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We develop a theoretical model of a network of intermediaries whose optimal behavior is
jointly determined, leading to heterogeneous financial norms and systemic vulnerabilities.
We apply the model to the network of U.S. mortgage intermediaries from 2005 to 2007,
using a data set containing all private-label, fixed-rate mortgages, with loan flows defining
links. Default risk was closely related to network position, evolving predictably among
linked nodes, and loan quality estimated from the model was related to independent quality
measures, altogether pointing to the vital importance of network effects in this market.
(JEL G21, GO1, L14)

Received April 20, 2016; editorial decision July 11,2017 by Editor Stijn Van Nieuwerburgh.

In arecent paper, Stanton, Walden, and Wallace (2014) establish the existence of
strong empirical network effects in the U.S. residential mortgage market, with
clearly demarcated segments of connected firms subject to differing amounts
of default risk. A recent theoretical literature also highlights the potential
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importance of network connections between intermediaries and institutions in
explaining financial market risk.! These studies show that financial networks
may create resilience against shocks in a market via diversification and
insurance, but the network interconnections also expose market participants to
additional sources of risk. Network structure can thus be a crucial determinant
of the riskiness of a financial market.

These theoretical studies of networks and risk in financial markets typically
focus on ex post effects: how the network redistributes risk between
participants, and the consequences for the system’s solvency and liquidity after
a shock. Particularly in the mortgage market, ex ante effects also should be
important: the presence and structure of a financial network should affect—and
be affected by—the quality choices (e.g., the resources devoted to screening and
monitoring loans) and other actions of individual intermediaries and financial
institutions, even before shocks are realized. The focus of our study is to build
a model that can both explain the empirical findings of Stanton, Walden, and
Wallace (2014) and help us to understand the equilibrium interaction between
network structure, the quality choices made by market participants, and the
market’s riskiness.

We introduce a model with multiple agents—representing financial
intermediaries—who are connected in a network. Network structure in our
model, in addition to determining the ex post riskiness of the financial system,
also affects—and is affected by—what we call the financial norms in the
network, inspired by the literature on influence and endogenous evolution of
opinions and social norms in networks (see, e.g., Friedkin and Johnsen 1999;
Jackson and Lépez-Pintado 2013; Lépez-Pintado 2012). Financial norms in our
model are defined as the quality and risk decisions agents make, which are, in
turn, influenced by the actions of other agents in the network.

Our model is parsimonious, in that the strategic action space of agents and
the contract space are limited. Links in the network represent risk-sharing
agreements, like in Allen, Babus, and Carletti (2012). Agents may add and
sever links, in line with the concept of pairwise stability in games on networks
(see Jackson and Wolinsky 1996), and also have the binary decision of whether
to invest in a costly screening technology that improves the quality of the
projects they undertake.

The equilibrium concept used is subgame perfect Nash. In an equilibrium
network, each agent optimally chooses whether to accept the network structure,
as well as whether to invest in the screening technology, given (correct)
beliefs about all other agents’ actions and risk. Shocks are then realized and
distributed among market participants according to a clearing mechanism

' See, for example, Acemoglu, Ozdaglar, and Tahbaz-Salehi (2015), Allen, Babus, and Carletti (2012), Allen and
Gale (2000), Babus (2016), Cabrales, Gottardi, and Vega-Redondo (2014), Chang and Zhang (2015), Di Maggio
and Tahbaz-Salehi (2014), Elliott, Golub, and Jackson (2014), and Glasserman and Young (2015). A growing
literature deals with trading networks in OTC markets, for example, Babus and Kondor (2013), Gofman (2011),
and Zhong (2014), but risk exposure is not the focus of this literature.
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similar to that defined in Eisenberg and Noe (2001). Like in Elliott, Golub, and
Jackson (2014), we assume that costs are associated with the insolvency of an
intermediary, potentially creating propagation of shocks through the clearing
mechanism, and thereby making the market systemically vulnerable. The model
is simple enough to allow us to analyze the equilibrium properties of large-scale
networks computationally.

Our model has several general implications. First, network structure is related
to financial norms. Given that an agent’s actions influence and are influenced
by the actions of those with whom the agent interacts, this result is natural and
intuitive. Importantly, an agent’s actions affect not only his direct counterparties
but also those who are indirectly connected through a sequence of links. As
a consequence, a rich relationship between equilibrium financial norms and
network structure suggests a further relationship, between the network and the
financial strength of the market, beyond the mechanical relationship generated
by shock propagation.

Second, heterogeneous financial norms may coexist in the network in
equilibrium. Thus, two intermediaries that are ex ante identical may be very
different when their network positions are taken into account, not just in how
they are affected by the other nodes in the network but also in their own actions.
Empirically, this suggests that network structure is an important determinant
not only of the aggregate properties of the economy but also of the actions and
performance of individual intermediaries.

Third, proximity in the network is related to financial norms: nodes that are
close tend to develop similar norms, just like in the literature on social norms
in networks. This result suggests the possibility of decomposing the market’s
financial network into “good” and “bad” parts, and addressing vulnerabilities
generated by the latter.

Fourth, the behavior of a significant majority of nodes can typically be
analyzed in isolation, while a small proportion of nodes affect the whole
network through their actions. Such systemically pivotal nodes are especially
important, suggesting a “too pivotal to fail” characterization of the systemically
most important intermediaries in the market, rather than a “too big to fail” focus.

Fifth, the financial norms of a node are related to the size and connectedness
of its own connections. All else equal, nodes that are connected to other nodes
that are larger and/or less connected tend to be of lower quality.

We analyze the mortgage origination and securitization network of financial
intermediaries in the United States, using a data set containing all fixed-rate,
private-label mortgages (i.e., mortgages not securitized by either Fannie Mae
or Freddie Mac) originated and securitized between 2005 and 2007. We use
loan flows to identify the network structure of this market and ex post default
rates to measure performance, and use the model to estimate the evolution of
risk and financial norms in the network.

We document a strong relationship between network position and
performance, in line with the predictions of our model, which is present even
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after controlling for other observable characteristics like type and geographical
position of the lender. We also find a positive relationship between predicted
and actual out-of-sample default rates of the firms in the market. Finally,
we compare estimated firm quality with labor intensity, which we argue is
a proxy for how much firms invested in monitoring of loans, and again find an
economically and statistically significant positive relationship.

1. The U.S. Residential Mortgage Market

The precrisis residential mortgage origination market comprised thousands of
firms and subsidiaries, including commercial banks, savings banks, investment
banks, savings and loan institutions (S&Ls), mortgage companies, real
estate investment trusts (REITs), mortgage brokers, and credit unions. These
had various roles in handling the loan flows from origination to ultimate
securitization. Except for the closure of the Office of Thrift Supervision in
2011, the types of firms in the market are largely the same today.

A major driver of the subprime mortgage crisis was increased credit supply,
as shown by Mian and Sufi (2009, 2011, 2014), who study heterogeneous
loan performance at the ZIP-code level and show that performance was closely
related to credit availability. Other authors (see, e.g., Bernanke 2007; Di Maggio
and Kermani 2014; Kermani 2014; Rajan 2010) have argued that the cumulative
effect of low interest rates over the decade leading up to the financial crisis
lowered user costs and increased the demand for credit to purchase housing
services. Others have argued that the rapid expansions in the precrisis mortgage
market arose due to widely held beliefs concerning continued house price
growth (see, e.g., Cheng, Raina, and Xiong 2014; Glaeser and Nathanson
2017; Shiller 2014) Alternative explanations have focused on how mortgage
securitization led to the expansion of mortgage credit to risky or marginal
borrowers (see, e.g., Demyanyk and Van Hemert 2011; Loutskina and Strahan
2009; Nadauld and Sherlund 2013). Palmer (2015) suggests that vintage effects
were important in explaining heterogeneous loan performance: mortgages
originated earlier had more time for house price appreciation in the booming
market, which created a cushion against default. Our focus complements this
literature, since as we shall see, precrisis network effects were also important
in explaining heterogeneous loan performance in the securitized residential
mortgage market.

Figure 1 presents the market structure for loan sales, decomposed into three
levels. Loans flow from the mortgage originator of record to the aggregator
of the loans, and then to the securitization shelf and to the holding company
that owns it.” Figure 1 portrays two possible holding-company types. The left-
hand side of the schematic, shown in yellow, represents bank or thrift holding

When private-label issuers file a registration statement to register an issuance of a REMIC security, they
typically use a “shelf registration,” which is owned by a shelf holding company. The shelf registration
includes a “core” or “base” prospectus, which outlines the parameters of the various types of REMIC
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Figure 1
The residential mortgage market structure
Loan sales within affiliated firms (gray arrows) versus loan sales between unaffiliated firms (blue arrows).

company operations, while the right-hand side of the schematic, shown in green,
represents investment bank or large independent mortgage company operations
in the precrisis period.

The gray arrows represent loan sales between entities that are subsidiaries
(they may or may not be fully consolidated) of the same holding company and
the blue arrows represent loan sales between two unaffiliated firms and holding
companies.’> The graph of the gray arrows represents two trees. However,
since loans in the market also flow between these entities, represented by the
additional blue arrows in the figure, the market is really a network.* The network
structure of the market is important, because it suggests complex interactions
between intermediaries, potentially affecting their behavior and providing a
channel through which shocks can spread.

Note that the arrows in Figure 1 are double-headed, representing bidirectional
links in the network. In 2006, the preponderance of loan sales into the pools,
typically organized as real estate mortgage investment conduits (REMICs),
occurred within 60 days of the origination date of the loan due to the
contractual structure of the wholesale lending mechanisms used to fund
mortgage origination.’> These contractual funding structures assign the cash

securities offerings that will be conducted in the future through the shelf registration. The rules governing
shelf issuance are part of the Secondary Mortgage Market Enhancement Act (SMMEA) (see Simplification
of Registration Procedures for Primary Securities Offerings, Release No. 33-6964, Oct. 22, 1992, and SEC
Staff Report: Enhancing Disclosure in the Mortgage-Backed Securities Markets, January, 2003, http://www.
sec.gov/news/studies/mortgagebacked.htm#secii).

For visual clarity, we do not show sales between entities within the investment bank or independent mortgage
holding company (the green entity on the right-hand side of Figure 1) to the bank and thrift entities, but these
sales would also exist. There also would be sales between bank/thrift entities and investment bank/mortgage
company entities.

Technically, a network is a general graph of nodes and links, with no restriction with respect to the existence of
cycles or connectivity, whereas a tree is a connected graph with no cycle.

The two most important of these funding mechanisms are (1) the master repurchase agreement, a form of
repo, which received safe-harbor protections under the Bankruptcy Abuse Prevention and Consumer Protection
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Table 1

Examples of network loan sales

Loan Lender of Shelf Holding
number County State record Aggregator name company

1 Virginia Beach VA Accubanc BofA 333-133985-08  Lehman Brothers
2 Queens NY Ameriquest BofA 333-129480-11 Lehman Brothers
3 Baltimore MD B of A B of A 333-131374-59  Bear Stearns

4 Hillsborough FL GMAC B of A 333-129480-11 Lehman Brothers
5 Union GA TB&W Mtg Bof A 333-133985-74  Lehman Brothers
6 Ventura CA World Savings BofA 333-129480-11 Lehman Brothers
7 Salt Lake uT Wells Fargo BofA 333-132232-17  Bear Stearns

Examples of network loan sales for a sample of seven loans originated and securitized in 2006. The geographic
location of the loans varied, as did the lender of record, the shelf registration of the loan, and the holding company
that owned the shelf.

flows of the originated mortgages forward to each purchaser. However, the
lender of record, or in some cases the aggregator, retains a contractual put-back
option on the loan, which makes the risk structure of the loan flows bidirectional.
In line with this observation, Stanton, Walden, and Wallace (2014) find that the
mortgage market is well represented by a bidirectional network, and that the
performance of an individual node is closely related to the performance of the
node’s neighbors (i.e., the nodes with which it shares a link) in the network. We
therefore follow Stanton, Walden, and Wallace (2014) and use a bidirectional
network representation.

Table 1 shows an example of actual loan flows for a sample of seven loans
originated and securitized in 2006. Each of the seven loans was aggregated
by the same subsidiary of Bank of America. As shown in the table, Bank
of America (BofA) aggregated loans from independent mortgage companies
(Accubanc, Ameriquest, GMAC, Taylor, and Bean & Whittaker Mortgage
(TB&W Mtg)), from a S&L (World Savings), from a Bank of America branch,
and from the subsidiary of another bank depository (Wells Fargo Bank). Bank
of America then sold the mortgages to REMICs created within five different
shelf-registration facilities. Three of these shelves were owned by Lehman
Brothers and two by Bear Stearns. Thus, this Bank of America aggregator had
a one-to-many relation both with lenders (the bottom level in Figure 1) and
with holding companies (the top level in Figure 1), in line with the network
description in Figure 1. We stress that since links in the mortgage network
represent loan flows, a neighboring relationship between two nodes has no
geographical interpretation.

Figure 2 shows the network structure for a small subset of the market
containing 21 lenders, eight aggregators and four holding companies, which
are connected via loans originated and securitized in 2006. The network has 61
links, compared with 28 links in a tree representation, with 4 trees “rooted” at
the holding company level. Thus, in a tree representation, more than half of the

Act of 2005 (BAPCPA) (Pub.L. 109-8, 119 Stat. 23) enacted April 20, 2005, and (2) extendable asset-backed
commercial paper programs.
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Figure 2

Between-firm networks

Between-firm networks for a subsample of private-label mortgage originations in 2006. There are twenty-one
lenders (outer level), eight aggregators (middle level), and four holding companies (inner level). Links represent
loan flows.

links would be unaccounted for. In Appendix A, a so-called “minimum spanning
tree” (MST) representation of the subset is presented, which, by including the
links with the highest loan flow volumes, provides the most complete tree
representation of the market. For the full market of intermediaries, consisting
in 2006 of 11,095 lenders, 2,030 aggregators, and 56 holding companies, the
MST representation only accounts for about 20% of the links. The fraction of
loans accounted for in the MST is higher—about 50%—but still a significant
fraction of the market is excluded when using a tree representation rather than
a network representation of the market.

Stanton, Walden, and Wallace (2014) find a positive relation between
loan performance and the intermediary’s network position. For example, they
document a correlation of 0.23 between the average default rates of loans
handled by an aggregator and those of other aggregators indirectly connected
to that aggregator via a common node.°

Why is this network effect present? One potential reason is that a shock
that affects an intermediary spills over to its neighbors through contractual
and business interactions. This effect, which plays out once a shock occurs
and which we therefore call an ex post effect, is in line with the propagation
mechanism described, for example, in Elliott, Golub, and Jackson (2014).
Another reason is that the very presence of ex post effects influences the
behavior of intermediaries ex ante, before shocks occur, in their decisions
regarding whom to interact with and which standards to choose. Indeed, a

6 we verify and extend these results in Section 4.2.
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common explanation for the observed heterogeneous performance of banks
and other financial institutions is that they vary in their standards, through
their ability to monitor and evaluate the projects they undertake (see Berger
and Humphrey 1997; Billett, Flannery, and Garfinkel 1995, and references
therein). Heterogeneous and decreasing lending standards were documented
in the mortgage market in the years before the crisis (see Demyanyk and
Van Hemert 2011; MacKenzie 2011; Poon 2008). In what follows, we develop
a model in which both ex ante and ex post network effects are important for
explaining default rates in the U.S. mortgage market.

2. A Strategic Network Model of Intermediaries

We introduce the model in several steps. There are N intermediaries with
limited liability, each owned by a different risk-neutral agent. Each intermediary
initially has full ownership of a project that generates risky cash flows at =1,
P", and may moreover incur some costs at =0. The 1-period discount rate is
normalized to 0. The intermediary’s cash flow at #=1 is denoted by F, which
may differ from P”, because of insolvency costs and because intermediaries
enter into risk-sharing agreements with each other. Agent n’s objective is to
maximize expected cash flows, net of any costs incurred at time 0,

V'=Eo[F"]-Cy.

The risky project has scale s” > 0, with two possible returns represented by
the Bernoulli-distributed random variables £", so that R" =Ry if £"=1, and
R"=R; if £"=0. The probability, p, that £" =0 is exogenous, with 0 < p K 1.
We assume complete symmetry of risks in that the probability is the same for
each of the N projects.’” Realized cash flows to all agents are summarized by
the random vector F=(F',...,FN )/, and the realized project cash-flows are
summarized by the vector P = (Pl, e PN)/.

Each agent has the option to invest a fixed amount, Cj=cs" at ¢ =0, where
¢>0, to increase the quality of the project. This cost is raised externally at
t=0. If the agent invests, then in case of the low realization, £" =0, the return
on the project is increased by AR > ¢, to Ry + AR. This investment cost could,
for example, represent an investment in a screening procedure that allows the
agent to filter out the parts of the project that are most vulnerable to shocks.

We represent the quality investment choice by the variable g” €{0,1},
where g”" =1 denotes that the intermediary invests in quality improvement.
Intermediaries who choose g =1 are said to be high quality, whereas those who
choose g =0 are said to be low quality. For the time being, we assume that ¢

Note that each project may be viewed as a representative project for a portfolio of a large number of small projects
with idiosyncratic risks that cancel out, and an aggregate risk component measured by £”.
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is the same for all intermediaries. We will subsequently allow ¢ to vary across
intermediaries, representing exogenous variation in costs.®

There is a threshold, d > 0, such that if the return on the investment for an
intermediary falls below d, additional costs are imposed, and no cash flows
can be recovered by the agent.” For simplicity, we call these costs “insolvency
costs,” in line with Nier et al. (2008), who note that systemic events typically
originate from insolvency shocks, although they are often also associated with
liquidity constraints. We stress, however, that d would not necessarily represent
the point at which a firm becomes insolvent, but more broadly a region below
which additional costs are incurred. Also, although only important from a policy
viewpoint and not for the actual predictions of the model, we take the view that
these additional costs are wasteful in that they impose real costs on society
rather than representing transfers.

It will be convenient to define the functions

1, z>d, _
X(z)—{ 0. 2<d. and Y(2)=X(2)z.
We also make the following parameter restrictions:
0<R; <d, and (D)
R.+AR<Ry. 2)

The first restriction implies that there will be insolvency costs for a low-quality
intermediary after a low realization. The second restriction states that the
outcome in the high realization is always higher than in the low realization,
even for a high-quality intermediary.

2.1 Isolated intermediaries

We first focus on the setting in which intermediaries do not interact and study
the choice of whether to be high or low quality. The cash flows generated by
project n are then

sn_ | $"Ru, £=1,

P _{ s"(RL+qAR), &=0, 3)
the total cash flows generated to the owner after insolvency costs are accounted
for are .

=no_ n p" _ s"Y(Rp), $=17
Fr=s Y(Tn)‘{ s"Y(R,+qAR), &=0, @)

Several variations of the model are possible, for example, assuming that screening costs, c, are part of the r=1
cash flows; fixing the scale of all intermediaries to s=1; and imposing a cost function concave in the size of the
node, c=c(sy). All lead to qualitatively similar results. The version presented here was chosen for its tractability
in combination with empirical relevance.

This assumption, similar to assumptions made, for example, in Elliott, Golub, and Jackson (2014) and Acemoglu,
Ozdaglar, and Tahbaz-Salehi (2015), is a stylized way of modeling the additional costs related to risk for
insolvency, for example, direct costs of bankruptcy, costs of fire sales, loss of human capital, and customer and
supplier relationship capital. It could also more generally represent other types of convex costs of capital faced
by a firm with low capitalization, along the lines described in Froot, Scharfstein, and Stein (1993).
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and the # =0 value of the intermediary is
V'(q)=Eo[F"]=Ci=s"((1=p)Y(Ru)+pY (RL+qAR)—gc).  (5)

Given the parameter restrictions (1), we have V"(0)=s"(1 — p)Ry. We make
the technical assumption that if an intermediary is indifferent between being
high and low quality, it chooses to become low quality. Therefore, g =1 if and
only if V"(1) > s"(1 — p)Ry, immediately leading to the following result:

Proposition 1. An isolated intermediary chooses to be high quality, g =1, if
and only if

RL+AR>maX<d,£>. (6)
p

Proposition 1 is very intuitive, implying that increases in the probability of a
high outcome, the insolvency threshold, or the costs of quality investments,
make it less attractive for an intermediary to be high quality. The first argument
in the maximum function on the RHS ensures that a high-quality firm avoids
insolvency in the low state. If the condition is not satisfied, there is no benefit to
being high quality even in the low state. The second argument ensures that the
expected increase of cash flows in the low state outweighs the cost of investing
in quality. The value of the isolated intermediary when following the rule (6)
is then V}'=5"V;, where

v.=| A=pP)Ru, q=0,
1 A=p)Ry+p(R.+AR)—c, q=1.

Note that the intermediary’s optimal choice in (6) is decreasing in the solvency
threshold, d, that is, for low thresholds it is potentially optimal to invest in
quality, whereas for high thresholds it is not.

Also note that the objective functions of the agents coincide with that
of society in this case with isolated intermediaries. Specifically, given that
society has the social welfare function, V=Zn V", under the constraint that
intermediaries must act in isolation, the efficient outcome is realized by the
intermediaries’ joint actions. We obviously do not expect this to be the case in
general, when agents interact.

2.2 Networks of intermediaries

Intermediaries may enter into bilateral contracts that transfer risk, and we
represent such relations with links in a market network. Associated with the
market network is the N x N sharing matrix I', where I',,, represents the
fraction of risk that intermediary n’ transfers to n.

The model’s key ingredients are intuitive: The network allows intermediaries
to diversify risks and thereby avoid insolvency in some states. However,
the network also creates incentive problems when intermediaries pay the
full cost of quality investments that they then share as benefits from with
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other intermediaries, and it also exposes intermediaries to systemic risk.
Intermediaries are free to add or sever links if it makes them better off. An
equilibrium network must be robust against such strategic changes in network
structure, which significantly restricts the possible equilibrium outcomes. '

The market’s network is represented by the graph G=(N, E), N'={1,...,N}.
The relation E C N x A describes which intermediaries (nodes) are connected.
Specifically, the edge e=(n,n’) € E, if and only if there is a connection (edge,
link) between intermediary n and n’. No intermediary is connected to itself,
(n,n) ¢ E for all n, that is, E is irreflexive. The transpose of the link (n,n’) is
(n,n")T =(n’,n). Connections are bidirectional, ¢ € E < e’ € E. The operation
E+e=EU{e,e’}, augments the link e (and its transpose) to the network,
whereas E —e=E\{e, e’} severs the link if it exists. The number of neighbors
of node nis Z,(E)=|{(n,n') e E}|.

Because of the high dimensionality of the problem when agents act
strategically, we necessarily need a limited contract space. Specifically, we
assume that the contracts available are such that intermediaries swap claims
on the aggregate cash flows generated by their projects in a one-to-one
fashion, similar to what is assumed in Allen, Babus, and Carletti (2012).
Although obviously a simplification, this assumption qualitatively captures the
bidirectional risk structure between intermediaries, discussed in the previous
section. The contracts are settled according to a market-clearing system along
the lines of that in Eisenberg and Noe (2001).

The risk-sharing rule is represented by the sharing matrix Me RY*N  where
0< ﬁ,m/ <min{s",s"'} is the amount of project risk that intermediary n receives
from (and in turn gives to) intermediary n’. The residual risk intermediary keeps
is ﬁ,m, leading to the summing up constraint, 1= s,wheres=(s',...,s"V), and
1=(1,1,...,1) isavector of N ones. For a general vector, v € RY, we define the
diagonal matrix A, =diag(v) e R¥*¥ It will be convenient to characterize the
fraction of the risk that intermediary n’ provides to agent n, which is represented
by element I1,, of the matrix 1= ﬁA;l, implying that s =TI1s, and also the
fraction of intermediary n’s risk that it receives from n’, represented by I',,,,» of
the normalized sharing matrix

=AM, (7)

N

which, in turn, satisfies 1=1"1.

The network represents a restriction on which sharing rules are feasible. This
restriction may be self-imposed by intermediaries in equilibrium, who could
choose not to interact even if they may, or it could be exogenous. Specifically,
for a sharing rule to be feasible it must be that every off-diagonal element in
the sharing matrix that is strictly positive is associated with a pair of agents
who are linked, I, >0=(n,n")€E.

10 The reader who wishes to skip the formal details of the model may, with this intuition, directly move to Section 3.
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We focus on a simple class of sharing rules that ensure that all weights are
nonnegative and that each intermediary keeps some of its own project risk,
namely

y=min} — —° . n#n, (8)
1+Z,(E)’ 1+ Z,(E)
and R R
IT,, =5"— Znnn’- (9)
n'#n

We write ﬁ(E ) when stressing the underlying network from which the sharing
rules is constructed.

The joint quality decision of all agents is represented by the vector g =
(q',...,g"V) €{0,1}". In the general case, the cost of investing in quality may
vary across intermediaries, represented by the vector c=(c!,...,cV)Y eRY,.
In our analysis, however, we focus on the case in which ¢"=co/N is the
same for all intermediaries. The state realization is represented by the vector
£=(&',...,£V)e{0,1}". We will work with a limited state space, assuming

that & € 2, where Q:{ge{o,l}"’:g’lzN—l}C{O,I}N, P(E=1-8,)=p=
po/N, 1<n<N. Here, §, represents a vector of zeros, except for the nth

element which is 1. Thus, either zero or one low realization occurs, and the
probability for a low realization is the same for all intermediaries.

2.3 Clearing mechanism

The clearing mechanism for contract settlements is similar to that of Eisenberg
and Noe (2001) (see also Acemoglu, Ozdaglar, and Tahbaz-Salehi 2015; Elliott,
Golub, and Jackson 2014), providing a mapping from project cash flows, P,
to realized net settlement cash flows, F =CM|[P]. The outcome is chosen so
that it minimizes the number of defaults (which all agents agree are costly), by
solving

F=A;G, where (10)

G= max (TTA;)x P, s.t. (11)
Felo. vy .

f=X(A;'F). (12)

Here, f, represents the solvency vector f € {0, 1}V, with f"=1if intermediary
n is solvent in equilibrium and f" =0 if intermediary n is insolvent. Moreover,
G represents the cash flows generated by intermediaries, taking into account
the default of all other intermediaries but not the intermediaries’ own defaults,
whereas F represents the cash flows to the owners (which will be zero below
the insolvency threshold), taking into account the intermediaries’ own defaults.
Condition (11) ensures that the number of solvent intermediaries is maximized,
whereas condition (12)—in which the function X is applied element-wise on
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the input vector—is a constraint that ensures that only intermediaries above the
solvency threshold remain solvent.

As discussed in the appendix, (10)—(12) can be solved by initially assuming
that all intermediaries remain solvent, and then iteratively updating those
that violate (12) until no further insolvencies occur. This leads to a dynamic
interpretation of how defaults propagate: after m steps of the iteration, F;, and
G,, represent the cash flows, given the insolvencies that have occurred so far.

The net cash flows to the intermediaries are given by the vector

and the =0 value-vector of intermediaries, given quality investments, ¢, and
network E is then given by

V(qIE)=) w(tlg, EYP(E). (14)

Eef2

2.4 Equilibrium

We build upon the pairwise stability concept of Jackson and Wolinsky (1996),
in addition requiring equilibrium in the multistage game to be subgame perfect.
Starting with a proposed equilibrium network, E, each agent may unilaterally
decide to sever a link to another agent or to sever links with all other
agents. Bilaterally two agents can decide to add a link between themselves. In
equilibrium we require agents to have correct beliefs about the quality decisions
made by their counterparties. Appendix C provides an extended treatment.

Let E* denote the complete network in which all nodes are connected and
Ey={ the empty network in which all nodes are isolated. There is a maximum
possible network, E C E*, such that only links that belong to E may exist in the
equilibrium network. This restriction on feasible networks could, for example,
represent environments in which it is impossible for some agents to credibly
commit to deliver on a contract written with some other agents, because of
low relationship capital or limited contract enforcement across jurisdictions.
A network, E, is feasible if E C E. If all agents who may be linked actually
choose to be linked in equilibrium, that is, if £ = E,we say that the equilibrium
network is maximal. It also may be the case that E is a strict subnetwork
of E. The primitives of the economy are then summarized in the tuple €=
(N,E,s, po.co, R, Ry, AR, d).

The sequence of events in the game is described in Figure 3. At r=—2, each
agent may unilaterally decide to sever a link to another agent, or to all other
agents. Each agent can also propose to add a link, in which case the other agent
has the option to accept or decline at =—1. Then, after the resultant network
is determined, agents choose quality and outcomes are realized. Note that we
implicitly assume that the actual quality decision is not contractible.!

In our stylized model, the quality decision can be inferred from the realization of project cash flows. This issue
would be avoided by assuming a small positive probability for AR=0 in case of a low realization with quality
investments.
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t=-2 t=-1 t=0 t=1

Agents decide
whether to accept
proposed new
links

| | | >
Each agent
decides whether to
- cut a link

- propose a new link
- isolate

Outcomes are
realized

Agents choose
quality, gr

Figure 3
Sequence of events in network formation game with endogenous financial norms

Consider a candidate equilibrium, represented by a network E and quality
choices g. Each agent, n, has the opportunity to accept the sharing rule, (E),
as is, by neither severing nor proposing new links at =—2. But, in line with
the pairwise stability concept, any agent n can also unilaterally decide to sever
a link with one neighbor, n’, leading to the sharing network E'=E —(n,n’), and
corresponding sharing rule T1(E’). Also, any agent can propose an augmentation
of another link (n,n’)€ E\E, which if agent n’ accepts leads to the sharing
network E” = E +(n,n’) with sharing rule TI(E"). Finally, we assume that each
agent can unilaterally choose the isolated outcome, V', by severing its links to
all other agents.

The possibility to unilaterally sever all links in a sharing network—although
not technically part of the standard definition of pairwise stability—is natural,
in line with there being a participation constraint that no intermediary can be
forced to violate. It provides a minor extension of the strategy space.

The severance, proposal, and acceptance/rejection of links occur at t=—2
and r=—1. The agents then decide whether to invest in quality or not at 1 =0,
each agent choosing ¢" € {0, 1}. A pair (¢, E), where E C E, is defined to be an
equilibrium, if agents given network structure E choose investment strategy
q, if no agent given beliefs about other agent’s actions—under the current
network structure as well as under all other feasible network structures in E—
has an incentive to either propose new links or sever links, and if every agent’s
beliefs about other agents actions under network E as well as under all feasible
alternative network structures are correct.

3. Analysis of Equilibrium

We first analyze some specific types of equilibrium networks, shown in Figure 4,
then use simulations to study the relationship between quality choice and
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A B Cc

o—o

Figure 4
Network examples
(A) Two-node network, (B) complete network, E* , and (C) star network, E S,

network position, and finally provide a partial characterization of node behavior
in general networks. The key takeaways from our analysis, relating local
network position, global network structure, and quality, is that heterogeneous
financial norms tend to be clustered in the network, that the equilibrium quality
decision of a node is related to the size and connectedness of that nodes’
neighbors, and that the quality decisions of a systemically pivotal subset of
nodes are disproportionately important for the systemic vulnerability of the
market.

3.1 Two intermediaries

Consider the case with two intermediaries in the network with risk sharing
shown in Figure 4A, with scales s' =s?=1. The risk-sharing contract is such
that intermediary 1 agrees to deliver P! /2 to intermediary 2 at =1, and, in turn,
receive P?/2 from intermediary 2. The sharing matrix in such a risk-sharing
equilibrium is

I'=

N—= D=
N—= D=

There is also another possible equilibrium in this case, the isolated one E, with

sharing matrix
1 0
e[10]

For the action ¢ €{0,1}, we let —g denote the complementary action
(—g=1—q). The conditions for risk sharing to be an equilibrium are then the
following

v! (ql,qzlE*)Zvl(—'ql,qzlE*), Vz(ql,qzlE*)ZVZ(ql,—'qZIE*),
(15)
Vi(g'.¢*IE") =V}, V3(q'.q*IE*) = V}. (16)

Condition (15) ensures that it is incentive compatible for both agents to choose
the suggested investment strategies given that they share risks, while condition
(16) presents participation constraints that state that risk sharing dominates
acting in isolation for both agents.
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Value functions

Value functions in economy with two intermediaries, as a function of insolvency threshold, d. The following
value functions are shown: V; (circles, dotted black line), Vl(l, 1|E*) (squares, magenta), V 1 (0,1|1E*) (stars,
red), V1(1,0|E*) (pluses, blue), and v1(0,0/E*) (crosses, green).

We choose parameter values Ry =1.2, R; =0.2, AR=0.4,¢=0.05, p=0.15,
and vary the insolvency threshold, d. Figure 5 shows the resultant value
functions.

There are four different regions with qualitatively different equilibrium
behavior. In the first (leftmost) region, where 0.6=R; + AR >d, the unique
equilibrium is the one where both agents invest in quality (¢ =(1, 1)) and there
is no risk-sharing (network E), leading to values V; for both intermediaries. No
intermediary ever becomes insolvent in this region (since d < Ry + AR). The
outcome where both agents invest and share risk would lead to the same values,
but cannot be an equilibrium because each agent would deviate and choose to
avoid investments in this case, given that the other agent invests. This can be
seen by observing that the red line with stars corresponding to V'(0,1|E*),
that is, risk sharing with low quality for agent 1 and high quality for agent 2,
is above the magenta line with squares, which corresponds to V'!(1,1|E*),
that is, risk sharing and high quality for both agents. The deviation strategy is
profitable because the deviating agent shares the benefits of quality investments,
and therefore the benefit of investing is only p x AR/2=0.15x%x0.4/2=0.03 at
t=1, but he incurs the whole investment cost of ¢=0.05 at r=0. The agents
therefore cannot coordinate on the high-quality outcome.

In the second region, where 0.6=R;+AR<d<0.7=(R.+Rpg)/2, the
equilibrium changes so that both agents choose low quality, ¢ =(0,0) and share
risks, that is, the equilibrium network is E*. The outcome corresponds to the
green line with crosses, and default never occurs. The reason why isolation

16

Downl oaded from https://acadeni c. oup.conrfs/advance-article-abstract/doi/10.1093/rfs/hhx097/ 4095670

by University o
on 08 June 2018

f California, Berkeley/LBL user



Mortgage Loan Flow Networks and Financial Norms

is no longer an equilibrium is that quality investments in isolation are no
longer sufficient to avoid default after a low shock realization (R +AR <
d). Therefore, V! drops substantially. A risk-sharing outcome with quality
investments would increase the value to the magenta line with squares, but
coordination on this outcome is not possible for the same reason in the first
region.

In the third region, where 0.7=(R;.+Ry)/2<d <0.9=(R,+AR+Ry)/2,
the equilibrium is one of risk sharing, E*, with quality investments g =(1,1)
(magenta line with squares). The reason why it is possible to coordinate on
quality investments in this region is that without quality investments, default
occurs after a bad realization ((R; + Ry)/2 <d), so the expected benefit for an
agent of investing in quality rather than deviating is p((R,+AR+Rpy)/2)=
0.15x0.9=0.135, which readily outweighs the cost of 0.05.

Interestingly, although insolvency costs are higher in the third region than in
the second region, so is equilibrium welfare. This suggests that if the insolvency
cost friction can be affected, for example, by a regulator, the policy implications
of decreasing d may be nontrivial: decreasing the friction may actually decrease
welfare.

Finally, in the fourth (rightmost) region, where 0.9=(R,+AR+Rp)/2<
d, default always occurs after a bad realization regardless of the risk-sharing
agreement and quality investments. Investment in quality is therefore useless
and the agents also choose to be isolated since defaults will propagate if they
share risk (increasing the individual probability of default from p to 2p). Thus,
q=(0,0), and the network is Ej in this region.

We note that g'=¢? for all equilibrium outcomes. This suggests that
the “financial norm” of an intermediary—defined as its quality—depends
on the financial norm of the intermediary with which it interacts, in line
with the intuition that norms are jointly determined among interacting
agents. In the two-agent case, it is straightforward to show that this property is
generic:

Proposition 2. In any equilibrium of the network model with two agents, both
agents make the same quality choice, that is, g' =¢>. No insolvencies occur in
equilibria with risk sharing.

In our terminology, intermediaries share financial norms in equilibrium.'? The
possibility for agents to cut links is crucial for the result. As shown in the proof

Note that our notion of financial norms follows from game theoretic principles. Each intermediary maximizes
its own “utility” (defined as its total expected payoff), and the common quality is an equilibrium outcome. Our
approach is in line with much of the economics literature on networks, but has been criticized in the sociology
and organizations literature as being too narrow to capture the richness of network interactions in a business
environment. Granovetter (1985) and Uzzi (1997), for example, suggest that economic actions are embedded
in structures of social interaction, and therefore must be understood within such a context. Such considerations
would likely amplify the importance of financial norms if incorporated into our model.
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of Proposition 2, if the risk-sharing network was exogenously given, it would
be possible to get a risk-sharing outcome with heterogeneous financial norms.
In other words, common equilibrium financial norms are a consequence of the
possibility for agents to affect network structure.

3.2 Complete network

The complete network E* is shown in Figure 4B with N =4 intermediaries.
For large N, we can completely characterize when a complete network is an
equilibrium, as shown in the following proposition:

Proposition 3. Consider the economy € with maximal network E = E*. For
large N:

(a) If Rp+AR<d or AR§;—?), then the complete network, E*, with
no quality investments, ¢=0, is an equilibrium. No intermediary
ever becomes insolvent in this equilibrium, and there is no other
complete-network equilibrium.

(b) If both conditions in (a) fail, then there is no complete-network
equilibrium.

The result suggests that the complete network efficiently facilitates complete
risk sharing—no insolvencies occur—but may not achieve efficient quality
investments. Indeed, intermediaries may well be better off if they could
coordinate to invest in quality, but the free-rider problem becomes more severe
the larger the complete network, since each intermediary shares less of the
benefits of quality investments the larger the network. Therefore, only low-
quality equilibria may survive in large complete networks. When the conditions
in (a) fail, it is more efficient for an intermediary to isolate and invest in quality,
and the low-quality complete network no longer constitutes an equilibrium.

Also note that, like in the two-node network (which is a special case of a
complete network), all agents share the same (low) financial norms in large
complete network equilibria.

3.3 Star network

The star network E° is shown with N =5 intermediaries in Figure 4C. Note that
the network is asymmetric in that the central “hub’ has 4 neighbors whereas the
peripheral nodes, n=2, ..., 5 have one neighbor each. We first study the special
case where the hub is exactly as large as all the other nodes together, s;=N — 1,
$2,...,8y =1, so that each peripheral node shares exactly half of its risk with
the hub, which, in turn, shares half of its risk with the other nodes altogether.
In this case, we have

Proposition 4. Consider the economy & with parameters, s;=N—1,
$2,...,8y =1, and maximal network E = E*. For large N:
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(1) If (RL+Rp)/2>d and AR/2>cy/po, orif (R +Ry)/2<d and R, +
AR > ¢/ po, then the star network E*S in which all nodes are high quality,
g =1, is an equilibrium.

(1) f (R +Ry)/2>d and AR/2<cy/po, and either R+ AR <d or AR <
co/ po, then the star network ES in which all nodes are low quality, g =0,
is an equilibrium.

(iii) There is no equilibrium star network in which there are nodes of both
high and low quality.

Thus, for large star network equilibria, the financial norms are again
homogeneous in this case. Like in previous cases, high-quality nodes will
not keep connections with low-quality nodes, either preferring to isolate or
to switch quality.

If we allow other size relations between the hub and peripheral nodes, then
there exist equilibria for which the financial norms of the nodes differ. We have:

Proposition 5. Consider the economy & with parameters s; =a(N — 1), >0,
s$2,...,5y =1, and maximal network E = E*. For large N:

(a) For all «, there exist star network equilibria in which all nodes have
high quality, as well as star network equilibria in which all nodes have
low quality.

(b) If @ <1, there are star network equilibria for which the hub is low quality
and all the peripheral nodes are high quality, whereas if o > 1, there are
no such star network equilibria.

(c) For no « is there a star network equilibrium for which the hub is high
quality and all the peripheral nodes are low quality.

The result provides further intuition about the relationship between size,
number of connections, and quality choice. Specifically, within the class of star
networks, all else equal, it is more likely for a node to be high quality if it is
larger and if it has fewer connections. In both cases the node keeps a larger
fraction of its own project, and therefore has a higher incentive to invest in
quality.

Note that there is an asymmetry in Proposition 5 in that it is possible to
have a hub with low norm and peripheral nodes with high norms, whereas the
reverse equilibrium outcome is not possible. The reason is that in a hypothetical
equilibrium in which the hub is high quality, and the peripheral nodes are low
quality, the hub can always increase its value by severing one link. Indeed, such
a move is preferred by the hub, since it does not change the states in which
insolvency occurs because each peripheral node has a very marginal impact on
the hub, while allowing it to keep more of its high-quality project.
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Table 2

Summary statistics of high- and low-quality intermediaries

Average Number in network q(neighbors) Number of neighbors cost
g=1 6.34 0.79 4.32 0.011
q=0 2.66 0.4 3.12 0.016

Summary statistics of high- and low-quality intermediaries. Number of simulations: 1,000. Parameters: Ry =1.1,
R;=0.2, AR=0.3,d=0.75, p=4/90, c~U(0,0.025). Scale s=1.

The situation is quite different in an equilibrium with a low-quality hub
and high-quality peripheral nodes. In this case, the deviation strategy is for
two peripheral nodes to form a link, but because of the more severe incentive
problems they face when they share more risk, the outcome may be that the
peripheral nodes switch to low quality in this case, making the outcome worse.
Therefore, the star network with a low-quality hub and high-quality peripheral
nodes survives as an equilibrium. We stress that the aforementioned argument
is only valid for large networks.

3.4 Random networks

We explore whether the common financial norms documented so far extend to
general, less structured networks. Specifically, using simulations, we explore
the relationship between network structure and quality choice for a class of
randomly generated networks. We simulate 1,000 networks, each with N =9
nodes. We use the classical Erdos-Renyi random-graph-generation model, in
which the probability that there is a link between any two nodes is i.i.d., with
the probability 0.25 for a link between any two nodes, and we also randomly
vary ¢ across intermediaries, ¢ ~ U (0,0.025).13 For computational reasons,
we focus on networks in which equilibria are maximal, E=E.

Table 2 shows summary statistics for high-quality nodes compared with
low-quality nodes equilibrium. We see that there are on average more high-
quality nodes. Also, not surprisingly, the average cost of investing in quality
for high-quality nodes is lower than for low-quality nodes. Most interestingly,
the average quality of neighbors of high-quality nodes is higher than of low-
quality nodes. These differences are statistically significant. The last result is
especially important, since it shows that the financial norms are indeed closely
related to network position in that they tend to be clustered, in line with our
results for two intermediaries.

Another way of measuring the presence of such clusters is to partition
each network into a high-quality and a low-quality component, and study
whether the number of links between these two clusters is lower than it
would be if quality were randomly generated across nodes. Specifically,

Other possible network generation processes also would be possible, for example, the preferential attachment
model introduced in Barabasi and Albert (1999). Given the small size of our simulated networks (N =9), the
choice of network generation process is not crucial for the results.
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consider a network with a total of K =|{(n,n")€ E}| links, and a partition
of the nodes into two clusters: N'=N4UNE, of size NA=|N4| and N8=
|A B |=N—N A respectively, and the number of links between the two
components: M =|{(n,n')EE:n e N4 n' e NB}|. Inthe terminology of graphs,
M is the size of the cut-set, and is lower the more disjoint the two clusters
are. The number of links one would expect between the two clusters, if
links were randomly generated, would be W=mNAN BK, so if the
average M in the simulations is significantly lower than the average W,
this provides further evidence that financial norms are clustered. Indeed, the
average M in our simulations is 12.2, substantially lower than the average
W which is 14.2, corroborating that network position is related to financial
norms.

The intuition for why norms are clustered is that, in general, connected nodes
need to coordinate on high quality. When such coordination fails, nodes jointly
choose low quality instead. A few nodes may “bridge” high- and low-quality
clusters. For such nodes, it is optimal to be high quality, even though they are
connected to some low-quality nodes, because of the diversification benefits
these low-quality connections provide.

3.5 Equilibrium behavior in general networks

A complete characterization of the equilibrium behavior of all nodes in a general
network is out of reach, but we are able to characterize the behavior of a
usually significant majority of the nodes, namely those whose quality choices
do not affect the cash flows they receive from other nodes. In Section 2.3, we
introduced the solvency vector, f, where f” represents whether intermediary
n is solvent in equilibrium.

Definition 1. Node r is said to be systemically pivotal in equilibrium if its
quality choice influences the set of nodes that become insolvent in some state,
that is, if for some state £ € £2, and intermediary m #n,

fEQ"#fE (=q",.q7")".

Here, (—g",g~") denotes the action vector for which agent n switches to the
complementary action, and all other agents choose the same actions used in
equilibrium (see Appendix C).

A node that is merely a channel through which shocks propagate will not
be classified as systemically pivotal. In other words, our definition focuses on
how financial norms generate systemic risk. We partition the network into the
set of nodes that are systemically pivotal, N- S and those that are not, A/U.
Nodes that belong to N are of especially high interest, since their quality
decisions impact the solvency of other nodes in the network, creating a systemic
externality.
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The behavior of nodes in AV is straightforward to characterize. We define
O =R T+ R Y. 4, Tjn f1(1=8,,(q"=2,47")), 2€{0,1},'* and then have

Proposition 6. Any node n e V'V is high quality in equilibrium, ¢" = 1, if and
only if one of the following two conditions holds:

(1) d—O"'<0(la) and %<anAR(lb),
(2) 0<d—©"!'<T,,AR (2a) and %—@”’1<F,1,,AR(2b).

Note that Proposition 1 for the two-node network is a special case of
Proposition 6, because when node n is not connected to any other node it
follows that I",,,, =1, ®" = R, , and that condition (1) is never satisfied (because
of the assumption that R; <d). Moreover, condition (2) then collapses to
d—R; <AR,and < R 1 < AR, which are equivalent to the condition for high
quality given in Proposition 1. Note that (1b) imposes a stronger condition on a
connected node for being high quality than for an isolated node, since I',,, <1
for a connected node. The reason is the incentive problem that arises because
a connected node shares the benefits of quality investments with other nodes,
in contrast to an isolated node.

For nodes in /'S, the above restrictions on equilibrium behavior do not apply.
The following proposition states that systemically pivotal nodes always have
at least as high incentive to be high quality as nodes that are not systemically
pivotal, and it is straightforward to show:

Proposition 7. For any node ne NS, each of conditions (1) and (2) in
Proposition 6 is sufficient for n to be high quality in equilibrium, g" =1.

The intuition behind the result is straightforward: systemically pivotal nodes
are not only directly affected by a negative shock if they decide to be low
quality but also potentially by negative feedback from other nodes that they
affect. The feedback effect always increases the value of being high quality
compared with nodes that are not systemically pivotal. Nonpivotal nodes only
affect the network locally, as shown by the following proposition.

Proposition 8. Only systemically pivotal nodes may through their quality
choices affect the cash flows of nodes beyond their direct neighbors.

In practice, systemically pivotal nodes tend to make up a small fraction of the
nodes in the network, that is, there will be many nonpivotal nodes that behave

For nodes that are not systemically pivotal, n e N U, the insolvencies f J, J #n per definition do not depend on
the quality choice of node n, that is, "% does not depend on z, so we can drop the z dependence for such nodes
and write ©".
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in a manner that is straightforward to characterize, in line with Proposition 6,
and a smaller set of pivotal nodes with richer behavior. We note that although
pivotal nodes are more motivated to invest in quality than nonpivotal nodes,
they still do not internalize the full effect of their quality choices, in contrast to
the market with isolated nodes in Section 2.1.1

We study how local network characteristics are related to whether a node is
systemically pivotal. Define

_ Rp—d

" Ry—R,’
which is a normalized measure of the slack between the insolvency threshold
and the high outcome. We say that node n is well diversified if T',,, <k. It is

easy to see that well-diversified nodes survive after a low shock realization,
even if they are low quality. It also follows that:

K

a7)

Proposition 9. Consider an economy with normalized slack « defined by
(17). If node n’s neighbors are all well diversified, then n is not systemically
pivotal, ne N'V.

Node n’s prospects of being well diversified depends on it own connectivity,
but also on the connections and sizes of its neighbors. All else equal, node
n’s likelihood to be well diversified (because of a lower I',,,) increases the
larger the sizes of its connections, and the fewer connections they have (I, is
nonincreasing in I',;;, and I';; is, in turn, nondecreasing in s/ and nonincreasing
in Z;). Moreover, the lower I';, is for a well-diversified node, the lower the
incentive of the node to invest in quality, because of the free-rider problem,
altogether leading to

Corollary 1. For a well-diversified node, n, all else equal,

(i) The more connected node # is, the more likely it is that n is low quality.
(i1) The less connected the neighbors of node # are, the more likely it is that
n is low quality.
(ii1) The larger the neighbors of node n are, the more likely it is that n is low
quality.

These argument are based on local properties, that is, on the network properties
in a neighborhood of a given node. Similar local arguments also holds for an
extension of the model in which d varies across the network, for example,
because of different regulatory regimes, although this extension is not part of
our base model. A higher d implies a lower x and therefore a stricter hurdle

Because of the potential nonlocal effect of the actions of pivotal nodes, a regulator who is concerned about
contagion should therefore focus on these nodes, potentially being “too pivotal to fail.”
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for a node to be well diversified. Moreover, a well-diversified node has, all
else equal, less of an incentive to be high quality than a node that is not well
diversified, since quality investments may save the latter node from default,
leading to:

Corollary 2. In an economy in which the solvency threshold d varies, nodes
are more likely to be low quality in regions with lower d.

The insolvency threshold for a node also may be related to other node
characteristics, for example, the number of neighbors, Z,.'% In case of a
negative relationship between d,, and Z,,, the two effects from Corollary 1(i)
and Corollary 2 reinforce each other, whereas they go in opposite directions
when there is a positive relationship. In unreported numerical simulations we
have verified that the insolvency threshold effect dominates, so that high-
quality nodes are associated with higher insolvency thresholds both when the
relationships between size and insolvency threshold are positive and negative.

4. Application to the Mortgage Market

This section investigates the extent to which the model can help to explain the
empirical findings of Stanton, Walden, and Wallace (2014), who documented a
strong relationship between loan performance and empirical mortgage-network
characteristics. We also test several new empirical predictions. Specifically
(more detail is provided below):

1. There should be a positive relation between the loan performance of a
firm and that of its neighbors.

2. There should be a positive relation between the financial distress of a
firm and that of its neighbors.

3. The estimated quality measure in the model should be related to other,
independently observable, measures of quality.

4. There should be a positive relation between predicted and realized loan
performance.

5. There should be lower predicted performance of firms that defaulted
than of those that remained in the sample.

6. Ex ante effects, that is, financial norms, should be important for the
model’s ability to predict future defaults.

4.1 Data
To evaluate the model, we use data assembled from Dataquick, ABSNet, and
Dealrate.com. Table 3 provides summary statistics.

16" We thank a referee for pointing this out.
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Table 3
Summary statistics
Variable name Mean SD Minimum Maximum
2006
Original loan balance ($) 277,425.00  224,182.00  50,000.00 989,560.00
Original cumulative loan to value ratio 0.79 0.16 0.14 1.65
Original mortgage contract rate 0.07 0.03 0.04 0.13
Original mortgage amortization term (years) 31.38 441 10.00 40.00
Conventional conforming loan indicator 0.33 0 1
FICO score 670 67 370 850
No documentation 0.68 0 1
Loan origination cost 0.15 0.04 0.07 0.28
Loan-level default 0.37 0 1
Geographic effects (excluding subject loan)
Loan ZIP code average loan-level default 0.37 0.13 0 1
Weighted average loan-level default in 0.32 0.12 0 1

contiguous ZIP codes
Network effects (excluding subject node)

Neighboring lenders average loan-level 0.44 0.01 0.0000 1.0000
default rate

Neighboring aggregators average loan-level 0.38 0.01 0.24 0.53
default rate

Neighboring holding company average 0.38 0.02 0.03 0.49

loan-level default rate
Local market economy (ZIP code averages,

2006-2013)
Average adjusted gross income ($) 53,115.00 39,308.00 14,635.00 2,157,816.00
Average median sales price ($) 302,545.00  323,080.00 17,666.00 16,143,015.00
Lender Type
Bank indicator 0.30 0 1
Savings and loan institution indicator 0.08 0 1
Mortgage company indicator 0.59 0 1
Credit union indicator 0.03 0 1
Number of loans 1,152,312
2007
Original loan balance ($) 369,627.00  264,452.00  51,000.00 2,000,000.00
Original cumulative loan to value ratio 0.83 0.12 0.60 1.18
Original mortgage contract rate 0.07 0.01 0.05 0.12
Original mortgage amortization term (years) 31.30 4.42 10.00 40.17
Conventional conforming loan indicator 0.47 0 1
Loan origination cost 0.14 0.04 0.07 0.240
Loan-level default 0.3337 0 1
Number of loans 522,875
Lender performance 2007
Average share of 2006 network linked lenders
that disappeared
(closure or bankruptcy) from the 2007 0.2670 0.0297 0.0093 1
network, excluding subject lender
Average loan-level default in 2006 network 0.0115 0.0002 0.0092 0.0142
neighbors (January 2006-December 2006)
Average loan-level default in contiguous ZIP 0.0558 0.0325 0 0.3343
codes (January 2000-December 2006)
Number of lenders (2006) 11,095
Number of lenders (2007) 5,957

Summary statistics for loan origination characteristics, default performance (60 days delinquent), the performance
of loans in the loan’s ZIP code (excluding subject loan), the performance over firms’ network paths, and aggregate
lender performance.
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4.1.1 Individual loan details, 2006. The first eight rows of the upper
panel of Table 3 provide loan contract and origination summary statistics for
the first-lien, fixed-rate mortgages originated and securitized in private-label
mortgage-backed securities in 2006. The average loan balance was $277,425
and the average cumulative loan-to-value ratio was 79%. The average coupon
on the mortgages was 7% and the average maturity was 33 years. About 33%
of the loans were conventional, conforming loans and the average FICO score
was 670. Loan costs averaged about 15% of the balance, with a standard
deviation of 4%. In total, 37% of the loans defaulted during the period.

4.1.2 Geographic effects. We construct two ZIP-code-level measures for
local mortgage-market conditions and the localized incidence of loan defaults.
The first of these measures, Loan ZIP code average loan-level default, is the
average mortgage default incidence through 2013, excluding the subject loan,
where default is defined as real estate owned, foreclosure, bankruptcy, 60, 90,
120, and 150+ day delinquencies for 2006 mortgage originations within that ZIP
code. Our second measure, Weighted average loan-level default in contiguous
ZIP codes is constructed by geoprocessing the U.S. Census shape files for ZIP
code tabulation areas (ZCTAs) using polygon neighbor functions to identify
the continguous neighbors for each ZCTA and then using the ZIP code for each
loan to map loans onto their appropriate ZCTA and contiguous neighbors. We
then use ZCTA centroid distances and the 2006 mortgage origination balances
to construct a weighted average loan-level default rate for all of the loans
originated in ZIP codes contiguous to the subject loan’s ZIP code. Our definition
of loan default uses the same performance outcome variables as those defined
above, and the evaluation period is again through 2013. As shown in Table 3, the
average ZIP-code-level default was about 37% for 2006 mortgage originations
over the period, and the average default rate among 2006 loans originated in
contiguous ZIP codes was about 32%.

4.1.3 Network neighbor default performance. We construct the network,
E, from the loan flows, as discussed in Section 1. The performance within
the network neighborhoods is measured as the average (excluding the subject
node) of the default rates of nodes that are indirectly connected to a node
in the network (i.e., at distance 2). We have three measures of performance
within network neighborhoods: (1) Neighboring Lenders Average Default Rate,
the average default rate of lenders connected to a lender via an aggregator;
(2) Neighboring Aggregator Average Default Rate, the average default rate of
aggregators connected to an aggregator, either via a lender or via a holding
company; and (3) Neighboring Holding Company Average Default Rate, the
average default rate of holding companies connected to a holding company via
an aggregator.

The next section of Table 3 presents the default performance within the
three network neighborhoods of the node, again excluding the subject node.
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As shown, the average lender default level for neighboring network lenders
was 44%. The average default level for neighboring aggregators to the subject
firm’s aggregator was 38%, and the average default level for the neighboring
holding company was 38%.

4.1.4 Local economy. The local market economy is measured using ZIP-
code-level averages from 2006 to 2013 for adjusted gross income obtained
from the Internal Revenue Service and for median sales prices for homes
obtained from Zillow.!” As shown in Table 3, the average ZIP-code-adjusted
gross income over the period was $53,115 and the average median house price
was $302,545.

4.1.5 Lender type. To control for possible regulatory effects (see, e.g.,
Agarwal et al. 2014), we introduce indicator variables for the type of lending
institution that originated the loan. We have five lender types: banks, savings
and loan institutions, credit unions, mortgage companies, and other. The banks
are primarily regulated by the Office of the Controller of the Currency, the
savings and loan institutions were regulated at the time by the Office of Thrift
Supervision, the credit unions by the National Credit Union Administration,
and the mortgage companies were primarily regulated by the Department of
Housing and Urban Development. The composition of lender types in the data
is 30% banks, 8% savings and loans, 59% mortgage companies, and 3% credit
unions. The remaining mortgages were originated by finance companies and
home builders.

4.1.6 Individual loan details, 2007. The second-lowest panel of Table 3
presents summary statistics for the first-lien, fixed-rate mortgages originated
and securitized in private-label mortgage-backed securities in 2007. As shown,
the loan balances at origination were larger, the cumulative loan-to-value ratios
were larger, and the contract rates were higher than in the 2006 originations.
A larger share of the fixed rate mortgages were conventional conforming, and
the ex post default rates are similar.

4.1.7 Firms that left sample in 2007. The lowest panel of Table 3 shows that
overall, of the 11,095 firms in the sample in 2006, 5,138 (46.3%) dropped out
in 2007 due either to closure or to bankruptcy. Of the indirect lender-to-lender
connections in the 2006 network, 26.7% disappeared during 2007.

The IRS data were obtained from https://www.irs.gov/uac/SOI-Tax-Stats-Individual-Income-Tax-Statistics-
ZIP-Code-Data-(SOI), and the Zillow median house sales price data were obtained from http://www.zillow.
com/research/data/#median-home-value.
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4.2 Network position versus loan performance
Prediction 1. There is a positive relation between the loan performance of a
firm and that of its neighbors.

Table 4 presents the results of regressing loan defaults, defined as loans that
are 60 or more days delinquent at any time between their origination date and
December 2013, on the physical geography and macroeconomic environment
of the loan collateral, the performance of the originators, aggregators, and
holding companies within the loan’s network, the contractual characteristics
of the loan, and the type of originator. The regression is intended to highlight
the empirical relationship between network position and loan performance,
controlling for a wide range of contractual, local economy, and regulatory
effects that are typically found in default-estimation strategies (see, e.g.,
Adelino, Schoar, and Severino 2016; Mian and Sufi 2009).

As shown in Table 4, the default rate of a loan is significantly affected by the
average mortgage default rate within the same ZIP code (excluding the sample
loan), the default rates of contiguous ZIP codes and the local macroeconomy,
as well as by the average default rate for the lenders, aggregators and holding
companies within the loan’s network. To see the importance of network effects
relative to purely geographical effects, a 1% increase in the default rates of
neighboring lenders within the network leads the subject loan’s default rate to
increase by 2.28%; a 1% increase in purely geographically determined local-
market default rates leads to an increase in the subject loan’s default rate of
only 0.54%. Similarly, an increase of 1% in the default rates of the neighboring
aggregators within the network leads the subject loan’s default rate to increase
by 1.15%; a 1% increase in the average default rates of contiguous ZIP codes
leads to an increase of only 0.37%. Even for the more network-distant holding
companies, a 1% increase in default rates leads to an increase of 0.84% in the
subject loan’s default rate.

All the other coefficients reported in Table 4 have the expected association
with default. Interestingly, we find that ZIP codes with higher gross income
levels and higher median sales prices are associated with elevated default
levels.'® Moreover, surprisingly, mortgage companies, banks and savings and
loan institutions are associated with lower loan-level default rates relative to
credit unions and finance companies, despite the presence of loans from several
bankrupt firms that were mortgage companies and savings and loan institutions.

Although we include geographic controls, we cannot completely disentangle
whether these effects are driven by network proximity or by some omitted factor
that is correlated with network position. By studying the change of the network
over time, we can rule out that such a factor captures static node characteristics.
Specifically, we study the nodes that were neighbors of a node in 2005 but not in

18 This result is consistent with those of Adelino, Schoar, and Severino (2016).
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Table 4
Default regressions

Coefficient SE Coefficient SE Coefficient SE
estimate estimate estimate
(€)) (@) 3 (C)) ) (6) @)
Intercept —1.8431%** 0.199 0.0133 0.041 —2.2550%** 0.164
Geographic effects
Loan ZIP code average default (excluding subject loan) 0.5204*** 0.0065 0.5193%** 0.0006 0.5171%+%* 0.0065
Weighted average default in contiguous ZIP codes 0.3591%** 0.0059 0.3656*** 0.006 0.3632%** 0.0059
Average house prices in ZIP code (0000) 0.0988*** 0.0034 0.1014%** 0.003 0.1012%** 0.0034
log of average IRS median gross income in ZIP code 0.0013*** 0.0001 0.0014%** 0.0003 0.0014%* 0.0001
Network effects (excluding subject loan)
2006 Neighboring network lenders average default rate 2.3958*** 0.0635 1.7859*** 0.0649
2006 Neighboring network aggregators average default rate 1.2717%%* 0.0497 1.1181** 0.2776
2006 neighboring network holding companies’ average default rate 1.044 %% 0.09 2.3367** 0.5777
2005 neighboring network lenders average default rate 0.3783 0.198 0.3335 0.276
2005 neighboring network aggregators average default rate 0.2978 0.157 0.0526 0.2444
2005 neighboring network holding companies’ average default rate —0.5128%** 0.049 0.5164 0.5895
Contract structure
Loan origination cost 0.0855%** 0.013 0.0878*** 0.0131 0.0988*** 0.013
Original loan balance —0.0007** 0.0002 —0.0006* 0.0003 —0.0006* 0.0002
Original cumulative loan-to-value ratio 0.6379%** 0.0031 0.6369*** 0.003 0.6369*** 0.0031
Original mortgage contract rate —0.0497* 0.0247 —0.0658** 0.025 —0.0562* 0.0247
Original mortgage amortization term 0.0047%** 0.0001 0.0047%** 0.0001 0.0047%** 0.0001
FICO score —0.0012%** 0.0000 —0.0012%** 0.0000 —0.0012%** 0.0000
Conventional conforming loan indicator —0.0059*** 0.0016 —0.0060** 0.002 —0.0060*** 0.0016
No document loan 0.0866*** 0.001 0.0867*** 0.001 0.0864*** 0.0011
Lender type
Bank indicator —0.0425** 0.0161 —0.0236 0.0162 —0.0278 0.0163
Savings and loan indicator —0.1021%** 0.0161 —0.1008*** 0.0161 —0.1009*** 0.0161
Mortgage company indicator —0.1019*** 0.016 —0.0896*** 0.0162 —0.0932%+* 0.016
Credit union indicator 0.0224 0.0163 0.0246 0.0163 0.0286 0.0163
Firm fixed effects Yes Yes Yes
Month fixed effects Yes Yes Yes
N= 969,317 969,317 969,317
5 (< 001)
*(<.01)
\% *(<.05)

Linear regression of loan-level default on the average default rate within the loan’s ZIP code (excluding the subject loan) and the average default rate within the loan’s network neighborhood
(excluding the subject loan).
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2006 (see Columns 4—7 of Table 4). The results indicate little relation between
these 2005 neighbors and 2006 node performance, both when included alone
(Columns 4 and 5) and when included jointly with the 2006 nodes (Columns 6
and 7).

Overall, these results suggest that the mortgage loan flow network captures an
important factor through which heterogeneous risk exposure and underwriting
quality affected loan performance. These network effects appear to be over
and above the well known effects of local house price and income dynamics,
loan contract characteristics and other local market conditions, and are broadly
consistent with the implications of our model.

4.3 Network position versus firm performance
Prediction 2. There is a positive relation between the financial distress of a
firm and that of its neighbors.

Above we consider how network position affects the performance of
individual loans. Here we consider network position’s effect on firm
performance, in the process verifying that loan-level default performance is
a good proxy for firm performance. To make sure that any effects we identify
are not merely due to, say, geographical differences that are correlated with
network structure, we include additional variables to control for the subject
firm’s location, local macro factors such as house prices and household income,
and the type of firm. We estimate the following specification:

Ci2007=Bo+B1Zipyp; + B2Networky p; + B3 Networkr;

+ Z,BkMacm Jactorsy; 006+ Zﬂ,Firm 1ypes;; »o06+€is (18)
k I

where C; 207 1s the 2007 disappearance, due to closure or bankruptcy, of lenders
who appeared in the 2006 network of mortgage originators, Zip;p; is the
weighted average contiguous ZIP code percentage of loan defaults over all the
lender’s geographic locations from 2000 to 2006, N etworky p; is the weighted
average network linked percentage of loan defaults over all the 2006 network
locations of the lender during 2006, Networkpp; is the percentage of firms
among the lenders that were network linked to the subject lender in 2006 and
were closed or went bankrupt in 2007 (excluding the subject firm). The macro
factors include the level of house prices and the average IRS gross income
across all the states where the firm is located. Firm-type dummies are included
for commercial banks, savings and loan institutions, and independent mortgage
companies.

Results are presented in Table 5. The primary finding is that the percentage
of firm failures in 2007 among neighboring network lenders, Networkpr;, has
a large effect on the failure of the subject lender in 2007, even after controlling
for geography, loan performance, and macro factors. A one-percentage-point
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Table 5
Linear probability closure estimates
Coefficient
estimate SE

Intercept —4.9829*** 0.3305
Average loan defaults across contiguous ZIP codes and subject firm locations, 20002006 (Zipy,p;) 0.1138%** 0.01804
Average loan defaults across all 2006 network neighboring lenders to subject firm (Networky p;) 0.2461%%* 0.0123
Percentage of firm failures in 2007 among 2006 neighboring network firms (Networkp ;) 0.4330%** 0.0523
Log of average IRS household gross income across all subject firm state locations in 2006 —0.1149** 0.0462
Average house price across all subject firm state locations in 2006 (000) —0.0023 0.0056
Subject firm is a bank —0.1086*** 0.0135
Subject firm is a savings and loan institution 0.0572 0.0446
Subject firms is an independent mortgage company 0.0400*** 0.0122
Number of firms 11,095
R? 0.0700

*HE (<.001)

*(<.01)

*(<.05)

Linear probability estimates of the 2007 disappearance, due to closure or bankruptcy, of lenders who appeared in the 2006 network of mortgage originators. The covariates follow those

outlined in Equation (18).
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increase in the 2007 failure rate of neighboring network lenders would lead to
a 0.43% increase in the subject firm’s failure rate.

Geographically, both the local mortgage defaults, Zip; p;, and the network-
local defaults, Network, p;, are positively associated with firm failure in 2007
at better than the .0001 level of statistical significance. This result suggests
that our loan-level default measure of firm performance is a reasonable proxy
for firm level performance even with direct controls for firm failures among
network linked firms. Among the macro factors, higher average IRS household
gross income leads to a statistically significant lower failure rate. Higher
house prices in the state in which the subject firm is located do not have a
statistically significant effect on firm failures in 2007. Finally, commercial
banks were significantly less likely to be closed or become bankrupt in 2007,
while independent mortgage companies were more likely. Being a savings and
loan institution did not have a statistically significant effect on the likelihood
of 2006 lenders disappearing from the sample.

4.4 Financial norms versus labor intensity
Prediction 3. The estimated quality measure in the model should be related
to other, independently observable, measures of quality.

We estimate the network’s quality vector and study how it relates to
independent quality measures.'® We use the number of links a node has as
a proxy for its size, s”. For each node, we compute the average of all costs of
loans flowing through that node in a given year, and use this as a proxy for the
cost ¢". We also use the measures of G and E described in Section 4.1.

We use the method described in Appendix D to estimate the quality vector,
q, and the parameters Ry, Ry, AR, d, and p, under the assumption that
observations occur after m =4 steps of the clearing mechanism. We adopt the
visualization approach in Stanton, Walden, and Wallace (2014), in which the
high- and low-default segments of the network are shown separately. Figure 6
presents the network with a low-default part (left panel) and a high-default part
(right panel). As is clear from Figure 6, the high-default segment of the network
constitutes a concentrated part.

In total, 2,521 estimated high-quality nodes make up 19% of the network.
The aggregators and HCs are overrepresented among the high-quality nodes:
21 of 54 HCs are high quality, as are 1,071 out of 2,030 aggregators, whereas
only 1,429 out of 11,095 lenders are high quality. There are 2,170 systemically
pivotal nodes. A disproportionately high fraction of these, 66%, were high
quality, compared with only 9.9% of the remaining 11,012 nodes. Thus, the
additional incentives that pivotal nodes had to invest in quality were important
for the outcome.

We focus on financial norms. An alternative approach would be to study predictions on network structure, as is
done in Kelly, Lustig, and Van Nieuwerburgh (2013). This provides an interesting avenue for future research.
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Figure 6

High- versus low-default parts of 2006 network

High- (left) and low-default (right) part of network, between originators and aggregators (above) and between
aggregators and holding companies (below). The outer circle of nodes represents originators of record (11,095 in
total), sorted clockwise in increasing order of quality of loans. The middle circle represents aggregators (2,030
in total) with the same ordering. The inner circle represents the holding companies (56 in total). The cutoff is
made so that links with a higher than 80% default rate are shown in the right panel, whereas links with a lower
default rate are shown in the left panel.

Within the mortgage lending industry, we argue that the main lever for firms
to ensure high quality is to invest sufficient time on loan applications to filter out
lemons. In our loan flow network we do not observe the time spent on loans, but
we can see firms’ employee profiles and therefore calculate a measure of labor
intensity. We obtain our labor intensity measure for each firm in the sample
using SAS and Python to merge by the firm name of each mortgage originator,
aggregator, and holding company in our sample with firm names in another data
set, called the National Establishment Time-Series (NETS) data. The NETS
data provides a nearly-complete census of all U.S. establishments and includes
information on the firm names, geographic location, number of employment
positions at the location, and the eight digit NAICS number among other firm-
level identifiers.”’ Our merge success rate between the NETS data and our
loan-level mortgage data, using multiple passes of fuzzy merging technology,
was quite high and we were able to accurately match employment data to

The data are were obtained from Walls and Associates and they are constructed as a panel of annual snapshots
of Dun and Bradstreet (D&B) credit rating data. Walls and Associates compiles the raw D&B snapshots into a
continuous longitudinal data series. In our application, we use the 2005, 2006, and 2007 data panels.
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98% of the mortgage holding companies, to 94% of the aggregators, and to
74% of the originators.>! Each establishment in NETS contains information
on the number of employment positions that exist at that establishment. An
important advantage of the NETS data is that it provides a linkage between
each establishment and the firm’s headquarters establishment. Using these firm-
family linkages, we are able to compute the total employment base for each of
the firms in our sample of originators, aggregators, and holding companies. We
use this labor intensity measure as an independent observation of quality and
explore how it is related to our estimated quality vector, which we stress is not
based on employment data.

Panel A of Table 6 shows how many firms are within the top 50-90 percentiles
with respect to number of employees, which are also estimated to be high
quality. We do this both for the aggregator group and for all firms (the results
for the HQ group go in the same direction but the group is too small to obtain
statistical significance). For example, there were 169 aggregators that were both
within the 90th percentile with respect to number of employees and estimated
to be high quality. This was 66% higher than 102, which would be the expected
number if the two variables were independent, so the two variables are strongly
positively related both economically and statistically, as are the results for the
other percentiles and when calculated for all firms.

As previously discussed, quality is positively correlated with node size, and
this is also the case for number of employees. To disentangle what is driving the
positive relation with quality, we regress labor intensity (number of employees
per loan) on quality and log-loan size in Panel B of Table 6. The coefficient
is positive at the 5% significance level in the aggregator group, and strongly
positively significant (t-statistic of 7.2) when all firms are used. The results
are very similar when loan origination costs and default rates are included in
the regressions. Thus, the documented relation between our estimated quality
vector and the independently observed employment variables is indeed positive.

4.5 Predicted and realized default rates
Prediction 4. There is a positive relation between predicted and realized loan
performance.

As mentioned above, our estimation of the market in 2006 is based on m =4
steps in the clearing mechanism. By allowing shocks to propagate for one
more period, we can generate (out-of-sample) predictions for the change in
preinsolvency cash flows between 2006 and 2007,

AG= Gﬁr:S — G =4

21 For some firms in our sample that were not in the NETS data, we also used public filings and internet searches

to determine their number of employees.

22 This assumes that the time period for such a step is one year, an assumption that we vary.
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Table 6
Labor intensity versus quality
A.
Aggregators

realized Expected Excess All firms Excess

overlap overlap overlap realized Expected overlap
90% 169 102 66.0%*** 450 225 100.0%***
80% 298 203 49.5%*** 758 448 69.2%***
70% 412 304 35.6%*** 1,023 702 45.8%***
60% 517 396 30.5%** 1,215 936 29.8%***
50% 622 505 23.2%%* 1,359 1,129 20.4%***

= 1,914 10,294
B.
Aggregators All firms

Quality 7.60* 7.75% 7.91* 2.28%F* 2.28%** 2. 273
log(1+# loans) —4,50%** —4,49%F* —4.49%¥* —3.64%%* —3.64%F* —3.64%%*
Default rate —3.32 —3.04 —0.85 —0.83
Loan orig. cost —46.6 —2.15
N= 1,914 10,294

Panel A compares the realized overlap of nodes (Columns 2 and 5) that are both high quality and in the top
employment percentile shown in the first column, with the benchmark expected overlap if these variables were
independent (Columns 3 and 6). The excess fraction of firms compared with the benchmark is shown in Columns
4 and 7. Columns 24 present for nodes among the aggregator group, and Columns 5-7 present for all nodes.
Panel B shows regressions of labor intensity on quality, size, default rate and origination cost. Columns 2—4
are for aggregators, and Columns 5-7 are for all firms. Employment data are available for 94% of aggregators
(1,917 out of 2,030) and 78% of all firms (10,294 out of 13,182). Labor intensity is winsorized at the 1% level,
to control for outliers. (*), (**), and (***) represent significance at the 5%, 1%, and 0.1% level, respectively.

Given the assumptions of our model, this predicted change ought to be
negatively related to realized changes in defaults over the period,

n_._n n
A" =r3007 —T2006-

We calculate these values for the 6,876 nodes that were present in the 2007
sample: 45 HCs, 687 aggregators, and 6,144 lenders (altogether slightly more
than half of the 2006 sample of 13,182 nodes).

Results are shown in Table 7. Panel A shows OLS regressions of actual
performance on predicted performance, quality choice, whether a node was
systemically pivotal, and also on a node’s size measured as the logarithm of the
number of loans it handled. Columns 1-4 show the results for the full sample,
and Columns 5-8 focus on lenders and Columns 9-12 on aggregators.”* In
line with our prediction, the coefficients are strongly significantly negative for
the predicted performance coefficient, both in the univariate and multivariate
regression. The coefficients are also significant for the aggregator subsample,
whereas the coefficients have the right sign but are not significant for the lender
subsample.

23 Since only 46 HCs remained in 2007, the sample was too small for meaningful regressions at this level.

35

Downl oaded from https://academni c. oup. conirfs/advance-articl e-abstract/doi/10.1093/rfs/hhx097/ 4095670
by University of California, Berkeley/LBL user

on 08 June 2018



Table 7

9¢

Predicted and actual performance

A. Ordinary least squares

1 2 3 4 5 6 7 8 9 10
All
Performance, AG —0.550%* —0.508**
Quality, ¢ 0.018 0.010
Syst. piv., NS 0.011 0.006
Size, log(s) 0.0006 0.0006
Lenders Aggregators
Performance, AG —0.354 —0.402 —0.574* —0.613*
Quality, ¢ 0.0006 —0.006 0.064 0.079*
Syst. piv., NS 0.005 0.007 —0.003 —0.016
Size, log(s) —0.0007 —0.0007 0.006 0.006
B. Rank
correlation
1 2 3 4 5 6 7 8 9 10
All
Performance, AG —0.044%** —0.034**
Quality, ¢ 131.4 529
Syst. piv., NS 80.6 11.0
Size, log(s) —0.012 —0.009
Lenders Aggregators
Performance, AG —0.019 —0.020 —0.024 —0.033
Quality, ¢ 11.1 —32.1 354 40.5
Syst. piv., NS 41.8 31.3 —0.202 —8.59
Size, log(s) -0.014 —0.015 0.042 0.049

LI0Z 0¥ 0 A ] SAPNIS [mouvi] Jo mataay 2y

The table displays realized changes of default rates of nodes between 2006 and 2007, regressed on predicted changes, estimated quality vector, whether nodes are systemically pivotal, and log-
size measured as number of loans. Panel A shows ordinary least-squares regressions, and panel B shows rank correlation regressions. Predicted and actual performance are negatively related in
all regressions, and the results are strongly significant in the full sample. Significance at the 5% (*), 1% (**), and 0.1% level (***) is shown. Estimation based on actual mortgage network in 2006.
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Prediction 5. There is lower predicted performance of firms that defaulted
than of those that remained in the sample.

The companies that dropped out of our sample between 2006 and 2007
mainly did so because they defaulted.”* They were thus the companies that
performed the worst during the time period, which ought to be correlated with
the model’s predicted performance.

Comparing the mean AG for the nodes that remained in the sample and
those that dropped out, using a two-sample ¢-test, the mean is —0.0036 for
the remaining nodes, and —0.025 for those that dropped out. The difference is
strongly statistically significant, with a ¢-statistic of 23.3.

For robustness, we carry out several variations of the tests. Panel B of Table 7
shows that the results are similar when using univariate and multivariate rank
correlation regressions, which are more robust to nonlinearities. The choices
of using m =4 steps for the clearing mechanism in the estimation, and 5 steps
for the predicted 2007 performance, are also somewhat arbitrary. The results
are very similar when we vary the steps between 3 and 6, and also under
multivariate regressions on an arbitrary subset of the variables in the table (not
reported).

Prediction 6. Ex ante effects, that is, financial norms, should be important
for the model’s ability to predict future defaults.

The model without financial norms is nested, in that when AR=0 there
is no benefit to firms from investing in quality, and they will therefore all
choose to be low quality. This allows us to study the importance of allowing for
heterogeneous financial norms for our results. Specifically, by forcing AR =0,
we turn off the financial norm component of the model. We estimate the network
and predicted performance for this special case. Regardless of the number
of steps in the clearing mechanism, m € {3,4,5,6}, we find no relationship
between predicted and realized default rates. Thus, the financial norms are
indeed important for the results.

Conclusions

In our network model of intermediaries, heterogeneous financial norms and
performance, as well as systemic vulnerabilities, arise as equilibrium outcomes.
The optimal behavior of each intermediary, in terms of its attitude toward
risk, the quality of the projects it undertakes, and the intermediaries it

Of the eleven holding companies that no longer appear in the 2007 sample, 82.82% of those firms went bankrupt,
were closed, or were acquired. Of the twenty two aggregators that no longer appear in the 2007 sample, 72.72%
went bankrupt, were closed, or were acquired. Among the top 50 lenders that no longer appear in the 2007 sample,
25% went bankrupt, were closed or were acquired. Among all of these firms, bankruptcy was the primary cause
of exit from the sample.
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chooses to interact with, are influenced by the behavior of its prospective
counterparties. These network effects, together with the intrinsic differences
between intermediaries, jointly determine financial strength, quality, and
systemic vulnerability, at the aggregate level of the market, as well as for
individual intermediaries.

We apply the model to the mortgage origination and securitization network
of financial intermediaries, using a large data set of more than three million
mortgages originated and securitized through the private-label market between
2005 and 2007. As predicted, the network position of an intermediary is
strongly related to the default rates of its loans, above and beyond geographical
and other observable factors. In addition, firm performance is related to the
performance of neighboring firms in the network, even after controlling for
the performance of loans issued by those neighboring lenders. Moreover, an
independent quality observation—Ilabor intensity—is positively related to our
estimated quality. Finally, the model predicts future default rates, though this
predictive ability goes away if we turn off the financial norms component
of the model, emphasizing the joint importance of both ex ante and ex post
components of the model.

Altogether, our results show the importance of network effects in the
U.S. mortgage market, suggesting that our equilibrium framework for jointly
studying network structure and financial norms is fruitful in this market.

Appendix A. Minimum Spanning Tree

Figure A1l shows the minimum spanning trees representation of the subsample of the 2006 loan
flow mortgage network discussed in Section 1.

WESTERN CITIES FINANCIAL VOLUNTEER FED L S&L

WOODFOREST NATIONAL MORTGAGE
WESTERN PLAINS MORTGAGE
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Figure A1
Trees representation of a
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ple of private-label mortgage originations in 2006
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Appendix B. Clearing Algorithm for General Network Model

As explained in the body of the paper, the initial assumption in the clearing mechanism is that
all nodes remain solvent. If this is a feasible outcome, then it is the outcome of the clearing
mechanism. If, however, some nodes fall below the insolvency threshold, then the new cash flows
are calculated, given the insolvencies in the first step and new insolvencies are checked for. The
algorithm terminates when no new insolvencies occurs, which takes at most N steps.

Algorithm 1 (Clearing mechanism).

1. Setiteration m =0 and the initial solvency vector f;=1.

2. Repeat:

* Setm=m+1.
e Calculate z,,=A f, 1A 4, P.

7"l
o Calculate f$+|=X(%§’),n=l,...,N.

3. Untl fips1= fin-
4. Calculate the =1 cash flow as F'=z,,.

The iteration over M can be viewed as showing the gradual propagation of insolvencies, where
Jfm — fm—1 shows the insolvencies triggered in step M by the insolvencies that occurred in step
M—1.

We can write the algorithm using returns, defining R=A;'C F, and I'= A ' f1. The algorithm
then becomes even simpler:

Algorithm 2 (Clearing mechanism on return form).

1. Set iteration m =0 and the initial solvency vector f;=1.
2. Repeat:

e Setm=m+1.
* Calculate z;=A g, U Ay, R.
e Calculate fy,+1=X(zm)-

3. Until fos1 = fon.
4. Calculate the t=1 cash flow as F" = A;z,,.

It is straightforward to show that the two algorithms are equivalent, since f=AT=TIA,.

The m step version of the clearing mechanism is obtained by replacing condition in step 3 of
Algorithm 2 by the terminal condition “Until m=m,” leading to Fj =CM[P|m].

The preinsolvency m-step cash flows are defined as G5 =CM pye [ Pl |=(T1A ;. ) x P, which
via (12) leads to the relation F=A 7. CMpye [ Pliit].

Appendix C. Network Formation Game

The sequence of events is the same as that in Figure 3. We use subgame perfect, pairwise-stable
Nash as the equilibrium concept. We make one extension of the pairwise stability concept in
the definition of agents’ action space. Specifically, agents are allowed to unilaterally decide to
become completely isolated by severing links to all agents they are connected to. In contrast, with
the standard definition of pairwise stability agents are only allowed to sever exactly one link or
propose the addition of one link. The assumption that agents can choose to become isolated can
thus be viewed as a network participation constraint.
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The sequence of events is as follows: at # =—2 (the proposal/severance stage of the game) there
is a given initial network, E C E.Recall that E here is the maximal network in the economy, which
arises if all possible links are present. Each agent, n=1,..., N, simultaneously chooses from the
following mutually exclusive set of actions:

Sever links to all other agents and become completely isolated.
Sever exactly one existing link to another agent, (n,n’)€ E.

Propose the formation of a new link to (exactly) one other agent, (n,n’) € E\E.

S

Do nothing.

In contrast to actions 1 and 2, which are unilateral, agent n’ needs to agree for the links to actually
be added to the network under action 3.

The set of networks that can potentially arise from this process is denoted by £. We note that
E'CE for all E'€&. The set of actual proposals for addition of links, generated by action 3, is
denoted by L4 The set of links that are actually severed, generated by actions 1 and 2, is LS. The
total set of potential link modifications is £={ (LA, LS)}.

At t=—1 (the acceptance/decline stage) L* and L°® are revealed to all agents, who then
simultaneously choose whether to accept or decline proposed links. Formally, for each proposed
link, £=(n,n") € LA, agent n’ chooses an action ay € { D, A} (representing the actions of Declining
or Accepting the proposed link). The total set of actions is then A={a;:£e Ls}e{D,A}tA, which
for each n’ can be decomposed into A" UA"’/, where A" = {(n,n")€ L4} represents the actions
taken by agent n’, and A = A\A", the actions taken by all other agents. Altogether, E, L4, Lp,
and A then determines the resultant network, E’, after the first two stages of the game, at r=0.

At t=0 (the quality choice stage) each agent, n=1,..., N, simultaneously chooses the quality
q" €{0,1}. The joint quality actions of all agents are summarized in the action vector ¢ € {0, 1}".

At r=1, shocks, &, are realized, leading to realized net cash flows w"(&|q, E’) as defined by
equations (11-12). The value of intermediary n at =0 is thus

V'(GIEN=) w"EIE @PE),  n=1,...N. cn
Eef2

C.1 Equilibrium
A stable equilibrium to the network formation game is an initial network and quality strategies,
together with a set of beliefs about agent actions for other feasible network structures, such that
no agent has an incentive to add or sever links, given that no other agents do so, and agents’ have
consistent beliefs about each others’ behavior on and off the equilibrium path.

Specifically, the action-network pair (¢, E), together with #=—1 acceptance strategies: A: L —
{D,A}4, and =0 quality strategies Q: £ — {0, 1}" constitute an equilibrium, if

1. Att=0, strategies are consistent in that for each E’ €&, and g= Q(E’),

q" eargmax V" ((x,q "|E),
x€{0,1}

foralln=1,..., N, that is, it is optimal for each agent, n, to choose strategy ¢", given that

the other agents choose ¢ ™.

2. At t=—1, strategies are consistent in that for each (La,Lp)e L, A"(La,Lp) is the
optimal action for each agent, n, given that the other agents choose A™"(L 4, L p). Optimal
here, means that the action maximizes V" at t=0.

3. At t=-2, the strategy L =0 is consistent, that is, for each agent n, given that no other
agent severs links or proposes additional links, it is optimal for agent n not to do so either,
given the value such actions would lead to at t=—1.
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A stable equilibrium is said to be maximal if E = E. We note that since we focus on pure strategies,
the existence of stable equilibrium is not guaranteed, which has not been an issue in the examples
we have studied. Neither is uniqueness of stable equilibrium guaranteed.

It follows that the following conditions are necessary and sufficient for there to exist acceptance
and quality strategies such that (g, E) is an equilibrium:

1. Foralln, V"(g|E)>V"((—=q",q ")|E).
Foralln, V'(q|E)>V}.
For all (n,n")€ E, 3¢’ € {L, H}" such that

woN

* VI@IE)= V(G |E=(a), L
s Foralln”, V" (¢'|E—(n,n" )= V" (—(g")" .(¢") " )E—(n,n)).

4. Forall (n,n’ye E\E, 3¢’ €{L, H}" such that

* VI(GIE)=V"(q'|E+(n.n) or V' (qIE)= V" (¢'|E+(n,n)),
* Foralln”, V" (¢'|E+(n,n') = V" ((=(g")" ,(g) ™" IE+(n,n")).

The first condition ensures that each agent makes the optimal quality choice at =0, given that
no change to the network is made. The second condition ensures that it is not optimal for any
agent to sever all links and become isolated. The third condition ensures that there are consistent
beliefs about future actions, such that no agent has an incentive to sever a link at r = —2. The fourth
condition ensures that there are consistent beliefs about future actions, so that no two agents can
be made jointly better off by adding a link.

Appendix D. Computation of Equilibrium

An important property of our approach is that it can be applied to large scale real-world networks.
Assume that the network, E, size vector, s, and the cost vector, ¢ are observable, but that the
parameter values ¢=(Ry, Ry, AR,d, p), and the quality vector g € {0,1}" are not. The project
cash-flows (3), given a state realization &, are in vector form

P(&,q)=As(Rg Agl+ A1—g(RL1+ARg)).

We assume that preinsolvency cash flows, G, including noise, are observed after i steps of the
clearing mechanism, .
W=CMpr[CF plit] — AcAgq +e, (D1)

where € is a vector of independent, identically normally distributed noise.
Given an equilibrium quality vector, g, we define the best response for agents (at time 0), given
the actions of other agents,

Fl@)=F(ql¢)={G:4" eargmax V"(x,§ ")},
x€f{0,1}
where we as before assume that indifferent agents choose low quality, so that F is a single-valued
function. For g to be consistent with equilibrium, it must be that g = F(g). We define the equilibrium
set QC{0,1}", as
Q@)={g:9=F(q)}.

An estimate of the unobservable quality vector, g, and thereby of all other properties of the
equilibrium network, is given by solving the problem:

min, min, min [ (cMpre[CFpe.00]] - Asncq)|| D2)

Here, the mean squared norm is used, and it then follows that (D2) is the maximum likelihood
estimator of the equilibrium, conditioned on there being a shock, that is, conditioned on & #1.
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The equilibrium behavior of nodes in A’V is characterized by Proposition 6. For nodes in A/,
which in our application to the U.S. mortgage market make up a small fraction (less than 20%) of the
network, the characterization is not as simple. For each node in V'S, the value of being high quality
needs to be compared with the value of being low quality, leading to two full evaluations of the
clearing mechanism for each such node. Importantly, however, it follows easily that the optimal
quality choice of a node does not depend on the quality choices made by other nodes. Thus,
rather than iterating over all possible combinations of quality choices of the nodes in NS, each
node’s behavior can be determined on its own, allowing for efficient calculation of the equilibrium
set Q(¢).

Also note that although the observed network structure, size vector and cost vector are high-
dimensional in a market like the U.S. residential mortgage market with thousands of intermediaries,
the model is actually strongly specified in that only the five parameters in ¢ are free in the
estimation (D2).

Appendix E. Proofs
Proof of Proposition 1. The value if the agent invests in quality is
Va=s"((1=p)Ru+pY(RL+AR)—0),

versus
Ve=s"(1—p)Ry

if not investing. It follows that V4 > Vp if and only if
pPY(RL+AR)—c>0,
for which Ry + AR >d and p(Ry +AR) > c are, in turn, necessary and sufficient conditions. QED.

Proof of Proposition 2. It immediately follows from Proposition 1 that in any isolated equilibrium,
agents will choose the same quality ¢! =g2. We therefore focus on the risk-sharing equilibrium.
Without loss of generality, assume that intermediary 1 is high quality and intermediary 2 is low
quality in equilibrium. The value of intermediary 1 is then

Va=(1=2p—p2)Ry+pY (1 =) (RL+AR)+7 Ryy)
+pY((I1—m)Ry+m R+ p2Y (1—m)(RL+AR)+m RL) —c. (ED

For it to be an equilibrium strategy for agent 1 to be high quality, it must be the case that this value
weakly dominates that of being isolated and choosing high quality, which is

Ve=(1-2p—p2)Ruy+pY(RL+AR)+pY(Ry)+p2Y (R +AR)—c, (E2)
and also that it strictly dominates the value of risk sharing and choosing low quality, which is
Ve=(1-2p—p2)Ruy+pY((1—m)RL+7 Ry)
+pY(1—7)Ruy+7RL)+p2Y(RL). (E3)

that is, V4 > Vg and V4 > V(. In words, these conditions ensure that the diversification benefits
of sharing risk for the high-quality agent outweighs his cost of giving away the payoffs of a high-
quality project for the payoffs of a low-quality project, and also the cost of investing into being
high quality. It is easy to show that the first inequality is satisfied if and only if

Ri+AR<d<min((1-m)Ry+7Rr,(1—7)RL+AR)+7 Ry), (E4)

and that the second inequality requires that p(1 —7)AR > c in this case.
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The value for the low-quality agent if switching to high quality while still sharing risk is
Vp=(1=2p—p2)Ry+pY (@ (RL+AR)+(1—1)Rp)

+pY (@ Ry +(1—7m)(RL+AR))+p2Y (RL+AR)—c, (ES)

which, given the restriction (E4), is equal to

Vp=(1-2p—p2)Ry+p(r(RL+AR)+(1—m)Ry)
+p(@Ry+(1—m)(RL+AR))—c, (E6)
versus

Ve=(1-2p—p2)Ru+p@(RL+AR)+(1 —m)Rp)+pY (m Ry +(1—m)Ry), (E7)

if remaining of low quality while still sharing risk. For the case in which 7 Ry +(1 —m)RL >d, it
immediately follows that p(1 —m)AR > ¢ is necessary and sufficient for agent 2 to switch to high
quality, that is, for Vp > V. For the case in which 7 Ry +(1 —m)Ry, <d, it immediately follows
that p(1 —7)AR > c is sufficient for agent 2 to switch.

Thus, ¢'=1, g>=0 is ruled out as a risk-sharing equilibrium, since regardless of parameter
values it is optimal for at least one of agent 1 and 2 to deviate. Note that if we relax the constraint
V4 > Vp, corresponding to not allowing agent 1 to cut the link to agent 2, it is easy to construct
examples where ¢! = 1 and g2 =0. The proposition therefore does not in general hold if the network
is exogenously given. QED

Proof of Proposition 3. Given a maximal network with no quality investments, the value of each

node is
L_(1 P())RH Po N RH Rl —RH (RH RI)

We first note that, given that the network E* is sustainable, no node has an incentive to be high
quality since the cost of investing in quality is CWO, whereas the expected benefit is only %0 X %,
which is dominated for large N. Thus, only =0 may be an equilibrium quality vector for the
maximal network.

It follows that no node in the low-quality maximal network has an incentive to sever a link,
since the resultant network will again be one of low quality (N is large), with the resultant value

for the node that severed the link being the same as in the maximal network:

0 o (N-2 2 o (N—1 1
V=(l—po)Ru+ Ry + 22 2Ry 2R )+ (N =222 (2 Ry +—R
(I=PoRu+7 H+N< N TN L>+( )N( N HENR

Po
=Ry——(Ry—Ry).
H N( H—RL)

The only incentive a node may have to deviate from the low-quality complete network is thus to
completely isolate.

If either of the conditions in (a) is satisfied, it follows from Proposition 1 that the isolated
outcome is low quality, with value V! :( — %) Ry <V, and the isolated outcome is therefore
dominated by the low-quality maximal network for all nodes. Thus, in this case, the low-quality
maximal network is indeed an equilibrium.

If both conditions in (a) fail, it follows from Proposition 1 that the isolated outcome is one high
quality, with resultant value

, 1
VI=(1—%)RH+%(RL+AR)—%=V+N(pOAR—CO)> v,

so the low-quality maximal network is not an equilibrium network in this case. We are done.
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Proof of Proposition 4. (i) First note that for large N it will never be the case that a low shock
realization for a peripheral node causes the hub to default, since peripheral nodes are relatively
small. Peripheral nodes are thus insulated from shocks to other peripheral nodes in the star network,
regardless of the quality decisions made by nodes.
We first study the case in which (R, + Ry )/2>d and AR /2> co/ po. Given a high-quality star
network, the value for a peripheral node is:
R;+AR+Ry co

Po Po Po
V=(1-222) Ry 4220 FEESEESH DRy PO Ry Ry AR)-
N/ TN T y Ry (R = Re=AR)

A peripheral node’s payoff, if switching to low quality, is

co
v

R;+AR+R R;+R
V= (1250 ) Ry+ B2 o 22 P fLrtn
N N 2 N2

1
=V~ S (POAR/2~c))

<V,

so no peripheral node has an incentive to switch to low quality. Moreover, no peripheral node has
an incentive to isolate, since isolation with low quality gives a value of

’ Po
vi=(1-2) Ry <v
N ) K
and isolation with high quality gives a value of
Po Po o
V”’:(lf—)R +POx (R +AR) - L <.
N )Rty (R ) N =

Finally, it is easy to verify that the value of two peripheral nodes that form a link and stay high
quality remains V, whereas at least one of them has strictly lower value if either of them switches
to low quality, so no two nodes can be found that have an incentive to form such a link. Thus, no
peripheral node has an incentive to deviate from in a high-quality star equilibrium network.

The situation is very similar for the hub-node, which with the high-quality star network strategy
has a value of (N —1) x V. The values of the alternative strategies—switching quality, isolating
and being of low and high quality—are also N — 1 times higher, (N —1)x V', (N —1)x V", and
(N —1)x V", respectively. leading to the same conclusion as for the peripheral nodes. Finally, the
value remains (N — 1) x V if the hub severs one link, so it has no incentive to do so.

The argument is also very similar in the case in which (R +Ry)/2<d <(Rp+AR+Ry)/2
and R; +AR > co/ po. In this case, the value for a peripheral node of being high quality remains V,
whereas it is V — %(po(RL +AR)—cop) <V if the node switches to low quality. Also, the values
of isolation remain the same, V" <V and V"” <V, respectively, and the node therefore has is no
incentive to isolate. An identical argument as before implies that neither is there an incentive for
two peripheral nodes to form a link. Finally, the argument for the hub-node is also identical to the
previous case. We have shown (a).

For (b), an argument similar to that made in (a) shows that neither peripheral nodes, nor the
hub, have incentives to switch from low to high quality. It also follows from Proposition 1 that
vi= (1 — ’;V—O)RH <V, so the nodes have no incentives to isolate either. Moreover, it is easy to
check that the hub is no better off after severing a link to a peripheral node. Finally, the same
argument as before implies that two peripheral nodes have no incentive to form a link. Therefore,
(ii) follows.

For (c), we denote the peripheral node n’s value of being high quality in a star network by V#,
and of low quality by V%, given the quality decisions of the other nodes, q . It is easy to verify
that regardless of 7",

def R;+Ry+AR R;+R °
AVE yH _yL POy (ELTRH _x(EeERE)) o
N 2 2 N

44

Downl oaded from https://acadeni c. oup.conrfs/advance-article-abstract/doi/10.1093/rfs/hhx097/ 4095670
by University of California, Berkeley/LBL user
on 08 June 2018



Mortgage Loan Flow Networks and Financial Norms

If AV >0, all peripheral nodes therefore choose to be high quality, and otherwise all peripheral
nodes choose to be low quality. Finally, the value difference between high and low quality for the
hub is (N —1) x AV, and thus the hub chooses the same quality as the peripheral nodes. We are
done.

Proof of Proposition 5. Note that Proposition 4 covers the special case in which ¢ =1. The main
difference between Proposition 4 and Proposition 5 is that when « # 1 the risk-sharing between the
hub and peripheral nodes is no longer balanced. If « < 1, the hub still shares half its risk in total,
but each peripheral nodes shares less than half of its risk. If o > 1, the situation is reversed and the
hub shares less than half of its risk in total whereas the peripheral nodes each share half of their
risk.

For (a), similar parameter restrictions as for (a) and (b) of Proposition 4 allows the construction
of high-quality and low-quality equilibrium star networks. Specifically, regardless of «, if cg is
sufficiently high and (1 —x)Rp+xRy >d, where x= % min(a, 1 /o), an argument similar to that
made in Proposition 4 (a) implies that ES with g =1 is an equilibrium. Similarly, if cq is sufficiently
low and (1 —x)Ry +xRpy >d, an argument similar to that made in Proposition 4 (b) implies that
ES with ¢ =0 is an equilibrium.

For (b), note that when o < 1, the hub shares half of its risk, whereas the peripheral nodes share
less than half of their risk. The hub therefore has less of an incentive to choose high quality than a
peripheral node, given the star network, ES. Specifically, the peripheral node chooses high quality
if (1—a/2)AR >co/po, whereas the hub chooses high quality if AR/2>co/po. It is therefore
possible to construct an equilibrium with high-quality peripheral nodes and a low-quality hub, by
choosing 21};% €(1,2—a). For example, it is straightforward to verify that this is an equilibrium

outcome for the economy with co=1/2, po=1/2, AR= ﬁ, R1=1/2, Ry =6, and d=3. Now,
for a > 1, the hub shares less than half of its risk whereas peripheral nodes share half of theirs, so
the hub is high quality whenever the peripheral nodes are, due to a similar incentive argument as
before.

For (c), an argument similar to that made in (b) implies that only if & > 1 may it be possible to
construct an equilibrium star network such that the hub is high quality and the peripheral nodes of
low quality. Indeed, given the star network ES, (1—1/(2a))AR > co/po> AR/2 is necessary and
sufficient for such quality choices. However, in contrast to peripheral nodes, the hub may choose
to sever a link to one of its neighbors. It is easy to check that for large N, this will always be
optimal—and thus E¥ will not be an equilibrium network—since severing a link allows the hub to
still avoid default in case of a low shock, while keeping a higher fraction of its (high-quality) project
than under ES. Thus, a high-quality hub, low-quality peripheral node, star network equilibrium
outcome is not feasible. QED

Proof of Proposition 6. If node n chooses high quality, its value is
s"(pY(Cun(RL+ AR+ Ry O +(1—p)V)—c",
whereas if it chooses low quality, its value
s"(pY (Cun RL+ Ry O™ +(1=p)V).
Here V is the expected value of cash flows conditioned on £"” =1, which is the same regardless of
q", since node n’s project cash flows are the same (R ) regardless of ¢" if §” =1. So, node n will
choose to be high quality, if and only if

pY(Tun(RL+AR)+RyO®O")—c" > pY(Tpyp R+ Ry ©O"), (E8)

and it is easy to verify that the requirement that either condition (1) or (2) in the proposition holds
is necessary and sufficient for (E8). QED

45

Downl oaded from https://acadeni c. oup.conrfs/advance-article-abstract/doi/10.1093/rfs/hhx097/ 4095670
by University of California, Berkeley/LBL user

on 08 June 2018



The Review of Financial Studies /v 0 n 02017

Proof of Proposition 7. If node n chooses high quality, its value is
5" (pY(F,m(RL +AR)+RyO"+(1 fp)V) —en,
whereas if it chooses low quality, its value
s (pY(F,m R+ Rp®")+(1 —p)V) .

Here, "1 > @™ since n € N5, and an identical argument as that in the proof of Proposition 6
shows that conditions (1) or (2) are sufficient for the value of being high quality to outweigh that
of being of low quality. QED

Proof of Proposition 8. The result is immediate, since any node that is not systemically pivotal
never affects whether any of its neighbors becomes insolvent, and therefore never affects the cash
flows to any of its neighbors’ neighbors. QED

Proof of Proposition 9. By the definition of the sharing rule (8,9), it follows that I';; > T',;; for all
n. Therefore, a well- diversified connection of node n, j, will have I'y; <T';; <«, which it is easy
to verify implies that it survives a shock initiated by node n, regardless of node n’s quality choice.
Since all of node n’s other connections are also well diversified, there will be no negative cash flow
spillovers from other nodes, so neither of n’s connections therefore default. Thus, n € N v, QED

References

Acemoglu, D., A. Ozdaglar, and A. Tahbaz-Salehi. 2015. Systemic risk and stability in financial networks.
American Economic Review 105:564-608.

Adelino, M., A. Schoar, and F. Severino. 2016. Loan origination and defaults in the mortgage crisis: The role of
the middle class. Review of Financial Studies 29:1635-70.

Agarwal, S., D. Lucca, A. Seru, and F. Trebbi. 2014. Inconsistent regulators: Evidence from banking. Quarterly
Journal of Economics 129:889-938.

Allen, F,, A. Babus, and E. Carletti. 2012. Asset commonality, debt maturity and systemic risk. Journal of
Financial Economics 104:519-34.

Allen, E, and D. Gale. 2000. Financial contagion. Journal of Political Economy 108:1-33.
Babus, A. 2016. The formation of financial networks. RAND Journal of Economics 47:239-72.

Babus, A., and P. Kondor. 2013. Trading and information diffusion in over-the-counter markets. Working Paper,
Federal Reserve Bank of Chicago.

Barabasi, A.-L., and R. Albert. 1999. Emergence of scaling in random networks. Science 286:509-512.

Berger, A. N., and D. B. Humphrey. 1997. Efficiency of financial institutions: International survey and directions
for future research. European Journal of Operational Research 98:175-212.

Bernanke, B. 2007. Global imbalances: Recent developments and prospects. Bundesbank Lecture, Berlin.

Billett, M. T., M. J. Flannery, and J. A. Garfinkel. 1995. The effect of lender identity on a borrowing firm’s equity
return. Journal of Finance 50:699-718.

Cabrales, A., P. Gottardi, and F. Vega-Redondo. 2014. Risk-sharing and contagion in networks. Working Paper,
Universitat Pompeu Fabra.

Chang, B., and S. Zhang. 2015. Endogenous market making and network formation. Working Paper, London
School of Economics.

Cheng, 1.-H., S. Raina, and W. Xiong. 2014. Wall Street and the housing bubble. American Economic Review
104:2797-829.

46

Downl oaded from https://academni c. oup. conirfs/advance-articl e-abstract/doi/10.1093/rfs/hhx097/ 4095670
by University of California, Berkeley/LBL user
on 08 June 2018



Mortgage Loan Flow Networks and Financial Norms

Demyanyk, Y., and O. Van Hemert. 2011. Understanding the subprime mortgage crisis. Review of Financial
Studies 24:1848-80.

Di Maggio, M., and A. Kermani. 2014. Credit-induced boom and bust. Working Paper, U. C. Berkeley.

Di Maggio, M., and A. Tahbaz-Salehi. 2014. Financial intermediation networks. Working Paper, Columbia
University.

Eisenberg, L., and T. H. Noe. 2001. Systemic risk in financial systems. Management Science 47:236—49.

Elliott, M., B. Golub, and M. O. Jackson. 2014. Financial networks and contagion. American Economic Review
104:3115-53.

Friedkin, N. E., and E. C. Johnsen. 1999. Social influence networks and opinion change. Advances in Group
Processes 16:1-29.

Froot, K. A., D. Scharfstein, and J. C. Stein. 1993. Risk management: Coordinating corporate investment and
financing decisions. Journal of Finance 48:1629-58.

Glaeser, E. L., and C. G. Nathanson. 2017. An extrapolative model of house price dynamics. Journal of Financial
Economics. Advance Access published June 24, 2017, 10.1016/j.jfineco.2017.06.012.

Glasserman, P., and H. P. Young. 2015. How likely is contagion in financial networks? Journal of Banking and
Finance 50:383-99.

Gofman, M. 2011. A network-based analysis of over-the-counter markets. Working Paper, University of
Wisconsin, Madison.

Granovetter, M. 1985. Economic action and social structure: The problem of embeddedness. American Journal
of Sociology 91:481-510.

Jackson, M. O., and D. Lépez-Pintado. 2013. Diffusion in networks with heterogeneous agents and homophily.
Network Science 1:49-67.

Jackson, M. O., and A. Wolinsky. 1996. A strategic model of social and economic networks. Journal of Economic
Theory 71:44-74.

Kelly, B., H. Lustig, and S. Van Nieuwerburgh. 2013. Firm volatility in granular networks. Working Paper,
NBER.

Kermani, A. 2014. Cheap credit, collateral and the boom-bust cycle. Working Paper, U. C. Berkeley.
Loépez-Pintado, D. 2012. Influence networks. Games and Economic Networks 75:776-87.

Loutskina, E., and P. E. Strahan. 2009. Securitization and the declining impact of bank finance on loan supply:
Evidence from mortgage origination. Journal of Finance 64:861-89.

MacKenzie, D.2011. The credit crisis as a problem in the sociology of knowledge. American Journal of Sociology
116:1778-841.

Mian, A., and A. Sufi. 2009. The consequences of mortgage credit expansion: Evidence from the U.S. mortgage
default crisis. Quarterly Journal of Economics 124:1449-96.

. 2011. House prices, home equity-based borrowing, and the U.S. household leverage crisis. American
Economic Review 101:2132-56.

. 2014. House of debt. Chicago: University of Chicago Press.

Nadauld, T. D., and S. M. Sherlund. 2013. The impact of securitization on the expansion of subprime Ccredit.
Journal of Financial Economics 107:454-76.

Nier, E. W., J. Yang, T. Yorulmazer, and A. Alentorn. 2008. Network models and financial stability. Working
Paper, Bank of England.

Palmer, C. J. 2015. Why did so many subprime borrowers default during the crisis: Loose credit or plummeting
prices? Working Paper, U. C. Berkeley.

47

Downl oaded from https://academni c. oup. conirfs/advance-articl e-abstract/doi/10.1093/rfs/hhx097/ 4095670
by University of California, Berkeley/LBL user

on 08 June 2018



The Review of Financial Studies /v 0 n 02017

Poon, M. A. 2008. From New Deal institutions to capital markets: Commercial consumer risk scores and the
making of subprime mortgage finance. Accounting, Organizations and Society 35:654-74.

Rajan, R. 2010. Fault lines: How hidden fractures still threaten the world economy. Princeton: Princeton
University Press.

Shiller, R. J. 2014. Speculative asset prices. American Economic Review 104:1486-517.

Stanton, R., J. Walden, and N. Wallace. 2014. The industrial organization of the U.S. residential mortgage market.
Annual Review of Financial Economics 6:259-88.

Uzzi, B. 1997. Social structure and competition in interfirm networks: The paradox of embeddedness.
Administrative Science Quarterly 42:35-67.

Zhong, Z. 2014. The risk sharing benefit versus the collateral cost: The formation of the inter-dealer network in
over-the-counter trading. Working Paper, University of Melbourne.

48

Downl oaded from https://academni c. oup. conirfs/advance-articl e-abstract/doi/10.1093/rfs/hhx097/ 4095670
by University of California, Berkeley/LBL user
on 08 June 2018



	1 The U.S. Residential Mortgage Market
	2 A Strategic Network Model of Intermediaries
	2.1Isolated intermediaries
	2.2Networks of intermediaries
	2.3Clearing mechanism
	2.4Equilibrium

	3 Analysis of Equilibrium
	3.1Two intermediaries
	3.2Complete network
	3.3Star network
	3.4Random networks
	3.5Equilibrium behavior in general networks

	4 Application to the Mortgage Market
	4.1Data
	4.1.1 Individual loan details, 2006
	4.1.2 Geographic effects
	4.1.3 Network neighbor default performance
	4.1.4 Local economy
	4.1.5 Lender type
	4.1.6 Individual loan details, 2007
	4.1.7 Firms that left sample in 2007

	4.2Network position versus loan performance
	4.3Network position versus firm performance
	4.4Financial norms versus labor intensity
	4.5Predicted and realized default rates

	5 Conclusions

