous sectors. Thus, our production factor in fixed supply could also be
interpreted as “land” that has to be allocated to different sorts of crops (industries). We excluded
physical capital accumulation from our model to avoid the issue of disentangling effects of dynamic
investment decisions from the effects of state-contingent markups.

8See van Binsbergen [47] or Ravn et al. [42] for using CES preferences in a dynamic context.

9Consider the more general C̃(t) =
(∫ 1

0
vst(z)c(z, t)

θ−1
θ dz

) θ
θ−1

as in Opp [39]. The state dependent

“taste” function vs(z) can then easily be reduced to the case where vs(z) ≡ 1, by transforming the
productivity, As(z) 7→ vs(z)

(θ−1)/θAs(z). Such a transformation can be interpreted as a numeraire
change, where the amount of a unit of goods is redefined in each state.

10The demand functions c (z, t) yield maximal C (t) given an arbitrary price vector p (z, t) and income
y (t). They are obtained via simple first-order conditions.
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where P (t) ≡
(∫ 1

0
p(z, t)1−θdz

) 1
1−θ

can be interpreted as the aggregate price index. With-

out loss of generality, we can normalize the nominal price index P (t) to 1. Hence, all

variables are measured in units of aggregate consumption. In particular, real income,

y (t) , is derived from wages, and distribution of firm profits, π(z, t), across all sectors z:

y (t) = w (t) +

∫ 1

0

π(z, t)dz, (5)

π(z, t) =

[
p(z, t)− w (t)

A (z, t)

]
c(z, t). (6)

2.2 Strategic Environment

Within each industry z, N (z) identical firms play a dynamic Bertrand pricing game

with perfect public information, taking as given the behavior of all other industries. In

contrast to Rotemberg and Saloner [43], we assume that firm value is determined by the

preferences of a risk-averse (rather than risk-neutral) representative agent.

The timing of the stage game in each period, t, is as follows. First, the state, st is

revealed. Then all firms i ∈ {1, 2, . . . N (z)} in industry z simultaneously announce their

gross markup, M (i)(z, t). For tractability, we express each firm’s strategy in terms of gross

markups instead of prices, satisfying p(i)(z, t) = M (i)(z, t) w(t)
Ast (z)

. Consumers demand the

product from the producer with the lowest markup. If all firms announce the same M ,

total demand in sector z is evenly shared between all N (z) firms. The firms then hire

workers at a competitive wage w (t) to meet demand.

Following Abreu [1], we are interested in industry equilibria that generate the highest

present value of industry profits sustainable by credible threats. We restrict attention to

symmetric, pure strategy subgame perfect equilibria. Firms condition their action at time

t on the entire history of past actions of industry z and states up to time t. The relevant

history of each industry z, ht is defined as the entire sequence of markups, states, and

aggregate variables:

ht =
{{
M (i)(z, τ)

}N(z)

i=1
, sτ , P (τ), y (τ)

}t
τ=0

, (7)

with h0 representing the empty history. Thus, a time-t, industry-z strategy for firm i

is a mapping from ht−1 × S to a chosen markup, M i(z, τ), f it : ht−1 × S → R++, (i.e.,

f it ∈ R
ht−1×S
++ ). Here, the second parameter, s ∈ S, represents time t information about

the state, which is available for the firm. A strategy for firm i is a sequence of time τ
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strategies, {f iτ}
∞
τ=0.

The entire set of subgame perfect equilibria can be enforced with the threat of the

worst possible subgame perfect equilibrium. In our environment, the most severe pun-

ishment is given by the perfectly competitive outcome, i.e., zero profits forever after a

deviation. Therefore, any subgame perfect equilibrium must satisfy the following incen-

tive constraints at each date t,

πt (z) + Vt (z)

N (z)
≥ πt (z) . (8)

That is, collusion is only sustainable if each firm’s share, 1
N(z)

, of today’s industry profits,

πt (z) , and the present value of future industry profits, Vt, is greater or equal to the

best-possible one period deviation of capturing the entire industry demand πt and zero

profits thereafter. An important force of this incentive constraint in our setup is captured

by the valuation of uncertain profit streams by a risk-averse agent which will be reflected

in Vt (z) (see detailed discussion in Section 3.2.2).

Myopic industry value maximization of Vt (z), subject to equation 8, represents the

only friction in our economy.11 While the equilibrium outcome of this game is in general

non-trivial (see Section 3.3), the two polar cases of a monopoly, i.e., N (z) = 1, and

perfect competition provide useful bounds. If the industry is served by a monopolist, he

maximizes industry profits (equation 6) subject to consumer demand (equation 4) which

leads to an optimal markup of:

Mm(z, t) = Mm =
θ

θ − 1
. (9)

If, on the other hand, N(z) is infinite, then we expect prices to be set competitively. In

this case, the markup is 1. If the number of firms is finite but greater than one, we ex-

pect equilibrium markups to be somewhere in between the competitive and monopolistic

prices, i.e., M ∈
[
1, θ

θ−1

]
.

11We are implicitly assuming that firms can coordinate within an industry to achieve this best outcome
with this equilibrium selection mechanism. This trivially rules out any outcomes where markups are
higher than θ

θ−1 , and outcomes where markups are lower than necessary. We do not, however, assume
that firms can coordinate across industries, since in a large economy there are many industries and global
coordination therefore is typically not possible.
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3 Partial Equilibrium Analysis

Our partial equilibrium analysis consists of two parts. First, for an arbitrary exogenous

distribution of markups across industries, we characterize aggregate consumption, and

show that it, together with a measure of aggregate markups, determines the efficiency

losses in the economy (Section 3.2). Second, given the aggregate consumption and ag-

gregate markup dynamics, we solve for the partial equilibrium outcome of one sector z

in the economy, i.e., the optimal state-contingent markups (Section 3.3).

3.1 Preliminaries

We focus on equilibria which are time invariant in that equilibrium outcomes are the

same at t1 and t2 if the states are the same, i.e., if st1 = st2 . Hence, we introduce the

following notation for equilibrium markups (and similarly for other variables):

M(z, t) = Mst(z). (10)

The focus on time invariant equilibria is natural in our stationary environment, since

we prove that optimizing firm behavior in one particular industry is endogenously time

invariant provided that all other industries exhibit time-invariant behavior. Moreover, it

is ensured that (at least) one time-invariant equilibrium exists (see Proposition 4). We

want to emphasize that this formulation does not impose any restriction on off-equilibrium

path behavior.

For ease of exposition, we decompose productivity shocks As (z) into the functions

αs(z) and Ās where α : S × [0, 1] and the vector Ā ∈ RS
+. Specifically,

αs(z) ≡ As (z)θ−1∫ 1

0
As(z)θ−1dz

=

(
As (z)

Ās

)θ−1

, where (11)

Ās ≡
[∫ 1

0

As(z)θ−1dz

] 1
θ−1

. (12)

Here, Ā represents the average productivity shock to the economy and αs(z) captures

the industry productivity shock relative to the economy. In other words, changes in α(z)

across states are industry-specific shocks, whereas changes in Ā are aggregate shocks. We

can also view α(z) as an S-vector, α(z) ∈ RS. Note that an industry with a constant

α across all states, moves one-to-one with the aggregate state. Since industries are of
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infinitesimal size, industry-specific shocks α can thus also be interpreted as idiosyncratic

shocks. As a result of the normalization, the average relative industry state is equal

to one, i.e.,
∫ 1

0
αs(z)dz = 1. Now instead of specifying A, we can equivalently specify

the function of industry-specific shocks, α, and the vector of aggregate shocks, Ā ∈
RS

++. Given the previous argument, the exogenous variables in the economy can then be

represented by the tuple E = (α, Ā,N,Φ, θ, γ, δ).

3.2 Aggregate Consumption and Welfare

Aggregate consumption is an important endogenous variable. As outlined above, we

will first treat the outcome of the strategic game for each industry and each state as

exogenously given, as summarized by the gross markup functions for each industry, Ms(z).

Together with the exogenous functions, αs(z) and Ās, the real outcome in the economy

or the consumer’s consumption bundle is completely determined, state-by-state. We will

use aggregate consumption in two ways. First, as a measure of welfare and, second, to

value a stream of risky cash flows.

3.2.1 Misallocations and Aggregate Markups

This section illustrates how markup dispersion across industries creates misallocations

(in the spirit of Lerner [34]). For ease of exposition, we introduce two statistics of the

cross-sectional markup distributions for the macro-economy in each state s:

M̄s = G1−θ (Ms) , (13)

ηs =

(
G−θ (Ms)

G1−θ (Ms)

)θ
≤ 1. (14)

where Gp (Ms) =
(∫

αs(z)Ms (z)p dz
) 1
p refers to the p-th order cross-sectional power mean

of Ms (z).12 These statistics capture distinct elements of the cross-sectional markup dis-

tribution, and are jointly sufficient in describing the aggregate economy. The variable

M̄s captures the notion of aggregate market power, i.e., an appropriate average markup

across industries. The variable ηs captures the (inverse of) dispersion of markups across

industries. By Jensen’s inequality, ηs is bounded above by one (obtained when all in-

12Notice that by construction
∫ 1

0
αs(z)dz = 1, so we interpret α as a weighting measure where each

industry obtains a weight according to its relative productivity.
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dustries charge the same markup) and is decreasing in the dispersion of markups.13 The

variable ηs can be interpreted as a measure of allocative production efficiency.

Lemma 1. Given the functions Ms, αs and Ās, aggregate consumption, Cs, real income

ys, in state s are given by:

Cs = ys = Āsηs. (15)

The fraction of real income that is derived from labor income is given by:

ωs =
1

ηsM̄s

. (16)

The outcome in state s is Pareto efficient if Ms(z) ≡ ks for all z, so that ηs = 1.

From equation 15, aggregate consumption only depends on the exogenous aggregate

shock Ās and allocative efficiency ηs implied by the markup distribution. As long as

markups do not vary across industries in each state (i.e., Ms(z) ≡ ks for all z and

s), the allocation of labor to industries is efficient so that aggregate consumption, i.e.,

potential output, is given by the aggregate shock Ās. In all such economies, relative

goods prices match the perfectly competitive and hence efficient outcome. Allocative

efficient economies can only differ in terms of the decomposition of income, i.e., the

fraction of income derived from labor ωs and from firm profits, which are redistributed

to the representative agent. An important benchmark case is the monopolistic economy,

in which Ms(z) = θ
θ−1

and ω = θ−1
θ

.

3.2.2 Valuation

A fundamental insight of the consumption based asset pricing literature is that the rate

used to discount future cash flows should be intimately related to the state of the economy,

and specifically to aggregate consumption. The general implication is that cash flows

received in bad states of the world will be worth more than cash flows received in good

states, and thereby discounted at a lower rate. The discount factor is thus stochastic; it

depends on the realization of future consumption.14

We assume that there is a complete market of Arrow-Debreu securities in zero net

supply, in addition to the stocks of the firms. The time t value of a stochastic cash flow

13This follows from the fact that Gp (x̃) > Gq (x̃) for any non-degenerate random variable x̃ as long
as p > q.

14For a more extensive discussion, see, e.g., Duffie [18], Campbell [10], and references therein.
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received at t + 1, Qst+1 , is then E[SDFt+1 × Qst+1 ], i.e., the value is the expectation

of the future cash flows discounted with the stochastic discount factor, the SDF (also

called the pricing kernel). With our utility specification, SDFt+1 = δ
(
Cst+1

Cst

)−γ
. Given

our decomposition of aggregate consumption into a productivity and a misallocation

component (15), it follows that the SDF can be written as

SDFt+1 = δ

(
Cst+1

Cst

)−γ
= δ

(
Āst+1

Āst

)−γ (
ηst+1

ηst

)−γ
. (17)

Since equilibrium profits of a firm at time t depend only on the state, s, the informa-

tion about the firm’s future profits can be summarized in an S-vector, π, where πs is the

profit in state s. We also define the S-vector V , where Vs represents the current value

of the firm if the current state is s. This value is the discounted value of a perpetuity of

stochastic cash flows beginning in the next period.

Because of the Markovian structure of the state space (1), we have P (st+k = j|st =

i) = [Φk]i,j, k ≥ 0. The time-0 value of an Arrow-Debreu security that pays one Dollar

at time t in state j, given that s0 = i, is therefore ADt
ij = δt

C−γj

C−γi
[Φt]ij. We define the

diagonal matrix Λm with its sth diagonal element made up by the marginal utility in

state s, [Λm]ss = ms = C−γs , and we can then write the value as ADt
ij = δt[Λ−1

m ΦtΛm]ij.

Using the Arrow-Debreu security prices, period-by-period and state-by-state, we ob-

tain:

Lemma 2. The state-contingent valuation V of a stochastic profit stream π is given by:

V =
[
Λ−1
m (I − δΦ)−1Λm − I

]
π. (18)

This pricing formula differs from a risk neutral economy, in which there would be

no marginal utility terms Λm (or, equivalently, it would be the case that Λm = I). The

term Λm summarizes how valuations—and thereby the decisions of firms—are affected by

risk aversion (through γ), aggregate productivity shocks (through Ā), and misallocation

(through η).

3.3 Industry equilibrium

Understanding strategic price setting behavior in one industry z is the first step towards

endogenizing the entire markups function M . We therefore characterize, as a function of
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industry and aggregate characteristics, when firms in a specific industry behave compet-

itively, when monopolistic markups can be sustained, and when the outcome is neither

of these extremes. Since each industry is small compared with the aggregate economy,

firms in industry z take the dynamics of all other industries as exogenously given, i.e.,

they take M as exogenously given for all z′ 6= z. In particular, the S×2 matrix consisting

of the vectors C and M̄ are jointly sufficient in describing the economic environment for

one particular industry.

It is helpful to write real firm profits in sector z as a function of the choice variable

Ms (z) and the exogenous variables C, M̄ and α (z). The expression follows directly from

Lemma 1:

πs (z) = αs (z)CsM̄
θ−1
s

Ms (z)− 1

Ms (z)θ
. (19)

While Cs and M̄s are macro variables and hence affect all industries in a systematic

fashion, the industry-specific productivity shock αs (z) affects by definition only industry

z. Note that industry z profits depend positively on the aggregate market power M̄s

since goods are substitutable (with θ > 1).

In each state, s, firms in an industry choose the vector of state contingent markups to

maximize the value function, Vs (z), given the value maximizing behavior in each of the

other states of the world, V−s (z), and subject to incentive compatibility (Vs+πs
N(z)

≥ πs),

Vs (z) = arg max
Ms

Vs (z) |V−s (z) , (20)

for all s. Here, Ms maps to Vs via (18, 19).

Within our model’s setting, finding the solution to the optimization problem (20) is

straightforward by exploiting the linearity of the objective function and the constraints

in profits. Since profits are not only affected by the choice of markups, but also the

exogenous variables α,C and M̄ , we normalize profits (19) by monopoly profits πms (z):

πNs (z) ≡ πs (z)

πms (z)
=
Ms (z)− 1

Ms (z)θ
(Mm)θ

Mm − 1
. (21)

This normalization provides a state-independent bijection with πNs ↔ Ms, where 1 ≤
Ms ≤ θ

θ−1
and 0 ≤ πNs ≤ 1. We also define the corresponding inverse function µ:

Ms (z) ≡ µ
(
πNs (z)

)
. (22)
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To capture the joint effect of the variables α, C and M̄ , it is useful to define a summary

statistic of the severity of state-wise incentive constraints, ICs (z):

ICs (z) = αs (z)C1−γ
s M̄ θ−1

s . (23)

Intuitively, ICs (z) consists of the state component of the current-period industry profit,

αs (z)CsM̄
θ−1
s , weighted by marginal utility C−γs . The importance of this marginal utility

effect is stronger the higher the risk-aversion coefficient γ. We collect ICs (z) in a diagonal

matrix ΛIC , so that the elements satisfy [ΛIC(z)]ss = ICs (z).

Using the definition of IC (z) and πN (z), the dynamic equilibrium can now be viewed

as a simple linear programming problem in which firms choose normalized profits πNs (z) ≤
1 instead of Ms in (20):

Proposition 1. Given C and M̄ , the industry equilibrium outcome is uniquely deter-

mined by the solution to the following linear program.

πN (z) = arg max
π̂N

1T π̂N , s.t., (24)

π̂N ≤ 1, (25)

0 ≤
[
(I − δΦ)−1 −N (z) I

]
ΛIC(z)π̂

N . (26)

The corresponding equilibrium markups satisfy Ms (z) = µ
(
πNs (z)

)
. Unless the incentive

constraint (26) binds in state s, the monopolistic outcome obtains, Ms = Mm.

The specific form of the incentive constraint, Vs+πs
N(z)

≥ πs (and its matrix counterpart

26), implies economically that an increase in the markup in state s′, relaxes the incen-

tive problem in all other states s 6= s′ due to an increase in Vs.
15 Thus, the dynamic

optimization (20) can be represented as a static, state independent, linear programming

problem (see simple objective (24)). Inspection of the program reveals that the exoge-

nous variables αs, Cs and M̄s only affect the incentive constraint via ICs (z), giving it a

key role for the comparative statics analysis (see subsequent Proposition 3).16

Going forward, it will be important to understand when the incentive constraint

binds, so equilibrium markups deviate from the monopoly markup in at least some state.

15Recall that Φ is irreducible, so state s′ will be reached with positive probability, regardless of the
initial state s.

16Note that the s-th element of the vector ΛIC(z)π̂
N is simply given by: π̂Ns ICs (z).
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From (26), monopoly markups, Mm = µ (1), are sustainable in all states if and only if

[
(I − δΦ)−1 −N (z) I

]
ΛIC(z)1 ≥ 0. (27)

By rearranging (27) for N (z), we obtain a closed form expression for the threshold

number of firms an industry, Nm (z), for which monopolistic markups are sustainable for

all s

Nm (z) = min
s

Λ−1
IC(z)(I − δΦ)−1ΛIC(z)1 (28)

Intuitively, while for a small number of firms N (z) ≤ Nm (z), the monopoly outcome

is sustainable in all states, too many firms in one industry, N (z) > N c, imply the

competitive outcome in all states. Only in the intermediate region may markups vary

across states. This intuition is formalized in the following Proposition.

Proposition 2. Given aggregate consumption C and the average markup M̄ , the equi-

librium outcome satisfies:

Normalized Profits Markups

πNs (z) = 1 Ms (z) = θ
θ−1

for N (z) ≤ Nm (z),

πNs (z) ∈
(
IC(z)
ICs(z)

, 1
]

Ms (z) ∈
(
µ
(
IC(z)
ICs(z)

)
, θ
θ−1

]
for N (z) ∈ (Nm (z) , N c),

πNs (z) = IC(z)
ICs(z)

Ms (z) = µ
(
IC(z)
ICs(z)

)
for N (z) = N c,

πNs (z) = 0 Ms (z) = 1 for N (z) > N c.

where IC(z) = mins ICs(z) and N c def
= 1

1−δ .

Before highlighting the general implications of Proposition 2, it is useful to illustrate

the different regions in a stylized example with S = 3 states: Assume that aggregate

consumption across states is C = (1, 1.25, 1.875)T and that aggregate markups are com-

petitive in all states, M̄ = (1, 1, 1)T . The transition between states is i.i.d. with all states

being equally likely. Preference parameters are given by δ = 0.9, γ = 2, and θ = 3. Con-

sider now an industry that moves one-to-one with the aggregate, i.e., α(z) = (1, 1, 1)T .

Since this example only features variations of aggregate consumption, we obtain

ICs (z) = C1−γ
s implying that the incentive problem is most severe in state 1 as IC1 >

IC2 > IC3. We immediately obtain from Equation 28 that Nm = 8. Thus, monopoly

markups of Mm = θ
θ−1

= 3
2

are sustainable in all states if the number of firms satisfies
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Figure 2. Left panel: This graph plots the state contingent normalized profits of one particular
industry given aggregate consumption of C = (1, 1.25, 1.875)

T
, aggregate markups of M̄ = (1, 1, 1)T ,

and industry-specific shocks of α (z) = (1, 1, 1)
T

. We set γ = 2. If there are fewer than 8 firms in the
industry, monopoly markups are sustainable in all states. Increasing the number of firms further causes
the incentive constraint in state 1 to bind first, then in state 2 (at N = 9) and finally, at NC = 10, all
markups collapse discontinuously to the competitive outcome. Right Panel: The right panel plots the
corresponding markups as a function of normalized profits.

N ≤ Nm = 8. This can be directly inferred from Figure 2 which plots the optimal state-

contingent normalized profits (left panel) and markups (right panel) as a function of the

number of firms, confirming the four cases in Proposition 2. As soon as the number of

players exceeds Nm = 8, the binding incentive constraint in state 1 pins down markups

in state 1 while monopoly markups are initially still sustainable in states 2 and 3. When

N exceeds 9 firms, monopoly markups can no longer be sustained in state 2 either. Inter-

estingly, the binding incentive constraint in state 2 also has a (negative) feedback effect

on the ability to collude in state 1 since the present value of future collusion profits is low-

ered in state 1, causing the kink in the state 1 markup function at N (z) = 9.17 Finally,

given δ = 0.9, the threshold number of firms that induces the competitive outcome in all

states is given by Nc = 10. This threshold N c = 1
1−δ only depends on the discount rate

and is therefore independent of industry characteristics. The corresponding normalized

profits are obtained in closed form: πNs (z) = IC(z)
ICs(z)

so that Ms (z) = µ
(
IC(z)
ICs(z)

)
.18

We now return to our general analysis. From Proposition 2, one can immediately

17This graph implicitly treats N as a positive real number.

18It is easy to verify that for θ = 3, we obtain that µ (x) = 3√
x

cos

(
arctan

√
1−x
x +π

3

)
.
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deduce that for all N (z) ≤ N c there exists at least one state s in which the monopolistic

outcome obtains, in particular the state(s) satisfying ICs (z) = IC(z) (such as state 3

in the left panel of Figure 2). Intuitively, if there is no variation in incentive problems

across states, i.e., ICs (z) = ICs′ (z) for all s, s′, then ICs (z) = IC(z) for all s and

the monopoly outcome obtains in all states for N (z) ≤ Nm = N c (and the competitive

outcome obtains for N (z) > N c). This insight leads to the following necessary conditions

for markup variation across states:

Lemma 3. Equilibrium markups may only vary across states if the following conditions

are both satisfied:

a) ICs (z) 6= ICs′ (z) for some s, s′, and

b) Nm (z) < N (z) ≤ N c.

If the intuitive conditions of a) time-varying incentive problems and b) intermediate

competitiveness are satisfied, markup variation occurs on the equilibrium path. This

motivates the following comparative statics analysis:

Proposition 3. Equilibrium markups, Ms (z) , depend continuously on C, M̄ , α and Φ.

1. Equilibrium markups, Ms (z) , are decreasing in N (z) for each s.

2. Equilibrium markups, Ms (z), are decreasing in ICs′ (z) for s = s′ and increasing

in ICs′ (z) for each s 6= s′.

Continuity of markups is an important technical ingredient for the proof of Propo-

sition 4. The intuitive, inverse relationship between markups and the number of firms

N (Comparative static 1) can be immediately verified in the left panel of Figure 2. The

comparative statics of ICs (z) = αs (z) M̄ θ−1
s C1−γ

s represent a fundamental result of our

analysis by relating the cyclicality of markups to α, M̄ and C. An increase in ICs (z)

will lower markups in that state (also compared to markups in other states s′ 6= s). Since

ICs is increasing in α and M̄ , the comparative statics thus imply that markups are coun-

tercyclical with respect to the industry-specific component of profits α, and the average

markup across all industries M̄ . Thus, markups exhibit strategic substitutability. Intu-

itively, when all industries charge on average a higher markup M̄s in a given state, profits

for a particular industry in that state will be higher since goods are substitutable (see

19). This increases the incentive to deviate, ICs, and hence results in a lower equilibrium

markup. Interestingly, the definition of ICs (z) implies that the dependency on aggregate

consumption crucially depends on the risk aversion parameter γ, which we summarize in

the following immediate corollary:

19



Corollary 1. Aggregate consumption shocks and markup cycles:

1. If γ < 1, equilibrium markups, Ms (z), are decreasing in Cs′ for s = s′ and increas-

ing in Cs′ for each s 6= s′.

2. If γ = 1, equilibrium markups are independent of Cs for all s.

3. If γ > 1, equilibrium markups, Ms (z), are increasing in Cs′ for s = s′ and decreas-

ing in Cs′ for each s 6= s′.

To understand why the threshold level for procyclicality is given by γ = 1, it is

useful to separate out the forces of aggregate demand ys and Cs in the definition of the

summary statistic ICs (z), i.e., ICs (z) = αs (z)YsM̄
θ−1
s C−γs . Higher aggregate demand

(c.p.) increases the temptation to deviate while lower marginal utility (higher C) reduces

the incentive to deviate.19 Since aggregate demand and consumption coincide in our

framework, i.e., Ys = Cs, the two forces exactly offset each other for γ = 1.20 In the left

panel of our example above, we set γ = 2 leading to procyclical markup variation when

N (z) ∈ (8, 10] , i.e., M1(z) ≤ M2(z) ≤ M3(z). In Figure 3 we show the effect of varying

γ (fixing N at N c) on the cyclicality of markups.

Why does higher risk aversion, or equivalently lower EIS = 1
γ
, make it more attractive

to deviate in bad times despite smaller profits? In bad times, the marginal value of con-

sumption is higher causing today’s valuations of future profits to be lower (see discussion

in Section 3.2.2). Loosely speaking, when γ > 1 (EIS < 1) value-maximizing firms are

(sufficiently) more desperate for an additional dollar in recessions. The marginal utility

channel thus overturns the result of Rotemberg and Saloner [43].21 Since misallocations

through markup dispersion across industries feed back into the industry problem only

via Cs = Asηs, the importance of this feedback effect relates to γ as well. For logarithmic

utility (γ = 1), misallocations are thus irrelevant for the industry outcome.

19We thank an anonymous referee for suggesting this intuitive decomposition.
20While the exact threshold value for procyclicality of γ = 1 is a result of the equivalence of ys and

Cs, the general impact of discount rates qualitatively extend to setups when consumption and aggregate
output are not identical, but positively correlated (such as in an economy with investment). In fact,
when C is a linear function in y our results would apply one-to-one.

21Of course, if one considers specific aggregate shocks that purely affect y but do not (immediately)
affect C, such as government expenditures in Rotemberg and Woodford [44], then markups are still
countercyclical with respect to these shocks. However, in general, aggregate shocks both affect aggregate
demand and consumption. Therefore, the cyclicality of markups relates to γ, see Corollary 1.
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Figure 3. For the case N (z) = N c, we plot the effect of the risk aversion parameter γ on the cyclicality

of markups. Consumption is increasing in the state, s, C = (1, 1.25, 1.875)
T

, and all other parameters
are also as in Figure 2. Markups are countercyclical for γ < 1 (higher in states with lower consumption)
and procyclical for γ > 1 (higher in states with higher consumption). The benchmark case of γ = 2 is
highlighted with circles.

3.3.1 Endogenous entry

Before characterizing the general equilibrium implications, we briefly discuss the robust-

ness of our results to endogenous entry. While our model technically does not allow for

entry, let us now assume that an industry entrant faces a one-time entry cost of φ > 0 to

be able to enter the industry at t+ 1. Clearly, the decision of the entrant in an industry

with currently N0 (z) players depends on the assumed continuation equilibrium of that

industry upon entry of an additional firm.

It is natural to select the equilibrium outcome described in Proposition 2, using

N (z) = N0 (z)+1 as the post-entry equilibrium. Then, a firm will have a strict incentive

to enter in state s if V
N0(z)+1
s > (N0 (z) + 1)φ where V

N0(z)+1
s is the present value

of industry profits with N0 (z) + 1 firms. Of course, a similar argument applies with

N0 (z) + 1 as the starting number of firms. Since the maximum number of firms in an

industry is bounded above by N c (due to positive entry cost), the decision of a potential
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entrant in an industry with N0 (z) = N c−1 plays a special role by backward induction22:

As long as V Nc

s (z) > N cφ for at least one state s, an industry will be populated by N c

firms in the long run. Thus, for sufficiently low entry cost the tightly characterized special

case of N (z) = N c represents an economically meaningful outcome in an economy with

endogenous entry.

Interestingly, in our model equilibrium profits and markups do not approach zero as

the entry cost becomes arbitrarily small. This is because profits/markups are discontinu-

ous at N c (see Figure 2). We will revisit the important special case of N = N c in general

equilibrium to obtain additional insights.

4 General Equilibrium

4.1 Existence and Uniqueness Conditions

We show the existence of general equilibrium in which firms in each industry choose

optimal markups given the (optimal) markups chosen by firms in all other industries.

Recall that the economy’s environment is characterized by the tuple E , i.e., by the real

variables α : S × [0, 1] → R+, N : [0, 1] → N, g ≥ 0, Ā ∈ RS
++, the irreducible

aperiodic stochastic matrix, Φ ∈ RS×S
++ , and the preference parameters, γ, θ, and δ.

We note that a given equilibrium is completely characterized by the markup function,

M : S × [0, 1]→
[
1, θ

θ−1

]
, together with E , since all other real and financial variables can

be calculated from M and (13-19). This motivates the following

Definition 1. General Equilibrium in economy E is given by a markup function

M : S × [0, 1]→
[
1, θ

θ−1

]
for which,

1. M̄ and C are defined by Equations 13 and 15,

2. For all z, M(z) is the solution to the maximization problem given by Equations 24-

26, with Ms(z) = µ
(
πNs (z)

)
.

We note that the existence and uniqueness of the second part of the definition is

guaranteed by Proposition 1, industry by industry, i.e., given M̄ and C there is a unique

22This follows from the fact that industry profits are decreasing in number of firms, which is a direct
consequence of Proposition 3.
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optimal markup function. It is a priori unclear, however, whether there exists a general

equilibrium, i.e., whether both parts can be solved simultaneously. In other words, both

the mappings, M 7→ (M̄, C) (part 1) and (M̄, C) 7→ M ′ (part 2) are well defined, but it

is unclear whether M can be chosen such that the second step maps to the same markup

function that was used in the first step, i.e., such that M ′ = M .

It turns out that we are able to prove the existence of equilibrium under very general

conditions. Specifically, we assume that the functions N and α are Lebesgue measurable

functions, and impose the following technical condition:

Condition 1. For all s, for almost all z, c0 ≤ αs(z) ≤ c1 for constants, 0 < c0 ≤ c1 <∞.

We now have the following general result:

Proposition 4. General equilibrium exists in any economy that satisfies Condition 1.

Thus, only the technical conditions of integrability and boundedness of productivity func-

tions across industries are needed to ensure the existence of equilibrium. The generality

of this existence result is a priori quite surprising. In static general equilibrium mod-

els with imperfect competition, additional conditions in the form of quasi-concavity of

firms’ profit functions, and uniqueness of market clearing price functions given a pro-

ductive allocation, are typically needed to show the existence of general equilibrium (see

Gabszewicz and Vial [23]; Marschak and Selten [36]; and Benassy [5]). These conditions

are indeed satisfied in our model, as seen in Section 2.1. Instead, the major challenge is

the dynamic setting, where the move from a static to a dynamic Bertrand game between

firms drastically enlarges the strategy space. Since all firms are intertwined through the

effects their actions have on the pricing kernel, showing the existence under general con-

ditions seems out of reach. Previous literature (e.g., Rotemberg and Woodford [44]; Gali

[24]; and Schmitt-Grohe [46]) has avoided the issue by assuming complete symmetry, in

which case the state space collapses. Of course, the focus on symmetric economies also

restricts the type of effects that may arise, e.g., in terms of efficiency losses.

The reason why existence is still provable in our setting is the special structure of the

model. The key property is that the game played between firms is simple enough that we

can completely characterize their behavior under general parameter values and show that

this behavior has some needed properties. Specifically, the structure of firms’ constrained

optimization problems in equations 24 - 26 allows us to show uniqueness and uniform

continuity of industry outcomes with respect to all parameters. This follows from two
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properties of the optimization problem. First, the objective function is linear. Second,

the IC constraints have a specific form such that (i) for any number of firms less than the

competitive threshold, N < N c, the domain of optimization is uniformly bounded, closed,

convex with nonempty interior, (ii) for industries with N = N c the domain is a closed

bounded line, and (iii) for industries with N > N c the domain contains a single point, the

origin. These properties imply well behaved (unique and uniformly continuous) outcomes

industry-by-industry, which in turn implies that the mapping M 7→ (M̄, C) 7→ M ′ is

continuous (in the function space L1).

Technically, the proof of Proposition 4 depends on Schauder’s fixed point theorem.23

Specifically, it is shown in the proof of Proposition 4 that the space of markup functions

is compact and convex, which, via Schauder’s theorem, then guarantees the existence of

a fixed point, i.e., an equilibrium. Details are given in the proof.

We note that Proposition 4 makes no claim as to equilibrium uniqueness. Uniqueness

of equilibria can, however, be proved for the important benchmark case of homogeneous

industries.

Proposition 5. If industries in the economy E are homogeneous, i.e., if as(z) ≡ 1, for

all z and s, and N(z) ≡ N for all z, then the equilibrium is unique.

Thus, if N(z) ≡ N and each industry moves one-to-one with the aggregate shock Ā, the

industry outcome must not only be identical across industries, Ms (z) = M̄s, but M̄s is

also unique. Note that uniqueness and Pareto optimality of aggregate consumption, Cs =

Ās, follow directly from the lack of markup dispersion across industries (see Proposition

1).

Using the special case of homogeneous industries also allows us to cleanly illustrate

that our result concerning pro- versus countercyclicality of markups is independent of

misallocation and survives in general equilibrium. To make this result particular trans-

parent, let us again consider the special case of N (z) = N c. In general equilibrium,

the previously exogenous average markup across industries, M̄s, is now endogenous. We

obtain a simple, closed-form expression for the resulting general equilibrium markups:

Lemma 4. If industries are homogeneous and N(z) = N c, then markups in each industry

are given by:

Ms (z) = M̄s =
θ

θ − Āγ−1
s

maxj(Āγ−1
j )

(29)

23We use this theorem because we have a continuum of industries.
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If γ > 1, markups are procyclical. If γ < 1, markups are countercyclical.

While the remaining results of the paper will be concerned about misallocation arising

from differential behavior of industries, the detailed analysis of homogeneous industries

proved useful by highlighting that the cyclicality of markups is unrelated to heterogeneity.

We now turn to the question of how misallocation dynamics can arise endogenously when

we depart from the homogeneity assumption.

4.2 Endogenous Misallocation Dynamics

What drives misallocation and misallocation dynamics? We know from the previous

section that the realistic feature of industry heterogeneity must play an important role.

While our rich framework allows us to introduce heterogeneity in terms of shock exposures

α (z) and the number of firms N (z) across a continuum of industries for an arbitrary

number of states, we want to present simple, stylized examples to highlight the economic

intuition. It is important to emphasize that the chosen parametrizations should therefore

not be interpreted as real world calibrations of our framework. In the first example,

presented in Section 4.2.1, we show how industry-specific shocks can be transmitted to

the aggregate economy. Subsequently, Section 4.2.2 shows that small technological shocks

may be amplified through feedback effects from the strategic behavior of other industries.

Indeed, these feedback effects are sufficiently strong to generate multiplicity of equilibria.

4.2.1 Transmission of industry-specific shocks

We first consider an example without aggregate shocks that departs from homogeneity

in the simplest possible way. There are two different types of industries, j ∈ {1, 2} such

that all industries z ∈ Ij share the same industry-specific shocks α (see Table 1). Half

of the industries are of type 1 and half of the industries are of type 2. Low entry cost

in all sectors of the economy ensure that N (z) = N c for all z. Thus, the only source

of heterogeneity results from industry-specific shocks: By construction, industry-specific

shocks “average out” across industries, state by state. However, we note that the optimal

choice of markups is influenced by differential incentives to deviate across states, industry

by industry. As a result, intertemporal incentive constraints do not “average out” and

misallocation may arise. Since N (z) = N c, Proposition 2 implies that the equilibrium

outcome for industry Ij given the macro states is πNs (Ij) =
IC(Ij)

αs(Ij)η
1−γ
s M̄θ−1

s
using Ās = 1.
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Type, j Ij α1 (Ij) α2 (Ij)
1 z ∈ [0, 0.5) 1 1

2

2 z ∈ [0.5, 1] 1 3
2

Ā Ā1 = 1 Ā2 = 1

Table 1. Economy with two industries and two states.

Consider now the benchmark case of log utility (γ = 1) so that the feedback channel

via misallocation ηs is shut down (see Corollary 1). Firms in industry 1 have the highest

incentive to deviate in state 1 since the industry-specific shock in state 1, α1 (I1) = 1, is

twice as high as compared to state 2, α2 (I1) = 1
2
. Therefore, M1 (I1) < M2 (I1) = Mm.

By the same rationale, industry 2 features low markups in state 2, M2 (I2) < Mm, and

monopolistic markups in state 1. The resulting markup dispersion across industries in

state 1 and state 2 implies the first immediate result: Industry-specific shocks alone can

lead to misallocation.

Using θ = 3 (see e.g., Fernandez-Villaverde et al. [21]), we obtain the following, unique

equilibrium outcome, which is independent of the transition matrix φ (as N = N c):

Outcomes s = 1 s = 2

M(I1) 1.09 1.5

M(I2) 1.5 1.16

C = η 0.966 0.986

(30)

In this example, strategic industry behavior does not only cause inefficiencies via the

channel of misallocation, but misallocation is also time varying, i.e., η1 < η2 < 1. An

economy without aggregate shocks, Ā1 = Ā2 = 1, now features endogenous volatility

with a 2% difference in aggregate consumption.

What causes higher dispersion of markups in state 1 than in state 2? To get the in-

tuition behind this asymmetry, observe that the structure of the industry-specific shocks

implies that industry 1 faces a higher (a 2 : 1) incentive to deviate in state 1, whereas

industry 2 faces a lower (a 3 : 2) incentive to deviate in state 2. In equilibrium, this

asymmetry is reflected in lower markups in industry 1 in the state where the deviation

temptations are largest; creating higher dispersion between the low markup in industry 1

and the monopoly markups of industry 2 in state 1.24 Thus, the state with higher disper-

24A second channel is given by the α weights in calculating dispersion. While both industries are
equally weighted in state 1, industry 2 has an effective weight of 3

4 in state 2, mechanically creating less
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sion of industry-specific shocks, state 2, actually features lower dispersion of equilibrium

markups. The example shows that misallocation results from a subtle mechanism, namely

how the industries’ ability to “collude across states” varies across industries.

By setting γ = 1, the example so far deliberately shuts down the feedback effect of

misallocation into the industry optimization problem. We now consider the feedback

effects of misallocation as we increase γ above 1. In asset pricing, values of γ between 1

and 10 are considered reasonable (see Mehra and Prescott [37]). By Corollary 1, higher

risk aversion will facilitate collusion in the state with high aggregate consumption, i.e.,

state 2, and increase the incentive to deviate in state 1. This in turn creates downward

pressure on markups of industry 1 in state 1 and will allow industry 2 to sustain markups

above 1.16 in state 2. This adjustment of markups aggravates the differences in aggregate

consumption by causing higher dispersion in state 1 and higher efficiency in state 2,

leading to further feedback. The higher γ, the stronger the feedback effects in general

equilibrium. When γ = 10, consumption values in state 1 and state 2 of the unique

equilibrium are given by 0.963 and 0.99, thus raising the consumption difference across

states by 36% relative to the benchmark case of logarithmic utility.

Finally, the just presented example allows us to highlight that the equilibrium outcome

at the threshold level of N c = 1
1−δ is extremely sensitive to (unexpected) changes in

the discount rate: An arbitrarily small decrease in the discount factor δ will take the

economy from the unique collusive outcome to the unique efficient, competitive outcome

with C1 = C2 = 1, regardless of γ.

4.2.2 Shock Amplification

The previous example revealed how purely industry-specific shocks are transmitted to

the aggregate economy, leading to sizeable aggregate fluctuations. We now study an

example in which small aggregate shocks are amplified through the feedback effect via

the stochastic discount factor. We will choose the parametrization in such a way that

these feedback effects are so strong that multiple equilibria arise.

In particular, consider the economy described in Table 2, with three distinct types of

industries, I1, I2 and I3, and S = 2 states. Thus, there is one very small industry (I1),

one large industry (I2), and one medium-sized industry (I3). The first two industries have

many firms, N = 19, but they will still not be perfectly competitive, since N c = 1
1−δ = 20.

dispersion.
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Type, j Ij N A1 A2 α1 α2

1 z ∈ [0, 0.02) 19 0.25 1 0.8728 1
2 z ∈ [0.02, 0.81) 19 1 1 1.0026 1
3 z ∈ [0.81, 1] 1 1 1 1.0026 1

Ā Ā1 = 0.974 Ā2 = 1

Φ =

[
0.7 0.3
0.3 0.7

]
γ = 6, θ = 1.1, δ = 0.95.

Table 2. Economy with three industries and two states.

The third industry is monopolistic so that it will charge the markup θ
θ−1

regardless of the

behavior in the first two industries. Columns 4 and 5 in Table 2 describe the absolute

productivity shocks, A, in the two states. We see that only the very small first industry

experiences any variation in productivity across the two states. The aggregate variation

in productivity will therefore be small. In columns 6 and 7, we show the decomposition of

the absolute productivity shocks into industry-specific and aggregate components, α and

Ā (see equations 11 and 12).25 The effect on aggregate productivity of the first industry’s

shock is about 2.5%, since aggregate productivity is 0.974 in the low-productivity state

and 1 in the high-productivity state. This would also be the aggregate consumption in

the two states in an efficient equilibrium.

Before analyzing the equilibrium in this economy, it is instructive as a reference case

to study the economy which is identical to that in Table 2, except for that A1 = 1 in

industry 1. Hence, this is an economy with no productivity shocks, neither industry-

specific nor aggregate, and it follows that Ā1 = Ā2 = 1 and αs(z) ≡ 1 in this reference

economy. One easily verifies that the monopolistic outcome, in which markups M ≡
θ
θ−1

= 11 are chosen by all firms in all states, is feasible in this case (this also follows

as a consequence from Lemma 3), leading to the efficient outcome where C1 = Ā1 = 1,

C2 = Ā2 = 1.

However, the efficient outcome cannot be sustained as an equilibrium in an economy

with small productivity shocks. Instead, the following markup choices constitute an

25Note that the shock to industry 1 also affects the relative productivity in industries 2 and 3, since
α is normalized to sum to one across industries, state by state.
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equilibrium outcome

Equilibrium 1

Markups s = 1 s = 2

M(I1) 1.493 11

M(I2) 1.4 11

M(I3) 11 11

C 0.782 1

(31)

Thus, the small aggregate productivity shock (≈ 2.5%) leads to a significant decrease

in equilibrium output (≈ 22%) in state 1. The intuition for why amplification occurs

in this example is exactly in line with our main theme in this paper, that technological

shocks which are small in aggregate — in that they only affect a few industries — change

the strategic behavior of firms in other industries through the effect they have on the

pricing kernel.

This mechanism is explained in Figure 4, focusing on the behaviors of industries 1

and 2.26 In the upper part of the figure, the reference economy with identical industries is

shown, in which case monopolistic profits are feasible for both industries, i.e., normalized

profits πNs (Ij) = 1 for both industries and states. In the lower part of the figure, the

economy in Table 2 is shown. Line A shows the relevant IC constraint in state 1, given

the pricing kernel in the monopolistic outcome. Monopolistic profits are indeed feasible

in industry 1 (lower left figure), but infeasible in industry 2 (lower right figure). Thus,

the lower productivity in industry 1, through its effect on the pricing kernel, affects

the outcome in sector 2, which moves the IC constraint in state 1 to line B. This in

turn changes the pricing kernel even further, making monopolistic profits in industry 1

infeasible and further changing the outcome in industry 2, moving to lines C in the two

industries, and generating further feedback effects. The ultimate effect of this mechanism

is that the equilibrium moves to line D in the two figures, substantially different from

the monopolistic equilibrium in the reference economy.

We just highlighted the important role of feedback effects via the stochastic discount

factor for equilibrium behavior of industries. Indeed, the feedback effects can be so strong

26Industry 3 is always monopolistic. The reason that it is still important for the example is that
substantial efficiency losses only occur when there is high variability in markups across sectors. If
industry 3 was not present then the economy would always be close to efficient, since markups would be
the same for the vast majority of industries in each state — almost identical to the markups charged in
industry 2. In contrast, when industry 3 is present and industry 2 charges low markups, efficiency will
be low.
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Figure 4. In each of the 4 panels, we plot incentive compatible and feasible normalized profits in both
states of the world. Feasibility refers to the upper bound imposed by monopoly profits in each state,
i.e., πNs ≤ 1. Incentive compatibility in both states is governed by two lines. The upper line refers to
the IC constraint in state 2. The lower one refers to the IC constraint in state 1. The upper 2 panels
refer to the benchmark economy with identical industries. The outcome in industry 1 (2) is plotted on
the left (right). In both industries and states monopolistic profits are sustainable. Below, we only plot
the relevant IC constraint in state 1. Monopolistic profits violate IC constraint in state 1 for industry 2
(line A), in turn changing the IC constraints in state 1 for industry 1 (line B). The resulting equilibrium
(line D) is substantially different.

that another equilibrium is consistent with the optimizing behavior of all industries. It

can be verified that the heterogeneous economy E parameterized in Table 2 exhibits
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(exactly) one more equilibrium supported by the following markups:

Equilibrium 2

Markups s = 1 s = 2

M(I1) 11 1.69

M(I2) 11 1.904

M(I3) 11 11

C 0.974 0.841

Again, aggregate fluctuations are endogenously determined. However, the second equi-

librium is very different from the first one. First, although state 1 is the state that experi-

ences the negative aggregate productivity shock, aggregate output is lower in state 2 due

to the high dispersion of markups across industries (causing misallocation). Thus, there

is a second way to ensure that firms do not deviate from equilibrium strategies, namely to

decrease the attractiveness of state 2. A drop in consumption in state 2 via misallocation

makes deviation more attractive in that state since γ > 1. This causes industries 1 and

2 to lower their markups in state 2 compared to the monopolistic industry 3, implying

high markup dispersion which sustains the equilibrium outcome.

We note that multiplicity of equilibria is not a generic feature of our framework,

but instead requires parametrizations that allow feedback effects of misallocation to be

strong. The dual task of this stylized example to feature multiplicity and amplification,

requires γ to be high (see Corollary 1) and θ to be low, making large variation between

equilibrium markups across industries possible. However, we want to note that we can

obtain significant amplification even in large-scale settings with standard parameters such

as θ = 3, (see e.g., Fernandez-Villaverde et al. [21]) and γ = 3.27 Equilibrium multiplicity

in models with markups, in the form of stationary sunspot equilibria, have also been

generated in Gali [24] and Schmitt-Grohe [46]. The analysis in Gali [24] especially has

similarities to ours in that he assumes linear production technologies and also covers

the case with inelastic labor supply. However, his mechanism is different from ours.

Since he focuses on the symmetric case with monopolistic competition, there is no role

for heterogeneity in markups across firms, and the corresponding inefficiencies that such

heterogeneity creates. Instead the multiplicity of equilibria arises because of self-fulfilling

27In a numerical exercise, we calculate the equilibrium outcome of 1,000 economies with 10,000 indus-
tries each. For each economy, industry-specific shocks and the number of firms were randomly gener-
ated. The assumed distributions of technology shocks implied a small aggregate productivity shock of
∆A =

∣∣Ā2 − Ā1

∣∣ ≈ 0.22% across the 1000 simulations, resulting in a large shock to GDP/consumption,
∆C = |C2 − C1 ≈ 0.82%. The GDP shocks are therefore on average about 3.8 times larger than the
productivity shocks.
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expectations about future growth rates. In our setup, industry homogeneity implies

uniqueness as it prohibits efficiency losses due to cross-sectional variation of markups

and hence shuts down the feedback channel through the pricing kernel.

5 Empirical Implications

Our theory has testable empirical implications for markup-cyclicality, for industries’ joint

effect on aggregate efficiency and economic activity, and for how strategic interaction

at the industry level affects these aggregate variables in general equilibrium. While a

rigorous empirical examination is beyond the scope of this theory paper, we summarize

these implications, to provide a basis for future research.

First, our model has implications for the cyclicality of markups. To highlight the

intuition for the sources of markup cyclicality and the sources thereof, it is useful to

analyze the special case of an industry at the competitive threshold, i.e., N (z) = N c,

which should apply for any industry with small entry cost. Proposition 2 then implies

the following structural expression for markup changes using Ms (z) = µ
(
πN (z)

)
.

∆ log πN (z) = −∆ logα (z)− (θ − 1) ∆ log M̄ + (γ − 1) ∆ log (C) (32)

where ∆ log x stands for log xs − log xs′ . One may empirically estimate the relevance

of the three factors presented in (32) via a standard time-series regression, industry by

industry. First, markups should be countercyclical with respect to the industry-specific

shock component α. To estimate the coefficient correctly, it would be important to use

a raw measure of underlying demand/productivity shocks, i.e., a measure that is not

contaminated by the endogenous markup choice (the left hand side measure). Second,

markups are negatively related to average markups across industries since goods are

substitutes. Third, the coefficient on the aggregate shock C depends on the risk aversion

parameter γ. While our model features equivalence of Y and C, it may be empirically

reasonable to both include Y , the aggregate demand channel, and C, the marginal utility

channel, to account for the discrepancy between the two quantities in the data.

Second, in the aggregate, our model relates variation in economic activity to variations

in allocative efficiency and technological shocks, i.e., Ct = Atηt. Since empirical studies

are mostly concerned with growth, it is useful to express this identity as:

∆c = ∆a+ ∆e, (33)
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where ct = log (Ct), a = log(Ā), e = log(η), and ∆ refers to first differences. From this

expression, it is immediately clear that amplification of technological shocks, i.e., greater

consumption volatility than suggested by technological condition (σ∆c > σ∆a), occurs if

and only if

ρ∆a∆e > −
1

2

σ∆e

σ∆a

, (34)

where ρ∆a∆e measures the coefficient of correlation between ∆a and ∆e. As a result,

two factors can give rise to amplification: a high variation in efficiency relative to the

variation in productivity ( σ∆e

σ∆a
) or a high positive correlation between efficiency and pro-

ductivity (ρ∆a∆e), i.e., countercyclical dispersion of markups. Both of these factors are

quite intuitive. The relation allows one to estimate the importance of industry dynamics

for aggregate fluctuations in the economy.

Finally, our model highlights the important role of industry characteristics capturing

strategic interaction, such as Herfindahl indexes across industries and the dispersion of

industry-specific shocks, for understanding the general equilibrium relationship between

industry structure, markup variations, and aggregate fluctuations. In alternative theories

of markup cyclicality, such as sticky-price models, such “strategic” variables would be

irrelevant. We stress that the relationship is far more complex than simply one where

less competition in an economy always leads to higher efficiency losses, as discussed in

Section 3.2.1. To assess whether strategic interaction at the industry level represents

a quantitatively important source of aggregate fluctuations, it would be interesting to

estimate our model structurally.

6 Concluding Remarks

Our objective has been to understand the aggregate effects of strategic interaction be-

tween firms at the industry level. To achieve this, we develop a dynamic general equilib-

rium model featuring a continuum of different industries, each of which comprises a finite

number of firms. The framework is tractable, and the strategic interaction between firms

in each industry is straightforward to characterize. We establish the existence of gen-

eral equilibrium and establish dynamic properties of the economy including equilibrium

markups, firm profits and aggregate consumption.

The central premise of our model is that firms, maximizing shareholder value, are not

always price takers but can be price setters. High prices in an industry can be sustained

if firms value the future flow of profits over any immediate increases in market share
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garnered by undercutting. Of course, the rate at which future profits are discounted

depends both on the representative agent’s preferences and on the behavior of the aggre-

gate economy. Specifically, the misallocation of resources that arises from the equilibrium

cross-sectional dispersion of markups affects aggregate consumption and therefore the

representative agent’s valuation of future profits. This feedback effect between industry

equilibrium and the macro economy is the central intuition in our paper.

The strategic interaction yields various general equilibrium effects that can be inter-

preted in light of the macro economy. Even in an economy with no aggregate uncertainty,

if the relative productivity of various industries changes, so does their ability to sustain

collusive outcomes. These changes can affect both the level and the volatility of aggre-

gate consumption. It is worthwhile to highlight how the interaction between industry

heterogeneity and oligopolistic competition is key for our main general equilibrium ef-

fects: With fully flexible prices, dispersion of markups across industries can only arise

if industries endogenously choose different markups. In an economy with homogeneous

industries as in Rotemberg and Woodford [44], oligopolistic competition must lead to

identical markups across industries, precluding real effects via misallocation. Under

monopolistic competition it is irrelevant whether industries are heterogeneous, since all

industries charge the same, monopoly markup. Thus, incorporating industry heterogene-

ity into a general equilibrium framework with oligopolistic competition generates a rich

set of novel predictions.

An interesting implication of our analysis is that the social cost of collusion may be

different from that calculated based on the forgone consumer surplus in any particular

industry. Indeed, a standard partial equilibrium calculation, by definition, does not incor-

porate any social costs associated with resource misallocation, aggregate fluctuations and

the ensuring general equilibrium change in valuations across industries. Operationally, it

would be difficult to incorporate such costs, however it does suggest that in many cases,

the costs of tacit collusion may be higher than usually calculated and a macropruden-

tial view of anti-trust provisions is called for. Vigorous anti-trust enforcement in only a

subset of industries may actually be welfare-decreasing.

A potentially fruitful extension of our model would be to consider asset pricing im-

plications. The subgame perfect industry equilibria that we characterize naturally pin

down the future value of each firm’s cash flows. This of course, is the unlevered equity

value of the firm. With an appropriate calibration, one could generate the relationship

between returns, industry characteristics and the macro economy. We hope to explore

these relationships in future research.
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A Data

To compute the time series of misallocations, we require a panel data set with markups

for a large number of industries (ideally all) in an economy. The requirement of a large

cross-section of industries makes it impossible to use state-of-the-art estimation tech-

niques for markups that work well for one particular industry. Instead, we make use

of the standard NBER manufacturing productivity database by Bartelsman and Gray

containing information on 459 industries between 1959 and 2009. We exclude 8 discon-

tinued industries leaving us with 451 industries.28 We use (average) price cost margins

(see Aghion et al. [3]) as a proxy for markups. Thus, pcmt (z) , the estimate for industry

z at time t is calculated as follows:

pcmt (z) = log (1 + PCMt (z)) = log

(
1 +

Value addedt (z) − Payrollt (z)

Value of Shipmentt (z)

)
(A.1)

While this proxy is subject to shortcomings, such as not differentiating between marginal

and average costs, it represents a reasonable proxy for a large scale study such as ours.29

B Proofs

Proof of Lemma 1

As explained in Section 3.1 we focus on time-invariant economies, so that all variables are solely expressed
as state-dependent. Using the expression for prices, ps (z) = Ms(z)

ws
As(z)

and the definitions of αs (z),

Ās and M̄s (see equations 11, 12, and 13), we can solve for nominal prices and the nominal wage rate

via normalizing the price index Ps =
(∫ 1

0
ps(z)

1−θdz
) 1

1−θ
to one. Thus,

ws =
Ās
M̄s

, (B.1)

ps(z) =
Ms (z)

M̄s
αs(z)

1
1−θ . (B.2)

Finally, plugging the demand function of each sector, cs (z) (see equation 4) into the profit function of
each sector πs (z) (see equation 6) yields an expression for ys via the aggregate budget constraint (see
equation 5)

ys = Āsηs, (B.3)

28Our results are virtually equivalent when we include those industries until their year of discontinu-
ation.

29The proxy is consistent with our theory as the production function is constant returns to scale in
labor (see De Loecker [15]).
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where we have used the expression for nominal wages and prices (see equations B.1 and B.2) and the
definition of ηs (see equation 14). Since the price index is normalized to one, Cs = ys. The fraction of
income derived by labor income, ωs = ws

ys
, is readily obtained via equations B.1 and B.3. Real profits

follow immediately from 4, 6, B.1, B.2, and B.3.

Proof of Lemma 2

By the definition of Arrow-Debreu prices, period-by-period and state by state, we obtain that:

V =

∞∑
t=1

δtΛ−1
m ΦtΛmπ

= Λ−1
m

( ∞∑
t=1

δtΦt

)
Λmπ

= Λ−1
m

( ∞∑
t=0

δtΦt − I

)
Λmπ

= Λ−1
m ((I − δΦ)−1 − I)Λmπ

= (Λ−1
m (I − δΦ)−1Λm − I)π.

The valuation operator (Λ−1
m (I − δΦ)−1Λm − I) has strictly positive elements. This implies represents

the fact that higher profits in some state s strictly increases the present value of future profits, Vs′ , in all
states s′ = 1, . . . , S. Recall that Φ is irreducible, so each state will be reached with positive probability,
regardless of the initial state.

Proof of Proposition 1

The Proposition is a special case of the following general lemma.

Lemma 5. Consider a strictly positive vector πm ∈ RS++, a strictly positive matrix Θ ∈ RS×S++ , and a

scalar n ∈ R++. Then there is a unique ξ ∈ RS+ so that for all strictly positive b ∈ RS++,

ξ = arg max
x

bTx, s.t., (B.4)

x ≤ πm,
0 ≤ (Θ− nI)x.

For each s, the solution has either the first or the second constraint binding, i.e., for each s, ξs = πms or
nξs = Θξs.

Proof : Let x < y denote that x ≤ y and x 6= y. Also, define z = x∨ y ∈ RS , where zs = max(xs, ys)
for all s. Clearly, x ≤ x ∨ y, where the inequality is strict if there is an s such that ys > xs. Finally,
define the set K = {x : 0 ≤ x, x ≤ π∗, nx ≤ Θx}. Note that K is compact.

Now, there is a unique maximal element of K, that is, there is a unique ξ ∈ K, such that for all x ∈ K
and x 6= ξ, ξ > x. This follows by contradiction, because assume that there are two distinct maximal
elements, y and x, then clearly z = x ∨ y is strictly larger that both x and y. Now, it is straightforward
to show that z ∈ K. The only condition that is not immediate is that Θz ≥ nz. However, this follows
from Θ(x ∨ y) ≥ Θx ∨Θy ≥ nx ∨ ny = n(x ∨ y) = nz.
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Now, since b is strictly positive, it is clear that ξ is indeed the unique solution to the optimization
problem regardless of b. That one of the constraint is binding for each s also follows directly, because
assume to the contrary that neither constraint is binding in some state s. Then ξs can be increased
without violating either constraint in state s and, moreover, the constraints in all the other states will
actually be relaxed, so such an increase is feasible. Further, since bs > 0, it will also increase the objective
function, contradicting the assumption that ξ is optimal.

In particular, Lemma 5 can be applied to the industry optimization problem (see 20) by specifying
Θ = (Λ−1

m (I − δΦ)−1Λm − I), Vs = ιTs Θπ (see Lemma 2), b = ΘT ιs and n = N − 1. Then, the incentive
constraint (8) can be written as (Θ− nI)π = V + π −Nπ ≥ 0.

Finally, we restate the program in Lemma 5 in terms of normalized profits. Normalized profits
satisfy:

πNs (z) =
πs (z)

πms (z)
=

πs (z)

αs (z)CsM̄
θ−1
s

Mm−1
(Mm)θ

=
C−γs
ICs (z)

πs (z)
Mm−1
(Mm)θ

or in vector form:

πN (z) =
(Mm)

θ

Mm − 1
ΛmΛ−1

ICπ (z) (B.5)

Since b in the objective B.4 is just required to be strictly positive, we choose b = 1 for simplicity.
By construction, normalized profits are bounded above by 1, i.e., feasibility implies:

πN (z) ≤ 1

This yields constraint 25. To obtain constraint 26, we need to rewrite the incentive constraint V + π −
Nπ ≥ 0. First note, that (B.5) implies:

π (z) =
Mm − 1

(Mm)
θ

Λ−1
m ΛICπ

N (z)

Then:

V + π −Nπ = (Λ−1
m (I − δΦ)−1Λm)π −Nπ

= (Λ−1
m (I − δΦ)−1Λm −NI)π

=
Mm − 1

(Mm)
θ

((I − δΦ)−1Λm −NI)Λ−1
m ΛICπ

N (z)

=
Mm − 1

(Mm)
θ

Λ−1
m ((I − δΦ)−1 −NI)ΛICπ

N (z)

Without loss of generality we can premultiply the incentive constraint V + π −Nπ ≥ 0 with Λm
(Mm)θ

Mm−1

so that we obtain the constraint 26.

Proof of Proposition 2

In this proof, the variable x is proportional to normalized profits πN . Let K∗(N)
def
= {x : 0 ≤ x,NΛICx ≤

(I−δΦ)−1ΛICx}. Now, NΛICx ≤ (I−δΦ)−1ΛICx is equivalent to Ny ≤ (I−δΦ)−1y, where y = ΛICx ∈
RS+. We first show that K∗(n) = {0} when N > 1

1−δ , which immediately implies that the only solution
to the optimization problem in Proposition 1 is indeed the competitive outcome. Define the matrix norm

‖A‖ = supx∈RS\{0}
‖Ax‖
‖x‖ , where the l1 vector norm ‖y‖ =

∑
s |ys| is used. Since Φ is a stochastic matrix,
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‖Φi‖ = 1 for all i and using standard norm inequalities it therefore follows immediately that

‖(I − δΦ)−1‖ =

∥∥∥∥∥
∞∑
0

δiΦi

∥∥∥∥∥ ≤
∞∑
0

δi‖Φi‖ =
1

1− δ
,

and thus ‖(I − δΦ)−1y‖ ≤ 1
1−δ‖y‖. Now, Ny ≤ (I − δΦ)−1y implies that N‖y‖ ≤ ‖(I − δΦ)−1y‖, and

therefore it must be the case that N ≤ 1
1−δ , for the inequality to be satisfied for a non-zero y. Now,

consider the case when N = 1
1−δ . Since y = 1 is an eigenvector to Φ with unit eigenvalue, it is also an

eigenvector to (I − δΦ)−1 with corresponding eigenvector 1
1−δ , leading to x = Λ−1

IC1 or xs = IC−1
s . It is

easy to show that this is the unique (up to multiplication) nonzero solution. Given the properties of Φ,
the Perron-Frobenius theorem implies that this is indeed the only eigenvector with unit eigenvalue, and
therefore also the only eigenvector to (I−δΦ)−1 with eigenvalue 1

1−δ . Now, take an arbitrary y ∈ RS+\{0}
as a candidate vector to satisfy the inequality, i.e., such that z = (I − δΦ)−1y satisfies zi ≥ Nyi = 1

1−δyi
for all i. Then, since ‖(I − δΦ)−1‖ = 1

1−δ , it follows that
∑
i zi ≤

1
1−δ

∑
i yi. The two inequalities can

only be satisfied jointly if zi = 1
1−δyi for all i, and thus y is the already identified eigenvector. Thus,

K∗
(

1
1−δ

)
= {Λ−1

IC1σ, σ ≥ 0}. Since πN ∝ x with the additional constraint πN ≤ 1, the maximal σ that

satisfies σIC−1
s ≤ 1 for all s is given by mins ICs. This leads to normalized profits of πN = mins ICs

ICs
.

Proof of Lemma 3

The second statement Nm (z) < N (z) ≤ N c follows directly from the discussion in the text. Second, we
prove that ICs must vary across states for markup variation to occur. If ICs = k for some constant k,
the diagonal matrix ΛIC becomes ΛIC = kI so that we obtain for Nm (z) (see 28):

Nm (z) = min
s

Λ−1
IC(I − δΦ)−1ΛIC1 = min

s
(I − δΦ)−11 =

1

1− δ
= N c.

This is because the eigenvalue of (I − δΦ)
−1

associated with the eigenvector of 1 is given by 1
1−δ (see

Proof of Proposition 2). So, Nm = N c. Hence markups can never differ across states.

Proof of Proposition 3

Continuity follows from the fact that the objective function in Lemma 5 is a continuous function of all
parameters and that (as long as N is strictly below N c) the set K (see Proof of Lemma 5) is compact,
and depends continuously on all parameters, in the sense that if K and K ′ are defined for two sets of
parameter values, then D(K,K ′) approaches zero when the parameter values that define K ′ approach
those that define K. Here, D(K,K ′) = supx∈K′ infy∈K |x− y|.

(1) follows from the definition of K in the proof of Lemma 5. It immediately follows that the set K
is decreasing in N , which in turn immediately implies (1).

To prove the comparative statics in ICs, i.e., claim (2), rewrite the incentive constraint in the
program of Proposition 1, i.e.,

[
(I − δΦ)−1 −N (z) I

]
ΛIC(z)π̂

N ≥ 0 as ΩΛIC π̂
N . Let Ωi,j denote the i, j

element of Ω = (I − δΦ)−1 −N (z) I. Note that only the diagonal elements Ωs,s may be negative. The
s element of the vector ΩΛIC π̂

N is simply:

vs = Ωs,sICsπ
N
s +

∑
j 6=s

Ωj,sICjπ
N
j ≥ 0 (B.6)
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We first note that if the incentive constraint binds in some state s, i.e., vs = 0, then this implies that
Ωs,s < 0 since Ωj,s > 0 for all j 6= s (see Proof of Lemma 2). We now consider the comparative statics
as we change the k-element of IC by ∆k. We denote the outcome of the (new) optimization problem
vs (∆k) , πN (∆k).

Case 1: Suppose first that the incentive constraint does not bind in state k when ∆k = 0, i.e.,
πNk (0) = 1. Moreover, let ∆k be sufficiently small, such that the constraint in state k is still slack
after the increase in ∆k, i.e., πN (∆k) = 1.30 Then, the incentive constraint (B.6) in all states s 6= k
is relaxed by Ωk,s∆k1 = Ωk,s∆k (recall Ωk,s > 0 and πNk (0) = 1). Therefore, for any state with a
previously binding incentive constraint, i.e., vs (0) = 0, there is now a strict increase in the markup, i.e.,
πNs (∆k) > πNs (0) whereas πNk remains (by construction) unaffected.

Case 2: Suppose now, that the incentive constraint binds in some state k, i.e., vk = 0 and hence
πN (0) < 1. Since the incentive constraint binds in state k, this implies that Ωk,k < 0 (for otherwise
(B.6) cannot bind). Rearranging (B.6) implies:

πNk ICk =

∑
j 6=s Ωj,kICjπ

N
j

|Ωk,k|
(B.7)

Note, with ∆k = 0 it is impossible to find any incentive compatible way to increase the product
πNk (0) ICk (0). This follows by definition of πNk (0) being the maximum (and ICk being a constant).
Now, if we increase ICk by ∆k, then it also must be impossible to increase πNk (∆k) ICk (∆k) . Suppose
it was possible to increase πNk ICk, then it would also be possible to find a πN > πN (0) in an incen-
tive compatible way when ∆k = 0. Contradiction. Thus, at best πNk ICk stays constant. If πNk ICk is
held constant, markups in all other states are unaffected, i.e., πNj (∆k) = πNj (0). This can be trivially

achieved by setting πNk (∆k) to

πNk (∆k) = πNk (0)
ICk (0)

ICk (∆k)
(B.8)

Thus markups in state k are strictly decreasing in ICk if the incentive constraint bind in state k. (all
other markups are unaffected). By combining cases 1 and 2, we get the comparative statics in ICs and
IC ′s.

Proof of Proposition 4

Before showing existence, we discuss some invariance results which will be helpful in the proof. We first
note that the following result follows immediately from Proposition 2:

Lemma 6. In any general equilibrium, any two industries with the same N and α have the same
markups, M , and profits, π.

Also, we observe that it is only the distributional properties of N and α that are important for the
aggregate characteristics of an equilibrium. This should come as no surprise given that the aggregate
variables important for industry equilibrium only depend on the distributions. To be specific, we define
the (cumulative) distribution function F : N× [c0, c1]S → [0, 1], where F (n, s1, . . . , sS) = λ({(z : N(z) ≤
n : ∧ : α1(z) ≤ s1 : ∧ · · · : ∧ : αS(z) ≤ sS}), and λ denotes Lebesgue measure. Thus, F (n, α1, . . . , αS)
denotes the fraction of industries with number of firms less than or equal to n, and productivities
αs(z) ≤ αs for all s. We say that two economies, E1 and E2, are equivalent in distribution if they have

the same distribution functions, and agree on the other parameters: g, Ā, Φ, γ, θ and δ̂. Also, two
outcomes—in two different economies—are said to be equivalent if any two industries, z and z′ in the
first and second economy, respectively, for which N1(z) = N2(z′) and α1

s(z) = α2
s(z
′) for all s, have the

same industry markups in each state of the world, M1
s (z) = M2

s (z′) for all s.

30Thus, if Θkk < 0, we require that ∆kΘkk + ε ≥ 0.
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We then have

Lemma 7. Given two economies that are equivalent in distribution. Then for each equilibrium in one
of the economies there is an equivalent equilibrium in the other.

We now prove the proposition with a fixed point argument, and therefore define a fixed point
relationship for the markup function, M , which ensures that it defines an equilibrium. We define

R
def
= N̄ × [c0, c1]S , where N̄ = {1, 2, .., bNcc+ 1}, with elements x = (n, α1, . . . , αS) ∈ R. We will then

work with functions M0 : R → [0, 1]S , and given such a function, the transformation to the standard
markup function is given by Ms(z) = M0

s (min(N(z), bNcc + 1), α1(z), . . . , αS(z)). The reason why we
work with the canonical domain, R, rather than S × [0, 1], is that compactness properties needed for

a fixed point argument are easier obtained in this domain. Given a function, M0 : R →
[
1, θ

θ−1

]S
, we

define

p0
s = G−θ (Ms) =

(∫
αs(z)Ms (z)

−θ
dz

) 1
−θ

=

(∫
x∈R

xs+1M
0(x)−θdF (x)

) 1
−θ

, (B.9)

p1
s = G1−θ (Ms) =

(∫
αs(z)Ms (z)

1−θ
dz

) 1
1−θ

=

(∫
x∈R

xs+1M
0(x)1−θdF (x)

) 1
1−θ

. (B.10)

It follows immediately that the mapping from M0 to p0 and p1 is continuous (in L1 topology) and since∫
α(z)dz = 1, that p0

s and p1
s lie in [1, θ/(θ − 1)]. From (15), it follows that

Cs = Ās

(
p0
s

p1
s

)θ
, (B.11)

and from (19) for M (z) = θ
θ−1 that

πms =
1

p1−θ
1

(θ − 1)θ−1

θθ
αsCs =

1

p1−θ
1

(θ − 1)θ−1

θθ
xs+1Cs. (B.12)

Now, for each z, given πm ∈ RS+, the program in Proposition 1 provides a continuous mapping from πm

to

πs ∈
S∏
1

[0, πms ]. (B.13)

We use (19) to define the operator F , which operates on functions, and which is given by:

M1
s (x) = (F(M0)(x))s = 1 +

p1(s)1−θ

Csxs+1
(M0

s (x))θπs.

Since each operation in (B.9-B.13) is continuous, it follows that F is a continuous operator (in L1(R1+S)-

norm). Further, it also follows that if M0
s (x) ∈

[
1, θ

θ−1

]
, then since 0 ≤ π ≤ πm, 1 ≤ M1

s (x) ≤

1 + (θ−1)θ−1

θθ
(M0

s )θ ≤ θ
θ−1 . Define, Z as the set of all functions, M : R→ [1, θ/(θ − 1)]S , such that M is

nonincreasing in its first argument and nondecreasing in all other arguments. Then, from what we have
just shown, together with Proposition 3, it follows that F is a continuous operator that maps Z into
itself. We also have

Lemma 8. Z is convex and compact.
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We prove that the set, W , of nondecreasing functions f : [0, 1]→ [0, 1], is convex and compact. The

generalization to functions with arbitrary rectangular domains and ranges, f :
∏N

1 [ai, bi]→
∏M

1 [ci, di],
is straightforward, as is the generalization to functions that are nonincreasing in some coordinates and
nondecreasing on others (as is Z). Convexity is immediate. For compactness, we show that every
sequence of functions fn ∈W , n = 1, 2, . . ., has a subsequence that converges to an element in W . First,
note that W is closed, since a converging (Cauchy) sequence of nondecreasing functions necessarily
converges to a nondecreasing function. To show compactness, define the corresponding sequence of

vectors gn ∈ [0, 1]2
j

, for some j ≥ 1, by gnk = fn(2−jk), k = 0, 1, . . . 2j − 1. Now, since [0, 1]2
j

is
compact it follows that there is a subsequence of {fn}, {fnm} that converges at each point 2−jk, to

some g∗ ∈ [0, 1]2
j

. Define the function hj : [0, 1] → [0, 1] by hj(x) = g∗k, for 2−jk ≤ x < 2−j(k + 1),
which is obviously also in W . Next, take the sequence {fnm}, and use the same argument to find a
subsequence that converges in each point 2−(j+1)k, k = 0, . . . , 2j+1 − 1, and the corresponding function
hj+1(x). By repeating this step, we obtain a sequence of functions in W , hj , hj+1, . . ., such that for
m > j, ∫ 1

0

|hm(x)− hj(x)|dx ≤
∑
k

(gjk+1 − g
j
k)2−j ≤ 2−j .

Thus, hj , hj+1, . . . forms a Cauchy-sequence, which consequently converges to some function h∗ ∈ W .
Take a subsequence of the original sequence of functions, {fnj}, such that

∫
|fnj − hj |dx ≤ 2−j . Then,

for m > j, since

∫ 1

0

|fnm(x)− fnj (x)|dx =

∫ 1

0

|fnm(x) + hm(x)− hm(x) + hj(x)− hj(x)− fnj (x)|dx

≤
∫ 1

0

|fnm(x)− hm(x)|dx+

∫ 1

0

|fnj (x)− hj(x)|dx

+

∫ 1

0

|hm(x)− hj(x)|dx

≤ 3× 2−j ,

{fnj} is also a Cauchy sequence and converges to h∗ ∈ W . Thus, W is compact and the lemma is
proved. Given Lemma 8 and the continuity of F , a direct application of Schauder’s fixed point theorem
implies that there is a M∗ ∈ Z, such that F(M∗) = M∗. Now, given such a M∗, and its associated
πm defined by (B.12), and given the functions, N(z) and αs(z), 0 ≤ z ≤ 1, Lemma 5 can be used to
construct Ms(z). Since M and M∗ have the same distributional properties, and C, p0 and p1, only
depend on distributional properties, it immediately follows that M constitutes an equilibrium. We are
done.

Proof of Proposition 5

First note that an equivalent formulation of Lemma 5 is the following: Define the sets Ξs = {x ∈ RS+ :

xs ≤ πms }, Qs = {x ∈ RS+ : 0 ≤ ((Θ− nI)x)s}, where Θ = (Λ−1
m (I − δΦ)−1Λm − I) and n = N − 1, and

R = (∩Ss=1Ξs) ∩ (∩Ss=1Qs). Then there is a unique element, r ∈ R, such that for all s, rs = maxq∈R qs.
That is, there is a unique element that jointly maximizes all coordinates of elements in R. Moreover,
for each s, such that rs < πms it must be that rs = 1

n (Θx)s.

For coordinates such that rs < πms , if any number of the πms is replaced by π̂ms > πms , i.e., if Ξs
is replaced by Ξ̂s = {x ∈ RS+ : xs ≤ π̂ms }, where π̂ms ≥ πms , and the equality is only allowed to be

strict for coordinates where rs < πms , and R̂ is defined as R = (∩Si=1Ξ̂s) ∩ (∩Si=1Qs), then R̂ = R, and

consequently, r̂ = r where r̂ is the unique maximal element in R̂. To see this, assume that an element
v ∈ R̂ existed such that vs > πms for at least one s. Then since R̂ is convex there must also be an

element, w = λr + (1 − λ)v ∈ R̂, with ws ≤ πms , for all s and ws = πms for one coordinate such that
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rs < πms . But then w ∈ R, and it must then be that rs = πms , leading to a contradiction. Thus, no such

element exists, so R̂ = R.

Now, from our discussion in Section 3.3, it follows that in an equilibrium in a homogeneous economy,
all firms must charge the same markups in any state, Ms(z) = M̄s for all z, and that any equilibrium
must be efficient so that Cs = Ās = As(z) and αs(z),= 1 for all s for all z. What is not a priori clear
is whether there may be multiple average markup vectors, M̄ , that constitute an equilibrium. We now
show that this is not the case.

Given an equilibrium in a homogeneous economy, it follows from equation (19), and that Cs = As,
that

1

M̄s
= 1− πs

As
= (1− us). (B.14)

Here us = πs
As
∈
[
0, 1

θ

]
represents firm profits in state s as a fraction of total output.

It further follows from πms ≡ Mm−1
(Mm)θ

Csαs (z) M̄θ−1
s that given such an average markup across in-

dustries, the monopolistic profits as a fraction of total output in one (zero-measure) industry, z, that

deviates from the average markup function is ûs =
π̂ms
As

= Mm−1
(Mm)θ

M̄θ−1
s = Mm−1

(Mm)θ
(1 − us)1−θ. We note

that ûs ≥ u for all u ∈
[
0, 1

θ

]
, and that the inequality is strict except for at û = u = 1

θ .

Given the homogeneous behavior of all other industries, the firm optimization problem in (24-26)
can be written

û = arg max
û

ιTj Λ−1
A ΘΛAû, s.t., (B.15)

ûs ≤
Mm − 1

(Mm)
θ

(1− us)1−θ, s = 1, . . . , S, (B.16)

0 ≤
(
Λ−1
A ΘΛA − (N − 1) I

)
û, (B.17)

where ΛA = diag(Ā1, . . . , Ās). A necessary and sufficient condition for u to be an equilibrium is now
that û = u in the above optimization problem.

Assume that we have found such a u (we know that there exists at least one such u from the existence
theorem). If we can show that u is also the solution to the same program, but where (B.16) is replaced
by ûs ≤ 1

θ for all s, then we are done, since there is a unique solution for that optimization problem (as
follows from an identical argument as the proof of Lemma 5).

An identical argument as in Lemma 5 implies that for each s, either (B.16) or (B.17) binds (or
both). For any s such that (B.16) binds, it must further be that equilibrium markups in that state are
monopolistic, i.e., u = 1

θ . Thus, relaxing the constraints for those s to ûs ≤ 1
θ does not change the

solution to the problem.

For any other s, where (B.16) does not bind and (B.17) binds, we note that since us <
1
θ , us <

Mm−1
(Mm)θ

(1− us)1−θ, ûs is strictly lower than its bound imposed by (B.16) for such s. However, from the

argument at the beginning of this lemma, it follows that relaxing the constraint for these coordinates
does not change the solution, so we can relax the constraints to ûs ≤ 1

θ for such s too. Thus, u is also a
solution to the relaxed problem, and is therefore unique. We are done.

C Long Term Growth

When g > 0, we can still solve for time-invariant equilibria through appropriate normalizations. That is,
we focus on equilibria which—except for the constant growth rate g—are time invariant in that outcomes
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are the same at t1 and t2 if the states are the same, i.e., if st1 = st2 . In such equilibria, outcomes on the
equilibrium path can be written as:

C (t) = (1 + g)
t
Cst , (C.18)

y (t) = (1 + g)
t
yst , (C.19)

w (t) = (1 + g)
t
wst , (C.20)

π(z, t) = (1 + g)
t
πst (z) , (C.21)

c(z, t) = (1 + g)
t
cst (z) , (C.22)

where variables on the right hand side are growth-normalized, time invariant, variables which only
depend on the state, st. We want to emphasize that this formulation does not impose any restriction on
off-equilibrium path behavior. Thus, the equilibria that we exhibit also exist in the broader class.

In such an economy we immediately obtain that markups are time-invariant

M(z, t) = Mst(z). (C.23)

It follows from a standard transformation, using the utility representation (equation 2), that growth-
normalized variables can be determined by solving the model for a non-growing economy with a growth-
adjusted personal discount rate, i.e., with

δ̂
def
= (1 + g)1−γδ. (C.24)

Intuitively, the representative agent’s trade-off between consumption in different times and states is
affected in identical ways by changes in the growth rate and the subjective discount factor. Thus, the

effective discount rate in a growing economy, δ̂, depends on long term growth rates. The importance of
long-term growth rates for asset pricing was recently discussed in Parlour et al. [40]. In that paper, long-
term growth rates are important because they determine how much investors care about rare disaster
events in the far future.
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