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Abstract

We analyze the problem of recovering the pricing kernel and real probability distri-
bution from observed option prices, when the state variable is an unbounded
diffusion process. We derive necessary and sufficient conditions for recovery. In the
general case, these conditions depend on the properties of the diffusion process,
but not on the pricing kernel. We also show that the same conditions determine
whether recovery works in practice, when the continuous problem is approximated
on a bounded or discrete domain without further specification of boundary condi-
tions. Altogether, our results suggest that recovery is possible for many interesting
diffusion processes on unbounded domains.
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1. Introduction

In a remarkable paper, Ross (2015) shows that it is possible to recover the pricing kernel

and real probabilities from prices of contingent claims alone, contrary to what has long

been the common belief. The result relies on two insights: first that under so-called transi-

tion independence, observed prices link the pricing kernel across states; second that the

positivity of the pricing kernel provides important additional restrictions. The two effects

together allow for unique recovery in Ross’s model.

Such information about preferences and risk in the market obtained by recovery would

of course be highly valuable to investors, policy makers, and society in general, and it is

therefore of fundamental importance to understand under which conditions recovery

works. The state space in Ross (2015) is finite in contrast to many work-horse models in fi-

nance, for example, models in continuous time with diffusion processes. It is an open
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question if, and if so when, recovery works in a setting with a larger, unbounded state

space. This question is important, since it is a priori unclear which approach, bounded or

unbounded, best models financial markets and, from a robustness perspective, results that

hold in one setting but not in the other may be viewed with some concern.

Of course, a rationale for not worrying too much about whether the state space is

bounded or not is that even if it is unbounded, it may be possible to simply “truncate” the

state space far enough out—for very rare events—without affecting the results in the inter-

ior more than marginally. Such a rationale is often too simplistic, however. Dubynskiy and

Goldstein (2013) provide an example in which the assumptions made at the boundaries

have a first-order effect on the solution in the interior, even for states that are very far away

from these boundaries. Such dependence on boundary conditions is well-known in the

study of the dynamic problems that arise in finance, for example, parabolic partial differen-

tial equations (PDEs) in case of diffusion processes; see John (1991) and DiBenedetto

(1995).

In the example in Dubynskiy and Goldstein (2013), the boundary conditions provide

important information about the preferences of the representative investor—exactly the in-

formation that the method was designed to recover. Similarly, Carr and Yu (2012) show

that for bounded diffusion processes, under appropriate exogenously specified boundary

conditions, recovery is possible. Again, boundary conditions are needed in their setting.1

Even if the true state space is bounded, truncation may still be present because of a limited

number of observable asset prices. The bounds may even be unknown. For example, one

may argue that in our world with finite resources, there must be an upper bound on the

value of the stock market, GDP, etc. However, it seems virtually impossible to determine

whether the correct bound to use for the Dow Jones Industrial Average is at 48,000, a mil-

lion, a billion, or even higher.

The potential importance of rare events for the recovery problem is related to several

fragility results for equilibrium asset pricing models in finance that have been put forward

in recent years. We mention a few examples. Barro (2005), building on Rietz (1989), shows

that the risk for catastrophic events far out in the tail of the return distribution may have

large asset pricing effects, potentially explaining the equity premium puzzle. Parlour,

Stanton, and Walden (2011) show that adding a very small risk-free consumption stream to

an otherwise standard Lucas economy can have drastic effects on stock prices and discount

rates, because of the insurance such an asset provides in rare bad states. Kogan et al. (2006)

show how a small number of irrational investors in the market can have a disproportionate

impact on asset prices by entering into extreme bets on rare events. Such models, several of

which assume diffusion processes, are therefore fragile with respect to combined assump-

tions about rare events and agent preferences. For the recovery problem there is a similar

potential fragility, namely whether the assumption about boundedness of the state space

fundamentally impacts the feasibility of the method.

We analyze the recovery problem in a representative agent economy where the state

evolves in continuous time according to a time homogeneous univariate diffusion process

on an unbounded domain. Our first contribution is to derive necessary and sufficient condi-

tions for unique recovery in this setting. We derive properties of the diffusion process that

alone determine whether recovery is possible; the form of the pricing kernel, that is, the

1 Carr and Yu (2012) mention the extension of the recovery methodology to unbounded domains as

an interesting extension.
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marginal utility of the representative agent, is not important. In general, for recovery to be

possible, the process cannot be allowed to drift off toward infinity too quickly in that it

needs to be recurrent. A sufficient but not necessary condition is that the diffusion process

has a stationary distribution. This complete independence between the feasibility of recov-

ery and the functional form of the pricing kernel is a priori quite surprising, and adds to the

strength of the recovery method.

We also study the recovery problem when additional restrictions on the pricing kernel

are imposed. Specifically, when we require marginal utility to be bounded from above and

below, the drift of the diffusion process only needs to be restricted in one direction. Finally,

we demonstrate that state prices alone cannot be used to determine whether recovery is pos-

sible, that is, that some knowledge about the underlying process is needed. Altogether, our

results show that recovery is possible for a wide class of interesting diffusion processes, but

that there are also interesting cases for which it fails, for example, models with growth and

unbounded utility.

Our second contribution is to show that the recovery conditions for the unbounded case

are also important in determining whether the method works with bounded and with dis-

crete state spaces. If option prices are only known on a bounded domain, as long as this do-

main is large enough, approximate recovery is possible on this bounded domain if and only

if recovery is possible on the unbounded domain. Specifically, if recovery is possible on the

unbounded domain, an approximate pricing kernel can be constructed from truncated ob-

servations of option prices on a bounded interval, and as the length of this interval grows,

the approximation converges pointwise to the true kernel. Importantly, no boundary condi-

tions are needed for this approximation method. The result is promising for the use of re-

covery methods in practice. We show in several examples that the numerical method works

well, and also provide Matlab code for the approximation method in the Appendix.

We also show that the solution to a discrete approximation of the continuous problem

is sensitive to small perturbations when recovery fails in the continuous case. Thus, even

though a unique solution always exists in the discrete case, the solution may be “wrong”

whenever the conditions for continuous recovery fail. Our approach may potentially be

used to further our understanding of the robustness of the discrete recovery problem. The

examples with truncated and discrete state spaces also shed further light on the continuous

and discrete approximations in Ross (2015).

As a third contribution, our reformulation of the problem in a setting with diffusion proc-

esses allows for additional insight about how recovery works in a fairly standard framework.

Throughout the paper, we provide examples that underline the theoretical results, and discuss

the results extensively to provide further intuition and insight about how they arise.

The paper closest to ours is by Qin and Linetsky (2016), who derive sufficient condi-

tions for recovery. Specifically, using the theory of general right Borel processes, they show

that recurrence is a sufficient condition for recovery within this class of processes. In con-

trast, we use the theory of differential equations, and specifically Sturm–Liouville theory, to

derive necessary and sufficient conditions for recovery within the narrower class of diffu-

sion processes, and show that recurrence is in general not necessary for such processes. We

also analyze recovery when further restrictions are imposed on the pricing kernel, providing

what we believe is a fruitful framework for analyzing unique recovery under joint restric-

tions on the class of processes and on the pricing kernel. Finally, we analyze the approxi-

mate recovery problem when the available state prices are truncated and/or discrete, and
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show how it relates to the continuous problem. Altogether, our approach and results there-

fore complement those in Qin and Linetsky (2016).

Borovicka, Hansen, and Scheinkman (2016) discuss the question of identification chal-

lenges that arise when the pricing kernel may also contain a nontrivial martingale compo-

nent, in which case transition independence cannot be taken for granted. If the martingale

component is nontrivial, the recovered probabilities and pricing kernel are distorted. The

question we analyze is separate in that we assume transition independence of the pricing

kernel, and focus on the question of what conditions are needed for recovery to be possible

with unbounded state spaces, given such transition independence. We further expand upon

the differences in the body of the paper.

Other related work includes the rapidly growing literature on empirical recovery, which

may shed light on whether the conditions needed for recovery are satisfied in practice, see

Audrino, Huitema, and Ludwig (2014); Tran and Xia (2014); Bakshi, Chabo-Yo, and Gao

(2015); Massacci, Williams, and Zhang (2016), as well as Jensen, Lando, and Pedersen

(2016) who generalize the recovery framework to multiple time-period models with non-

Markovian finite state spaces.

The recovery approach in Ross (2015) and its extensions, including the approach taken

in this paper, are based on specific assumptions about the underlying physical process, for

example, it being Markovian, the growth conditions analyzed in this paper in case of un-

bounded state spaces, and also on assumptions about the pricing kernel (transition inde-

pendence). The strength of the recovery method is that no further parametric restrictions

on the state space are needed, in that positivity of the pricing kernel alone ensures

unique recovery when the assumptions are satisfied. An alternative, almost model-free,

recovery approach proposed in Schneider and Trojani (2016), makes only weak—

empirically verifiable—economic moment constraints on physical returns, and then iden-

tifies a minimum-variance Hansen–Jagannathan pricing kernel projection consistent with

these constraints, as well as an associated unique physical probability distribution with a

minimal state space. As discussed in Schneider and Trojani (2016), neither recovery ap-

proach is guaranteed to recover the actual pricing kernel and physical probabilities in

general. Specifically, although very few restrictions on the underlying physical process

are made in Schneider and Trojani (2016), without the minimum-variance condition, the

actual kernel is no longer unique. Both recovery approaches therefore provide valuable

information about the kernel and physical probabilities, based on the prices observed in

the market, but neither approach can be used to guarantee recovery under completely

general conditions.

Finally, the recovery problem is related to the literature that uses Perron–Frobenius the-

ory to study the general link between long-term growth and asset prices under very general

conditions, see Alvarez and Jerman (2005), Hansen and Scheinkman (2009), Hansen

(2012), and Hansen and Scheinkman (2013). Although methodologically very similar to

the recovery framework, the main focus of this literature has been on the long-term proper-

ties of the economy and pricing kernel, for example, in terms of risk pricing.

The rest of the paper is organized as follows. In the next section, we give a brief summary

of recovery with a finite number of states, as introduced in Ross (2015). In Section 3, we ana-

lyze the recovery problem for a diffusion process on an unbounded domain. In Section 4, we

show that when recovery is possible in the unbounded state space, approximate recovery is

possible when the state space is truncated, and we also relate the robustness of the discrete
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recovery problem to our continuous results. Finally, Section 5 concludes. Proofs, the Matlab

code for approximate recovery, and some details, are delegated to the Appendix.

2. Recovery with Finite State Space

We summarize the approach in Ross (2015), which is based on a model in discrete time

with a finite number of states. We use the same terminology as Ross, except for the vector

of marginal utilities, for which we use m for instead of d, because d is easy to mistake for

the differential operator in the continuous model.

There are N states, and a stochastic, irreducible, aperiodic, matrix, F, such that Fij de-

notes the probability of moving from state i to j. Since F is stochastic,

F1 ¼ 1; (1)

where 1 is an N-vector of ones. There is a representative agent, with time separable ex-

pected utility, discount rate d < 1, and marginal utility mi > 0 in state i. We define the vec-

tor m ¼ ðm1; . . . ;mNÞT , and its reciprocal z ¼ ð1=m1; . . . ;1=mNÞT . Let Pij denote the time-

0 price in state i of an AD security that pays a dollar at time 1 if the state is j. In a

Walrasian complete market equilibrium, the price can then be expressed as

Pij ¼ d
mj

mi
Fij; (2)

or in matrix form

P ¼ dM�1FM; (3)

where M is the diagonal matrix, M ¼ diagðmÞ. From Equation (3), it follows that

F ¼ d�1MPM�1; (4)

which when plugged into Equation (1) yields

d�1PM�11 ¼M�11; that is; (5)

Pz ¼ dz: (6)

From the Perron–Frobenius theorem, it follows that there is a unique strictly positive pair d

and z that solves the eigenvector problem (6),2 via Equation (4) allowing F to be recovered.

On pricing kernel form, Equation (2) can written as

Pij ¼ E
Ktþ1

Kt
dj

� �
; where (7)

Kt ¼ dtmðXtÞ; (8)

Xt 2 f1; 2; . . . ;Ng is a Markov process representing the state at time t, mðXiÞ ¼ mi; i ¼ 1;

. . . ;N; dj ¼ 1 if Xtþ1 ¼ j and 0 otherwise, and Pij is the price at time t of the AD security

that pays a dollar if Xtþ1 ¼ j, given that Xt ¼ i. If the representation is possible, then the

pricing kernel is said to be on transition independent form.

As discussed in Borovicka, Hansen, and Scheinkman (2016), multiplicative pricing rela-

tions on the form Pij ¼ dsijFij, sij>0, are more general than the transition independent form

2 Uniqueness ensured, because F is irreducible and aperiodic.
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(2), which may lead to misspecification. Specifically, the recovery methodology cannot dis-

tinguish between pricing relationships on the form (2) and on the form Pij ¼ d mj

mi
HijFij,

where
P

jHijFij ¼ 1 for all states j, that is, the process htþ1 ¼ HXt ;Xtþ1
ht is a martingale.

Only when h is trivially identically equal to one is the pricing kernel transition independent.

The authors provide an example with stochastic consumption growth, where

Pij ¼ dsijFij ¼ E d
Ctþ1

Ct

� ��c

dj

� �
; where (9)

sij ¼
Ctþ1

Ct

� ��c

¼ UðXtþ1 ¼ j;Xt ¼ iÞ; (10)

for some function U, and Ct is the aggregate consumption at time t. Clearly, with the state

represented by Xt, the pricing kernel formulation (9, 10) is in general not on transition inde-

pendent form.

Our focus is not on whether transition independence holds, but on the conditions

needed for recovery to work with unbounded state spaces, given transition independence.

We note, however, that whether transition independence in Equations (9, 10) is satisfied de-

pends on how the state space is defined. Specifically, defining X̂t ¼ ðXt;CtÞ, it follows that

X̂t follows an (unbounded) Markov process, and that the pricing kernel under X̂t has the

transition independent form mðX̂tÞ ¼ C�c
t . We will subsequently return to this point in an

example with stochastic growth and unbounded state space.

3. Recovery with Unbounded Diffusion Process

The state evolves according to a univariate time homogeneous diffusion process:

dXt ¼ lðXtÞdt þ rðXtÞdx; t � 0: (11)

It will be convenient to define the function

DðxÞ ¼ r2ðxÞ
2

:

We make the technical assumptions that l and r are continuously differentiable, and that

there are constants, C1, C2, and C3, such that jlðxÞ � lðyÞj � C1jx� yj;
0 < C2 � rðxÞ; jrðxÞ � rðyÞj � C3jx� yj, for all x and y, to ensure that a strong solution

exists and that any interval on the real line, R, is covered with positive probability.3

Associated with the diffusion process is a filtered probability space ðX;F ;F t;PÞ; t � 0,

satisfying the usual assumptions. We define the transition density function f tðx; yÞ ¼ @Ft

@y ,

where Ftðx; yÞ ¼ PðXt � yjX0 ¼ xÞ, and it then follows that ft satisfies the Fokker–Planck

equation

@f t

@t
¼ L�f t;

f 0ðx; yÞ ¼ dxðyÞ;
(12)

3 These technical conditions are standard for guaranteeing the existence of strong solutions to

Equation (11), see Oksendahl (1998), but exclude some interesting examples for which strong solu-

tions are known to exists, for example, the univariate square root process (CIR process). Our ap-

proach based on Sturm–Liouville theory can be extended to include such examples.
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where the operator L� is defined as

L�f ¼ � d

dy
lðyÞf ðyÞð Þ þ d2

dy2

r2ðyÞ
2

f ðyÞ
� �

: (13)

Here, dxðyÞ is the Dirac distribution centered at x, defined by the conditions dxðyÞ ¼ 0;

x 6¼ y, and
Ð
dxðyÞdy ¼ 1. The fact that r � C2 > 0 implies that f tðx; yÞ > 0 for all t>0,

x 2 R, and y 2 R, that is, that for any x0, y, and t, the probability density of Xt at y is

strictly positive. The function f corresponds to the matrix F in the discrete case.

The instantaneous flow of a single consumption good at time t is gðXtÞdt, where g is a

strictly increasing, twice continuously differentiable, function. A price taking representative

agent seeks to maximize expected utility of a consumption flow, ct:

U ¼ E

ðT

0

e�qtuðctÞdt

� �
; (14)

for some 0 < T � 1. Here, the constant q > 0 is the agent’s personal discount rate, and u

is a strictly increasing, three times continuously differentiable function, such that jUj < 1;
when ct ¼ gðXtÞ.

A complete financial market of AD securities exists (e.g., implemented through dynamic

trading of a finite number of assets). The time 0 price of an AD security that pays dyðXtÞ at

time t, given that X0 ¼ x, is defined as ptðx; yÞ. Absence of arbitrage then implies that the

time 0 price of a simple contingent claim with time t payoff UðXtÞ is P ¼
Ð1
�1ptðx; yÞUðyÞdy.

A standard argument implies that the Walrasian equilibrium prices of the AD securities are

ptðx; yÞ ¼ e�qt mðyÞ
mðxÞ f

tðx; yÞ; (15)

where mðxÞ ¼ u0ðgðxÞÞ is strictly positive and twice continuously differentiable. This corres-

ponds to Equation (3) in the finite case. It will be convenient to define the functions qðxÞ
¼ m0ðxÞ

mðxÞ and zðxÞ ¼ 1
mðxÞ. Clearly, q is closely related to the representative agent’s relative

risk-aversion coefficient at x, cðxÞ, since �q ¼ �m0ðxÞ
mðxÞ ¼ �g0ðxÞ u00ðgðxÞÞ

u0ðgðxÞÞ ¼
g0ðxÞ
gðxÞ cðxÞ. The extra

factor g0ðxÞ
gðxÞ arises because g(x), rather than x represents, units of the consumption good

(which in turn allows us to cover both arithmetic and geometric consumption processes

within a unified framework). We note that m(x) is only unique up to multiplication with an

arbitrary positive constant, given the equivalence of two utility functions that are positive

affine transformations of each other. However, q is unique, since any constant will occur

both in the dominator and numerator of q and therefore cancel out.

The function

Kt ¼ e�qt mðXtÞ
mðX0Þ

(16)

is the pricing kernel in the economy, leading to the standard pricing formula

P ¼ E
Kt

K0
UðXtÞ

� �
; (17)

for the time 0 price of a simple contingent claim with time t payoff UðXtÞ. In the terminology

of Ross (2015), the specific kernel is transition independent, being the product of a constant

discount rate depreciation factor, and the fraction of a function evaluated at Xt and X0, re-

spectively. We thus take the existence of a pricing kernel on the form (16) as given.
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Assume that the prices of all AD securities are known, that is, that the function ptðx; yÞ
is known for all t> 0, x 2 R and y 2 R. It is well-known that we can draw inferences about

the underlying parameters, q, lðxÞ; rðxÞ, and m(x) from p, using standard equilibrium con-

ditions and risk neutral pricing. In the Appendix, we expand further on how these param-

eters can be inferred from state prices. Standard equilibrium arguments, see, for example,

Cochrane (2005), imply that the short risk-free rate is

rðxÞ ¼ q� qðxÞlðxÞ � ðq0ðxÞ þ qðxÞ2ÞDðxÞ: (18)

Moreover, it is well-known that volatility, and thereby D(x), can be uniquely identified in a

complete market diffusion setting. The drift term, lðxÞ, is not directly identifiable, but its

risk neutral counterpart can be inferred from state prices. Specifically, define

jðxÞ ¼def
lðxÞ þ 2qðxÞDðxÞ; (19)

and the infinitesimal generator A½m� ¼ l dm
dx þD d2m

dx2 . The pricing formula (16) for an asset

that pays Xt at time t is on risk neutral form written as

P ¼ EQ e�
Ð t

0
rðsÞdsXt

� �
¼ E e�qt mðXtÞ

mðX0Þ
Xt

� �
;

see Duffie (2001), or on differential form

EQ½dP� ¼ �rXdt þ EQ½dX� ¼ �qXdt þ E
dðmXÞ

m

� �
¼ �qXdt þA½m�

m
Xdt þ ldt þ 2qDdt;

which via Equation (18) leads to EQ½dX� ¼ jdt. To summarize, in the complete market

equilibrium, r, D, and j are directly observable, whereas l is not.

For any given x, Equations (18) and (19) provide two equations for the three unknown

q, lðxÞ, and m(x), and it may therefore seem as if there is one degree of freedom at each

point x. For example, such pointwise indeterminacy arises in a one-factor time homoge-

neous term structure model, where an unknown risk-premium process kðXtÞ is introduced,

and the function k may be quite arbitrary. An insight in Ross (2015) is that a pricing kernel

on the form (16) leads to strong constraints on how the marginal utility can change with x.

We can see this in our context by rewriting Equation (18) as

ðq� rÞ 1

m
¼ A½m�

m2
¼ j

m0

m2
þD

m00

m2
� 2
ðm0Þ2

m3

 !
;

and defining z ¼ 1
m, such that z0 ¼ � m0

m2 ; z00 ¼ �m00

m2 þ 2 ðm0Þ
2

m3 , altogether obtaining the se-

cond-order ordinary differential equation (ODE) in z:

z00 þ j
D

z0 þ q� r

D
z ¼ 0: (20)

We note that all functions and variables in Equations (20) are observable, except for q.

Thus, if we define the fundamental ODE for the recovery problem of the diffusion process:

z00 þ j
D

z0 þ k� r

D
z ¼ 0; k 2 R; (21)

8 J. Walden
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then the true z is a solution to the ODE with the parameter value k ¼ q.4

In Appendix A, we show that the eigenvector formulation in Ross (2015) and the ODE

formulation in our setting are actually very similar, in that the fundamental ODE is the dif-

ferential form of the integral equation eigenfunction problem for the process.

Following the insight in Ross (2015), we next study how positivity can be used to de-

crease the number of degrees of freedom even further.

3.1 Recovering Pricing Kernel from Fundamental ODE

We address the question of under which conditions there is sufficient information to

uniquely recover m(x) and q from the fundamental ODE. Here, uniqueness of m is defined

up to scaling with an arbitrary positive constant, in line with our previous discussion of in-

variance under positive affine transformations of the utility function. In this case, we say

that recovery is possible.

We define the operatorW½sjk� ¼ d2s
dx2 þ j

D
ds
dxþ k�r

D s, and can for general k solve

W½sjk� ¼ 0: (22)

Of course, from Equation (21),W 1
m jq
� �

¼ 0:

Under general conditions, given q, the solution to Equation (21) is on the form

c1z1ðxÞ þ c2z2ðxÞ, for arbitrary constants, c1, and c2. But, since z is only unique up to multi-

plication by a finite constant, there is effectively only one degree of freedom:

z ¼ cz1 þ ð1� cÞz2. Thus, in general, Equation (21) has only two degrees of freedom, one

degree in q > 0 and one in c. We have

Proposition 1. Consider the fundamental ODE, Equation (21):

• Given q, and qðx0Þ ¼ c for some x0, there is a unique solution to Equation (21),

zq;cðxÞ, defined on the whole of R.

• Given q1, q2, c1, and c2, such that q1 6¼ q2 or c1 6¼ c2, then the solutions to

Equation (21) with parameters q1; c1, and q2; c2, respectively, are distinct,

zq1 ;c1
6¼ zq2 ;c2

.

Proposition 1 makes precise the concept that there is in general sufficient information to re-

duce the indeterminacy of the recovery problem down to two degrees of freedom. The se-

cond part suggests that without further knowledge of q and qðx0Þ for some x0, recovery is

not possible. We have still not used the fact that m must be positive though. The second—

and fundamental—insight of Ross (2015) in the discrete setting is that positivity allows for

recovery, because the Perron–Frobenius Theorem guarantees that only one solution to the

eigenvalue problem is strictly positive.

In our diffusion setting, it is a priori unclear how far positivity will take us. Given that

there is an infinite number of unknowns (m(x) for all x), as well as conditions (relating

z00ðxÞ; z0ðxÞ, and z(x) for all x in Equation (21)), we cannot simply count the number of

equations and unknowns to see whether there is sufficient information for recovery.

4 The fundamental ODE also appears in Carr and Yu (2012), Tran (2013), and Dubynskiy and Goldstein

(2013). We note that there is nothing in this ODE formulation or our subsequent analysis that re-

stricts q to be positive. However, for the pricing kernel formulation to have economic meaning, the

expected utility of the representative agent needs to be well defined, which may not be the case if

q < 0.
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We define the function QðxÞ¼def
e�
Ð x

0

lðsÞ
DðsÞds. The following proposition shows that the be-

havior of the diffusion process as x tends to 61, via its influence on the so-called scale

function,
Ð
QðxÞdx (see Karlin and Taylor, 1981), determines whether recovery is possible:

Proposition 2. A necessary and sufficient condition for recovery of m(x) is that

ð0

�1
QðxÞdx ¼ 1 and

ð1
0

QðxÞdx ¼ 1: (23)

Here, we use the identity
Ð x

0
lðsÞ
DðsÞds ¼ �

Ð 0
x

lðsÞ
DðsÞ ds for x < 0. Thus, the behavior of lðxÞ

DðXÞ for

large (negative or positive) x determines whether recovery is possible. A sufficient but not

necessary condition for (23) to hold is that X is mean reverting. An example in which X is

not mean reverting but recovery is still possible is when X is a standardized Brownian mo-

tion (BM). The drift term, lðxÞ, can also be positive for x> 0, and/or negative for x< 0, as

long as it approaches zero quickly enough, or D grows fast enough. We note that

Condition (23) means that the process is recurrent in that it returns to any state as time in-

creases, see Pinsky (1995, p. 208). Processes that are not recurrent are transient. Thus, for

transient processes recovery is not possible.

The positivity requirement reduces the number of degrees of freedom in the recovery

problem from two to zero, as follows: It is straightforward to verify that the solutions toW
½sjk� ¼ 0 can be written as s ¼ uðxÞvðxÞ, where u(x) solves the ODE

u00 ¼ 1

4

l
D

� 	2
þ 1

2

d

dx

l
D

� 	
� k� q

D

� �
u; (24)

and vðxÞ ¼ e�
1
2

Ð x

0

jðyÞ
DðyÞdy. This ODE, which also arises in the model of Carr and Yu (2012)

with bounded domains, provides a convenient separation into a part, v, that depends on the

representative investor’s marginal utility, and a part, u(x), that solely depends on the diffu-

sion process, and specifically on l
D as seen in Equation (24). Moreover, v(x) is always posi-

tive, so negativity of the solution must come from u. This explains why the condition for

recovery does not depend on m, but only on the diffusion process through l
D.

Now, it is easy to check that a solution in the case when k ¼ q is given by

uq;1 ¼ e
1
2

Ð x

0

lðyÞ
DðyÞdy, and in the proof it is moreover shown that if Condition (23) is satisfied,

then for any c 6¼ 1, the range of the other solution to this second order ODE is the whole

real line. Therefore, the range of any combination of the two solutions must also be the

whole real line, violating the positivity constraint. This reduces the number of degrees of

freedom from two to one, by forcing c¼ 1.

The final part of the argument, allowing us to nail down q, is that a higher k in

Equation (24) will have a negative effect on u, at any point where u(x) is positive, by

decreasing u00. As shown in the proof, as long as uq;1 does not grow too fast, this negative ef-

fect on u00 of having k > q eventually makes u(x) become negative. Condition (23) is such

that l
D, and thereby u, does not grow too fast. Altogether, this implies that q can be identi-

fied as the largest k for which there is a positive solution to W½zjk� ¼ 0, which in turn will

be unique. Recovery is therefore possible.

The proof of Proposition 2 uses the theory of differential equations, and specifically

Sturm–Liouville theory, to explicitly construct multiple positive solutions when Condition

(23) fails, thereby showing not only the sufficiency but also the necessity of the condition.

This is in contrast to Qin and Linetsky (2016), who shows that recurrence is a sufficient

condition for recovery for the larger class of right Borel processes. In the univariate case,

10 J. Walden
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Condition (23) is both necessary and sufficient for recurrence, so our result implies that re-

currence is both necessary and sufficient.

In higher dimensions, however, recurrence is no longer necessary, that is, there are tran-

sient (non-recurrent) diffusion processes that allow for unique recovery. Consider the econ-

omy in which a three-dimensional standardized BM governs the state space,

ðdX1; dX2; dX3Þ ¼ ðdx1;dx2;dx3Þ. It is well-known that this process is transient, so that

the possibility of recovery cannot be inferred from recurrence in this case. Total instantan-

eous consumption is X1 þX2 þX3, and the pricing kernel corresponds to a risk-neutral

representative agent, m � 1. It then follows that the risk-free rate is r ¼ q, and that the

three-dimensional version of the fundamental ODE (21) is the so-called Helmholtz PDE:

Dzþ ðk� qÞz ¼ 0; k 2 R; (25)

where D is the Laplace operator, Dz ¼ @2z
@X2

1

þ @2z
@X2

2

þ @2z
@X2

3

.

The solutions to Equation (25) are thus the eigenfunctions of the Laplace operator. For

k < q, there are multiple positive eigenfunctions, for example, z ¼ eXi

ffiffiffiffiffiffiffi
q�k
p

, i¼ 1, 2, 3. For

k ¼ q, Liouville’s theorem for harmonic functions implies that the only positive eigenfunc-

tion is the constant function, z � 1. For k > q, there are only oscillating eigenfunctions (i.e.,

eigenfunctions that take on both negative and positive values).5 Thus, z � 1, with corres-

ponding parameter value k ¼ q, is the unique positive solution to Equation (25) among all

k � q. The same approach as in the univariate case therefore leads to unique recovery in

this example, suggesting that the PDE analysis is useful for cases when recovery is possible

but does not follow directly from recurrence of the process. Altogether, our results and the

results in Qin and Linetsky (2016) therefore complement each other.

We next study three examples in more detail, one for which recovery is possible and one

for which it is not, and also a bivariate example, to provide additional insight.

3.2 BM Example

Consider the classical Black–Scholes (BS) economy with dX ¼ l dt þ r dx, where l > 0

and r > 0 are constants. It follows that
Ð 0
�1QðxÞdx ¼ D

l < 1, so Condition (23) is not sat-

isfied, and recovery is therefore not possible. This is in line with what has been reported

earlier in Ross (2015) and Dubynskiy and Goldstein (2013).

We verify non-recovery for two utility functions. We first study the standard Lucas economy

with power utility, where gðxÞ ¼ ex, and u0ðgÞ ¼ g�c; c > 0. It follows from previous definitions

that mðxÞ ¼ e�cx; qðxÞ ¼ �c, and zðxÞ ¼ ecx. From Equations (18) and (19), we then have

r ¼ qþ cl� c2 r2

2
;

j ¼ l� cr2;

in line with standard results. The solutions to Equation (22) are

zk
1ðxÞ ¼ e

�x
jþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j2 þ 2r2ðr� kÞ

p
r2 ;

zk
2ðxÞ ¼ e

�x
j�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j2 þ 2r2ðr� kÞ

p
r2 :

5 This follows, for example, from the extension of the mean value theorem for Helmholtz equation,

see Courant and Hilbert (1962, p. 288).
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For k � rþ j2

2r2 ¼ qþ l2

2r2, there are two distinct positive solutions to the equation. Thus,

the possible marginal utilities are

mk;c ¼
1

zk;c
¼ 1

czk
1ðxÞ þ ð1� cÞzk

2ðxÞ
; k � rþ j2

2r2
; 0 � c � 1:

Even if q is known, m is not uniquely recovered. In fact, it is easy to check that in this

case the possible solutions are

mq;c ¼
1

zq;c
¼ 1

cexc þ ð1� cÞex c�2l

r2

� � ; 0 � c � 1:

So, in addition to the correct solution, m ¼ mq;1, there is a whole range of other possible

positive solutions. In Figure 1, some possible functional forms of m are shown, given that q

is known. In Figure 2, the corresponding possible relative risk aversion coefficients as a

function of x are shown.

We next consider the case where uðxÞ ¼ xþ x3

3 , g(x) ¼ x, so that mðxÞ ¼ 1þ x2. Note

that this utility function is quite nonstandard in that it is not concave. It shows the strength

of the methodology that no additional restrictions on m are needed, beyond positivity. In

this case, we get

r ¼ q� 2xlþ r2

1þ x2
; (26)

j ¼ lþ 2xr2

1þ x2
: (27)

Figure 1. Some candidate m functions, given that q is known, c ¼ 0; 0:1; 0:2; 0:3; 0:4; 0:5; 0:6; 0:7; 0:8; 0:8;

1 shown. The solid (red) line represents the true m ¼ e�cx , corresponding to c¼1. Recovery is not pos-

sible in this case. Parameter values: c¼ 3, l ¼ 0:01; q ¼ 0:01; r ¼ 0:1.
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These expressions are also nonstandard. For example, the short interest rate is highly

negative for large x. Again, a strength of the methodology is that it allows us to analyze re-

covery under very general conditions.

The stochastic process is still a BM with positive drift, so Proposition 2 implies that

recovery is not possible with this utility specification either. The general solution to

W 1
m jq
� �

¼ 0 in this case is

mq;c ¼
1

zk;c
¼ 1þ x2

cþ ð1� cÞe�
2l

r2x
; 0 � c � 1;

so there are multiple possible m(x) functions, even if q is known.

3.3 Ornstein–Uhlenbeck Example

Consider the Ornstein–Uhlenbeck (OU) process dX ¼ hða�XÞdt þ rdx; h > 0; r > 0.

Without loss of generality, we assume that a¼ 0, since we can always define x̂ ¼ x� a for non-

zero a, and solve in x̂ coordinates. We then have l ¼ �hx, and since l
D ¼ � h

r x, the conditions

for recovery in Proposition 2 are satisfied. Again, we assume that mðxÞ ¼ 1þ x2. We calculate

r ¼ qþ 2x2h� r2

1þ x2
;

j ¼ �xhþ 2xr2

1þ x2
;

and Equation (22) then takes the form

z00 þ x

D

2r2

1þ x2
� h

� �
z0 þ 1

D
k� q� 2x2h� r2

1þ x2

� �
z ¼ 0: (28)

Figure 2. Some possible risk-aversion functions, cðxÞ, given that the correct q is known,

c ¼ 0; 0:1; 0:2; 0:3; 0:4; 0:5; 0:6; 0:7; 0:8; 0:8; 1. The solid (red) line at the top represents the true cðxÞ ¼ 3,

c¼ 1. Parameter values: c¼ 3, l ¼ 0:01; q ¼ 0:01; r ¼ 0:1.
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The solutions to Equation (28) are

zk
1ðxÞ ¼

1

1þ x2
Hk� q

h

x
ffiffiffi
h
p

r

 !
;

zk
2ðxÞ ¼

1

1þ x2 1F1
q� k

2h
;
1

2
;
x2h
r2

� �
:

Here, Ha is the Hermite function and
1
F

1
is the confluent hypergeometric function [see

Gradshteyn and Ryzhik (2000, p. 986 and 1013)]. In the case when k ¼ q, this reduces to

zq
1ðxÞ ¼

1

1þ x2
;

zq
2ðxÞ ¼

1

1þ x2
Erfi

xh
r

� �
;

where Erfi is the imaginary error function, ErfiðxÞ ¼ 2ffiffi
p
p
Ð x

0e
s2

2 ds. Now, since Erfið�1Þ ¼ �1
and Erfið1Þ ¼ 1, the only way to make zq;c ¼ czq

1ðxÞ þ ð1� cÞzq
2ðxÞ strictly positive for all

x is to choose c¼1. Moreover, for any k > q, all candidate zk;c ¼ czk
1 þ ð1� cÞzk

2 are nega-

tive for some x, and therefore disqualified as candidate z functions. This follows from the

proof of Proposition 2. An example is shown in Figure 3, where candidate zk for a specific k

> q are shown. Since all candidates are negative for some x, they cannot represent the correct

z function, and thus recovery is possible in this case.

3.4 An Example with Stochastic Growth

We also study a two-dimensional example with stochastic growth, related to the previously

discussed discrete example in Borovicka, Hansen, and Scheinkman (2016). The two-

dimensional state space follows the bivariate diffusion process

dX ¼ �aYdt þ rXdwX; (29)

dY ¼ �Ydt þ rYdwY ; (30)

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
x

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

z l,
c(x

)

z(x)

Figure 3. Candidate functions, zk;cðxÞ; c ¼ 0; 0:1; 0:2; 0:3; 0:4; 0:5; 0:6; 0:7; 0:8; 0:8; 1. The solid (red) line

above the other lines represents the true z ¼ 1
m. All candidate functions with k > q eventually become nega-

tive, which means that they cannot represent 1
m. Parameter values: k ¼ 0:02; h ¼ 0:01; q ¼ 0:01; r ¼ 0:1.
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where wX and wY are independent Wiener processes, and the pricing kernel is on the form

Kt ¼ e�qt mðXt ;YtÞ
mðX0 ;Y0Þ ¼ e�qt e�cXt

e�cX0
. The example corresponds to an economy with a representa-

tive investor with power utility and risk aversion coefficient c, and aggregate consumption

Ct ¼ eXt that experiences stochastic, mean reverting, growth rates. The fundamental PDE

in this case is on the form:

r2
X

2
zXX þ

r2
Y

2
zYY � YzY � ðaY þ cr2

XÞzX þ k� qþ caY þ c2 r2
X

2

� �
z ¼ 0: (31)

Decomposing z(X, Y) into zðX;YÞ ¼ ecXwðX;YÞ, it follows that w satisfies the PDE

r2
X

2
wXX þ

r2
Y

2
wYY � YwY � aYzX þ ðk� qÞw ¼ 0: (32)

It follows from Corollary 3.5 and Theorem 3.8 in chapter 4 of Pinsky (1995) that the

unique positive solution to Equation (32) when k � q is w � 1 and k ¼ q, leading to

zðX;YÞ ¼ ecX, and the correct pricing kernel m ¼ 1
z. Recovery is thus possible in this case

with unbounded state space and stochastic growth.

The above example relates to the discrete example 1.1 with stochastic growth in

Borovicka, Hansen, and Scheinkman (2016), discussed in their Section 1.4. Consider the spe-

cial case of their example where there are two states, Xt 2 f1; 2g, the transition probabilities

are F1;1 ¼ F2;2 ¼ 3=4; F1;2 ¼ F2;1 ¼ 1=4, there representative agent has logarithmic utility,

uðCÞ ¼ log2ðCÞ, and discount factor d ¼ 1, and the pricing kernel is of the form s1;1 ¼ 1
2,

s1;2 ¼ s2;1 ¼ 1; s2;1 ¼ 2, corresponding to Ctþ1 ¼ 2Ct if Xtþ1 ¼ Xt ¼ 1; Ctþ1 ¼ Ct in case

Xtþ1 ¼ 2;Xt ¼ 1 or Xtþ1 ¼ 1;Xt ¼ 2, and Ctþ1 ¼ 1
2 Ct in case Xtþ1 ¼ Xt ¼ 2. The time-t

price in state i of a AD security that pays a dollar at time tþ 1 in state j is then Pij, where

P ¼

3

8

1

4

1

4

3

2

2
664

3
775:

It is easy to verify that the solution to the eigenvector problem Pz ¼ kz with maximal eigen-

value will neither identify the correct pricing kernel, transition probabilities, nor the dis-

count rate, since the pricing kernel does not have transition independent form under the

state space X 2 f1;2g.
However, when the state space is defined as X̂t ¼ ðXt; log ðCtÞÞ ¼ ði; jÞ 2 f1;2g � Z, the

pricing kernel is on transition independent form, Mt;tþ1 ¼ Ct

Ctþ1
. The function zX̂ ¼ 2j now

satisfies the eigenfunction problem:

kz1;j ¼ P1;1z1;jþ1 þ P1;2z2;j;

kz2;j ¼ P2;1z1;j þ P2;2z2;j�1;

j 2 Z and, as shown in the Appendix, the same type of egienfunction analysis as carried out

for diffusion processes in this paper allows unique recovery of the discount rate k ¼ d ¼ 1,

and the function zX̂ ¼ 2j.

3.5 Relationship between Recovery and Stationary Distribution

The condition for recovery (23) is related to the existence of a stationary distribution of the

diffusion process. Necessary and sufficient conditions for a function /ðyÞ to be a stationary

distribution is that /ðyÞ � 0;
Ð
/ðyÞdy ¼ 1, and that L�/ ¼ 0.
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It is easy to verify that the general solution to L�/ ¼ 0 is

/ðyÞ ¼ 1

QðyÞDðyÞ c1 þ c2

ðy

0

QðsÞds

� �
: (33)

and therefore that

ð0

�1

1

QðxÞDðxÞ dx < 1; and

ð1
0

1

QðxÞDðxÞ dx < 1; (34)

is a necessary and sufficient condition for the existence of a stationary distribution.6 Now,

the link between Equations (23) and (34) is clear: the faster Q(x) increases for large x, the

larger the right integral in Equation (23), and the smaller the right integral in Equation

(34). An identical argument holds for the left integrals. However, the two conditions are

not equivalent. The existence of a stationary distribution implies that recovery is possible,

but the reverse causality is not true. We have

Proposition 3. If the diffusion process has a stationary distribution, then recovery is possible.

As mentioned, an example for which recovery is possible but there is no stationary distribu-

tion is the standardized BM, l ¼ 0, r ¼ 1, leading to QðxÞ � 1. Clearly Condition (34)

fails in this case, but the condition for recovery (23) is satisfied. Indeed, the solutions to the

fundamental ODE in this case are

zq;c ¼
cþ ð1� cÞx

mðxÞ ; and

zk;c ¼
c� cos ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðk� qÞ

p
xÞ þ ð1� cÞ sin ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðk� qÞ

p
xÞ

mðxÞ ; k > q:

Thus, the only positive solution for k � q is zq;1, and recovery is therefore possible.

The nonstationarity follows from the fact that the process is null recurrent rather than

positive recurrent (see Pinsky, 1995, p. 185). Null recurrent and positive recurrent proc-

esses are both recurrent, but the expected time it takes to revisit a state for a null recurrent

process is infinite, whereas it is finite for a positive recurrent process.

Interestingly, although recovery is possible in the economy above, it is not possible to re-

cover the personal discount rate directly from the yield of long-term bonds. This is in con-

trast to the result in Martin and Ross (2013), who show that such direct recovery is

possible in the finite state space model. For example, in the case above with l¼ 0, r¼1,

and CRRA preferences with risk aversion coefficient c, mðxÞ ¼ e�cx, it follows from Section

3.2 that the short rate is r ¼ q� c2=2 and, since the yield curve is flat in this standard Lucas

economy, this is also the long rate. Thus, r does not provide sufficient information to dir-

ectly back out q. The reason is that although the drift is l ¼ 0, the risk averse agent be-

haves as if the drift is �c=2 [see, e.g., Parlour, Stanton, and Walden (2011) for a

discussion], which brings down the risk-free rate by introducing a precautionary savings

motive. Such a precautionary savings motive is of course also present in the finite state

model, but since there are bounds on marginal utility, that is, on mðXT Þ
mðX0Þ, in that setting, the

dominant term of the pricing kernel in the long run is the personal discount rate, e�qT ,

allowing direct recovery of q from long yields in that setting.

6 In other words, the speed measure needs to be finite, see Karlin and Taylor (1981).
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In the finite dimensional case, the existence of a unique stationary distribution is both

necessary and sufficient for recovery. The situation is thus different for the case with un-

bounded diffusions. In the diffusion case, a stationary distribution, if it exists, is unique, so

that part of the causality is the same in both models. The reverse causality, however, is dif-

ferent, since recovery does not imply the existence of a stationary distribution in the diffu-

sion model. The reason for the difference is clear: The eigenfunction relationship for

recovery is defined by the operator relationship (56). The corresponding finite relationship

is (1). The existence of a stationary distribution is governed by the adjoint equation,

F�/ ¼ / in the finite case, and L�/ ¼ 0, in the diffusion case. But, whereas it is always pos-

sible to rescale / such that
P

i/i ¼ 1 in the finite case, there is no guarantee thatÐ
/ðyÞdy < 1 in the diffusion case. In the terminology of functional analysis: there is no

guarantee that the positive solution to the adjoint equation L�/ ¼ 0 belongs to the space

L1ðRÞ of integrable functions. Therefore, recovery may be possible even without the exist-

ence of a stationary distribution.

3.6 Recovery from a Restricted Class of Utility Functions

Since Condition (23) in Proposition 1 is necessary and sufficient for recovery, there is noth-

ing more to say about the general recovery problem. However, if we are willing to rule out

some candidate pricing kernels by imposing stricter requirements than mere positivity of m,

we may weaken the requirements on the diffusion process for recovery.

So far, we have considered any m 2 C2
þ as a candidate function for the pricing kernel

Kt ¼ e�qt mðXtÞ
mðX0Þ, where C2

þ is the class of strictly positive, twice continuously differentiable

functions on the real line. By requiring m to belong to a smaller set, recovery becomes eas-

ier. Specifically, assume that for a specific class of diffusion processes (characterized by l

and D), and a set B 	 C2
þ, if m belongs to B, then no other function in B satisfies

W½1=mjk� ¼ 0, for k � q. In other words, given that there exists a possible pricing kernel,

m 2 B, no other possible pricing kernel can lie in B. In this case, we say that unique recov-

ery within B is possible for this class of diffusion processes.

One fruitful restriction is to focus on bounded marginal utilities,

B ¼ fm 2 C2
þ : 0 < c1 � mðxÞ � c2 < 1g. Here, we require that the bound below is

strictly positive (c1 > 0).7,8 We have

Proposition 4. Unique recovery within B is possible if and only if at least one of the condi-

tions in Equation (23) is satisfied.

As a consequence, the classical BS process studied in Section 3.2, which satisfies

Condition (23) on the left interval but not on the right, allows for unique recovery within

B. An example is given in Figure 4, where the bounded function mðxÞ ¼ 1þ tan�1ðxÞ
p

� 	�1
is

recovered within B.9 We stress that Proposition 4 does not guarantee that there exists solu-

tion in B to the recovery problem, just that if such a solution exists, it is unique. We also

7 The study of this class was inspired by a discussion with Steve Ross, who in a working paper, Ross

(2013), assumes boundedness when analyzing recovery in a model in discrete time with a continu-

ous state space, using the Krein–Rutman theorem.

8 Note that we do not require that the limits of m(x) exist as x tends to plus or minus infinity. Indeed,

m may oscillate for large x without convergence.

9 Equivalently, in units of the consumption good, g ¼ ex > 0, the marginal utility is

1þ tan�1ðlnðgÞÞ
p

� 	�1
.
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note that there is a trade-off here, in that the more we restrict the class of candidate func-

tions, the more we are effectively taking a stand on what the pricing kernel looks like, going

against the philosophy that the kernel and real probability distribution should be inferred

from data alone.

3.7 On the Need for Conditions on Real Probabilities

Proposition 2 provides conditions on the real probabilities, probabilities which in turn are

to be recovered, making the recovery argument somewhat circular. It would be very valu-

able if there were conditions on the observable variables alone, that is, on j, r, and D,

which guaranteed recovery.

Proposition 5 implies that such conditions do not exist, by showing that whenever re-

covery is possible (because the conditions on l and D in Proposition 2 are satisfied), there is

also an infinite number of processes, none of which satisfy the conditions for recovery, with

associated positive pricing kernels, that are also consistent with the fundamental ODE.

Proposition 5. Consider an economy in which Condition (23) is satisfied, thus allowing for re-

covery. Then, for each k < q, the fundamental ODE, W½sjk� ¼ 0, has a strictly positive

solution.

Corollary 1. None of the “recovered” probability distributions when k < q satisfy Condition (23).

Thus, knowledge of j, r, and D alone is never sufficient to ensure that recovery is possible:

One needs to that the real process is recurrent. Note that this circularity in the recovery ar-

gument is weak though, since Condition (23) restricts the asymptotic behavior of lðxÞ as x

tends to infinity and, given that it is satisfied, the whole function lðxÞ can then be re-

covered. As discussed, a sufficient condition for recovery to be possible is that the process is

stationary. In a discrete setting, standard unit root tests, see Phillips (1987) and Phillips and
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Figure 4. BS economy, dX ¼ ldt þ rdx, with bounded marginal utility, m ¼ 1þ tan�1ðxÞ
p

� 	�1
. In the left

panel (A), candidate functions, zq;cðxÞ are shown. The only candidate function that is both bounded

and positive is the solid (red) line z ¼ 1
m ¼ 1þ tan�1ðxÞ

p . In the right panel (B), candidate functions are

shown for k > q. No candidate function satisfies the condition of being positive, bounded from above,

and bounded from below. Thus, unique recovery within B is possible. Parameter values:

l ¼ 0:01; r ¼ 0:1; q ¼ 0:01; k ¼ 0:0104.
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Xiao (1998), can be used to test for stationarity. Stationarity tests for continuous time dif-

fusion processes are further analyzed in more recent papers, see, for example, Bandi and

Phillips (2010), Aı̈t-Sahalia and Park (2012), and Kim and Park (2015, 2016).

Bandi and Corradi (2014), see also Hamrick and Taqqu (2009), develop nonparametric

tests for stationarity that are robust for nonlinear dynamic processes. Their test is based on

the different divergence rates of occupation times for stationary and nonstationary proc-

esses, and is therefore directly related to the recurrence properties of the underlying process

that determine whether recovery is possible.

Stationarity is a sufficient but not necessary condition for recovery, and as we have seen

there are nonstationary process for which recovery is possible. Specifically, processes that

are null recurrent do not have stationary distributions but allow for recovery. Transient

processes on the other hand are explosively nonstationary, and do not allow for recovery.

Severely explosive processes are typically easy to detect, and recently developed methods

may be used to separate null recurrent processes from those that are moderately explosive,

see Phillips and Magdalinos (2007) and Phillips, Wu, and Yu (2011).

3.8 Backing out R, j, and D from Option Prices

At a specific point in time, t, we only observe psðxt; yÞ for general s> t and y 2 R.

However, in our previous derivation of r, D, and j we needed ptðx; yÞ for general x 2 R.

The following proposition shows that it is sufficient to know ptðx0; yÞ.10

Proposition 6. Assume that at time 0, the prices ptðx0; yÞ are observed for all y, for all t 2 ð0;TÞ,
for some T> 0. Define Vðt; yÞ ¼ ptðx0; yÞ. Then, for each y and t> 0, V satisfies the PDE:

Vt ¼ DðyÞVyy þ a1ðyÞVy þ a0ðyÞV; (35)

where

a1ðyÞ ¼ 2D0ðyÞ � jðyÞ; (36)

a0ðyÞ ¼ D00ðyÞ � j0ðyÞ � rðyÞ: (37)

Thus, by observing V(t, y), we can calculate Vt, Vy, and Vyy, and use Equation (35) to solve

for D(y), a1ðyÞ, and a0ðyÞ. Since there are three unknowns, for each y, V, Vt, Vy, and Vyy

need to be known for three different t, to calculate D(y), a1ðyÞ, and a0ðyÞ. Once D(y) is

known in a neighborhood of y, jðyÞ can be calculated, using Equation (36), and given that

jðyÞ is known in a neighborhood of y, r(y) can be calculated, using Equation (37).

We note that the prices of AD securities, V(t, K), can be inferred from the prices, CtðKÞ,
of call options with strike price K and maturity t, 0 < t < T; K 2 R,

CtðKÞ ¼def
ð1

K

ðy� KÞ mðyÞ
mðx0Þ

f tðx0; yÞdy: (38)

The price Vðt;KÞ ¼ Ct
KKðKÞ is the second derivative of the price of the call option, with re-

spect to the strike price, so D, r, and j can thus equivalently be calculated from call option

prices. Proposition 6 can either be shown using the risk neutral measure, or equivalently by

following similar lines as in Dupire’s method for backing out volatility in the local volatility

10 A somewhat related problem is that of deriving state prices from observed option prices, see

Breeden and Litzenberger (1978) and the large subsequent literature. In what follows, we assume

that state prices have already been identified from existing derivative prices.
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model (see Dupire, 1994). We note that the method is local in the sense that to back out D,

j, and r at x, only option prices with strike prices around x are needed.

As an example, consider the BM dX ¼ ldt þ rdx; mðxÞ ¼ 1þ x2, and assume that

x0 ¼ 0. We then get

Vðt; yÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffi
2pr2t
p e�qtð1þ y2Þe�

y2

2r2 t:

Calculating Vt, Vy, and Vyy, and backing out D, a1, and a0 from Equation (35) leads to

D ¼ r2

2
;

a1 ¼ � lþ 2yr2

1þ y2

� �
;

a0 ¼ �qþ l
2y

1þ y2
� r2 1� 3y2

ð1þ y2Þ2
:

Since D0 � 0, from Equation (36) we get j ¼ �a1 in line with Equation (27), and from

Equation (37) r ¼ a10 � a2 ¼ �2r2 1�y2

ð1þy2Þ2 � �qþ l 2y
1þy2 � r2 1�3y2

ð1þy2Þ2

� 	
¼ q� 2ylþr2

1þy2 in line

with Equation (26).

4. Approximate Recovery

The conditions for recovery in the unbounded case, introduced in Proposition 2, also deter-

mine how well recovery works on bounded and on discrete domains, as shown in the fol-

lowing discussion.

4.1 Bounded Domains

In practice, option prices are not available for arbitrarily large states, so we would not be

able to observe ptðx; yÞ for all x and y. An open question is then whether “approximate” re-

covery of m is possible given that ptðx; yÞ is only known on some domain, �N � x;

y � N, for some N> 0. Of course, in the case when recovery is not possible even if ptðx; yÞ
is known for all x, y, that is, even if N ¼ 1, recovery can never be possible when N < 1.

We therefore focus on the case when recovery is possible when N ¼ 1.

The question of approximate recovery is important: if few inferences about m can be

drawn even for arbitrarily large but finite N, then for all practical purposes, recovery in the

case with unbounded diffusion processes will not work. An example of such a situation is

given in Dubynskiy and Goldstein (2013), where additional information about the representa-

tive agent’s preference parameters is needed for recovery to work. But their example is exactly

one for which recovery does not work even if N ¼ 1, and is therefore of limited use for us.

The following result shows that as long as recovery is possible when N ¼ 1, strong in-

ferences can be drawn about m in the case when N < 1, without any additional

information.

Proposition 7. The following two conditions are equivalent:

1. When N ¼ 1, m and q can be uniquely recovered.

2. Given a finite N>0, m(x) and q can be approximated by functions m̂NðxÞ,
defined on ð�N;NÞ, and q̂N, such that
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3. q̂N is nonincreasing in N, and limN!1 q̂n ¼ q,

4. for each x, limN!1 m̂NðxÞ ¼ mðxÞ.

Thus, as long as recovery is possible on the unbounded domain, approximate recovery is

possible on a bounded subdomain.

The argument behind the result is as follows. When N < 1, we can solve for all candidate

functions zq;c, which satisfy Equation (21) on ½�N;N�, and are positive. Any candidate zk;c for k

> q will eventually become negative, and can therefore be ruled out if we have a large enough do-

main of observation. It follows from standard theory of ODEs that the larger k > q is, the faster z

will become negative, so for large domains, only zk;c for k very close to q stay positive on the whole

observed domain. However, these candidate zk;cs are then also close to the true z, because of con-

tinuity. Therefore, as N increases, tighter and tighter bounds on both m ¼ 1
z, and q can be inferred.

We show how such approximate recovery works for the OU example with mðxÞ ¼ 1þ x2.

In Figure 5, we assume that r, j, and D are observed on x 2 ½�3;3�, and calculate the approxi-

mate m function, as well as the approximated q̂. We see that for jxj � 2, the approximation is

very close to the correct solution, whereas the error is larger when we approach the boundary.

This is typical: At x ¼ N, the upper bound on m is infinity at one of the boundaries, since the

only condition we have is that z> 0 (i.e., m < 1) on the whole domain. The approximated q̂

¼ 0:010002 is very close to the true q ¼ 0:01. We stress that no additional information was

needed in this approximation, that is, we imposed no “artificial” boundary conditions.

In the Appendix, we provide Matlab code for approximating the pricing kernel on a fi-

nite domain, given D, r, and j evaluated at N equidistant points, x0;x0þ
Dx; . . . ;x0 þ ðN � 1ÞDx, where Dx > 0. The code consists of two parts: the first part calcu-

lates the general solutions to the ODE, given a conjectured q̂, using a standard finite differ-

ence method. The second part tests whether a positive kernel can be constructed as a linear
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Figure 5. Candidate functions, m(x), c ¼ 0; 0:1; 0:2; 0:3; 0:4; 0:5; 0:6; 0:7; 0:8; 0:8; 1 in the OU economy.

The solid (red) line is the true mðxÞ ¼ 1þ x2. Given that r, j, and D are observed on x 2 ½�3; 3�, the can-

didate functions are those consistent with positivity of z on ½�3; 3�, for the estimated discount rate, q̂.

For x 2 ½�2; 2�, m is well approximated. The parameter values are: h ¼ 0:01; q ¼ 0:01; r ¼ 0:1. The esti-

mated discount rate is q̂ ¼ 0:010002.
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combination of the general solutions, and updates the conjectured q̂ iteratively. If multiple

positive solutions exist, this means that the conjectured q̂ was too low, and if no positive so-

lutions exist, this means that the conjectured q̂ was too high.

The code performs well for the examples in this paper, as well as for several other ex-

amples. Convergence to q̂ is typically obtained in 15–30 iterations. In Figure 6, we show the

approximation error for several different examples, as the interval, ½�N;N� increases. We use

the OU process, the classical BS process, and the BM process without drift where

dX ¼ 0:1dx, as previously analyzed. We also introduce two new examples, that are close to

the growth threshold that determines whether recovery is possible, but on different sides of

this threshold. The first is a slow growth (SG) process, dX ¼ 0:05Xdt þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:1ð1þX2Þ

p
dx,

and the second is a fast growth (FG) process, dX ¼ 0:1Xdt þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:1ð1þX2Þ

p
dx. It is easily

verified that the first economy satisfies the conditions for recovery, whereas the second does

not. In all five examples, we use the nonstandard pricing kernel m ¼ 1þ x2. For robustness,

we have also used standard power utility, m ¼ e�cx, with similar results (not reported).

The left panel of Figure 6 shows the relative error of the approximated m̂, evaluated at

X¼1, jm̂ð1Þ�mð1Þj
mð1Þ , when N varies from 2 to 50. We see that the error decreases quickly as N

increases for the OU and BM processes.11 For the BS process, the error is large and basically
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Figure 6. Approximate recovery for different diffusion processes. The processes are 1. OU,

dX ¼ �0:01dt þ 0:1dx, 2. BM, dX ¼ 0:01dx, 3. SG, dX ¼ 0:05Xdt þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:1ð1þ X 2Þ

p
dx, 4. FG,

dX ¼ 0:1Xdt þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:1ð1þ X 2Þ

p
dx, and 5. BS, dX ¼ 0:01dt þ 0:1dx. Processes 1–3 satisfy the conditions

for recovery, whereas processes 4 and 5 do not. The left panel (A) shows the relative error of the

approximated m̂ at X¼ 1, jm̂ð1Þ�mð1Þj
mð1Þ , as a function of the interval �½N;N� observed, for the five proc-

esses. The right panel (B) shows the error in the approximate personal discount rate, q̂� q. The pricing

kernel mðxÞ ¼ 1þ x2 is used, and the personal discount rate is q ¼ 0:01. A small step-length of Dx

¼ 10�4 is used, to focus on the error introduced by bounded observations. In both panels, the conver-

gence to the correct solution is fast for 1 and 2, no convergence occurs for 5, and it is unclear from the

figure whether convergence occurs for 3 and 4.

11 For the OU process, the error for N > 2 is very small, but constant as N increases. This is because

of the error introduced by using a finite difference method to solve the ODE, which is independent

of the observation range, N. By decreasing Dx , this error can be decreased.
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constant, in line with recovery failing for this process. For the intermediate SG and FG

processes, the errors decrease, but it is hard to draw inferences about ultimate convergence.

A similar picture emerges for the error in the approximate discount rate, q̂� q, in the right

panel of the figure.

From the above results, it is clear that Condition (23) influences how large an inter-

val is needed to get accurate approximate recovery. If
ÐN
�NQðyÞdy grows quickly

as N grows, as in OU and BM, then a small interval is sufficient for good recovery. IfÐN
�NQðyÞ dy converges quickly to a finite value, as in BS, then no convergence occurs. In

the intermediate cases, SG and FG, the error decreases very slowly, and very large inter-

vals are needed to draw inferences. The SG example is chosen such that QðyÞ ¼ 1ffiffiffiffiffiffiffiffi
1þy2
p ,

leading to
ÐN
�NQðyÞdy ¼ 2sinh�1ðNÞ 
 2lnð1þNÞ. It is difficult to draw inferences

about whether this function is ultimately bounded or unbounded from its behavior on a

finite domain. Thus, even though approximate recovery works for this function in the-

ory, stronger constraints on Q may be needed for the method to work in practice. We

leave a detailed analysis of the convergence properties of the numerical method for fu-

ture work.

4.2 Discrete Domains

Since recovery is always possible when the number of states is finite, one may argue that

the best approach is to simply work with finite state spaces and thereby avoid the issue of

recoverability.

It turns out, however, that the conditions for recoverability of the continuous problem

are also important for the discrete problem, in that they determine whether the discrete re-

covery problem is sensitive to perturbations, for example, generated by observation errors

in the state prices. We show how such sensitivity manifests itself in a specific example, and

carry out a more general analysis in the Appendix that shows that whether the discrete

problem is sensitive to perturbations or not is closely related to the conditions of

Proposition 2.

Consider the diffusion process

dXt ¼
A

4
Gð4XtÞdt þ dx; A ¼ 61:

where

GðxÞ ¼
sgnðxÞ; jxj � 1;

sgnðxÞð1� ð1� sgnðxÞxÞ2Þ; jxj < 1

(

is a smooth, nondecreasing, antisymmetric function which is constant when jxj � 1. It fol-

lows immediately that when A ¼ –1, the process is mean reverting and thus satisfies the

conditions for recovery, whereas when A¼ 1, neither of the conditions in Proposition 2 are

satisfied and thus recovery is not possible.

We discretize this problem using the binomial tree method, with coefficients chosen as

in Cox, Ross, and Rubinstein (1979), and step-length DX ¼ 1
4. Under the assumption that

the representative agent is risk neutral with discount factor q ¼ 0 (corresponding to d ¼ 1

in the discrete case), the risk neutral and true probabilities then coincide, P¼F. The state

price matrices with seven states are shown in Equations (39) and (40), where the borders of

the tridiagonal matrices are chosen so that Xt stays within the state space. Note that the

matrices are such that for PA¼�1, the process tends to revert back to state 4 (corresponding
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to X¼ 0), whereas for PA¼1, it tends to move toward the border states, 1 and 7 (corres-

ponding to X ¼ �3=4 and 3/4, respectively).

In general, when the discretized interval goes from �ðN � 1ÞDX to ðN � 1ÞDX, P is tri-

diagonal of dimension ð2N þ 1Þ � ð2N þ 1Þ, and when N increases, so does the number in-

terior points (with identical elements) of PA¼1 and PA¼�1.

PA¼�1 ¼

0:47 0:53 0 0 0 0 0

0:47 0 0:53 0 0 0 0

0 0:47 0 0:53 0 0 0

0 0 0:5 0 0:5 0 0

0 0 0 0:53 0 0:47 0

0 0 0 0 0:53 0 0:47

0 0 0 0 0 0:53 0:47

2
666666666666664

3
777777777777775

; (39)

PA¼1 ¼

0:53 0:47 0 0 0 0 0

0:53 0 0:47 0 0 0 0

0 0:53 0 0:47 0 0 0

0 0 0:5 0 0:5 0 0

0 0 0 0:47 0 0:53 0

0 0 0 0 0:47 0 0:53

0 0 0 0 0 0:47 0:53

2
666666666666664

3
777777777777775

: (40)

Now, both PA¼�1 and PA¼1 satisfy the conditions for (discrete) recovery, and both have the

unique positive eigenvector 1 with associated eigenvalue d ¼ 1, which thus identifies the cor-

rect risk neutral pricing kernel. However, the sensitivity properties of the two matrices are very

different. Consider the recovered eigenvector in the discretized economy with 201 states, when

we perturb the matrix by replacing P11 with P11 þ �; � ¼ 0:001. The effect on the recovered

pricing kernel in the mean reverting case, A¼ –1, is marginal, as shown in the left panel of

Figure 7, whereas it is drastic when A¼ 1 as shown in the right panel of the same figure.

That the effects are so different in the two cases can be seen by studying the difference

equations corresponding to the eigenvector problems of the two matrices. Indeed, for the

interior rows, the eigenvector problem z¼Pz corresponds to the difference equation

ð0:5� aÞzjþ1 ¼ zj � ð0:5þ aÞzj�1;

where a ¼ 0:03 when A¼1, and a ¼ �0:03 when A ¼ –1. The general solution to this dif-

ference equation is

zj ¼ arj
1 þ brj

2;

where—as is easy to confirm—the characteristic roots are r1 ¼ 1 and r2 ¼ 1þ 2a. The root

r1 corresponds to the correct, constant, eigenvector, whereas r2 is a spurious solution which

gets some weight in the perturbed problem. When r2 < 1, corresponding to a mean revert-

ing process, this solution quickly dies out as j increases, as shown in the left panel of Figure

7. In contrast, when A¼1, r2 > 1, and the spurious solution completely contaminates the

correct solution as shown in the right panel of the same figure.
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In this example, the process for X leads to a finite difference equation with constant co-

efficients. In Appendix D, we show that in the general case, with variable coefficients, the

behavior of Q(x) for large (positive or negative) x governs whether the spurious solution is

dampened or blows up in the discretized problem, providing a link to the continuous

problem.

Thus, to conclude, our analysis in this section shows that the continuous recovery condi-

tions also have important implications for the practical feasibility of the recovery method

with bounded and discrete domains.

5. Concluding Remarks

We have provided a general characterization of when recovery of the pricing kernel and

real probability distribution is possible in a model with a time homogeneous diffusion pro-

cess on an unbounded domain. The existence of a stationary distribution, for example, is a

sufficient but not necessary condition for recovery. With further restrictions on marginal

utility, long-term growth can be incorporated. When recovery works on the unbounded do-

main, then even if prices are only observed on a bounded subdomain, the kernel and prob-

ability distribution on this subdomain can be approximated well without imposing

additional boundary conditions.

Altogether, our results suggest that recovery is possible for many interesting cases, but

that it will not work in economies that are “too close” to the standard setting with positive

long-term growth and unbounded marginal utility.

Appendix A: State Prices, Parameters, and Fundamental ODE

We further explore how the parameters, D, j, and r are related with state prices, and how

they lead to the fundamental ODE. Using Ito’s lemma and differential notation, given that

X0 ¼ x, the price of an asset that pays 1 at dt is Pr ¼ 1� rdt, where

rðxÞ ¼ q� qðxÞlðxÞ � ðq0ðxÞ þ qðxÞ2ÞDðxÞ
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Figure 7. Discrete state price matrix with small perturbation, when the underlying diffusion process is

recoverable (Panel A, left) and not recoverable (Panel B, right). In each panel, the straight (red) line rep-

resents the true kernel, and the (blue) curve represents the recovered kernel. The kernel is not sensi-

tive to perturbations in the recoverable case, whereas it is sensitive in the unrecoverable case.

Number of states is 2N þ 1 ¼ 201.
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is the short risk-free rate, which in general is a function of x. We have

rðxÞ ¼ lim
t&0

1�
Ð
ptðx; yÞdy

t
: (41)

Thus, the short rate at any x can be recovered from knowledge of pt. Similarly, the price of

the AD security pDtðx;xþ DtÞ is approximately 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2prðxÞ2Dt
p , so we can back out

DðxÞ ¼ lim
t&0

1

4pt
� 1

ptðx; xþ tÞ

� �2

: (42)

Finally, consider

jðxÞ ¼def
lðxÞ þ 2qðxÞDðxÞ:

The price of a security that pays off Xdt at dt, given that X0 ¼ x, is

Px ¼ E e�qdt mðXdtÞ
mðxÞ Xdt

� �

¼ E xþ dðXe�qtmðXÞÞ
mðxÞ

� �

¼ x� qxdt þ xqðxÞlðxÞdt þ xðq0ðxÞ þ qðxÞ2ÞDðxÞdt þ lðxÞdt þ 2qðxÞDðxÞdt

¼ xð1� rðxÞdtÞ þ jðxÞdt:

In risk neutral terminology, jðxÞ is the drift of the state variable, x, in the risk neutral meas-

ure. We can therefore back out jðxÞ as

jðxÞ ¼ rðxÞxþ lim
t&0

Ð
ptðx; yÞy dy� x

t
: (43)

To summarize, if the prices of AD securities are observable for all t> 0, x, and y, then r, D,

and j are directly observable from Equations (41), (42), and (43).

Appendix B: Relationship between Fundamental ODE and Integral Equation
Formulation

There is a close relationship between the fundamental ODE and the eigenvalue problem (6)

in Ross (2015). The relationship also provides an alternative derivation of the fundamental

ODE. In the diffusion process setting, the eigenvalue problem turns into a linear integral

equation. Specifically, we have ð
f tðx; yÞdy ¼ 1; 8x; (44)

which is the continuous version of Equation (1). We rewrite this on operator form as

f t½1� ¼ 1; where f t½s�ðxÞ ¼def
ð
f tðx; yÞsðyÞdy;

for an arbitrary function s(y).

From Equation (15), we have f tðx; yÞ ¼ eqtmðxÞptðx; yÞmðyÞ�1, similar to Equation (4),

which when plugged into Equation (44) yields
Ð
eqtmðxÞpðx; yÞmðyÞ�1dy ¼ 1, orð

ptðx; yÞmðyÞ�1dy ¼ e�qtm�1ðxÞ:
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or, for z ¼ 1
m,

pt½z�ðxÞ ¼def
ð
ptðx; yÞzðyÞdy ¼ e�qtzðxÞ;

similar to Equation (6). On operator form, this reads

pt½z� ¼ e�qtz; (45)

which is an integral equation eigenfunction problem. This is the continuous time diffusion

process equivalent of the eigenvalue problem in Ross (2015).

For small Dt, the Fokker–Planck equation implies that

f Dtðx; yÞ 
 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2prðxÞ2Dt

q e
�ðx�y�lðxÞDtÞ2

2rðxÞ2Dt ;

which implies that for a smooth function, s(y), that is bounded by C�e
�y2

for large y and any

� > 0,

f Dt½s�ðxÞ ¼ sðxÞ þ Dt
r2ðxÞ

2
s00ðxÞ þ lðxÞs0ðxÞ

� �
þ h:o:t:;

where “h.o.t.” denotes higher order terms in Dt. We define the infinitesimal operator

Ls¼def r2ðxÞ
2 s00ðxÞþlðxÞs0ðxÞ, so that L is the adjoint of L�, and we can then write the relation as

f dt½s� � s ¼ dt � Ls: (46)

Thus, an eigenfunction to fdt must satisfy ks ¼ Ls. Clearly, s � 1 is such a function, with

k¼0, leading to f dt½1� ¼ 1, in line with Equation (44).

Using Equation (15), we get that for an arbitrary function, v,

pdt½v�ðxÞ ¼ ð1� qdtÞmðxÞ�1
ð
f dtðx; yÞmðyÞvðyÞdy

¼ ð1� qdtÞmðxÞ�1f dt½mv�ðxÞ;

which, using Equation (46), leads to

pdt½v�ðxÞ ¼ ð1� qdtÞmðxÞ�1ð1þ dt � LÞ½mv�ðxÞ

¼ ð1� q dtÞvðxÞ þ dt �mðxÞ�1L½mv�ðxÞ

¼ vðxÞ � qvðxÞdt þ dt �Q½v�ðxÞ;

where Q½v�ðxÞ¼defðm�1L½mv�ÞðxÞ.
We rewrite

Q½v�ðxÞ ¼ 1

mðxÞ lðxð Þ d

dx
mðxÞvðxÞ� þDðx½ Þ d2

dx2
mðxÞvðxÞ�½ Þ

¼ 1

mðxÞ lðxÞðm0ðxÞvðxÞ þmðxÞv0ðxÞÞ þDðxÞðm00ðxÞvðxÞ þ 2m0ðxÞv0ðxÞ þmðxÞv00ðxÞð Þ

¼ ðq� rÞvþ jv0 þDv00;

and for z ¼ 1
m we then have

0 ¼ mðxÞ�1L½1� ¼ Q½z�ðxÞ ¼ ðq� rÞzþ jz0 þDz00:
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The fundamental ODE (21) is thus the differential form of the integral equation eigenvector

problem (45).

Appendix C: Discrete Example in Section 3.4

The relation

kz1;j ¼ P1;1z1;jþ1 þ P1;2z2;j;

kz2;j ¼ P2;1z1;j þ P2;2z2;j�1;

j 2 Z, represents a second-order system of difference equation of dimensionality two. We

use standard methods for systems of difference equations to analyze this equation, rewriting

it as a first order system of dimensionality six. Specifically, we define the vector

ẑj ¼ ðz1;jþ1; z2;jþ1; z1;j; z2;j; z1;j�1; z2;j�1Þ0, and after some algebra the system can be written

ẑj ¼

8k
3
�2

3
0 0 0 0

2

3

4

3k
0 0 0 0

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

2
666666666666664

3
777777777777775

ẑj�1 ¼ Bẑj�1: (47)

The characteristic equation for the matrix B (the equation defined by detðB� nIÞ) is

n4 n2 � n
8k
3
þ 4

3k

� �
þ 4

� �

with characteristic roots

n1;2 ¼
2

3k
1þ 2k26

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 5k2 þ 4k4

p� 	
(48)

and n3 ¼ n4 ¼ n5 ¼ n6 ¼ 0.

The inhomogeneous characteristic roots and their associated eigenvectors v1, v2, define

the general solution to Equation (47) on the form

ẑj ¼ anj
1v1 þ bnj

2v2:

The situation is similar to that for the diffusion process: For k > d (corresponding to e�k

> e�q in the continuous model), there are two positive eigenvectors, and therefore multiple

positive solutions to Equation (47). For k ¼ d ¼ 1, there is a unique (up to scaling) positive

eigenvector v ¼ ð4;4; 2; 2;1; 1Þ0 and associated eigenvalue n¼2 which represents the cor-

rect pricing kernel, ẑj ¼ njv. For k < d, there are no strictly positive solutions. Thus, as for

the diffusion case we have studied in this paper, when X̂ is used to define the state space in

this example, the pricing kernel is transition independent and recovery is possible.

Appendix D: Discrete Problem in Section 4.2

We study the properties of the discretized problem for the general process

dX ¼ lðxÞdt þ rðxÞdx. We discretize the problem with a trinomial tree method, with 2N
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þ1 points, step-length DX in space, and Dt ¼ aDX2 in time, where 0 < a � 1 is a con-

stant, chosen sufficiently small to ensure that all probabilities are nonnegative. The discre-

tized problem then covers the domain ½� �X; �X�, where �X ¼ NDX.

The transition probabilities are Fi;iþ1 ¼ a; Fi;i�1 ¼ b, and Fi;i ¼ 1� a� b;

Xj ¼ ðN þ 1� jÞDX; lj ¼ lðXjÞ, rj ¼ rðXjÞ, and to match the drift and volatility term, we

choose

aj ¼
1

2
�aljDXþ a2l2

j DX2 þ ar2
j

� 	
; (49)

bj ¼
1

2
aljDXþ a2l2

j DX2 þ ar2
j

� 	
; (50)

cj ¼ 1� a2l2
j DX2 � ar2

j : (51)

Assuming a risk neutral representative agent and discount factor d ¼ 1, we then have

Pij¼Fij, and the eigenvector problem leads to the finite difference relation

zj ¼ ajzjþ1 þ cjzj þ bjzj�1;

which when plugging in the coefficients (49–51) leads to

zj ¼
1

2
1�

aljDX

a2l2
j DX2 þ ar2

j

 !
zjþ1 þ 1þ

aljDX

a2l2
j DX2 þ ar2

j

 !
zj�1

¼ 1

2
1�

lj

r2
j

DX

 !
zjþ1 þ 1þ

lj

r2
j

DX

 !
zj�1 þOðDX2Þ:

For small step lengths, DX < < 1, this corresponds to the difference equation

zj ¼
1

2
1� aj

� �
zjþ1 þ

1

2
1þ aj

� �
zj�1; aj ¼

lj

r2
j

DX;

which—again disregarding higher-order terms—leads to the equation

zjþ1 ¼ 2ð1þ ajÞzj � ð1þ 2ajÞzj�1: (52)

Here, we focus on the domain X> 0, corresponding to points j ¼ 1; . . . ;N. An identical ar-

gument holds for X< 0.

By defining zj ¼ ðzj; zj�1Þ0, we can rewrite the difference formula on one-step form as

zjþ1 ¼ Vjzj; Vj ¼
2þ 2aj �1� 2aj

1 0

" #
:

Similar to the constant coefficient case, we are interested in the sensitivity of the mapping

zN ¼Wj;Nzj; Wj;N ¼
YN�1

k¼j

Vk; j ¼ 1; . . . ;N � 1:

It is easy to verify that the eigenvalues of Wj;N are R1
j;N ¼ 1 and R2

j;N ¼
QN�1

k¼j ð1þ 2akÞ,
where the eigenvector 1 corresponds to the eigenvalue 1, and is the correctly recovered

eigenvector.
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Now, if R2
j;N >> 1, then the solution will be sensitive to perturbations at X ¼

ðN þ 1� jÞDX. For small DX, we have

log ðR2
j;NÞ ¼

XNþ1�j

k¼1

log 1þ 2
lðkDXÞ
rðkDXÞDX

� �

¼
XNþ1�j

k¼1

2
lðkDXÞ
rðkDXÞ2

DXþOðDX2Þ

¼ � log ðQððN � kÞDXÞÞ þOðDX2Þ:
Finally, if errors of the order �DX, with 0 < � < < 1 are introduced in each step of the fi-

nite difference equation, which we would expect merely from discretization errors when

going from a continuous to a discrete domain, then the total error will be of the order

XN�1

k¼1

R2
j;N�DX ¼ �

X
k

Q�1ððN � kÞDXÞDXþOðDXÞ ¼ �
ð �X

0

Q�1ðxÞdxþOðDXÞ:

Thus, as the domain covered tends to infinity
Ð1

0 Q�1ðxÞdx < 1 is needed for the dis-

crete method not to be sensitive to perturbations, which in turn implies that
Ð1

0 QðxÞdx ¼
1. A similar argument applies for negative values of X, leading to

Ð 0
�1QðxÞdx ¼ 1. So, re-

covery for the continuous space problem is a necessary condition for the discretized prob-

lem not to be sensitive to perturbations.

The previous analysis assumed q ¼ 0, corresponding to d ¼ 1 in the discrete problem, but an

identical argument holds when q > 0. Moreover, the risk neutrality assumption can also be

dropped, since in the general case the mapping is P ¼ d�1M�1FM, but since eigenvalues are in-

variant to similarity transformations, the same analysis applies when M is not an identity matrix.

Appendix E: Proofs

Proof of Proposition 1: The result follows from the standard properties of solutions to se-

cond-order linear ODEs, see, for example, Simmons (1988, pp. 72–78).

Proof of Proposition 2: Recall that under our model assumptions, there is a strictly posi-

tive m that solves the fundamental ODE for k ¼ q, and thus also a strictly positive z.

However, the issue is that there may be other such positive zs, for k 6¼ q, and potentially

also for k ¼ q. So, we need to understand when it is possible to single out a unique such z.

Necessity: Assume that z1 is a strictly positive solution to Equation (21). From

Proposition 1, we know that the general solution (up to a multiplication by a constant) is

on the form zc ¼ z1 þ cz2, where z2 is also a solution. It is sufficient to show that any other

solution, zc, c 6¼ 0 must be negative at some point.

As discussed in Simmons (1988, pp. 81–83), z2 can be solved for, once z1 is known. The

general solution, zc can then be written as

zcðxÞ ¼ z1ðxÞ 1þ c

ðx

0

1

z1ðyÞ2
e
�

ðy

0

lðsÞ
DðsÞ þ 2qðsÞ
� �

ds

dy

0
B@

1
CA

¼ z1ðxÞ 1þ c

ðx

0

z1ðyÞ2

z1ðyÞ2
e
�

ðy

0

lðsÞ
DðsÞds

dy

0
B@

1
CA

¼ z1ðxÞð1þ c

ðx

0

e
�

ðy

0

lðsÞ
DðsÞds

dyÞ

¼ z1ðxÞð1þ cRðxÞÞ;

(53)
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where RðxÞ¼def Ð x
0e�
Ð y

0

lðsÞ
DðsÞdsdy. Of course, the sign of zcðxÞ is the same as the sign of

1þ cRðxÞ, so strict positivity of z
c

is equivalent to strict positivity of 1þ cRðxÞ. Now, R(x)

is a strictly increasing function such that Rð0Þ ¼ 0. If Rð1Þ < 1, then for small c< 0, z
c

is

strictly positive, as is the case for small c> 0, if Rð�1Þ > �1. In this case, recovery is not

possible, even if q is known, since there are multiple candidate solutions that are all strictly

positive, so necessity follows.

Sufficiency: The argument above implies that if Rð�1Þ ¼ �1, and Rð1Þ ¼ 1, then re-

covery is possible, given that q is known. If we show that there are no strictly positive solu-

tions to W½zjk� ¼ 0 for k > q in this case, then recovery follows automatically, since q must

be the largest k for which the solution to W½zjk� ¼ 0 has exactly one strictly positive solution.

We transform the ODE

d2s

dx2
þ j

D

ds

dx
þ k� r

D
s ¼ 0 (54)

to normal form [see Simmons (1988, pp. 119–120)], to get s¼ uv, where vðxÞ ¼
e�

1
2

Ð x

0
j
Ddy ¼ ze�

1
2

Ð x

0

l
Ddy, and u is the general solution to the ODE

u00 þ sðxÞ þ k� q
DðxÞ

� �
u ¼ 0; s ¼def� 1

4

l
D

� 	2
� 1

2

d

dx

l
D

� 	
: (55)

For k ¼ q, it is easy to see that the strictly positive function uqðxÞ ¼ e
1
2

Ð x

0

l
Ddy solves Equation

(55), which in turn has uqð0Þ ¼ 1, and u0qð0Þ ¼ 1
2

lð0Þ
Dð0Þ.

Define the function ukðxÞ, as the solution to Equation (55), with parameter k > q, and

initial conditions ukð0Þ ¼ uqð0Þ; u0kð0Þ ¼ u0qð0Þ. Then, if we can show that uk has at least

two roots, that is, that there are two points, x1, and x2, for which ukðx1Þ ¼ ukðx2Þ ¼ 0, it

follows from the Sturm comparison theorem (see Simon, 2005) that any solution to

Equation (55) has at least one root. Moreover, since s¼uv, and v>0 for all k and x, this in

turn implies that any solution to Equation (54) with k > q has at least one root, and is

therefore disqualified as a candidate solution for 1=m. Therefore, z and q can be uniquely

recovered. Specifically, in this case, z is the unique positive solution to W½zjq� ¼ 0, and for

no k > q, is there a positive solution to W½sjk� ¼ 0.

To show that uk has at least two roots for all k > q, we proceed as follows. We define

wkðxÞ ¼
u0kðxÞ
ukðxÞ. Since u is continuous and defined on the whole of R, it must be that if jwkj

tends to infinity at some some finite x, then ukðxÞ ¼ 0. Of course, wqðxÞ ¼
u0qðxÞ
uqðxÞ ¼

1
2

lðxÞ
DðxÞ.

From Equation (55), it follows that

u00k
uk
¼

u00q
uq
� k� q

D
: (56)

Moreover, since w0k ¼
u00k
uk
�w2

k , we can rewrite Equation (56) as

wk0 þw2
k ¼ w0q þw2

q �
k� q

D
;

or

wk0 �w0q ¼ �ðw2
k �w2

qÞ �
k� q

D

¼ �ðw2
k þw2

q � 2wqwk � 2w2
q þ 2wqwkÞ �

k� q
D

¼ �ðwk �wqÞ2 � 2wqðwk �wqÞ �
k� q

D
:
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Since wqð0Þ ¼ wkð0Þ, this means that if we define CðxÞ ¼ wk �wq, C satisfies the following

ODE:

C0 ¼ �C2 � l
D

C� k� q
D

; (57)

Cð0Þ ¼ 0: (58)

Of course, regardless of l and D, the solution must satisfy CðxÞ < 0 for all x> 0, since if C

ever gets close to 0, the term � k�q
D dominates the right-hand side of the equation. Thus, we

can assume that Cðx0Þ ¼ �� for some x0 > 0; � > 0. Now, consider the ODE

Ĉ
0 ¼ �Ĉ

2 � l
D

Ĉ;

Ĉðx0Þ ¼ ��:
(59)

Clearly, it must be that the differential inequality C � Ĉ is satisfied for all x � x0, since

whenever Ĉ ¼ C; C0 < Ĉ
0
. Therefore, if C is defined for all x0 � x, then so is Ĉ. Let us as-

sume that this is the case.

We define Z ¼ �Ĉ � 0, and we can then rewrite Equation (59) as

l
D
¼ Z� Z0

Z
;

which upon integration yields

�
ðy

x0

lðxÞ
DðxÞ dx ¼ �

ðy

x0

ZðxÞdxþ lnðZðxÞÞ½ �yx0
;

in turn leading to

e
�
Ð y

x0

lðxÞ
DðxÞdx ¼ 1

�
ZðyÞe�

Ð y

x0
ZðxÞdx

:

Let us define QðyÞ ¼ e�
Ð y

0

lðxÞ
DðxÞdx, so that we can write

ð1
0

QðyÞdy ¼
ðx0

0

QðyÞdyþQðx0Þ
ð1

x0

e
�

ðy

x0

lðxÞ
DðxÞ dx

dy

¼
ðx0

0

QðyÞdyþQðx0Þ
�

ð1
x0

ZðyÞe
�

ðy

x0

ZðxÞdx

dy

�
ðx0

0

QðyÞdyþQðx0Þ
�

< 1:

Here, we used the inequality
Ð b

aZðyÞe�
Ð y

a
ZðxÞdxdy ¼

Ð b
a � d

dy e�
Ð y

a
ZðxÞdx

� �
dy ¼

e�
Ð y

a
ZðxÞdx

� �a

b

¼ 1� e�
Ð b

a
ZðxÞdx � 1, since Z � 0. Thus, to summarize, if C is defined on the

whole of Rþ, then it must be that the right integral in Equation (23) is finite. So, if Equation

(23) is infinite, it must be that C! �1 for some finite x> 0, in turn implying that

ukðxÞ ¼ 0.
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An identical argument for x< 0 shows that ukðxÞ ¼ 0 for some finite x < 0. Thus, in line

with the previous argument, uk has at least two roots, and any other solution to Equation

(54) has at least one root, when k > q. We are done.

Proof of Proposition 3: The existence of a stationary distribution is equivalent to

Equation (34). From the condition on r,

jrðxÞ � rðyÞj � cjx� yj;

it follows that for x> 0, rðxÞ � rð0Þ þ C3x; and thus that
ffiffiffiffiffiffiffiffiffiffiffi
DðxÞ

p
� 1ffiffi

2
p rð0Þ þ C3xÞð .

Now, for d> 0, minz>0 ðzþ 1
zdÞ ¼ 2ffiffi

d
p , realized by choosing z ¼ 1ffiffi

d
p , and it therefore fol-

lows that: ð1
0

QðxÞ dxþ
ð1

0

1

QðxÞDðxÞ dx ¼
ð1

0

QðxÞ þ 1

QðxÞDðxÞ dx

� 2

ð1
0

1ffiffiffiffiffiffiffiffiffiffiffi
DðxÞ

p dx

� 2

ð1
0

ffiffiffi
2
p

rð0Þ þ C3x
dx

¼ 1:

If the second term is finite, the first term must therefore be infinite,
Ð1

0 QðxÞ dx ¼ 1. An

identical argument for x<0 implies that

ð0

�1

1

QðxÞDðxÞ < 1

implies that
Ð 0
�1QðxÞdx ¼ 1. We are done.

Proof of Proposition 4: From Proposition 2, we know that general recovery, and there-

fore recovery within B, is possible if both conditions in Equation (23) are satisfied. We

therefore study the case in which exactly one condition is satisfied. We note that

m 2 B () z 2 B.

Necessity: From the representation (53) of the general solution, it is clear that if both in-

tegrals in Equation (23) are finite, given that z1 2 B, for small enough jcj; zc 2 B, so recov-

ery is not possible within B in this case.

Sufficiency: Without loss of generality, assume that the left integral in Equation (23) is in-

finite, the right integral is finite, and that z1 2 B in Equation (53). Then, because Rð�1Þ
¼ �1 for any c>0, zc 62 C2

þ as the function eventually turns negative for negative x.

Moreover, for c< 0, zc is everywhere positive but unbounded, limsupx!�1 zcðxÞ ¼ 1, so

zc 62 B. Thus, given k ¼ q, the only function in B that is a candidate for the inverse of m is

z1.

For k > q, we proceed as follows. Recall that QðxÞ ¼ e�
Ð x

0

lðyÞ
DðyÞdy is positive, RðxÞ ¼

Ð x
0QðyÞ

dy is increasing, and define the limit K ¼ Rð1Þ < 1. Moreover, define the function zk;a,

as the solution to W½zjk� ¼ 0, given initial conditions zk;að0Þ ¼ 1; z0k;að0Þ ¼ a. Given that z

¼ 1=m is the correct reciprocal of m, normalized such that zð0Þ ¼ 1, and that z0ð0Þ ¼ b, it is

easy to verify the relationship with zc in Equation (53), zq;cþb ¼ zc. Now,

0 < C1 � z � C2 < 1, since z 2 B. Defining b� ¼ b� 1
K, it then follows immediately that

for a > b, for x � 0; C1 � zq;a � C2ð1þ ða� bÞKÞ, that for b� < a � b;

0 < C1ð1� ðb� aÞKÞ � zq;a � C2; x � 0, and that for a � b�; limsupx!1 zq;a � 0.

Recovery with Diffusion Processes 33

Deleted Text: ,


Now, similar to the approach in the proof of Proposition 2, we can write

zk;aðxÞ ¼ zðxÞ
ffiffiffiffiffiffiffiffiffiffiffi
QðxÞ

p
uk;aðxÞ; (60)

where

u0 0k;a þ sðxÞ þ k� q
DðxÞ

� �
uk;a ¼ 0; uk;að0Þ ¼ 1; u0k;að0Þ ¼ aþ 1

2

lð0Þ
Dð0Þ � b: (61)

It is easy to verify that for k ¼ q, the solution is uq;a ¼ e
1
2

Ð x

0

l
Ddy 1þ ða� bÞRðxÞð Þ.

Following the proof of Proposition 2, we define wk;aðxÞ ¼
u0k;aðxÞ
uk;aðxÞ, which is well defined as

long as uk;aðxÞ > 0. We then have wq;aðxÞ ¼
u0q;aðxÞ
uq;aðxÞ ¼

1
2

lðxÞ
DðxÞ þ

d
dx lnð1þ ða� bÞRðxÞÞð Þ ¼ 1

2
lðxÞ
DðxÞ þ

ða�bÞQðxÞ
1þða�bÞRðxÞ. Similar steps as in the proof of Proposition 2

lead to

C0 ¼ �C2 � AðxÞC� k� q
D

;

Cð0Þ ¼ 0;

where CðxÞ¼def wk;aðxÞ �wq;aðxÞ, and AðxÞ ¼ lðxÞ
DðxÞ þ 2 d

dx lnð1þ ða� bÞRðxÞÞð Þ
� 	

.

As before, the solution must satisfy CðxÞ < 0 for all x>0, since if C ever gets close to 0,

the term � k�q
D dominates the right-hand side of the equation. This, means that we can im-

mediately rule out any zk;a for a � b� as candidate solutions, since as long as uq;a > 0 and

uk;a > 0,

0 >

ðx

0

CðyÞdy ¼
ðx

0

u0k;aðyÞ
uk;aðyÞ

�
u0q;aðyÞ
uq;aðyÞ

� �
dy ¼ lnðuk;aðxÞÞ � lnðuq;aðxÞÞ;

in turn implying that uk;aðxÞ < uq;aðxÞ. As long as both zk;a, and zq;a are positive, via

Equation (60) we have
zk;a

zq;a
¼ uk;a

uq;a
, so this means that zk;a < zq;a. Since limsupx!1 zq;a � 0

when a � b�, it must either be that zk;a reaches zero for a finite x, or approaches zero as x

tends to infinity, in both cases disqualifying zk;a as a candidate function in B.

It remains to be shown that zk;a 62 B when a > b� and k > q. In this case, A(x) is well

defined for all x>0. Of course, if uk;a ¼ 0 for some x>0, then zk;a 62 B, so we assume that

uk;a > 0. As in the proof of Proposition 2, we can assume that Cðx0Þ ¼ �� for some

x0 > 0; � > 0. Now, assume that for x � x0, A(x) satisfies the bound AðxÞ � Cx, for some

C < 1. Define n ¼ k�q
supx DðxÞ > 0, and consider the ODE

Ĉ
0 ¼ �CxĈ� n;

Ĉðx0Þ ¼ ��:
(62)

It must be that C � Ĉ for all x � x0, since whenever Ĉ ¼ C; C0 < Ĉ
0

(similar to the argu-

ment in the proof of Proposition 2). Now, the solution to Equation (62) is

ĈðxÞ ¼ �e�
Cðx�x0Þ

2

2 �þ n

ffiffiffiffiffiffiffi
2p
4C

r
Erfi

ffiffiffiffi
C

2

r
ðx� x0Þ

 ! !
;

and it is easy to verify that ĈðxÞ ¼ � n
Cðx�x0Þ þOððx� x0Þ�3Þ for large x, and thus that

Ð y
x0

Ĉ

ðxÞdx tends to �1 as y grows. Since C � Ĉ, it must be that
Ð y

x0
CðxÞdx tends to �1 too.

But,
Ð y

x0
CðxÞdx ¼ ln

uk;aðyÞ
uq;aðyÞ

� 	
� ln

uk;aðx0Þ
uq;aðx0Þ

� 	
, so this implies that

uk;aðyÞ
uq;aðyÞ ! 0, as y grows. Now,

since zk;a > 0 and zq;a > 0;
zk;a

zq;a
¼ uk;a

uq;a
. Moreover, zq;aðxÞ � C2ð1þ ða� bÞKÞ < 1. It must

therefore be that zk;aðxÞ ! 0 for large x, so zk;a 62 B.
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The only part remaining is to show that AðxÞ � Cx for x � x0, for some constant

C < 1. We have

AðxÞ ¼ lðxÞ
DðxÞ þ 2

ða� bÞQðxÞ
1þ ða� bÞRðxÞ :

Since, per assumption, DðxÞ � C2
2=2 > 0, and lðxÞ � C1ð1þ xÞ � C1ðx�1

0 þ 1Þx ¼ C01x,

it follows that such a bound exists for the first term, lðxÞ
DðxÞ � Cx. For the second term, the de-

nominator is bounded below by a strictly positive constant, since a > b�. Therefore, as long

as limsupx!1
QðxÞ

x < 1, the second term can also be bounded by Cx for x � x0.

Intuitively, since
Ð1

0 QðxÞdx < 1, it should not be possible for QðxÞ
x to be large infinitely

often. This intuition can be formalized as follows. Since the integral of Q is finite, QðxÞ �
C0

x infinitely often for any constant C0 > 0. Now, assume that also QðxÞ ¼ C0x infinitely

often, for some C0 > 0. Then, consider a large x1, such that Qðx1Þ ¼ C0x1, and an even

larger x2 ¼ x1 þ d, such that Qðx2Þ ¼ C0

x1
. Since C0

x1
¼ Qðx1 þ dÞ ¼ Qðx1Þe

�
Ð x1þd

x1

l
Dds ¼

C0x1e
�
Ð x1þd

x1

l
Dds

, it follows that
Ð x1þd

x1

l
D ds ¼ 2lnðx1Þ, and since lðsÞ

DðsÞ � cs, that

ðx1þd

x1

csds ¼ c

2
ðx1 þ dÞ2 � x2

1

� 	
¼ c

2
2dx1 þ d2Þ � 2lnðx1Þ:
�

The positive root to this second-order equation c
2 2dx1 þ d2Þ ¼ 2lnðx1Þ
�

is

d ¼ x1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4lnðx1Þ

cx2
1

s
� 1

 !
;

and for large x1, the term within the square root is small, so we can use a Taylor expansion,ffiffiffiffiffiffiffiffiffiffiffi
1þ �
p

� 1þ �
2� k0�

2 for small positive �, where k0 > 8 is a constant, to get

d � x1
2lnðx1Þ

cx2
1

� k
4lnðx1Þ

cx2
1

� �2
 !

� 2lnðx1Þ
cx1

1� 2k0lnðx1Þ
c2x2

1

� �

¼ 2lnðx1Þ
cx1

1� k
lnðx1Þ

x2
1

� �
;

where k ¼ 2k0=c
2. We now have

ðx2

x1

QðxÞdx ¼
ðx1þd

x1

QðxÞdx

¼
ðx1þd

x1

e
�

ðy

0

l
D

ds
dy

¼
ðx1þd

x1

Qðx1Þe
�

ðy

x1

l
D

ds
dy

¼ C0x1

ðx1þd

x1

e
�

ðy

x1

l
D

ds
dy
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� C0x1

ðx1þd

x1

e
�

ðy

x1

csds

dy

¼ C0x1

ðx1þd

x1

e
�

c

2
ðy2 � x2

1Þ
dy

¼ C0x1

ðd

0

e�cx1p�cp2=2dp

� C00x1

ð2lnðx1Þ
cx1

ð1� k
lnðx1Þ

x2
1

Þ

0

e�cx1p�cp2=2dp

� C000x1

ð2lnðx1Þ
cx1

ð1� k
lnðx1Þ

x2
1

Þ

0

e�cx1pdp

¼ C000x1
e�cx1p

cx1

� �0

2lnðx1Þ
cx1

1� k
lnðx1Þ

x2
1

� �

� C000

c
1� x

�2 1�k
lnðx1Þ

x2
1

� �
1

0
BB@

1
CCA

� C0000 > 0:

Thus, every time Q(x) reaches C0x1, the contribution to R(x) on the subsequent interval,

½x1;x1 þ d�, over which Q(x) decreases to C0

x1
is bounded below by a strictly positive con-

stant, C0000, and if there are infinitely many such intervals it must then be that Rð1Þ ¼ 1,

contradicting the assumption that Rð1Þ is finite. Therefore, QðxÞ
x ! 0, for large x, in turn

implying that AðxÞ � Cx, and that, in extension, limsupx!1 zk;aðxÞ � 0 for a > b�. This

completes the proof.

Proof of Proposition 5: We take Equations (57) and (58) as a starting point to construct

positive solutions to the ODEW½sjk� ¼ 0 for each k < q. For k < q, a similar argument as

in Proposition 2 implies that CðxÞ � 0 for all x, which in turn implies that

uk0 ðxÞ
ukðxÞ

� uqðxÞ0

uqðxÞ
¼ 1

2

lðxÞ
DðxÞ ;

for each x such that ukðxÞ > 0.

W.l.o.g., we focus on the domain x � 0. Define x� ¼ inffx : ukðxÞ ¼ 0g. Since ukð0Þ ¼ 1

and uk is a smooth function, x� > 0. Moreover, if x� ¼ 1; uk is positive on the whole of

Rþ. Assume, to the contrary, that x� is finite. Then, since uk is smooth, it must be that

limx!x� ukðxÞ ¼ 0.

Now, define R ¼ inf0� x�x�
1
2

lðxÞ
DðxÞ. Then, it follows that

uk0 ðxÞ � RukðxÞ; 0 � x < x�:

A standard differential inequality then implies that ukðxÞ � nðxÞ; 0 � x < x�, where nðxÞ
¼ eRx solves the ODE n0 ¼ Rn; nð0Þ ¼ 1. It follows that ukðx�Þ � eRx� > 0, contradicting

the assumption that ukðx�Þ ¼ 0. Thus, no such finite x� exists, uk is strictly positive for all

x 2 Rþ, which then also implies that skðxÞ ¼ vuk > 0 (see Proposition 2). An identical argu-

ment shows that sk is also strictly positive for negative x.
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Thus, for each k < q, the marginal utility function mkðxÞ ¼ 1
skðxÞ is strictly positive, which

together with k provides an “alternative” pricing kernel consistent with the fundamental

ODE. We are done.

Note also that the corollary follows immediately, since if any of these alternative pricing

kernels would satisfy the conditions for recovery, Proposition 2 would be violated.

Proof of Proposition 6: We use the risk neutral measure to show the result. An earlier

version of the proof was based on Dupire’s formula (Dupire, 1994).12

As noted, the risk neutral dynamics for X is:

dX ¼ jðXÞdt þ rðXÞdxQ:

Via Fokker–Planck’s equation, it then follows that the risk neutral probability density

function, /Qðt; yÞ, for X(t)¼ y, satisfies the PDE

/Q
t ¼ �j0/Q � j/Q

y þD00/Q þ 2D0/Q
y þD/Q

yy: (63)

In the risk neutral formulation, defining ZðtÞ ¼ EQ

�
e
�

ðt

0

rðsÞds
�
, the price of the AD secur-

ity that pays off at t if X(t)¼ y is

Vðt; yÞ ¼ ZðtÞ/Qðt; yÞ;

and taking partial derivatives, we get Vt ¼ �rðyÞV þ ZðtÞ/Q
t ; Vy ¼ ZðtÞ/Q

y ;

Vyy ¼ ZðtÞ/Q
yy. We therefore get

Vt�ðDVyyþa1Vyþa0VÞ¼Zð�r/Qþ/Q
t �D/Q

yy�a1/
Q
y �a0/

QÞ

¼Zð�r/Qþ/Q
t �D/Q

yy�ð2D0 �jÞ/Q
y �ðD00 �j0 �rÞ/QÞ

¼Zðrð/Q�/QÞþð/Q
t �ð�j0/Q�j/Q

y þD00/Qþ2D0/Q
y þD/Q

yyÞÞÞ;

¼0

where we used Equation (63) in the last step. We are done.

Proof of Proposition 7: 1:) 2:: We will use a specific parametrization of the general in-

dependent solutions, zi
k, i¼ 1, 2, k � q, to the ODEW½zjk� ¼ 0. We define zi

k to be the solu-

tion to

W½zi
kjk� ¼ 0;

zi
kð0Þ ¼ zq;i;ð0Þ;

zi0
kð0Þ ¼ z0q;ið0Þ;

where zq;1, as before, is the strictly positive solution toW½zjq� ¼ 0, and zq;2 is another solu-

tion, which given that recovery is possible is chosen to be zero and increasing at x¼ 0.

Finally, define the general solution zk;c ¼ cz1
k þ ð1� cÞz2

k ; c 2 ½0; 1�; k � q. It follows from

standard properties of linear second-order ODEs that for any x, zk;cðxÞ depends continu-

ously on k and c (see, e.g., Simmons, 1988).

The correct z ¼ 1
m is then the only positive function, zq;1, whereas zq;cðxÞ ¼ 0 for some x,

if either c 6¼ 1, or k > q. We are interested in how strong inferences we can draw about z

from observing D, j, and r on the domain ½�N;N�. Candidate zs are then solutions zk;c that

are strictly positive on ½�N;N�.

12 I thank Ngoc-Khanh Tran for suggesting using the risk neutral formulation.
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We define Nk;c¼def inffjxj : zk;c ¼ 0g: It follows that if Nk;c � N; zk;c cannot be a candi-

date z, since it is not strictly positive on the observable domain. The following properties of

Nk;c follow:

1. For k ¼ q; Nq;c is continuous and strictly increasing in c, for 0 � c < 1. Moreover,

Nq;1 ¼ 1. This follows from Proposition 2, and the definition of zq;c as a linear combin-

ation of the strictly positive z1
q;1, and zq;2 which has exactly one root.

2. For ðk; cÞ 6¼ ðq; 1Þ; Nk;c is continuously differentiable in k, and
dNk;c

dk < 0. This follows

from the Sturm comparison theorem, see for example, Simon (2005).

3. For k > q; Nk;c is a continuous function of c 2 ½0; 1�, and therefore also bounded,

Rk¼def supc Nk;c < 1.

4. Rk is nonincreasing in k. This follows directly from point 2.

Point 3 follows from the following argument: From the proof of Proposition 2, it follows

that zk;1 has at least two roots for any k > q, one for x less than zero, and one for x greater

than zero. Let us call these two roots v1 < 0 and v2 > 0. From the Sturm separation the-

orem (see Simmons, 1988, p. 118), it follows that zk;0 has exactly one root in (v1, v2), which

from the construction of zk;0 in Proposition 2, lies at x¼ 0. Moreover, zk;c has exactly one

root in ðv1;0Þ, for 0 < c < 1. We denote this root by v1ðcÞ. Clearly, if we define

c1ðxÞ ¼ zk;0ðxÞ
zk;0ðxÞ�zk;1ðxÞ, for x 2 ½v1; 0�, we have c1ðxÞzk;1ðxÞ þ ð1� c1ðxÞÞzk;0ðxÞ ¼ 0, that is,

v1ðc1ðxÞÞ ¼ x. Now, c1 is continuous, c1ðv1Þ ¼ 1; c1ð0Þ ¼ 0, and dc1ðxÞ
dx ¼

1
ðzk;0ðxÞ�zk;1ðxÞÞ2

z0k;0ðxÞzk;1ðxÞ � z0k;1ðxÞzk;0ðxÞÞ
�

. Since the Wronskian, z0k;0ðxÞzk;1ðxÞ � z0k;1ðxÞ

zk;0ðxÞ 6¼ 0 (see Simmons, 1988), it follows that c1ðxÞ is strictly decreasing on ½v1;0�, and

therefore its inverse, v1ðcÞ is a continuous function on c 2 ½0;1�. If jv1j � v2, then clearly

Nk;c ¼ jv1ðcÞj but if jv1j > v2, we must also consider a potential root to the right of v2 as a

candidate for being closest to zero. If zk;0 has a root at x ¼ v3 > v2, then an identical argu-

ment as that above can be made to infer that there is a unique root of zk;c; v3ðcÞ 2 ðv2; v3�,
for all c 2 ½0;1�, which decreases continuously in c. If zk;0 has no such root to the right of

v2, then neither does zk;1 (again by the Sturm separation theorem). In this case, it follows

that c2ðxÞ¼def zk;0ðxÞ
zk;0ðxÞ�zk;1ðxÞ, for x � v2 is a continuous, strictly decreasing (because of the non-

zero Wronskian) function, and that its inverse v2ðcÞ can be defined on c 2 ½c2ðjv1jÞ; 1�. The

function v2ðcÞ can then be continuously extended to the domain c 2 ½0; 1�, so that for

0 � c < c2ðjv1jÞ; v2ðcÞ ¼ v2ðc2ðjv1jÞÞ. It now follows that Nk;c ¼ minðv1ðcÞ; v2ðcÞÞ is also

continuous in c 2 ½0;1�. Since the domain of c, ½0; 1�, is compact, boundedness of Rk follows

immediately. We also define Ak ¼ fc : Nk;c ¼ Rkg, and note that Ak must be nonempty,

again since Nk;c is continuous in c.

The results above are sufficient to imply that as N grows, the set of candidate functions

both over c and k shrinks so that ultimately only z ¼ 1
m remains. Specifically, define

GN ¼ fðk; cÞ : zk;cðxÞ > 0; jxj � Ng. This set contains the candidate z-functions, given that

D, r, and j are observed on ½�N;N�. Clearly, GN0 GN, for N0 > N, and from Proposition 1,

G1 ¼ fðq;1Þg. We wish to show that GN converges to G1 as N !1.

Define

cN ¼ inffc : Nq;c � Ng;

kN ¼ inffk : Rk � Ng:
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It then follows immediately that GN ½cN ;1� � ½q; kN�. Moreover, Proposition 2 implies that

limN!1 cN ¼ 1 and limN!1 kN ¼ q, since otherwise there would be other strictly positive

solutions to the fundamental ODE with k � q. Thus, limN!1 \N
n¼1Gn ¼ G1 ¼ fðq; 1Þg, as

claimed.

The results in the proposition follow immediately. By choosing q̂ ¼ kN (which of course

is observable, given that D, j, and r are on ½�N;N�), we get the first result. Next, we choose

a ẑN ¼ zq̂N ;wN
, and m̂N ¼ 1

ẑN
, where wN 2 Aq̂N

. Since zk;cðxÞ depends continuously on k and

c, which converge to q̂ and 1, respectively, as N tends to infinity, it follows that limN !1
zq̂N ;wN

ðxÞ ¼ zðxÞ for any x, and since z is strictly positive, also that m̂NðxÞ ! mðxÞ, com-

pleting the proof that 1:) 2:

Finally, 2:) 1: is immediate. We are done.

Appendix F: Matlab Code for Recovery Algorithm in Section 4

The results in Section 4 are based on the following Matlab code, which approximates the

pricing kernel and personal discount rate from D, r, and j.

% Filename: Recovery.m

% By Johan Walden, November 7, 2013

% Recovery method for diffusion process

% Described in: Recovery with diffusions on unbounded domains

% Original method with finite state space described in Ross (2013)

%

% Input:

% dx: stepsize (e.g. 1E-4)

% rhomax: Assumed maximum possible personal discount rate

% NoSteps: Number of iterations (e.g., 30)

% D: Vector of D values [D(0), D(dx),. . .,D(N*dx)];

% r: Vector of r values [r(0),r(dx),. . .,r(N*dx)];

% k: Vector of kappa values [kappa(0),kappa(dx),. . .,kappa(N*dx)];

%

% Output:

% rho: Approximate personal discount rate

% m: Vector of approximate marginal utility [m(0),m(dx),. . .,m(N*dx)];

function [rho,m]¼Recovery(dx,rhomax,NoSteps,D,r,k)

rhomin¼0; %Lower bound on personal discount rate

N¼ length(D);

zapp¼ zeros(N,1);

FoundPositive¼0;

for n¼ 1:NoSteps % Iterate over conjectured discount rate

rho¼ (rhomaxþ rhomin)/2; %Conjectured rho

%Solve ODEs

z¼ zeros(N,2); %Two solutions

Mid¼ floor(N/2);

z(Mid-1:Midþ1,1)¼ [1,1,1]; %Solution with initial condition z’¼0;

z(Mid-1:Midþ1,2)¼ [1-dx,1,1þ dx]; %Solution with initial condition z’¼1;
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for j¼Midþ1:N-1

vj¼ k(j)*dx/(2*D(j));

z(jþ1,:)¼ 1/(1þ vj)*((2-dx^2*(rho-r(j))/D(j))*z(j,:)-(1-vj)*z(j-1,:));

end

for j¼Mid-1:-1:2

vj¼ k(j)*dx/(2*D(j));

z(j-1,:)¼ 1/(1-vj)*((2-dx^2*(rho-r(j))/D(j))*z(j,:)-(1þ vj)*z(jþ 1,:));

end

% Check number of roots of solutions to infer new rho

Roots¼ sum(z(2:N,:).*z(1:N-1,:)<¼0);

if (Roots(1)>1 || Roots(2)>1) % Too high rho, since multiple roots

rhomax¼ rho;

elseif (Roots(1)¼¼0) %Too low rho (weakly), since positive solution

rhomin¼ rho;

zapp¼ z(:,1); %Update approximate kernel

FoundPositive¼1;

elseif (Roots(2)¼¼0)

rhomin¼ rho;

zapp¼ z(:,2); %Update approximate kernel

else %No solution with two roots, at least one with one, check for linear combination

A1¼ angle(z(:,1)þi*z(:,2));

A2¼ angle(-(z(:,1)þi*z(:,2))); %Rotate angle by pi

if ((max(A1)-min(A1) < pi)) %Positive possible

rhomin¼ rho;

A¼1/2*(max(A1)þmin(A1));

zapp¼ cos(A)*z(:,1)þsin(A)*z(:,2);

FoundPositive¼ 1;

elseif (max(A2)-min(A2) < pi) %Positive possible

rhomin¼ rho;

A¼1/2*(max(A2)þmin(A2))þpi;

zapp¼ cos(A)*z(:,1)þsin(A)*z(:,2);

FoundPositive¼ 1;

else

rhomax¼ rho;

end

end;

end

if(FoundPositive¼¼0)

disp(’Did not find a positive kernel’)

end;

m¼ 1./zapp’;
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