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We show that several well-known asset pricing puzzles are largely mitigated if we endow
the representative agent with an arbitrarily small minimum consumption level. This allows
us to solve the model for parameter values where the standard “Lucas tree” model is not de-
fined. For these parameters, disasters become more important, and the market risk premium
therefore higher, even though consumptiotessrisky. Our model yields reasonable risk
premia, Sharpe ratios, and discount rates; excess price volatility; and a high market price-
dividend ratio. We derive closed-form solutions for all variables of interelEL (G12)

Whena standard one-tree consumption-based exchange economy, with Brow-
nian log-consumption growth and a representative investor with power utility,
is calibrated to data, three significant puzzles atisérst is the equity pre-
mium puzzle, famously posed Mehra and Presco(tLl985): For reasonable
values of the risk-aversion coefficient, the implied equity premium is too low.
Second is theisk-free rate puzzléseeWeil 1989): If risk aversion is chosen

to match the equity premium, then the discount rate is implausible. Third is
the excess-volatility puzzlgseeLeRoy and Porter 1981Shiller 1981): Price
volatility in the standard model is the same as dividend volatility and consump-
tion volatility; in reality, however, price volatility is many times higher than
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both consumption and dividend volatility. As summarizedLieRoy (2006),

“The conclusion that appears to follow from the equity premium and price
volatility puzzles is that, for whatever reason, prices of financial assets do not
behave as the theory of consumption-based asset pricing predicts.”

The equity premium puzzle remains perhaps the most disturbing counterfac-
tual prediction for the standard model, mainly because such a stylized model
should not be “off” by an order of magnitude. More sophisticated models
inevitably build on the simple one, making its poor performance especially
troubling. In this article, we show that all three of these puzzles are, in fact,
extremely fragile. With calibrations as reasonable aM&hra and Prescott
(1985), a very small change to the setup leads to very different levels for the
market risk premium, the risk-free rate, and the level of price volatility. The
specific change we implement is to introduce an arbitrarily small risk-free con-
sumption stream to the standard model. We call thigtbemum consumption
(MC) economy, and show that this minor modification largely mitigates all
three puzzles.

Our results are based on the observation that for some parameter values, be-
yond what we dub théreakpoint the risky tree in the standard model is so
risky that the representative investor's expected utility is negative infinity, and
the risk premium is therefore not well defined. With a lower bound on con-
sumption, expected utility remains finite, though it is still strongly affected by
low-consumption states in this parameter region. As a result, we obtain a much
higher risk premium than in the standard model. Indeed, for low growth rates
and personal discount factors, the risk premium in our model for these param-
eter values can approagtfs? insteadof the y o2 producedby the standard
model? Interestingly the consumption process in our economy, with proba-
bility 1, looks indistinguishable from the standard one-tree model in the long
run. Empirically, it would therefore be impossible to distinguish the consump-
tion process in the MC model from that in the standard model, even though
the differences in asset pricing are huge. Although the effect of minimal con-
sumption on asset prices is drastic in our model, the stochastic discount factor
changes only marginally, so our approach has little to say about the Hansen-
Jagannathan bounds.

We are not the first to consider the effect of extreme events in consumption-
based asset pricing. For examparro (2005) (followingRietz 1988) shows
that adding catastrophic risk, either actual or suspected, to the standard model
can generate empirically reasonable equity premia. In a similar $p@itzman
(2007) argues that parameter uncertainty, by increasing subjective probabilities
for low states, significantly increases the equity premium. However, there are
two major differences between our results and these papers. First, whereas
Barro(2005),Rietz(1988), andMeitzman(2007) all rely on making the lower

Thevalueyza2 is an upper bound for the risk premium in our model. The risk premium is given in full by
y max(y — x, 1)o2, wherex > 0 depend®n the parameters of the model, and can be close to zero.
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tail of the consumption distribution fatter than in the standard model, we
actually reducethe likelihood of very low states, making the lower tail of
the distribution thinner than in the standard model (indeed, we impose a strict
lower bound on consumption, so the lower tail has weight zero below this
level). This allows us to analyze asset pricing properties for parameters that
are typically ignored; we explore this idea in more detail when we consider the
robustness of our model. Second, whereas prior papers have typically focused
on one puzzle at a time, we show that our model is capable of substantially mit-
igating all three of the primary puzzles listed above with the same calibrated
parameters.

For simplicity, we implement the model in a two-trees framework (see
Cochrane, Longstaff, and Santa-Clara 2008th one risky and one risk-free
tree. This makes the analysis tractable, and we obtain closed-form solutions for
all variables of interest. We also show that the effect of minimum consumption
levels extends to broader classes of model.

In a simple calibration of the MC model, we show that to obtain a market
risk premium of 5% requires a risk-aversion coefficient of oply= 122,
compared with thee = 31 needed by the standard modalVe also show
that, in stark contrast to the standard model, the long-term discount rate in our
model isindependenof risk aversion. In the calibration, we get a long rate of
2.4%, so there is no risk-free rate puzzle at the long end of the yield curve. The
short rate is—2.8%, which is somewhat low, but far above th&8% implied
by the standard model with the same parameters; moreover, instead of the flat
term structure in the standard model, we typically get an upward-sloping term
structure. Price volatility is also higher than in the standard model: Our calibra-
tion yields a price volatility of 1(%, compared with a consumption volatility
of 4%. Finally, our calibration produces a reasonable market Sharpe ratio of
0.49.

Central to our analysis is the existence of a risk-free consumption stream.
There are many plausible economic frameworks that give rise to such a sector;
we posit two. First, in an economy with technology shocks, if there is enough
“memory” in the economy, it is natural to assume that production levels can
never fall below some threshold. Similarly, a lower bound on consumption can
be interpreted as subsistence farming or consumpti®acond,bonds may
not be in zero net supply. The assumption that bonds are in zero net supply <
is consistent with an infinitely lived representative agent in an economy ab- ©

sent any frictions. In particular, any bonds that she issues, she also consumes.§
s
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In the standard mode}, = 12.2 leadsto a risk premium of only 2%.

If a cataclysmic event such as a nuclear war occurred, a subsistence level of consumption might not exist.
However, since it is also unlikely that financial assets would survive, we restrict our attention to states of
the world in which no such event occurs. The only modification needed is that the representative investor
has a higher effective personal discount rate in the presence of such events (similar to the increased discount
rate in the portfolio problem of an investor with finite, stochastic life length, compared with an infinitely
lived one).
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By contrast, in a world with finitely lived investors, or with frictions, it may be
possible for the current generation to borrow against the consumption of future
generations, leading to a positive supply of bonds and risk-free consumption
for the current generation over a significant time period. Indeed, in any econ-
omy in which Ricardian equivalence fails, government bonds can be in positive
net supply?

Intuitively, the existence of a minimum consumption level lowers the value
to the representative consumer of claims that pay off in states when her risky
consumption is low. The representative consumer weighs two factors when
evaluating a claim that pays off when her other consumption is low: first,
her current level of consumption, and second, the difference between current
marginal utility and marginal utility when the claim pays off. The first factor
is important because it affects how far into the future she will consume the
claim. A higher current consumption level decreases the value of this claim by
increasing the time until its payoff (because the personal discount rate is pos-
itive). However, a higher current consumption level also increases the relative
difference between current marginal utility and marginal utility at payoff. In
this article, we show that the relative importance of these two factors changes
drastically when passing tH@eakpoint. In the region in which the standard
model is defined, the first effect dominates the second, so for high consumption
levels the price of a low-consumption claim is negligible. Beyond the break-
point, however, the second effect dominates the first, and the claim becomes
more and more valuable, the higher the consumption level. In the standard
model, the price of such a claim is infinite, which is why the standard model
is not defined beyond the breakpoint. By contrast, in the MC economy, the
minimum consumption level leads to a finite, albeit high, price for the claim.

A vast literature has suggested other solutions to the classic puzzles, usually
based on significant modifications of the standard model. We cannot do justice
to this literature here, but we mention a few examples. To solve the equity pre-
mium puzzle, some researchers have explored preference specifications that
make the stochastic discount factor (SDF) more volafileel (1990) intro-
duced catching-up-with-the-Joneses preferences, Whtestantinide$1990;
see alsd~erson and Constantinides 198td Campbell and Cochrane 1999
suggested that consumers form habits. Others have investigated rational bub-
bles as a potential solution to the excess-volatility puzzle (see, for example,
Blanchard 1979Blanchard and Watson 198Rroot and Obstfeld 1991With
rational bubbles, prices are highly nonlinear functions of dividends, leading to
a higher price volatility. In our model, the market price of equity is a convex
function of consumption, which mechanically leads to a higher risk premium
and price volatility. This is similar to the price behavior in, for examplbel

In the extreme case, if the representative investor does not care at all about consumption after a certain date, he
will take the opportunity to transfer risk-free consumption from beyond that date, if feasible. The economy then
behaves like one with a finite horizon and a minimum consumption level. (Our results also hold for long but
finite horizons; see Sectidh7.)
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(1990)and Froot and Obstfeld1991). In contrast to these models, however,
we make minimal modifications to the standard model; preferences are the
same, and there are no bubbles in the MC economy. The only difference is the
addition of an arbitrarily small additional consumption stream.

The rest of the article is structured as follows. We proceed by laying out the
MC model in Sectiorl, and study when the differences between this and the
standard economy are important. In Secyme address the equity premium
puzzle, the risk-free rate puzzle, and the excess-volatility puzzle and present a
simple calibration. We discuss robustness, how our approach is related to other
approaches, and possible generalizations in Se8tigifter a brief conclusion,
all proofs appear in the Appendix, as does some supporting Mathematica code,
which provides numerical backup for our theoretical results.

. Model

Consider an economy that evolves between times 0Tgnid which there are
two sources of the consumption good. As in the standard one-tree model, the
first, risky, asset grows stochastically and pays an instantaneous dividend of
D¢ dt, whereDy = Dge¥®, y(0) = 0,dy = x dt + ¢ dw, andx ando are
constants. Herey is a standard Brownian motion, which generates a standard
filtration, F¢, ont € [0, T). Unlike the one-tree model, there is also a second,
riskless, asset paying a divideri8ldt, whereB > 0. It will be useful to con-
sider the share of the risky asset in the overall economy, and so we define the
risky sharez(t) = B_EtDl . We also defingi = u + ”—22 The horizonT can be
finite or infinite. We focus primarily on the case wh&n= oo, but we show
in Section3 that the results carry over to the case with large but fifitén
Section3, we also show how these assumptions on the growth processes can
be substantially relaxed.

There is a price-taking representative investor with constant relative risk-
averse (CRRA) utility, risk-aversion coefficiept> 1, and personal discount
ratep > 0. This investor consumes the total output:

Ut) =E [/oo e ”SDy(B + Ds) ds] , (1)
t
where
clr
u(c) = T (2)

We also writeU (t|B, D), when we want to stress the dependenceBon
andD;.

In what follows, we focus our attention on the (economically interesting)
caseu > 0. We note that in this case (whéh > 0), the distribution of the
risky sharez(t) € (0, 1), converges in probability to one for largez — p 1,
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andthe growth rate of real variables (i.e., dividends and consumption) in the
economy behaves much like that in the one-tree model for lafge

The market is dynamically complete, and the usual arguments imply that,
in equilibrium, an asset that pays afit where¢; is an F;-adaptedorocess
satisfying standard conditions, commands an initial price of

1

Pob=———E
0 uw (B + Do)

o
0 [/ € "5u/ (B + Dg)és ds] . (3)
0
Equation (3) is the Euler equation relating the agent’s aggregate consumption,
marginal utility, and valuation for all securities.

Notice that if B = 0, all resources are in the risky asset and the economy
collapses to the standard one-tree model with constant growth and power util-
ity. WhenB > 0, the economy is a special case of thatimchrane, Longstaff,
and Santa-Clar§2008), further generalized iklartin (2009); i.e., it is a so-
called “two-trees” economy, in which one of the trees is risk free. We refer
to the caseB = 0 as thestandard model, whereas whé& > 0 we have the
minimum consumptio(MC) model.

As we elaborate below, providing the agent a minimal level of insurance
(through the risk-free tree) provides new implications. Equivalently, we could
have specified the economy as one with no riskless tree but with HARA utility,

u(c) = (B—J{f;ﬂ, or one in which there is one asset with outfu- D; and
arisk-free bond in zero net supply (similar Rubinstein 1983). More gen-
erally, our results will also apply to combinations of these assumptions, such
as an MC model with riskless consumpti@g, combined with HARA utility
u(c) = (B“%ylu, as long asB; + By > 0.
We define
o2
n=p+@—Dp=G -1,

thedividend yield in the standard model, which will be useful going forward.
The properties of the standard model have been extensively analyzed and are
summarized in Tablé.

1.1 The Breakpoint

In the MC model, utility and marginal utility are bounded both from above
and from below, so (1) an®] are well defined for arbitrary values pf> 0,
c>0,p>0,B>0, andDg > 0. To clarify the differences between the MC
model and the standard one, we study the expected utility of the agent in the
two settings. First, observe that the homogeneity of the utility function im-
plies that the value functiont), is scalable a&) (t|B, D;) = (B + D)1~

6 |f, on the other handy < 0, the share converges to zero: p 0. In this case, real variables become almost risk
free over time. Ifu = 0, then the share converges in probability to a two-point distribution with 50% mass at 0
and 50% mass at 1 (the convergence also holds almost surely=#d, but not foru = 0).
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Table 1
Properties of the standard model (the consumption model with Brownian log-consumption process and
power preferences)

Variable Value
) 2 2
Risk-freerate,rs p+y (/t + “7) -7 +1)%
(72 0‘2
Longrate,r pty|u+%S ) -r0+D%
2 2
Market returnye p+r|e+%G -7 -D%
- ) 2
Dividend yield,, def D/P P+ —Du—@ - 1)2”7
Market risk premiumre — rs y02
Consumptiorvolatility o
Dividend volatility o
Pricevolatility 14
Market Sharpe ratio yo

Ut|l — 2,20 £ (B + D)7 w(z), wherew(z) B U(t|1 — z 2). We call
w(z) thenormalizedvalue function at risky share

We define the following three variables, which will be helpful going for-

ward:
_+_
q=+/#2+2po?, =" zq, a=y—x. (4

We shall see later that the value @fwill be extremely important for the be-
havior of the model. Note that it is always the case that y .
Ouir first result characterizes the normalized value function.

Proposition 1. In the MC model, the normalized value function of the repre-
sentative agenty(2), is finite for allz € (0, 1). It is given by

I 1-z

wi =P v (k2 ) ©
2

1-2z\,2 z 2q

+(T) V(l_z,a+p—1,2—y)]. (6)
Here,
V(y.a,b) & / " a-1(1 4 1)Lt 7
0

is defined fora > 0. Also, w(0) = /%

Moreover, recall that the dividend yield in the standard model (if it exists) is
given byy = p + (7 = Du — (y — 1% Then, ify > 0, w(1) = ;7. If
in contrasty; < 0, thenw (1) = —oco.
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The proof of this proposition is given in the Appendix. The last part of
Propositionl is important. When; > 0, the value function in the MC model
converges to that in the standard modekagpproaches one. However, when
n < 0, the two models behave completely differently. Note that in this case,
while we can still calculate, it is no longer equal to the dividend yield in the
standard model (which does not exist). In this case, the value function is neg-
ative infinity in the standard model, and equilibrium is undefined. In contrast,
the value function is always finite in the MC model. It is easy to check that the
breakpointat which the standard model becomes undefimeg () occurs at
the risk-aversion coefficient

y =1+x, (8)

wherex is defined in 4). It is straightforward to check that— (1+ x) > 0

is equivalent tox > 1 and toy < 0, so above the breakpoint the dividend
yield in the standard model is formally negative, as discussed abGaing
forward, we shall use the term “below the breakpoint” to refer to sets of param-
eters for whichyy > 0, and “above/beyond the breakpoint” to refer to sets of
parameters for which < 0. Below the breakpoint point (i.e., for lowei), the
standard model is well defined, whereas above the breakpoint it is not. Thus,
although we may expect the MC model to converge to the standard model be-
low the breakpoint, the characteristics of the MC model above the breakpoint
are unclear.

To provide further intuition for the breakpoint, we note that although the
true drift of the risky tree isu > O, the risk-adjusted drift term used by
the representative investor is lower. In fact, whBn= 0, for utility pur-
poses the investor treats the drift of the expectation as bging= (1 —

M+ A - y)2‘7—22.8 When 2’ < 0, the investor acts as if consumption is
expected to be very low for large Moreover, wherp — i/ < 0, the ex-
pected utility of consumption in the far future is also very low in present-
value terms. In this situation, we may expect the representative investor to be
prepared to pay a lot for insurance against bad states of the world in the far
future. The conditiorp — 4’ < 0is exactly the condition of being above the
breakpoint.

It is well known that expected utility is infinite beyond the breakpoint in the standard model. For example,
Campbell(1986) develops a parameter restriction for general stationary processes, which is the discrete-time
version of the breakpoint equation. The breakpoint condition also occisariitin (2009), though in a different
context.Martin (2009) characterizes the prices of “small firms” below the breakpoint. We examine the properties
of the market above the breakpoint.

1—y 1-y

D X 1-y D :
This holds in the sense that = —2— [ e™#'E [(%) ! } dt = 2 Jo e PtE[R(] dt, where the

1—
risk-adjusted diffusion proced$g = (g—(‘)) ’ satisfiesRy = 1, dR% = i/ dt + (1 — y)o dw (following from

standard b calculus), and thereforg[ R;] = 't

TTOZ ‘6T Arenigad uo Asjaxlag ‘“eluloled Jo AusiaAiun e Bio s[euInolpioixo sy Wol) papeojumoq


http://rfs.oxfordjournals.org/

Revisiting Asset Pricing Puzzles in an Exchange Economy

1.1.1 Calibration. To get a sense for what the breakpoint implies for risk
aversion, suppose that the consumption growth rate, volatility of growth, and
personal discount rate are

i=075%, o=4%, and p=1%, 9)

respectively, these values selected as follows:

Consumption Volatility Our choice of 4% is within (though at the top end
of) the range used by prior authors. In particular, it is close to the 3.6% used by
Mehra and PrescofL985). Campbell(2003) reports the average annual con-
sumption volatility for ten countries between 1970 and 2000 as 2.13%, and a
value of 3.2% for annual volatility in the United States between 1891 and 1998.
While our value of 4% is somewhat higher than these numbers, these previ-
ous studies almost certainly underestimate the true volatility of consumption
growth. In particular,Triplett (1997) andSavov(2011) (Internet Appendix)
point out that three statistical issues with the National Income and Product
Accounts (NIPA) consumption data in the United States automatically lead
to an artificially low volatility in measured consumption: (i) benchmarking;

(ii) non-reporting*® and(iii) the residual method used to calculate consump-
tion.* In responseSavov(2011) uses garbage generation data from the Envi-
ronmental Protection Agency (EPA) as a proxy for consumption and estimates
consumption volatility to be around 2.5 times as high as NIPA consumption
expenditures—2.9% from 1960 to 2007. He also cites an alternative survey
of garbage data by the journBlocycle, which estimates a volatility of 4.1%

per year. In addition to these statistical issuearker(2001) andGabaix and
Laibson(2001) argue that another reason the usual historical measures may
well be substantially too low is that consumption adjustment costs may ar-
tificially reduce measured consumption volatility. Moreover, if individual in-
vestors are adjusting consumption at infrequent, but different, points in time,
aggregate consumption will be smoother than the consumption of any individ-
ual. Finally,Malloy, Moskowitz, and Vissing-Jgrgens€2009) note that asset
prices are determined by those who actually hold assets. Focusing on the con-
sumption of shareholders rather than all individuals, they estimate the annual
volatility of consumption to be between 3.6% and 5.4%, depending on whether
an adjustment is made for the possibility of different people being shareholders
in different periods.
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Benchmarking,a comprehensive measurement of consumption, occurs only once every five years. In non-
benchmarking years, the Census Bureau’s Retail Trade Survey is used to estimate consumption updates, but =
this does not include all expenditure types, so many values are interpolated or forecast based on the most recent
benchmark values.

1

o

Savov (2011) reports that around 7% of the annual data currently suffers from this problem, down from 14% ten
years ago, and probably more in the preceding decades. In addition, there is no fixed method for including new
retail establishments. He suggests that it is likely that non-reporting and newly formed retailers are also those
with the most volatile sales.

11 For most commodities, personal expenditure is calculated by subtracting government and business purchases
from total estimated domestic supply. Business purchases are in many cases estimated.
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Consumption Growth Rate and Personal Discount RateA growth rate
in the neighborhood of 1% per year is in line with observation as well as with
previous theoretical studies, as is a personal discount rate of 1% per year (see,
for example Cochrane 200&and references therein).

Implied Risk Aversion With these parameters, Equation (8) shows that the
breakpoint occurs at = 106, a not unreasonably high numbétghra and
Prescott 198%onsider risk-aversion coefficients up to 10, and several studies
use higher values—for exampl®lalloy, Moskowitz, and Vissing-Jgrgensen
2009use values of between 10 and 15).

Relative Sizes of Treed\t this point we are not making a specific assump-
tion about the relative size of the treesbut we shall be considering values
close to 1. Note thaB — 0, D — oo, andz — 1 are all equivalent, so all of
our results forz close to 1 can be interpreted as results wBes 0.

. Puzzles Revisited

Without a loss of generality, we assume tBa& 1, i.e., that the risk-free part
of the consumption stream is of size 1, and fr@ywe defineP (D) to be the
price of the total consumption output in the economy,

00 Y
P(Do) = E[/O e /s (i—g‘:) 1+ Dt)ds] (10)

The price for generaB # 1 then follows from the relatiorP(B, Do) =
BP % . We will specifically be interested in the dynamics for laf@eor,

equivalently, forz close to 1.
We provide an explicit characterization of the price of the market:

Proposition 2. The price functionP (D) is

—K

P(D)=(1+ D)’ b [V(D,x,Z— 7)

29 1 2
+ Ds2V —,a—l——q—l,Z—y , (112)
D o2

whereV (y, a, b) %' f 311 + t)P~1dt, andq, x, anda are defined as in
Equation (4), i.e.q = vu? +2po2,x = L5, a =y — k.

Similarformulas are derived i@ochrane, Longstaff, and Santa-Cl&2808)
(for y = 1) and inMartin (2009), though there they are expressed in terms of
hypergeometric functions.
Figurelshows the price-dividend ratio multiplied by, for different choices
of y. This product equals 1 in the standard model, regardleBs &ecall that
the breakpoint risk aversion for this set of parameters is 10.6.

10
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P (D)
1+D y=13

7l

5 y=12

1 V v=2, 3

2 4 6 8 10 12 14

Figure 1

Scaled market price-dividend ratio in MC model as a function of D

The parameters of the model are according2p {e., i = 0.75%, ¢ = 4%, p = 1%, with risk-aversion
coefficientsy = 2,3,12,13.

Fory = 2 andy = 3 (the lower lines), the ratios quickly converge to 1
asD increases, in line with the intuition that whéhis large, the economy is
effectively the same as the standard model. However; fer12 andy = 13,
the function quickly increases & grows. It is clear from the figure that price
dynamics above the breakpoint are quite different from those below. We now
explore why.

Consider the price of a digital option that pays a very small amount (say $1)
in the event that total consumption drops té .12 Let K (Do, €) be the value
of such an asset, starting &t (where we assume th&y > ¢).

It follows from (3) thatK is given by

1+ Do\’
K (Do, €) = ( 1++ 60) Eo[e™""],

wherez+ is the stopping time
def .
Tf = |rt1f{t : Dt <€) (12)

The value of this claim is thus made up of two offsetting elements. The first

Yo . . -
element,(lfffo) , Is the incremental marginal utility of the agent when he

consumes, given his consumption today. The contribution of this part is heavily
dependent on the agent’s risk aversion. A high risk aversion implies a high
difference between the marginal utility at the consumption leveldland at
1+ Dg, which has a positive effect on the price. For laiyg the first element

12 Technically, this is an American digital cash-or-nothing put option.
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behaes like D, since the relative value of consumptioneats higher the
wealthier the economy is at the starting point. Because of the direct dependence
on the risk-aversion coefficient, we call this the “risk-aversion effect.”

The second elemenEg [e™”71 ], represents the expected discounted value
of $1 when consumption hits the boundary. We therefore call it the “discount
effect.” It is straightforward, using standard results for stopping-time distribu-
tions, to show that

Eo[e7"(] = (Dio) (13)

wherex > 0 is defined in 4).1® Sincex > 0, it is always the case that this
term is decreasing iDg. This makes sense because the higbgrthe longer
it will take to reache (and the lower the chance thawill ever be reached).
It is easy to see that is increasing inw andp, but decreasing ia. All these
properties are intuitive: A higher growth rate, lowers the chance thatwill
ever be reached, and thereby decreases the time value of the digital option. An
increase in the volatilityy, has the opposite effect. Finally, an increase in the
personal discount ratg, lowers the discounted value of the option.

Putting the risk aversion and discount effects together, we arrive at

1+1/D0)y y —K

K(Do,e)ze"( e D}~ (14)

1+1/Dg
14€

Do. By contrast, the behavior diig ~* depend®ny —«. Below the breakpoint
(i.e., fory —k < 1), for largeDg this asset is worth much less thaw, i.e.,

K (Do, €)/ Do goesto zero asDg goesto infinity. In this case, the discount
effect dominates the risk-aversion effect for lafge. Above the breakpoint,

on the other hand (i.e., for — x > 1), this asset becomes very valuable for
high Dg, in a nonlinear fashion. The risk-aversion effect now dominates the
discount effect.

The central intuition of the article is that the trees contain this type of pay-
out (they pay something in the bad states of the world). Therefore, above the
breakpoint, the market value of these trees will also increase superlinearly with
Do. In fact, we will show that they behave just like the digital options above
the breakpoint, with their value growing likd} ™ for large Do.

Thedigital option argument also provides an intuition for why the standard
model does not work above the breakpoint. The single tree in the standard
model also contains a collection of these types of threshold payments. The sin-
gle tree does not, however, guarantee the representative agent the subsistence

. ) ? "
Given a fixede > 0, €* ( ) approaches positive constant for large

The expression fok canbe derived from the first-passage-time distributions (sgersoll 1987). It can also
be derived using methods from the real-options literature. Simil@ixd and Pindyck(1994, 142-44), the
expectation can be derived as a solution (of the fot8)) to an ordinary differential equation. Herejs the

- . 2
positive root to the characteristic equatigf x? — ux — p = 0.
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level of B = 1. The first term in the equation corresponding1d)(therefore
contains only (not 1+ ¢) in the denominator. It follows that such claims will

be much more valuable in the one-tree economy because when the agent’s con-

sumption is low é low), her marginal utility will be very high and therefore
the value of such claims will explode. In this way, the risky tree becomes in-
finitely valuable. We will return to this point in more detail in Sect®rwhere
we show that a similar argument also holds for finite-horizon economies.

It is possible to derive the following asymptotic results for lafydor the
behavior of the market price-dividend ratio in the MC econdfhy.

Proposition 3. The asymptotic price-dividend ratio in the MC model de-
pends on the parameter region. Specifically,

(i) Below the breakpoint (i.e., fo < 1 so that the value function is finite

in the one-tree model), for large the price-dividend ratio converges to
P(D) _ 1

14D —

(i) Above the breakpoint (i.e., far > 1 so that the value function is in-
finitely negative in the one-tree model), for largethe price-dividend
ratio converges teD*~1, for some constant > 0, wherex is defined
in (4).

Itis immediate from PropositioBthat the exponent of the asymptotic price-
dividend ratio behaves like méx, 1) — 1. Itis thus the “convexity parameter,”
max(a,1), which governs the behavior of price-dividend ratios (and prices) for
largeD. Figure2 shows the convexity parameter as a function of risk aversion
(y) for some different parameter choices.

The convexity of the price function lies at the heart of our analysis of the
asset pricing puzzles, to which we now tdf.

2.1 The Risk Premium

It is important to stress that reasonable values of the exogenous parameter
are consistent with the region in which prices and price-dividend ratios are un-
defined in the standard model. In the MC economy, the asymptotic expected

return on the market depends on the parameter values. Recall that the instanta-

neous expected return on the market is
dP 1+D
redt=E|— +——dt]|. 15
e [ P + P :| (15)

14 Throughouthe article, we study the value of the tofak- D consumptiorflows. We obtain identical asymptotic
results for the purely risky part of the economy, i.e., the value oXt@nsumptiorflows.

15 The convexity of the price function above the breakpoint (shown in Propos{id)) is crucial for the subse-

quent results. The convexity can also be verified numerically. We provide Mathematica code for the numerical
calculations in the Appendix.
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max{o, 1)
=)

5 10 15 20 25 30

Figure 2
Convexity parameter,max(«,1), as a function of risk aversion,y
Parametersi = 0.75%, p = 1%, ¢ = 2.5%,3%,4%, 6%, 12%

We have

Proposition 4. Forzcloseto 1,

(i) Below the breakpoint, the expected return on the market is the same as in
the standard modele = p +yu — y (y — 2)0_22.

(i) Above the breakpoint, the expected return on the markef is au +

2% , whereq is defined in 4).

To get an intuition for the results in Propositidn we note that below the
breakpoint, the price is essentially the same as in the standard model (as shown
in Proposition3(i)), so expected returns will essentially be the same. Above
the breakpoint, however, the second termif)(becomes small for larg
(as implied by Propositioi(ii)). Moreover, since? (D) ~ D%, the first term
behaves like

2 2
~ a(u +%)dt+a(a _ 1)"7 dt.

- [dP}  (u+ %)P'dt+ % D2P dt
Pl P

It follows that the market risk premium can also become large. In fact, it is well
known that the risk premiunme — rg, can be expressed as

dM dP

(re —rg)dt = —cov(v, 5 ) (16)
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wherers is the short-term risk-free rate ard is the pricing kernel, which is
equal toe=”'(14 D)~ in the MC economy (wittB = 1). It therefore follows
from standard f calculus that

e —rs =y max(a,1)o?. (17)

Fora < 1, the risk premium is thus the same as in the standard model. For
a > 1, however, it is larger, due to the convexity Bfas a function oD. In
this case, through, the risk premium now depends on the economy’s growth
rate,u, and the personal discount factpr,and is decreasing in both of these
parameters.

One immediate implication of Propositidns

Corollary 1. Forz close to one, for low values gf andp, or high values of
o, the risk premium is close tp2s2.

Thus,if ¢ andp are low and/ow is large, ther is close to zero and the
risk premium,y max(y — k, 1)o?, is close toy2s2. The result emphasizes
that the risk premium has a very different dependence on the parameters of £
the economy here, compared with the standard one-tree economy, in which the 8
risk premium isy o2. Since it is always the case that> 0, y?s? is also an
upper bound on the risk premium in the MC economy, regardless of parameter
values.

The intuition behind the equation for the risk premiubi7) is clear. As we
saw in Sectior2, below the breakpoint, the discount effect dominates the risk-
aversion effect, so the values of digital options that pay off in bad states of
the world are marginal for largB. Therefore, the pricing in the states of the
world close to currenb will dominate the pricing function. Since the risk-free
asset is marginal in these states of the world, asset dynamics will look much
like in the one-tree model. Specifically, below the breakpoint all variables of
interest converge to the same values as in the one-tree econdingeomes
large—or equivalently, az — 1.

Above the breakpoint, on the other hand, the risk-aversion effect dominates
the discount effect. The value of digital options that pay off in bad states of
the world now increases d3“, whenD increases. Therefore, the price func-
tion is very different from the one-tree price function, everzas> 1. The
convexity of the price function immediately implies a higher equity premium.
Specifically, from (16) it follows that there are two parts of the risk premium.
The first part depends on the pricing kem%, and the contribution of this
part whenz is close to 1 isy ¢ in both the one-tree and MC economies. The
contribution of the second paﬁp—", however, is different in the two models.
Whereas the contribution is, leading to a risk premium of s x ¢ = yo?
whenthe price function is linear, it ise when P (D) grows likeD*, a > 1.

The risk premium is thereforgo x ac = y ac? above the breakpoint in the
MC economy forz close to 1.

pJOJX0’SH WoJ) papeojumod
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Te-Tg

Figure 3

Market risk premium as a function of z, for fixed risk aversion

Parametersi = 0.75% p = 1%, 0 = 4%, y = 1225, implying thate = 2.55. The asymptotic risk premium is
yoac? =50%.

These are asymptotic results, foclose to 1. In Figure, we illustrate the
market risk premium for a fixed risk aversion,= 1225 (which is above the
breakpoint), as we vary the risky shardyecall thaz = 525 € (0,1)), using
the parameters idj. As z approaches 1, there is indeed convergence to the
asymptotic value of ®%. Comparing this with the risk premium implied by
the standard mode},a2 = 2.0%, we see that the premium in the MC model
is substantially higher.

The following Figure4 displays the market risk premium farclose to 1 as
we vary both risk aversion and volatility (each curve corresponds to a different
volatility). Beyond the breakpoint, the risk premium increases very quickly in
a convex fashion, implying that a small increase in risk aversion drastically
increases the market risk premium.

2.2 The Term Structure
The term structure is also quite different in the MC economy. From (3), it
follows that a zero-coupon risk-free bond with maturity dateas the price

B+ Do\’
PT:e‘/”EO[( + 0) ] (18)
B + Dy

We can rewrite this expectation in terms of the risky shaﬁe,%%o,

PT—e T E, [(1+2(%— ))_y]» (9)

and since the distribution (glo does not depend dDy, it immediately follows
that the price can be written as a functiono&lone, P*(z), given by the
following proposition:

16
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r-r

Figure 4

Market risk premium for large zclose to 1, as a function of risk aversiony

Below the breakpoint, the risk premium is the same as in the standard model, and lineag inrs = yo2.
Above the breakpoint, the risk premium is a steeply convex function. Paramgter€.75% p = 1%, 0 =
2.5%,3%,4%,6%,12%

Proposition 5. Define the log-relative size of the sectorstbs log(z/(1 —
2)). Then, the price of a-period zero-coupon bond is given by

1 /00 g~ (y—d—u1)?/(20%7)
V21021 J-00 1+e)”

This result follows immediately from Equatiodq). An equivalent expres-
sion (Equation 29)) that is more convenient for calculation appears in the
Appendix.

Martin (2009) independently characterizes the term structure in an economy
with many trees. His framework is more general than ours, in that it allows for
general Levy processes and multiple trees, but his solution is based on Fourier
transform techniques and so is different from those in Propogitenmd in the
Appendix.

In the MC economy, the term structure is no longer constant. Defining the
r-period spot rate as

PT=(1+e%) e

dy.  (20)

TTOZ ‘6T Arenigad uo Asjaxlag ‘“elulolfed Jo AusiaAiun Te Bio s[euInolpioixo sy Wol) papeojumoq

o _ _log(PY)

T

we use Equatior20) in the Appendix to study the yield curve with parameters
chosen according t®j, z = 70%, and risk-aversion coefficients between 6
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Figure 5

Term structure of interest rates in the MC model )
Parametersz = 0.7, y varies betwee# (highest curve) and2 (lowest curve). Other parameters are according
to (9).

and 12. The choice of = 70% means that the risky tree initially dominates
the economy, and the risky share converges te 1 ast grows, so the con-
sumption growth rate is fairly stable in this economy. The results are shown in
Figure5.

We note that the yield curves in the figure can slope upward or downward,
and can even be hump-shaped. The slope increases with the risk-aversion coef-
ficient,y, and so, in general, does the curvature. Moreover, although the short
end of the curve is sensitive 0, as in the one-tree model, there seems to be
an asymptotic long-term rate that does not vary much witfio understand
these properties of the yield curve, we analyze the shortrgtand the long
rate,r,, defined to be

rs=Ilimr?, and r=limr?®,
\0 7—00

respectively.

Proposition 6. In the MC economy, the short-term rate is
2 2
o o
rs=p+rz\u+— |- + D52
2 2
Forz e (0,1), if u < y o2, the long-term rate is

T
r|=p+§x;. (21)

If, on the other handy > y o2, the long-term rate is

0'2 0'2
h=pty\pt+t5)-70+D=. (22)
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Thus, the short rate has the same structure as in the standard model and, as

long asi > y o2, the long rate is also the same as in the standard model. This
makes intuitive sense, since the economy will almost surely be very similar to
the one-tree economy in the long rundf< y o2, however, the long rate is a
constant, independent of the risk-aversion parameter. Since

2 2
n=p+@ —Du—( —1)2% > (y —1)(,“—(7’ —1)%)

> (y —1)(,U—V62),

it will always be the case that the long rate is independent of risk aversion
above the breakpoint (i.e., wheris negative).

In our previous numerical example, with parameters accordin@)tarid
y = 1225, this implies that the long rateris= 2.4%. The short rate depends
on z, as shown in Figuré. Forz close to unity, i.e., for larg®, it becomes
negative. Atz = 1, it is —2.8%. While negative, this is nevertheless far more
reasonable than the values we would obtain if we calibrated the standard model
to the market risk premium. For example, a risk premium of 5% would imply
arisk-free rate 0f-58% in the standard model. We are, of course, dealing with
real variables, so a negative discount rate is obviously possible, although this
value is clearly extreme.

Our focus is on the case wheiis close to one. We note in passing, however,
that for lowerz (i.e., when the relative size of the risk-free tree is not negligi-
ble), the short rate is also positive. In our calibration, Zox 0.8, the short
rate is positive. From Figurg, we see that the risk premium is about 3% at
z = 0.8. Finally, we note that the volatility of the short ratgys), is low and
depends om. In our exampleg (rs) varies between 0 and@% and reaches
its maximum atz ~ 0.75.

Is

Figure 6
Short rate as a function ofz
Parameters of the model are accordingXpgndy = 12.25.
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This y -independencabove the breakpoint stands in stark contrast to the
results in the standard model, where the interest rate is very sensitive to risk
aversion. Specifically, in the MC model, the long rate is always greater than
the personal discount rate,> p, regardless of the aggregate risk aversion in
the economy, and is therefore posithfel” This y -independencthus offers a
resolution to the risk-free rate puzzle at the long end of the term structure.

The reason why risk aversion becomes unimportant for bond yields as the
horizon increases, even though bond prices depend on risk aversion, is that
differences between bond prices in economies indexed by different levels of
risk aversion are sufficiently small, compared with the compounding inherent
in the yield calculation, that the price differences become unimportant at the
long end of the curve. The price of a bond is the expected discounted value
of a dollar multiplied by the representative agent’s marginal utility. In the MC
model, the marginal utility (irrespective of risk aversion) is bounded above
and below. If the agent consumes the fruit of a risk-free tree, which provides
insurance, then marginal utility is always bounded above. Indeed, one can find
an upper bound on the ratio of marginal utilities for two agents with the same
personal discount factor but different risk-aversion coefficients independently
of time horizon. Therefore, bond prices for the same maturity for any two
economies that differ only in the risk aversion of their representative agents
will not differ “by much.” For long maturities, this will lead to similar yields.

The difference between the long rates in the standard and MC economies
further underscores the fragility of the CRRA-lognormal model over longer
time horizons. Regardless of how closés to 1 in the MC model, the long-
term rate is drastically different from whenis identically equal to 1. The
differences between the two models are driven by the insurance the risk-free
tree provides in the far-left tails. Moreover, although the long rate is alyways
independent above the breakpoint, there are also rebeos/ithe breakpoint
in which it is y -independent.

Ata broad level, our results are reminiscent of, but distinct from, those found
in Weitzman(1998,2001). Weitzman argues that if there is parameter uncer-
tainty, the long-term discount rate is lower than that inferred from the short-
and mid-term rates. We agree with Weitzman that a careful analysis of the
implicit assumptions about return distributions and utility in the tails is needed
to understand the long-term discount rate. Both Weitzman'’s and our results are

16 A somewhat related result on the long rate is present@jyhvig, Ingersoll, and Rosg996), who show that
long rates can never fall over time. Within our specific economy, our result is stronger than the Dybvig-Ingersoll-
Ross theorem, since it states thiats constant over time and across risk aversion.

17 we have verified that the formula is indeed correct by numerically integrating Equa8pditectly. Mathemat-
ica code is provided in the Appendix, showing that with parametets1%, u = 3.5%, ¢ = 20% y = 2.5, the

long rate converges tgp = p + 5% = 2.53%(in line with Equation 21), since3.5% < 2.5 x 20%2). On the
0

contrary, Equation (22) would, for example, giye= p+7 u — 202/2 = 1%+ 2.5 x 35%— 2.5? x 209 /2 =

—2.75% By varying B, Dg, andy, it is easily verified that' doesnot depend on these parameters.
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driven by the extreme importance of the worst states in longer horizons. Unlike
in Weitzman(1998,2001), however, the long rate in our model may be higher
than the short rate. This distinction is obviously important if existing market
data are used to infer a maximum possible discount rate.

2.3 Excess Volatility

Above the breakpoint, prices are not linearly related to consumption, but, as
we observed in Propositio?, are a convex function of dividends. It naturally
follows, then, that the volatility of prices is much higher than the volatility of
the underlying dividends. In fact, it is easy to show that the price volatility is

vol (d?P) = max(a,1l)o. (23)

In our numerical example, with parameters according to (9),and 1225,
this implies a market price volatility of 10.3%, which is more than 2.5 times
the dividend (and consumption) volatility of 4%. Sin€e= B + D, if we
think of B as a bond an@ as a stock, then the volatility of consumption will
actually be somewhat lower than that of dividends. This is, of course, in line
with what we see in practice. The magnitude of the difference will be small,
though, as our focus is on the case whBrex D. If we alternatively inter-
pret bothB and D as being (different) parts of the stock market, one riskier
than the other (somewhat reminiscenfafbinstein 1988 dividend and con-
sumption volatility will be exactly equal. The model thus naturally leads to
excess volatility, both with respect to consumption and with respect to divi-
dends. Since: < y, an upper bound on the excess volatility is given by the
risk-aversion parameter.

Table2 summarizes the formulas and numerical results we have derived.

Table 2
Properties of the MC model for large D
Variable Formula Value-MC
0'2 02
Shortrate,rs pry\u+%S ) —r( +1D)% —2.8%
2 2
Longrate,r, whenu < y %= p+ 42“—2 2.4%
2 2
Longrate,r,, whenu > y % p+y (#+%) -y +1%
2
Market returnye, whena > 1 ap+a?%y 2.2%
2 2
Market returnye, whena < 1 P+ (ﬂ + "7) -y =%
Risk premium,re —rs y max(a,1)s2 5.0%
Consumptiorvolatility 14 4%
Dividend volatility o 4%
Pricevolatility max(a,1)c 10.3%
Market Sharpe ratio yo 0.49

An example is given with parameters according3} i = 0.75% o = 4%, p = 1%, andy = 1225, implying

thata = 2.58,
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. Discussion and Generalizations

3.1 Sensitivity of Standard Model

Our model shows how minor changes to the process in low-consumption states
(when CRRA expected utility becomes unbounded as consumption approaches
zero) drastically change the results obtained from the standard one-tree model.
The fragility of expected utility when utility is unbounded has been much stud-
ied, supported by the theoretical workéfelsen(1984,1987), who develops

an axiomatic foundation for expected utility theory that allows for unbounded
utility functions. More recently,Geweke (2001) shows that the CRRA-
lognormal framework is very fragile with respect to distributional assumptions
in the far-left tails. For example, he shows that for- 1, expected utility at
some future date is not finite if lo§( has at-distribution with any number

of degrees of freedom,, so we cannot use expected utility to make optimal
choices (even though, for high valuesgfthis distribution is impossible to
distinguish econometrically from lognormality). Thus, even if the true distri-
bution is normal, but the mean and variance are unknown (with standard forms
for their priors), expected utility to a Bayesian updater is not finite even in the
limit as the sample length goes to infinity.

Geweke(2001) notes that the extreme sensitivity of the finiteness of ex-
pected utility to assumptions about tail distributions carries over to implica-
tions we might draw about quantities such as the equity premium and the
level of real interest rates. However, neithéelsen(1984) noitGewekeg2001)
provides any specific quantitative implications. Pursuing this line of thought,
Barro(2005) (followingRietz 1988) generates empirically reasonable risk pre-
mia by allowing for some additional probability of extremely low consumption
statesWeitzman(2007) adds additional weight to low-consumption states via
parameter uncertaintf. Theimportance of very low consumption states in the
CRRA-lognormal framework was also emphasizelagan et al(2006), who
studied the price impact of irrational traders in capital markets.

The intuition behind our model is, in spirit, somewhat similar, in that we also
focus on the impact of very bad outcomes. However, whereas the papers above
all fatten the lower tail of the consumption distribution, we make the lower
tail thinner. This allows us to study regions of parameter space, invalid under
the standard model, where bad events have a much larger effect on expected
utility. In these regions, the risk premium is higher even though there is no
“jump risk” in the MC model. In addition, whereas the other papers focus on
one puzzle at a time (usually the equity premium puzzle), we show that our
modification of the standard model is able at the same time to substantially
mitigate the equity premium puzzle, risk-free rate puzzle, and excess volatility
puzzle.

Otherpapers making small changes to the distributional assumptions inGedeke(2000), Tsionas(2005),

andLabadie(1989).
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3.2 Bonds in Positive Net Supply

Ours is not the first model to provide a minimum consumption level via riskless
bonds in positive net supply. In particul&@ochrane, Longstaff, and Santa-Clara
(2008), in the original “two-trees” model, consider an example (Section 2.8)
where one tree has a riskless dividend (though this is not the main focus of their
paper). However, because they assume log utility, they are unable to consider
parameter values beyond the breakpoint, so all of their economies converge to
a standard one-tree economy as one of the trees gets Heggeon and Lucas
(1996) consider agents with general CRRA utility who can trade stocks and
bonds and face stochastic labor income. Although they mostly assume bonds
are in zero net supply, they do also consider one example with bonds in positive
net supply (Section IV F). They find (p. 473) that this can have a significant
impact on prices and expected returns, but their solution technique (approx-
imating the true continuous-state model with a discrete-state Markov chain) 3
rules out extremely low consumption states, so they are unable to address the#
issues studied here.

0.} papeojumoq

3.3 Finite Time Horizons
The standard model is not defined above the breakpoint in the infinite-horizon
setting. Itis, however, well defined above the breakpoint when the time horizon
is finite, with the same low market risk premiuna,— rs = y o2, as below the
breakpoint. Similarly, it is straightforward to show that the MC economy with
along but finite horizon converges to the MC economy with infinite horiZon.
Here,by convergence we mean that given any 0, there is a large but finite
T such that the finite-horizon MC economy behaves in a manner similar to the
infinite-horizon economy with the sanze

How can the results then be so different? We argue that it is the standard
model that behaves strangely above the breakpoint. The price function in the

finite-horizon case i®(t, D) = 1‘%"”_“ D . Below the breakpoint, this con-

verges to% for large T. Above the breakpoint, on the other hand, the price
explodes as time to maturity increases. The low risk premium then comes from
the fact that% ~ 1, i.e., there is a large expected price decrease at each point
in time wheny is negative. This decrease is driven by the low-state digital op-
tions we discussed previously. These claims are extremely valuable for long
time horizons, but their value decreases very quickly over time when the ter-
minal date approaches, since the risk that these states will ever be reacheds
decreases rapidly. The behavior of the entire tree’s value is driven in large part
by the extreme behavior of these low-state digital options. Since such negative
expected returns with time horizon do not seem to be present in practice, we
conclude that the standard model also provides a poor characterization above
the breakpoint with finite horizons.

6T Areniga4 uo Ag|axiag ‘eluloe) jo Ausianiun 1e 610 sjeuinolploxo
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19 Theconvergence follows much easier than in the standard model singe farandB > 0, the utility function
and its derivative are bounded below and above for all states of the world.
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3.4 Relation to Literature on Bubbles

Price-dividend ratios in the MC model are nonstationary beyond the break-
point. In fact, the convex price function is similar for lar@eto what oc-
curs in the rational-bubble models that have been introduced to explain the
excess-volatility puzzle (see, for exampkgpot and Obstfeld 1991). In fact,
our mechanism leading to excess volatility is technically similar to the intrinsic
(rational) bubble mechanism usedrmot and Obstfel@1991). The standard
way of introducing rational bubbles in an infinite-horizon economy is to ignore
transversality conditions (see, for examplegersoll 1987 Froot and Obstfeld
1991;Gilles and LeRoy 1997 Within our setting, allowing for rational bub-
bles would amount to changing the pricing functi@) by adding a non-zero
rational-bubble term to the formula.

Without transversality conditions, there are multiple pricing functions con-
sistent with rational pricing. As shown, e.g.,finoot and Obstfeld1991), in a
constant discount rate and investment opportunity setting, the bubble solutions
take the formcD* for somea > 1, as opposed to the no-bubble solutions,
which haver = 1. Thus, these rational bubbles have the same functional form
as our price function above the breakpoint, and are also nonstationary. In the
MC economy, however, even though price-dividend ratios are nonstationary,
there is no bubble, since the discounted cash flow form@jglices all as-
sets in the economy. In fact, as noted alread€athrang1992), Appendix
B, even with stationary distributions for consumption growth, price-dividend
ratios need not be stationary. Thus, although the price functions have similar
forms in the MC economy and in the rational-bubble literature, the underlying
economic reason is very different.

The empirical literature that has tested for explosive stock market price dy-
namics has produced mixed results. For exaniplba and Grossma(i1988)
use a cointegration-augmented Dickey-Fuller test to conclude that prices are
not explosive, a conclusion that is supporteddnchrang1992). On the other
hand,West(1987) andrroot and Obstfeld1991) do find evidence for explo-
sive price dynamics, findings that are also supporte&hysted2006), who
uses a cointegrated VAR method. In the MC model, the price-dividend ratios
explode quite slowly and may therefore be hard to detect. In our numerical ex-
ample, for example, it takes about 65 years for price-dividend ratios to double.
This compares with an observed increase in the market price-dividend ratio of
3.2 times during the 65 years between 1943 and 2808.

3.5 Relation to Hansen-Jagannathan Bounds

We have developed our results with respect to the market risk premium. In
other words, our analysis has rested on the assumption that the equity portfolio
makes up the whole market portfolio. This is the formulation developed in

This calculation is based on annual price and dividend data obtained from Robert Shiller's website,
http://www.econ.yale.edu/ shiller/data.htm.
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Mehraand Prescott1985) and many other papers. With that formulation, it is
shown that, all else equal, the risk premium is much higher in the MC model
than what seems to be implied by the standard model.

An alternative approach to the equity premium is givenHansen and
Jagannathafi991), in whichitis described as a bound on the Sharpe ratio of the
equity portfolio. This bound putsrestrictions onthe SDFinthe economy, whereas
the market model puts joint restrictions on the SDF and the price function.
Since the risk premium in our approach increases due to a more volatile price

function, our approach therefore has less to say about the Hansen-Jagannathan,

bounds. It does have two implications, though. First, the interpretation of a high
equity volatility differs from that in the standard model. In the standard model,
a high equity volatility implies that the equity market is a highly leveraged
claim on consumption. This is not the case in the MC model, in which the
high volatility is introduced because of the convex price function. Second,
since the price function is nonlinear, the unconditional correlation between
consumption and equity returns may be low even though the two processes
are instantaneously perfectly correlated. In fact, it follows from Fidutieat

for low D, equity and consumption are perfectly negatively correlated, which
will decrease the unconditional correlation and, in turn, artificially make the
required risk premium look higher than it actually is (for further analysis of
this argument, seBerk and Walden 2009

3.6 More General Utility

The focus of this article is on standard time-separable expected utility. One
may wonder what the results would be in a model in which a more general
utility specification is used. Specifically, it is well known that the standard
time-separable expected utility specification jointly restricts risk aversion,
and the elasticity of intertemporal substitution (EIS), such that the inverse of
the EIS,y, is equal toy . If the representative investor has stochastic differ-
ential utility, ¥ andy may not be the same, raising the question of whether
w or y determines the breakpoint. It turns out that the breakpoint depends
on bothy andy in this case. For example, under the Kreps-Porteus stochas-
tic differential utility (Duffie and Epstein 1992the breakpoint occurs at+

(y—=21) (ﬂ —(y — 1)%) , asfollows from the analysis iRoche(2001; Equa-
tion 2.3) andBhamra, Kuehn, and Strebulaég2010). Both the EIS and risk-

aversion parameter, therefore, contribute to the breakpoint under stochastic dif-
ferential utility.

3.7 Generalizations

For simplicity, we have derived our results in a two-trees framework with one
risk-free, constant-size tree. The results, however, are much more general. As
long as there is a lower bound on consumption (which could grow determin-
istically at some rate), and the risk of ending up in these low-consumption
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statess bounded below by an i.i.d. growth process that, giveis above the
breakpoint, similar results apply. The general consumption process could, for
example, contain mean-reverting growth, as well as long-term i.i.d. growth. To
fix ideas, we illustrate one such generalization and show how a convex price
function arises under general conditions.

Proposition 7. Consider an exchange economy, with a representative agent
with CRRA expected utility with risk-aversion coefficient> 1 and personal
discountrate > 0, in which the consumption 8; = f (Dy), whereD; = &%,
andwhere f : Ry — R, is a continuous, increasing function, such that for
larged, cod < f(d) < c1d, for some constants @ ¢y < ¢1 < co.

For the stochastic process, € R, define the c.d.fF (s, t|s.,Z) = P(s <
s|so = s, Z), whereZ captures the information known abogtatt = 0.
Assumethat the following condition is satisfied:

3/1,0'>0,f20,§,§,
T = S—S. —ut
suchthatvt >t, s, >S5 : FGtls,Z)>@o|— ). (29

o/t

Here, @ is the cumulative normal distribution function. Further, assume that

the economy is beyond the breakpoint, i.e., that y — £V FEP7" ’;2;2/"’2 > 1.
Then,

(i) If f(x) < cpxin a neighborhood ok = 0, for some constart, > 0,
thenthere is no equilibrium in the economy.

(iiy If f(0) > 0, then in any equilibrium the price of the market satisfies
P(Co) > c3Cy, for some constardz > 0.

Equation(24) states that for largByg (i.e.,for Do > €%) and largé (i.e., for
t > 1), the risk of ending up in low-consumption statss € s) is at least as
high as ifs were a constant coefficient Brownian motion with growth rate
and volatilitys .21

Example 1. The MC economy is a special case of Proposifforin which
f(x) = 14 x, ands; ~ N(sp + ut, o). It therefore satisfies24) as an
equality forall T > 0, s, ands.

Moreover,

Example 2. Consider an MC economy withi (x) = 1+ x and a mean-
reverting growth process,

ds = uidt + o dw,

21 while Proposition7 generalizes our results to different probability distributions for consumption, pricing de-
pends only on the product of the p.d.f. and marginal utility at each possible consumption value, so our results
could also be extended to more general utility functions.
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dut = p(u — uy) dt + o dwp,

where u, o, ¢, and § are positive constants and wherev (dw1, dwp) =
p dt. Similar processes are, for example, assumddrimand Omberdg2002),
Wachter(2002), andBansal and Yaroi2004), and it is well known thag is
normallydistributed,

0'3 + 20, Bpo + ﬂzazt
ﬁZ

302 + 4o, ppo 2 St e 2ht 52
_ K + (05_'_0#’3’00) _ “)

S[~N(So+,ut+%(l—e_ﬁt),

23 p? 23

2 2 2
Thereforefor larget, (24) is satisfied withr 2 def M Here,o >
0, aslong ap > —1oro, # fo. From Propositior?, it therefore follows

that similar price dynamics occur beyond the breakpoint in the MC economy

with a mean-reverting growth process.

Thus, our theory is really about minimum consumption levels in exchange
economies, not about specific tree economies. In particular, referring back to
the discussion after Equation (17), this result implies that if the representative
investor has a low discount rate and believes that growth will slow down some
time (arbitrarily far) in the future, then the effective equity premium for high

D will still be approximatelyy 262, regardless of the value of today (since

it is only the asymptotic growth that matters). With this line of reasoning, the
observed risk premium in the example we have studied throughout this article

would be matched by = /5%/4%? = 5.6 (instead ofy = 1225 needed

when the expected growth rate is constant). Further, if we use the numbers in
Weitzman(2007)—a risk premium of 6% and consumption volatility of 2%—

the risk premium is matched by = /6%/2%? = 12.25 (compared with

y = 6%/2% = 150, obtained inWeitzman 2007under the assumption that
re — s = yo2). Thus, a high risk premium may be a sign that the economy

will not be able to continue to grow fast in the long run.

. Concluding Remarks

We have established that if risk aversion is sufficiently high, the stochastic dis-
count factor in a simple one-tree exchange economy with minimum consump-
tion can be a convex function of the dividend (and hence consumption) stream.
This immediately leads to explosive price-dividend ratios, excess volatility,
modest interest rates, and risk premia that are in line with those observed.
Intuitively, there are two main channels through which future low-

TTOZ ‘6T Arenigad uo Asjaxlag ‘“eluloled Jo AusiaAiun e Bio s[euInolpioixo sy Wol) papeojumoq

consumption states affect how the representative agent values the market. The

first is how the representative agent currently values these low states, and is
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thereforecaptured by the difference between marginal utility at current con-
sumption and at the low-consumption states; the higher the current consump-
tion, the greater the difference. Further, since marginal utilities are convex
functions of consumption (when risk aversion is greater than 1), this channel
also makes current market prices convex in consumption. The second channel
is how likely the representative agent is to hit one of these low states; the higher
her current consumption, the lower the risk that the low-consumption states
will ever be reached (and the longer it will take if they are reached). Below
the so-called breakpoint, the second effect outweighs the first, which means
that the influence of the consumption provided in low-consumption states on
the current price becomes negligible when current consumption is high. This
corresponds to the standard model, in which the value of the agent’s consump-
tion stream is essentially linear in that consumption. However, when risk aver-
sion is high enough to be above the breakpoint, the first effect dominates: The
value of being able to consume in the low-consumption statsaseson-

vexly as current consumption grows. There is a ready analogy to this intuition
in the rare-disaster literature; while there are no “disasters” in this framework,
the existence of low-consumption states completely changes the properties of
the model above the breakpoint.

Two immediate conclusions can be drawn from our work. First, the stan-
dard long-horizon one-tree model with a CRRA representative investor and
a lognormal consumption process is highly sensitive to small perturbations,
especially when risk aversion is high. In short, the framework is not robust.
Second, an economically plausible assumption that is quite innocuous (subsis-
tence consumption) renders predictions that are more in accord with empirical
work. Of course, this one augmentation does not solve all puzzles; the short-
term risk-free rate is still too low and consumption volatility a bit too high, as
is the coefficient of risk aversion. However, we find it fascinating that such a
small modification of the classic workhorse consumption model can improve
the “fit” so significantly.

Finally, and more broadly, our results indicate that there is yet more to learn
about the effect of the consumption process on asset prices. Because con-
sumption (as opposed to utility) is observable, exhausting the implications
of tractable models with plausible consumption streams presents a fruitful
research agenda.

Proofs

Proof of Propositions1 and 2:
Starting with Propositio2, we have

00 y=1
00 -+ ooe | e (115) e
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_y=n9?

1+ Do)’ e 7 ed
+ S
=( ) / / (1 + Doey) V2ro?s y
Cﬂy\
1 71",
= (1+ Do)’ d
( + O) /—oo(l"‘f_DOey) q y
0 1 7=1 qyx
— (1+ Do)’ = ) 4
(+ Do) [/_oo(lJr Doey) q Y

00 1 y—1 ey(x—Zq/az) g
- /o (1 + Doey) q Y

= (1+ Do)’ |:V(D0,K,2—V)
2q
+ Dg V(Ho,a+;—1,2—y):|,
where
y
V(y,a,b) % / 811 4+ t)b-1dt (25)
0

is defined fora > 0.
In the last step, we used the transformatios DgeY for the first integral.
7 -1
. 1 y—1 _ D(;le_y 4
For the second integral, we rewrt(thrD—oey) = (D(;T—wrl andthen
used the transformatidan= D‘le‘y to get the expression. The functidhis

related to the incomplete Beta functid(x, a, b) &' Jo 27 ta-tP-1dt (see
Gradshteyn and Ryzhik 20p&ia the relatiorV (x, a, b) = (—1)2B(—X, a, b).
However, the Beta function is complex valued for negative values, so we prefer
using the real-valued functiovi. Also, since the Beta function and the hyper-
geometric function satisfy the relationstggx, a, b) = 2F1(1—b, a, a+1, x),
we could equivalently have expressed the formula in terms of hypergeometric
functions.

This proves PropositioR. For Propositior, forz = Dg/(B+ Do), we have

1 P(B,D)
1—y y ‘B+D

1 B P Do} 1 R z
~1-yB+D B _1—y 1-2)°

w(z) = (B + Do)’ ~*U(0|B, Do) =
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wherethe second equality holds for the CRRA utility, which follows fro®).(
Therefore, from Equation (11), we immediately have thatfer (0, 1),

—K (] — 1-y—« 1—
w(z)="2 ;(l_z)y) [v( ZZ,K,z—y) (26)
2
1-2z\.2 z 2q
+( _ ) V(lTZ,a—i—p—l,Z—y)]. 27)

For w(0) and w(1), we definewT(z) = E [fOT e tu(l—z+ zeM) dt],
wherey; = log(Dt/Do). Thus, w(Z) = W (2). It follows immediately that

w(l) = eo(1) = f5° £ dt = L Moreover,ibr(0) = [§ £ dt =
}7(18 ;) ,sofory > 0,w(0) = e (0) = n(l—y)’ whereas fon < 0, liMT_ 00

w7 (0) = —o0. The proposition is proved.

We note that althouglyo. (0) = limy_, o limz_, 0 7(2) = —co wheny <
0, it does not immediately follow that lign,g w(2) = limz_olimT_ o ©T(2)
is equal to—oo (for example, ifwT(2) = —%, then the former expression is
infinite, whereas the second is zero). However, the latter result follows, since
w7 (2) is decreasing inl for arbitraryz € [0, 1], and @t (2) is continuous
in z for arbitrary finite T. Specifically, for an arbitrary constark, > 0, it
follows that forT * large enoughip T+ (0) < —2k, and because of the continuity
in z, o1+(2) < —k for all z < z*, for somez* > 0. Therefore, s (2) <
wT+(2) < —kfor all z < z*, and sincek was arbitrary, it is indeed the case
that lim,_, 0 w(2) = limz_,0 W (2) = —00. [ |

Proof of Proposition 3;: We first study the case when > 1. We look at
for largeD. From (1), it follows that

P(D) :(1+ D) E[V(D,x,Z—y)
(1+ D)y’ —* D /) g
2 1 2q
+ D”ZV(B,OC‘F?—].,Z—)))]

D
_ 1+ 0(1) |:/ t}c—l(1+t)1—y dt
0

(1+D)” ’

q
5 (M
+ Daz/ 272141 dt (28)
0

Here, limp_ 0 0(1) = 0. Sincex > Oandy —x > 1, limp_ oo fOD t*~1(1+
t)l‘V dt = c¢1, where O< ¢; < co. Moreover,
2 [1/D D s
D2 - A4+ dt= / t“to2 7% dt

0 0

29 _ 29 _
:CzDaZD (a+52 l):Cle_a,
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which converges to zero for large. The finiteness of the integral is ensured,
sincea + 2—q —-2> -1

Thus, for Iarge D, the expression converges%b

Fora < 1, we use that

P(D) ,_1D7"
1+D_(1+D) q

[V(D,x,Z— 7)

2 1 2q
+ DoV (B,a+?—1,2—y)i|

D
_1+od +q°(1) D71 [ / =114+ L7 dt
0

2q (YD 2
+ Da2/ 70221 4 1)l dt:|.
0

For the first term, we note that

K

D
D
/ t“ YA+ )7 dt = —2F(y — 1, 14« —D)
0 K

Dx—y+1 D
= F -1,1,14x, ——).
o2 1(V tx D+1>

For largeD, the first term therefore converges to

1 TF'e+DI'l4+x—7y) 1

—oFi(y —1,1,14x 1) = -

g 20 T ) = )T al—y 1)
o2 1

— X .
a (¢ -1Do’—pu—q

For the second term, we note that

1/D
// o od- 21+ dt
0

D'~ a_%az (

2 2 1
= 20+ @122 : : )

y—l,a+p—1,a+?,—5

SincesFq (y —1,a+ 2q —1,a+ Zq O) = 1,anda = y — «, the second
term therefore converges to

o2 o2 1

= X .
a9+ (@—-1¢% aq (y—-Do?—-pu+gq
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Thus,
P(D) o2 ( 1 1 )
lim =— X —
Doool+D q (y =Do?—p+q (—-Do2-—pu—q
_ o2 2q
9 (G -D2-pw2-q?
. 1
pHuly == —12%
1
=-. |
n
Proof of Proposition 4. It is easy to see from28) of Propositior3 that for

large D, whena > 1, & [<1P+(B§a] converges to 0, as doe§D— [(ﬂgga ]

Thereforejn this caseP’ = a(1+0(1))c,D*~1, andP” = a(a —1)(1+0(1))
’ " 2

c2D~2 for large D, and it follows that"s@P corverges ton and F{H>

converges tax(a — 1). (i) then follows from standard @t calculus.

Fora < 1, an identical argument fdr%2) proves (i). [

Proof of Proposition 5. Defining F(x) eXZErfc(x) where Erfc is the error

function, Erfck) = (V7)™ ;e -t? dt, we show that Equatior20) can be
expressed in the following form:

1+ ed)y e—pr—(d+,ur)2/(2021)

P* = li

2 x eIQnO
i(—l)ne_man e € +d+ ut +nea?

— 202t

e—d—ur+(n+ 2
+F( ’”2 2( 2)to )) (29)
ot
Here,
I'(y +n)

o= To)yrin+ 1)’

where 7"(x) = [¢° e"'t*~!dt, which reduces t@, = ("*7 ) wheny is
integer-valued.

(i) The functionm% is analytic in the complex planéz| < 1, and can
therefore be expanded in the power expansion

1 - n n
1t+27 ZO(_l) Bz
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Fory < 0, we use this expansion to get @ + €¥)” = > o7 o(—=1)"
a,e"V, and fory > 0, we get a similar expansion ¥+ &¥)" = eV
Y nto(—1D)age™™.

Now, from Equation 18), it follows that

o e y-d-ue)/(25%)

(e er ) @Arey

—e 00 € e—(y—d—#r)z/(Zazr) g
_(/_J/e +/_) arey

/—e e—(y—d—,ur)z/(Zo'z‘[)

dy

= d
w avey
00 e—(y—d—,ur)z/(Zazr) q
o
+/E at o)y y+ O(e)

0 e—(y—f—d—,u )2/ (2021)
/ &

T (14e)
00 g=(y+e—d—u1)?/(20%7)

/o (14 evte)’
+0¢(e) (30)

dy

forall ¢ > 0 andy < 0. However, since

—(y—d—e—pu1)?/(202 0
e (y e—ut)*/(20°r) :Z(_1)nane—(y—f—d—ﬂ7)2/(2’72)‘*‘”(3’_5)
y—¢
1+ey=<)y s

o0
= Z(_1)nane—§ne(y—e—d—ur)z/(zoz)r+n<y—§>,
n=0

thefirst term is equal to
0 as 2 2
/ z(_l)nane—fne—(y—e—d—m) /(2o“T)+n(y—3%) dy. (31)
~h=0

Now, definegu « (y) =3_NLo an(—1)"e~</2e~(yme—d=ne)?/@r e inly=3),
y <0, M e N, andh(y) = e-0—€=0-10?/20%)) Then, sincea, ~
Cn?” for largen, it is clear that sup. o ane~ "2 = C < oo. Therefore,

M

- (] — 2 2 e

|gM,E(y)| SCZe (y—e—d—ur)°/(20°t)+n(y—35)
n=0
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o0
<C z e (y—e—d—u 1)%/(20%0)+n(y—%)
n=0
e—(y—e—d—,ur)z/(Zuzr)
1—e</2¢y
< Cée—(y—f—d—w)z/(Zozf) = C/hc(y).

Clearly, ffoo Clhe(y)dy < oo, and therefore the dominated conver-

gence theorem implies thg[foo liMns 00 OM,e(Y) dy = Iimn_woffOO
Im.c(Y) dy, ie.,

0 g (y—e=d—ur)?/(20%0)
/ o

e A+

00 0
=2 / (—1)ape™ 2N~ (y-e=d=un)?/ 0% 4nly=5) gy
n=0" ~®

00 0

n=0 >
DefineF(x) = eXZErfc(x), where Erfc is the error function Erfg) =
(Wm)™t e et dt (seeAbramowitz and Stegun 19%4Then, since

1 0
/ e (V—ed=ur)?/@o20)n(y=¢/2) gy
V21621 J-c0
2
— 1‘en(e/2+d+/47:)+n2162/2ErfC €+d+ ut +nto
2 202t
e N5 (e+d+ur)?/(20%7) F €e+d+ put +nra?
2 2021 ’

it follows that

1 0 g (y—e—d—pu)?/(20%7)
d
V2ot /—oo (1+eY¥y=€)? y

o9}
= 1 z(_1)nane—ene—(e+d+ﬂr)z/(Zsz) FlE +d+puz +neo?
2 n=0 2027

— (1+ O(e)) e (@+ur)?/20%0)
2

N i(—l)”ane_an €+d+ put +nra?
n—o 2027
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e (y+e=d—un?/20%0)

An identical argument for thé® &— o7

dy term leads to

1 %) e—(y+6—d—;¢r)2/(20'27:)
d
V2ro?c /O (1+eyteyr y
0
_1 Z(_1)nane—ene—(e+d+,u1)2/(202‘[)
2

n=0
<F e—d—ur+M+7y)s?
V262¢
o
=1+ O(G))e—(d+ur)2/(2a21) Z(_l)nane—en
n=0
<F E—d—,ur—i—(n+y)raz
2027 '

Puttingit all together in Equation30), we get

P‘[

dy
V2ro?t —00 (1+ey=c)r
00 e—(y+e—d—/u')2/(2021)
J

(14 eyteyr

_(A4edyerr ( /0 g~ (y—e=d—u1)?/(20%1)

dy + 0(6))
1+ ed)y e—p‘[—(d+,ur)2/(2021)
2

i _ €+d+ut +nro?
x D (-D"e"ay (F( )
n=0

2021

—d = 2
L F e—d—ur+M+y)o ,
2021

andthus, ag v 0, we get convergence to Equati&9j.

The formula is straightforward to use, sinEgx) ~ 1/x for large x.
An error analysis implies that if terms are used in the expansiern;-
log(n)/n should be chosen.

=0(e) +

(i) Wheny =1, a, = 1for all n, and we can choose= 0 and still apply

the dominated convergence theorem in Equation (31) to get

e ed)r e p1—(d+u1)?/(20%7)
N 2

P‘[
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s d+ ut +nro?
x» —D)"an| F{ ————

—d—ur +(+y)ro?
F . (32
* ( 2021 )) (32)

d+ urt

0'2‘[

(i) For

=meN,

Equation(32) reduces to a case for which closed-form expressions exist,

S0
2 2 m-—1
(1+ed)e—p7:—m o°t/2 s 2
T _ _1\ngh“o“t/2
Pt — 5 142> (-De .
n=1
Finally, we note that sinc®? = e~" ()7 wherer (¢) is the time-zspot rate,
we have

2 d 2
1 (_(1+e)V)+ d

du
re)= er2 R 2 2027 +?+'°g(z))’

. _ +d+pur+nro? —d—uz+(n+y)ro?
wherez = limc 0 302 o(—1)"e™Man (F (A57) + F (= 22)). B

Proof of Proposition 6. The result forrg is standard. Using Feynman-Kac,
we know that

1
Rl +50°(1—2°PL+ [—ﬁz(l —2)+20%2(1—2) ]
0,

1
-[praa-2-50 +ota-22] P

andsinceP™(z, z) = 1, itis clear thatP(0,z) = 1— [p +yul—2)— %y (y+

1)o2(1—2)?]r +0(z), for smallz. Since— log(1—s) = s+ O(s?) for smalls,

itis clear thats = lim; o —w =p+yp(l—-2— %y (y +1)o?(1-2)2
Forr,, we proceed as follows: We have

00 g (y=ut)?/(20%0)

\/—27wr/ Qv

—x2/2

Jﬂ/oo (1+ede><af+m)y

P'=(1+el)err

=@ +e%)err
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e></2

We study the behavior of—f 0o TTAS VI

decompose

dx for large z. We

e x°/2
J2r /oo 1+ edeXUﬂw)V
yr+d —X2/2
T 2z / 1+ eX0f+uf+d)y
e—x2/2
«/2;: /#i (14 exortur+dyy

dx. (33)

We prove the results for, by studying the first and second terms in
Equation (33) separately for the two cases< yo and i > yo?, respec-
tively. By showing that the first term behaves I|ke2a for large ¢ for all
u, whereas the second term behaves bIZew whenu < yo? andlike

e~ (=202t \wheny > y o2, the result will follow.

Since 0< eXovVi+ut+d < 1 forx < — “}d,we have

e x?/2

— dx
N /_ (14 eXortur+dyy

pur+d

EN ut +d
_C—/ e X /%dx = CXN( )
2T O'ﬁ

for someC € [1/27,1], where N(-) is the cumulative normal distribution
def

function,N(v) = —>= e e=Y’/2 dy. Now, we use
2
e /2 1 1)2
N(-v)=C , Cre ——|——,1], 34
( U) 2 > 2 € \/E |:1+ 02 ( )
whichis valid forv > 0, to get
e x2/2
J2r /_oo 1+ exaf+ﬂf+d)y
e—q2/2 e_ﬁr_gig_&cﬁr
=CxCy =C3 ,
q q
where
1 1 ut +d
C — | =, 1], and = .
3 € —27r|:2y+1 :| q o/
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We next study the second term in Equati@8), whenu < y o2. First, we
note thaty < yo®impliesthatys — £ > 0. Obwously,m <
e—y(Xo‘ﬁ+,ur+d), so

ex%/2

- 271-//41+d 1 eXO'f+/lT+d b
1+ )
; +d e—(x +2xy0/0)/2=y pr—yd 4y
T V2r /”
_ > / y e—(X+V0«/?)2/2+y252’—ym—dy dx
A2 J-—4#T4
[
—e gt u—y2?2)_= / e X%/2 gx
/271- ;n+d+yo_f
— g rdg T u—r%0?/2)_~ / eX*/2 dx
'\/271,' yo—4
— e 7dg=t(ru—y?%/2)\ ( (ya _ _) )
\/_
2
<erdgthu—y2e?2) = 1 e
V2 Q2
d u
B _yde_r(w_yzaz/z) 1 e 2Ezr+/d—l—(y V,U-i-/z)r
V2 7]
ﬁ
- &2 _dy 1 e2?
=e 2062t o2 X —
V2 Q2
whereqy = (yo — £ — —9_ and we used tha{— c’oe‘)’z/2 dy =
o ot
N(—v), and Equation34). Thus,
2 ‘/‘2
e X /2 q c _%_% e2,2
X = e 24t o
2z /m (14 exov/Tturtdyy ! T
whereCy € [0, J—%{] Putting it all together, for large we get
ut+d 2
1 —% X /2
= (1+ &My grt dx
=@+ ) («/27[ (14 exovT+ur+dyy

—x2/2
d
ﬂ/w (14 eXoVrtur+dyy X
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2 2
_#f o pd_ d 1
d ot e 2052 2 202; _i_dl e202
= (1+ e )ye p C3# + C4e 2021 0'2 X q
2

—(pr22), 2
—e (p+2”2) 1+ ed)ye_}%_z%r (% + %) .
q (07)
Therefore,

log(P* 2
_ log( ):p+#_+Q(T)’
T 202 T

d_ d?2
Q(z) = log ((1+ ey e o2 5 (% + %)) _
q 02
Now, Q(z) = log (1 + e)7) — ‘fﬁ_g 2521 + log (C3 + ) and sinceCs e

d
& e 1] e o Al a= 402 ande = (V” — SNV
it follows that|Q(z)| = o(z) for largez, i.e., that lim_, o 221 = 0. From

where

this, it immediately follows that lim_, —")g(% =p+ -ZIL;—ZZ
We now consider the case whan> y o2 anddefineo = u/o —yo > 0.
2
We first note that/'; > y u — y%02/2, sinceu®/(26%) — y u + y20%/2 =

_ur+d

2
Tiz(,u —y06%)?2 > 0.Thus, since thg_ . % dx-term in Equa-
tion (33) behaves like=7*#*/27* for large, if the [ ig ﬁ

dx ~ e~*r=7%0%/2) for |arge 7, then the result we W|sh to prove follows,

since it is always the case thae™“7 + cre~%27 ~ e~ MN(1.02)7 for |arger,
for arbitraryc; > 0,¢c2 > 0,01 > 0,a2 > 0.
We have

—x2/2
/ dx
N urtd (14 exoVrtur+dyy
1
\/E ,ur+d

e~ (C+2xy 0 y/7) /2=y ur—yd gy

22
e~ (X+y 0 VD224 75—y ur—dy gy

B V2r /—/‘a’—}f

_ e 1dgtu—y2%%2) 1 /°° %2 4y
\/277: —%-}—yo‘ﬁ
d
— e 1dg 1G22\ (/T + ——
VT oT

_ e—yde—r(w—yzrfz/Z)(l —0@e™)).
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Also, since 1+ eXeVitut+d o pgxo/T+ur+d

1 00 e—X2/2
N —rtd (14 eXxovT+ur+dyy dx
1.1 o (22670 /) /2~y pr—yd gy
- 27 \/Z ;u+d
1 1

e 2,9, 17%0%
- g (X+y0J/1)7 /24— —y ur—dy gy
2)’ _ pur+d
2 /—”ﬁ

_ L erdgtu—Zo2 L / /2 g
27 4/277: m_’_y”f
1 2,2
— — g rdgtru—r%0%/2)N
2 aﬁ
= ie—)’de—f(?ﬂ—yzaz/Z)(l — O(e™Y)).
27

Thus,it is the case that
—x2/2

«/Zn/ﬂ”d (14 exo/rtur+dyy

dx = Cge~ (0 1=120%/2),

whereCs e [e;yyd —e,e7d 4 e], for arbitrarye > 0, for large enough.
We therefore get

_log(P")

1
=—"log ((1 + edyrer?
T

2 d d2
X (e 2/0'26 ﬁj 2027 i3 _|_ Cse—‘[(})ﬂ—’yzo'z/z))) .

. 2 - .
Now, smce# >y u — y202/2, the second term within the log expression
dominates the first, so we get

_log(P")

T

- _% (log (2 + &) e+ Coe™" 017512 1 o(1))

_(p+yu—y%?/2)1 +0(0)
T b

soindeed lim oo =% = p 4y u—y202/2 = p+y (u+02/2) =7 (7 +
1)62/2. [ |
Proof of Proposition 7.

Without loss of generality, we assume tlgatk S, since the whole proof
otherwise goes through by replaciggvith S.
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We begin with (ii): It is easy to show the following inequality, which is valid
for an arbitrary constank < 0O:

_ (x=us? a
© e 23 e (p+ud)

eSS ——ds> ——e¥, (35)
T 21062s q

wherex andq aredefined in 4).

Now,
_ o _pt f(DO) !
P(CO)_E[/O e’ (f(Dt)) “Dt)dt}

o0
> f (Do)’ E [/ e P f (D)L dt}
t
>c) Dg/ e E[ (D)7 ] dt
i

o0
> ¢} Dg/ e_ptE[f(Dt)l_VlstS§] dt
t

o0
> ¢} Dgf(eé)l—y/f e "' E [Ig<s] dt

o0 —so— ut
> ch D} f (D™ /f e o (§:.;\/_#) dt

_ (x= /4'[)2

2
— D] f (&%)} V/ / e ; dx dt

V2ro2t

_ x=ut)?

02
— D] f(e)1- V/ / eﬂtezz  dtdx
7[

O'
e—(P ut) S—%

> ¢y D§ (et —/ &% dx
q —00

—(p+ut) grs
€ e
=c, D f (e % gr®
K
(p+ut) gres
e e
=c) D) f (€)™ VT— x Dy "
K

e (p+ub) ges

=c} f (et g <" D§

> ¢! f(@)l_yﬂ;c_“ x f(Dg)*
=) q P 1 0

=c3C§.
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For (i), we note that wherf (¢) < cz¢, we can choose an arbitrarg >
max{0, —s}, to bound

_ o _pt f(DO) ’
P(C")‘E[/o e’ (f(Do) ”Dt)dt}

> (Do)’ E [/ e P f (D)L dt]
T
zchgﬁ e[ f(Dy* ] dt
t

~apl [ et [f(D)‘VI ]dt
= Lo Yo . t §<—m

> ¢y D f(e™™?

o0
> ¢ D} f (&™) /t & E[Ig <] dt
_y/

E

o8} — — —

e_/’td?(—m %0 ”t) dt
o/t

_ (x=ut)?

ot temir [ e ® P ged
=cyDy f(e™) / / e x dt
00 T J-oo V2ot

_ (x=ut)?

D! f(eM1 R e U R dtd
=cy Dy f(e)~ / e tdx
0~0 —00 T 2ot

e (p+ud) p—m-so
> ¢y D) f (™1 —/ e dx
q —o0

e—(p+ub) g—xm
q

e—(/’""ﬂD e km
q

e—(p+ub) g—xm

q K

_my1— _
=c, D f(e™ x e7K%

=c, D) f (&™)~

—K
x Dg

=c) e

(p+ud)
> COC;_ uEDa X em(}’ —x—1)
q

= c4(Do)e™* .

Now, sincea > 1 andm is arbitrary, P(Cp) musttherefore be infinite, and
the equilibrium does not exist. Equivalently, we could have used the iden-
tity 1% P(%O) = U to show that expected utility is negative infinity for this
case. ]
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Mathematica code

Price-dividend Ratios

We have verified numerically that the formulae for the prices given in Proposi-
tion 2 are indeed correct, both above and below the breakpoint. The following
Mathematica code calculates the price-dividend ratios for diffeBenfor a
long, but finite, horizon economyl (= 1000), using direct numerical integra-
tion of (10), and produces results identical to those shown in Figjure

IN[1:=  y =5;0 = 4/100;u = 0.75/100;p = 1/100;¢ = u — %; T =
1000;B = 1; PD=(}

In[2]:= v=Range[1/4,8,1/4];

In[3]:= For[i=1,i<32,
e=Extract[v,i];
v=NIntegrate[(( B+e)/(B+exExply]) " lxExp[—p*t—
(y =& 0)2/ (2% 02 % 1)]
/Sart[2 « x * a? 7], {y, =00, 00}, {z, 0, T};
PD=Append[PD,{ e,v} ],
i=i+1];

In[4]:= ListPlot[PD,PlotJoined->True,PlotRange->All];

Long-term Risk-free Rate

We have verified numerically that the formulae for the long rate given in Propo-
sition 6 are indeed correct, by directly evaluating Equatid8)( The following
Mathematica code calculates the yield for different maturities.

For example, with parameteps= 1%, u = 3.5%,0 = 20%,y = 2.5, the
long rate is close to! = p + 5‘;—22 = 2.53%,in line with Equation 21). The
list L provides pairs of time to maturity and yields, ri}. For example, the
last element irL shows that for a time to maturity of 10,000 years the yield is
2.56% in this example.

By varying BO, DO, andy in the code, it is easily verified that the long rate
does not depend on these parameters. It can also be checked that fps 2,
Equation(22) provides the correct long rate.

In[1]:= BO=2;D0=1;0 = 02;u = 0035;y = 25;p = 0.01;
Off[Integrate::gener];

In[2]:= L={};T={1,10,100,1000,10000,—-1};

In[3]:= For[t = Firstf T], t>0,

P= NIntegrate[( BO+ DO0)” % Exp[— pt]«

43

TTOZ ‘6T Arenigad uo Asjaxlag ‘“eluloled Jo AusiaAiun e Bio s[euInolpioixo sy Wol) papeojumoq


http://rfs.oxfordjournals.org/

TheReview of Financial Studies / v 00 n 0 2010

1/Sqrt[2n %o 2t]xExp[— (y—ut)?/(2x02t)]/(BO+DO<Exp[y])”,

{ya —00, OO}]]7
r = —Logl[ P]/t;
L = Append[ L, {t,r}]; T = Delete[ T, 1]; t= First
[TI]

In[4]:= L (» L is a list with elements {t,r¢}, from
numerical calculations *)

Out[4]= {{1,0.0362381} ,{10,0.0350963} ,{ 100,0.0307781} |,
{1000,0.026798} ,{ 10000,0.0255731}}

In[5]:= r=Iflg < yo?l, p—i—-z‘u‘—zz, p+y u—y202/2]( * Theoretical
value of long rate *)

Out[5]= 0.0253125
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