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We show that several well-known asset pricing puzzles are largely mitigated if we endow
the representative agent with an arbitrarily small minimum consumption level. This allows
us to solve the model for parameter values where the standard “Lucas tree” model is not de-
fined. For these parameters, disasters become more important, and the market risk premium
therefore higher, even though consumption islessrisky. Our model yields reasonable risk
premia, Sharpe ratios, and discount rates; excess price volatility; and a high market price-
dividend ratio. We derive closed-form solutions for all variables of interest. (JEL G12)

Whena standard one-tree consumption-based exchange economy, with Brow-
nian log-consumption growth and a representative investor with power utility,
is calibrated to data, three significant puzzles arise.1 First is the equity pre-
mium puzzle, famously posed byMehra and Prescott(1985): For reasonable
values of the risk-aversion coefficient, the implied equity premium is too low.
Second is therisk-free rate puzzle(seeWeil 1989): If risk aversion is chosen
to match the equity premium, then the discount rate is implausible. Third is
the excess-volatility puzzle(seeLeRoy and Porter 1981;Shiller 1981): Price
volatility in the standard model is the same as dividend volatility and consump-
tion volatility; in reality, however, price volatility is many times higher than
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1 Thoughcommonly referred to as a “Lucas” model, the first-order conditions for this economy and associated

stochastic discount factor,ρ
U ′
(
Ct+1

)

U ′(Ct )
, were first derived byRubinstein(1976) and later used byLucas(1978).
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both consumption and dividend volatility. As summarized inLeRoy (2006),
“The conclusion that appears to follow from the equity premium and price
volatility puzzles is that, for whatever reason, prices of financial assets do not
behave as the theory of consumption-based asset pricing predicts.”

The equity premium puzzle remains perhaps the most disturbing counterfac-
tual prediction for the standard model, mainly because such a stylized model
should not be “off” by an order of magnitude. More sophisticated models
inevitably build on the simple one, making its poor performance especially
troubling. In this article, we show that all three of these puzzles are, in fact,
extremely fragile. With calibrations as reasonable as inMehra and Prescott
(1985), a very small change to the setup leads to very different levels for the
market risk premium, the risk-free rate, and the level of price volatility. The
specific change we implement is to introduce an arbitrarily small risk-free con-
sumption stream to the standard model. We call this theminimum consumption
(MC) economy, and show that this minor modification largely mitigates all
three puzzles.

Our results are based on the observation that for some parameter values, be-
yond what we dub thebreakpoint, the risky tree in the standard model is so
risky that the representative investor’s expected utility is negative infinity, and
the risk premium is therefore not well defined. With a lower bound on con-
sumption, expected utility remains finite, though it is still strongly affected by
low-consumption states in this parameter region. As a result, we obtain a much
higher risk premium than in the standard model. Indeed, for low growth rates
and personal discount factors, the risk premium in our model for these param-
eter values can approachγ 2σ 2 insteadof the γ σ 2 producedby the standard
model.2 Interestingly, the consumption process in our economy, with proba-
bility 1, looks indistinguishable from the standard one-tree model in the long
run. Empirically, it would therefore be impossible to distinguish the consump-
tion process in the MC model from that in the standard model, even though
the differences in asset pricing are huge. Although the effect of minimal con-
sumption on asset prices is drastic in our model, the stochastic discount factor
changes only marginally, so our approach has little to say about the Hansen-
Jagannathan bounds.

We are not the first to consider the effect of extreme events in consumption-
based asset pricing. For example,Barro(2005) (followingRietz 1988) shows
that adding catastrophic risk, either actual or suspected, to the standard model
can generate empirically reasonable equity premia. In a similar spirit,Weitzman
(2007) argues that parameter uncertainty, by increasing subjective probabilities
for low states, significantly increases the equity premium. However, there are
two major differences between our results and these papers. First, whereas
Barro(2005),Rietz(1988), andWeitzman(2007) all rely on making the lower

2 The valueγ 2σ2 is an upper bound for the risk premium in our model. The risk premium is given in full by
γ max(γ− κ, 1)σ2, whereκ > 0 dependson the parameters of the model, and can be close to zero.
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tail of the consumption distribution fatter than in the standard model, we
actually reducethe likelihood of very low states, making the lower tail of
the distribution thinner than in the standard model (indeed, we impose a strict
lower bound on consumption, so the lower tail has weight zero below this
level). This allows us to analyze asset pricing properties for parameters that
are typically ignored; we explore this idea in more detail when we consider the
robustness of our model. Second, whereas prior papers have typically focused
on one puzzle at a time, we show that our model is capable of substantially mit-
igating all three of the primary puzzles listed above with the same calibrated
parameters.

For simplicity, we implement the model in a two-trees framework (see
Cochrane, Longstaff, and Santa-Clara 2008), with one risky and one risk-free
tree. This makes the analysis tractable, and we obtain closed-form solutions for
all variables of interest. We also show that the effect of minimum consumption
levels extends to broader classes of model.

In a simple calibration of the MC model, we show that to obtain a market
risk premium of 5% requires a risk-aversion coefficient of onlyγ = 12.2,
compared with theγ = 31 needed by the standard model.3 We also show
that, in stark contrast to the standard model, the long-term discount rate in our
model isindependentof risk aversion. In the calibration, we get a long rate of
2.4%, so there is no risk-free rate puzzle at the long end of the yield curve. The
short rate is−2.8%, which is somewhat low, but far above the−58% implied
by the standard model with the same parameters; moreover, instead of the flat
term structure in the standard model, we typically get an upward-sloping term
structure. Price volatility is also higher than in the standard model: Our calibra-
tion yields a price volatility of 10.3%, compared with a consumption volatility
of 4%. Finally, our calibration produces a reasonable market Sharpe ratio of
0.49.

Central to our analysis is the existence of a risk-free consumption stream.
There are many plausible economic frameworks that give rise to such a sector;
we posit two. First, in an economy with technology shocks, if there is enough
“memory” in the economy, it is natural to assume that production levels can
never fall below some threshold. Similarly, a lower bound on consumption can
be interpreted as subsistence farming or consumption.4 Second,bonds may
not be in zero net supply. The assumption that bonds are in zero net supply
is consistent with an infinitely lived representative agent in an economy ab-
sent any frictions. In particular, any bonds that she issues, she also consumes.

3 In the standard model,γ = 12.2 leadsto a risk premium of only 2%.

4 If a cataclysmic event such as a nuclear war occurred, a subsistence level of consumption might not exist.
However, since it is also unlikely that financial assets would survive, we restrict our attention to states of
the world in which no such event occurs. The only modification needed is that the representative investor
has a higher effective personal discount rate in the presence of such events (similar to the increased discount
rate in the portfolio problem of an investor with finite, stochastic life length, compared with an infinitely
lived one).
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By contrast, in a world with finitely lived investors, or with frictions, it may be
possible for the current generation to borrow against the consumption of future
generations, leading to a positive supply of bonds and risk-free consumption
for the current generation over a significant time period. Indeed, in any econ-
omy in which Ricardian equivalence fails, government bonds can be in positive
net supply.5

Intuitively, the existence of a minimum consumption level lowers the value
to the representative consumer of claims that pay off in states when her risky
consumption is low. The representative consumer weighs two factors when
evaluating a claim that pays off when her other consumption is low: first,
her current level of consumption, and second, the difference between current
marginal utility and marginal utility when the claim pays off. The first factor
is important because it affects how far into the future she will consume the
claim. A higher current consumption level decreases the value of this claim by
increasing the time until its payoff (because the personal discount rate is pos-
itive). However, a higher current consumption level also increases the relative
difference between current marginal utility and marginal utility at payoff. In
this article, we show that the relative importance of these two factors changes
drastically when passing thebreakpoint. In the region in which the standard
model is defined, the first effect dominates the second, so for high consumption
levels the price of a low-consumption claim is negligible. Beyond the break-
point, however, the second effect dominates the first, and the claim becomes
more and more valuable, the higher the consumption level. In the standard
model, the price of such a claim is infinite, which is why the standard model
is not defined beyond the breakpoint. By contrast, in the MC economy, the
minimum consumption level leads to a finite, albeit high, price for the claim.

A vast literature has suggested other solutions to the classic puzzles, usually
based on significant modifications of the standard model. We cannot do justice
to this literature here, but we mention a few examples. To solve the equity pre-
mium puzzle, some researchers have explored preference specifications that
make the stochastic discount factor (SDF) more volatile.Abel (1990) intro-
duced catching-up-with-the-Joneses preferences, whileConstantinides(1990;
see alsoFerson and Constantinides 1991andCampbell and Cochrane 1999)
suggested that consumers form habits. Others have investigated rational bub-
bles as a potential solution to the excess-volatility puzzle (see, for example,
Blanchard 1979; Blanchard and Watson 1982; Froot and Obstfeld 1991). With
rational bubbles, prices are highly nonlinear functions of dividends, leading to
a higher price volatility. In our model, the market price of equity is a convex
function of consumption, which mechanically leads to a higher risk premium
and price volatility. This is similar to the price behavior in, for example,Abel

5 In the extreme case, if the representative investor does not care at all about consumption after a certain date, he
will take the opportunity to transfer risk-free consumption from beyond that date, if feasible. The economy then
behaves like one with a finite horizon and a minimum consumption level. (Our results also hold for long but
finite horizons; see Section3.7.)
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(1990)andFroot and Obstfeld(1991). In contrast to these models, however,
we make minimal modifications to the standard model; preferences are the
same, and there are no bubbles in the MC economy. The only difference is the
addition of an arbitrarily small additional consumption stream.

The rest of the article is structured as follows. We proceed by laying out the
MC model in Section1, and study when the differences between this and the
standard economy are important. In Section2, we address the equity premium
puzzle, the risk-free rate puzzle, and the excess-volatility puzzle and present a
simple calibration. We discuss robustness, how our approach is related to other
approaches, and possible generalizations in Section3. After a brief conclusion,
all proofs appear in the Appendix, as does some supporting Mathematica code,
which provides numerical backup for our theoretical results.

1. Model

Consider an economy that evolves between times 0 andT , in which there are
two sources of the consumption good. As in the standard one-tree model, the
first, risky, asset grows stochastically and pays an instantaneous dividend of
Dt dt , whereDt = D0 ey(t), y(0) = 0, dy = µ dt + σ dω, andµ andσ are
constants. Here,ω is a standard Brownian motion, which generates a standard
filtration,F t , on t ∈ [0, T). Unlike the one-tree model, there is also a second,
riskless, asset paying a dividend,B dt, whereB ≥ 0. It will be useful to con-
sider the share of the risky asset in the overall economy, and so we define the

risky share,z(t) = Dt
B+Dt

. We also definêµ = µ + σ2

2 . The horizonT can be
finite or infinite. We focus primarily on the case whenT = ∞, but we show
in Section3 that the results carry over to the case with large but finiteT . In
Section3, we also show how these assumptions on the growth processes can
be substantially relaxed.

There is a price-taking representative investor with constant relative risk-
averse (CRRA) utility, risk-aversion coefficientγ > 1, and personal discount
rateρ > 0. This investor consumes the total output:

U (t) = Et

[∫ ∞

t
e−ρ(s−t)u(B+ Ds) ds

]
, (1)

where

u(c) =
c1−γ

1− γ
. (2)

We also writeU (t |B, Dt ), when we want to stress the dependence onB
andDt .

In what follows, we focus our attention on the (economically interesting)
caseµ > 0. We note that in this case (whenB > 0), the distribution of the
risky share,z(t) ∈ (0,1), converges in probability to one for larget , z→p 1,
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andthe growth rate of real variables (i.e., dividends and consumption) in the
economy behaves much like that in the one-tree model for larget .6

The market is dynamically complete, and the usual arguments imply that,
in equilibrium, an asset that pays outξt , whereξt is anFt -adaptedprocess
satisfying standard conditions, commands an initial price of

P0 =
1

u′(B+ D0)
E0

[∫ ∞

0
e−ρsu′(B+ Ds)ξs ds

]
. (3)

Equation (3) is the Euler equation relating the agent’s aggregate consumption,
marginal utility, and valuation for all securities.

Notice that if B = 0, all resources are in the risky asset and the economy
collapses to the standard one-tree model with constant growth and power util-
ity. WhenB > 0, the economy is a special case of that inCochrane, Longstaff,
and Santa-Clara(2008), further generalized inMartin (2009); i.e., it is a so-
called “two-trees” economy, in which one of the trees is risk free. We refer
to the caseB = 0 as thestandard model, whereas whenB > 0 we have the
minimum consumption(MC) model.

As we elaborate below, providing the agent a minimal level of insurance
(through the risk-free tree) provides new implications. Equivalently, we could
have specified the economy as one with no riskless tree but with HARA utility,

u(c) = (B+c)1−γ

1−γ , or one in which there is one asset with outputB + Dt and
a risk-free bond in zero net supply (similar toRubinstein 1983). More gen-
erally, our results will also apply to combinations of these assumptions, such
as an MC model with riskless consumptionBc, combined with HARA utility

u(c) = (Bu+c)1−γ

1−γ , as long asBc + Bu > 0.
We define

η = ρ + (γ − 1)µ− (γ − 1)2
σ 2

2
,

thedividend yield in the standard model, which will be useful going forward.
The properties of the standard model have been extensively analyzed and are
summarized in Table1.

1.1 The Breakpoint
In the MC model, utility and marginal utility are bounded both from above
and from below, so (1) and (3) are well defined for arbitrary values ofµ> 0,
σ > 0, ρ > 0, B> 0, andD0> 0. To clarify the differences between the MC
model and the standard one, we study the expected utility of the agent in the
two settings. First, observe that the homogeneity of the utility function im-
plies that the value function,U , is scalable asU (t |B, Dt ) = (B + Dt )

1−γ

6 If, on the other hand,µ < 0, the share converges to zero,z→p 0. In this case, real variables become almost risk
free over time. Ifµ = 0, then the share converges in probability to a two-point distribution with 50% mass at 0
and 50% mass at 1 (the convergence also holds almost surely forµ 6= 0, but not forµ = 0).
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Table 1
Properties of the standard model (the consumption model with Brownian log-consumption process and
power preferences)

Variable Value

Risk-freerate,rs ρ + γ
(
µ+ σ2

2

)
− γ (γ + 1)σ

2
2

Long rate,rl ρ + γ
(
µ+ σ2

2

)
− γ (γ + 1)σ

2
2

Market return,re ρ + γ
(
µ+ σ2

2

)
− γ (γ − 1)σ

2
2

Dividend yield,η def
= D/P ρ + (γ − 1)µ− (γ − 1)2 σ

2
2

Market risk premium,re− rs γ σ2

Consumptionvolatility σ
Dividend volatility σ
Pricevolatility σ
Market Sharpe ratio γ σ

U (t |1− z, z)
def
= (B + Dt )

1−γ w(z), wherew(z)
def
= U (t |1− z, z). We call

w(z) thenormalizedvalue function at risky sharez.
We define the following three variables, which will be helpful going for-

ward:

q =
√
µ2+ 2ρσ 2, κ =

µ+ q

σ 2
, α = γ − κ. (4)

We shall see later that the value ofα will be extremely important for the be-
havior of the model. Note that it is always the case thatα < γ .

Our first result characterizes the normalized value function.

Proposition 1. In the MC model, the normalized value function of the repre-
sentative agent,w(z), is finite for allz ∈ (0,1). It is given by

w(z)=
z−κ(1− z)1−γ−κ

q(1− γ )

[
V

(
1− z

z
, κ, 2− γ

)
(5)

+
(

1− z

z

) 2q
σ2

V

(
z

1− z
, α +

2q

σ 2
− 1,2− γ

)]
. (6)

Here,

V(y,a, b)
def
=
∫ y

0
ta−1(1+ t)b−1 dt (7)

is defined fora > 0. Also,w(0)= 1
ρ(1−γ ) .

Moreover, recall that the dividend yield in the standard model (if it exists) is

given byη = ρ + (γ − 1)µ− (γ − 1)2 σ
2

2 . Then, ifη > 0,w(1)= 1
η(1−γ ) . If,

in contrast,η ≤ 0, thenw(1)= −∞.
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The proof of this proposition is given in the Appendix. The last part of
Proposition1 is important. Whenη > 0, the value function in the MC model
converges to that in the standard model asz approaches one. However, when
η ≤ 0, the two models behave completely differently. Note that in this case,
while we can still calculateη, it is no longer equal to the dividend yield in the
standard model (which does not exist). In this case, the value function is neg-
ative infinity in the standard model, and equilibrium is undefined. In contrast,
the value function is always finite in the MC model. It is easy to check that the
breakpointat which the standard model becomes undefined (η = 0) occurs at
the risk-aversion coefficient

γ = 1+ κ, (8)

whereκ is defined in (4). It is straightforward to check thatγ − (1+ κ) > 0
is equivalent toα > 1 and toη < 0, so above the breakpoint the dividend
yield in the standard model is formally negative, as discussed above.7 Going
forward, we shall use the term “below the breakpoint” to refer to sets of param-
eters for whichη > 0, and “above/beyond the breakpoint” to refer to sets of
parameters for whichη < 0. Below the breakpoint point (i.e., for lowerγ ), the
standard model is well defined, whereas above the breakpoint it is not. Thus,
although we may expect the MC model to converge to the standard model be-
low the breakpoint, the characteristics of the MC model above the breakpoint
are unclear.

To provide further intuition for the breakpoint, we note that although the
true drift of the risky tree isµ̂ > 0, the risk-adjusted drift term used by
the representative investor is lower. In fact, whenB = 0, for utility pur-
poses the investor treats the drift of the expectation as beingµ̂′ = (1 −

γ )µ̂ + (1 − γ )2 σ
2

2 .8 When µ̂′ < 0, the investor acts as if consumption is
expected to be very low for larget . Moreover, whenρ − µ̂′ < 0, the ex-
pected utility of consumption in the far future is also very low in present-
value terms. In this situation, we may expect the representative investor to be
prepared to pay a lot for insurance against bad states of the world in the far
future. The conditionρ − µ̂′ < 0 is exactly the condition of being above the
breakpoint.

7 It is well known that expected utility is infinite beyond the breakpoint in the standard model. For example,
Campbell(1986) develops a parameter restriction for general stationary processes, which is the discrete-time
version of the breakpoint equation. The breakpoint condition also occurs inMartin (2009), though in a different
context.Martin (2009) characterizes the prices of “small firms” below the breakpoint. We examine the properties
of the market above the breakpoint.

8 This holds in the sense thatU =
D

1−γ
0

1−γ
∫ T
0 e−ρt E

[(
Dt
D0

)1−γ
]

dt =
D

1−γ
0

1−γ
∫ T
0 e−ρt E [Rt ] dt , where the

risk-adjusted diffusion processRt ≡
(

Dt
D0

)1−γ
satisfiesR0 = 1, dRt

Rt
= µ̂′ dt + (1− γ )σ dω (following from

standard It̂o calculus), and thereforeE[Rt ] = eµ̂
′ t .
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1.1.1 Calibration. To get a sense for what the breakpoint implies for risk
aversion, suppose that the consumption growth rate, volatility of growth, and
personal discount rate are

µ̂ = 0.75%, σ = 4%, and ρ = 1%, (9)

respectively, these values selected as follows:
Consumption Volatility Our choice of 4% is within (though at the top end

of) the range used by prior authors. In particular, it is close to the 3.6% used by
Mehra and Prescott(1985).Campbell(2003) reports the average annual con-
sumption volatility for ten countries between 1970 and 2000 as 2.13%, and a
value of 3.2% for annual volatility in the United States between 1891 and 1998.
While our value of 4% is somewhat higher than these numbers, these previ-
ous studies almost certainly underestimate the true volatility of consumption
growth. In particular,Triplett (1997) andSavov(2011) (Internet Appendix)
point out that three statistical issues with the National Income and Product
Accounts (NIPA) consumption data in the United States automatically lead
to an artificially low volatility in measured consumption: (i) benchmarking;9

(ii) non-reporting;10 and(iii) the residual method used to calculate consump-
tion.11 In response,Savov(2011) uses garbage generation data from the Envi-
ronmental Protection Agency (EPA) as a proxy for consumption and estimates
consumption volatility to be around 2.5 times as high as NIPA consumption
expenditures—2.9% from 1960 to 2007. He also cites an alternative survey
of garbage data by the journalBiocycle, which estimates a volatility of 4.1%
per year. In addition to these statistical issues,Parker(2001) andGabaix and
Laibson(2001) argue that another reason the usual historical measures may
well be substantially too low is that consumption adjustment costs may ar-
tificially reduce measured consumption volatility. Moreover, if individual in-
vestors are adjusting consumption at infrequent, but different, points in time,
aggregate consumption will be smoother than the consumption of any individ-
ual. Finally,Malloy, Moskowitz, and Vissing-Jørgensen(2009) note that asset
prices are determined by those who actually hold assets. Focusing on the con-
sumption of shareholders rather than all individuals, they estimate the annual
volatility of consumption to be between 3.6% and 5.4%, depending on whether
an adjustment is made for the possibility of different people being shareholders
in different periods.

9 Benchmarking,a comprehensive measurement of consumption, occurs only once every five years. In non-
benchmarking years, the Census Bureau’s Retail Trade Survey is used to estimate consumption updates, but
this does not include all expenditure types, so many values are interpolated or forecast based on the most recent
benchmark values.

10 Savov (2011) reports that around 7% of the annual data currently suffers from this problem, down from 14% ten
years ago, and probably more in the preceding decades. In addition, there is no fixed method for including new
retail establishments. He suggests that it is likely that non-reporting and newly formed retailers are also those
with the most volatile sales.

11 For most commodities, personal expenditure is calculated by subtracting government and business purchases
from total estimated domestic supply. Business purchases are in many cases estimated.

9
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Consumption Growth Rate and Personal Discount RateA growth rate
in the neighborhood of 1% per year is in line with observation as well as with
previous theoretical studies, as is a personal discount rate of 1% per year (see,
for example,Cochrane 2001and references therein).

Implied Risk Aversion With these parameters, Equation (8) shows that the
breakpoint occurs atγ = 10.6, a not unreasonably high number (Mehra and
Prescott 1985consider risk-aversion coefficients up to 10, and several studies
use higher values—for example,Malloy, Moskowitz, and Vissing-Jørgensen
2009use values ofγ between 10 and 15).

Relative Sizes of TreesAt this point we are not making a specific assump-
tion about the relative size of the trees,z, but we shall be considering values
close to 1. Note thatB→ 0, D →∞, andz→ 1 are all equivalent, so all of
our results forz close to 1 can be interpreted as results whenB→ 0.

2. Puzzles Revisited

Without a loss of generality, we assume thatB ≡ 1, i.e., that the risk-free part
of the consumption stream is of size 1, and from (3) we defineP(D0) to be the
price of the total consumption output in the economy,

P(D0) = E

[∫ ∞

0
e−ρs

(
1+ D0

1+ Dt

)γ
(1+ Dt ) ds

]
. (10)

The price for generalB 6= 1 then follows from the relationP(B, D0) =

BP
(

D0
B

)
. We will specifically be interested in the dynamics for largeD, or,

equivalently, forz close to 1.
We provide an explicit characterization of the price of the market:

Proposition 2. The price functionP(D) is

P(D)= (1+ D)γ
D−κ

q

[
V(D, κ, 2− γ )

+ D
2q
σ2 V

(
1

D
, α +

2q

σ 2
− 1,2− γ

)]
, (11)

whereV(y,a, b)
def
=
∫ y

0 ta−1(1+ t)b−1 dt , andq, κ, andα are defined as in

Equation (4), i.e.,q =
√
µ2+ 2ρσ 2, κ = µ+q

σ2 , α = γ − κ.

Similarformulas are derived inCochrane, Longstaff, and Santa-Clara(2008)
(for γ = 1) and inMartin (2009), though there they are expressed in terms of
hypergeometric functions.

Figure1shows the price-dividend ratio multiplied by|η|, for different choices
of γ . This product equals 1 in the standard model, regardless ofD. Recall that
the breakpoint risk aversion for this set of parameters isγ = 10.6.
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Figure 1
Scaled market price-dividend ratio in MC model as a function ofD
The parameters of the model are according to (9), i.e., µ̂ = 0.75%, σ = 4%, ρ = 1%, with risk-aversion
coefficientsγ = 2,3,12,13.

For γ = 2 andγ = 3 (the lower lines), the ratios quickly converge to 1
asD increases, in line with the intuition that whenD is large, the economy is
effectively the same as the standard model. However, forγ = 12 andγ = 13,
the function quickly increases asD grows. It is clear from the figure that price
dynamics above the breakpoint are quite different from those below. We now
explore why.

Consider the price of a digital option that pays a very small amount (say $1)
in the event that total consumption drops to 1+ ε.12 Let K (D0, ε) be the value
of such an asset, starting atD0 (where we assume thatD0 > ε).

It follows from (3) thatK is given by

K (D0, ε) =
(

1+ D0

1+ ε

)γ
E0
[
e−ρτ f

]
,

whereτ f is the stopping time

τ f
def
= inf

t
{t : Dt ≤ ε}. (12)

The value of this claim is thus made up of two offsetting elements. The first

element,
(

1+D0
1+ε

)γ
, is the incremental marginal utility of the agent when he

consumes, given his consumption today. The contribution of this part is heavily
dependent on the agent’s risk aversion. A high risk aversion implies a high
difference between the marginal utility at the consumption level 1+ ε and at
1+ D0, which has a positive effect on the price. For largeD0, the first element

12 Technically, this is an American digital cash-or-nothing put option.

11

 at U
niversity of C

alifornia, B
erkeley on F

ebruary 19, 2011
rfs.oxfordjournals.org

D
ow

nloaded from
 

http://rfs.oxfordjournals.org/


TheReview of Financial Studies / v 00 n 0 2010

behaves like Dγ
0 , since the relative value of consumption atε is higher the

wealthier the economy is at the starting point. Because of the direct dependence
on the risk-aversion coefficient, we call this the “risk-aversion effect.”

The second element,E0
[
e−ρτ f

]
, represents the expected discounted value

of $1 when consumption hits the boundary. We therefore call it the “discount
effect.” It is straightforward, using standard results for stopping-time distribu-
tions, to show that

E0
[
e−ρτ f

]
=
(
ε

D0

)κ
, (13)

whereκ > 0 is defined in (4).13 Sinceκ > 0, it is always the case that this
term is decreasing inD0. This makes sense because the higherD0, the longer
it will take to reachε (and the lower the chance thatε will ever be reached).
It is easy to see thatκ is increasing inµ andρ, but decreasing inσ . All these
properties are intuitive: A higher growth rate,µ, lowers the chance thatε will
ever be reached, and thereby decreases the time value of the digital option. An
increase in the volatility,σ , has the opposite effect. Finally, an increase in the
personal discount rate,ρ, lowers the discounted value of the option.

Putting the risk aversion and discount effects together, we arrive at

K (D0, ε) = ε
κ

(
1+ 1/D0

1+ ε

)γ
Dγ−κ

0 . (14)

Given a fixedε > 0, εκ
(

1+1/D0
1+ε

)γ
approachesa positive constant for large

D0. By contrast, the behavior ofDγ−κ
0 dependsonγ−κ. Below the breakpoint

(i.e., forγ − κ < 1), for largeD0 this asset is worth much less thanD0, i.e.,
K (D0, ε)/D0 goesto zero asD0 goesto infinity. In this case, the discount
effect dominates the risk-aversion effect for largeD0. Above the breakpoint,
on the other hand (i.e., forγ − κ > 1), this asset becomes very valuable for
high D0, in a nonlinear fashion. The risk-aversion effect now dominates the
discount effect.

The central intuition of the article is that the trees contain this type of pay-
out (they pay something in the bad states of the world). Therefore, above the
breakpoint, the market value of these trees will also increase superlinearly with
D0. In fact, we will show that they behave just like the digital options above
the breakpoint, with their value growing likeDγ−κ

0 for largeD0.
Thedigital option argument also provides an intuition for why the standard

model does not work above the breakpoint. The single tree in the standard
model also contains a collection of these types of threshold payments. The sin-
gle tree does not, however, guarantee the representative agent the subsistence

13 The expression forκ canbe derived from the first-passage-time distributions (seeIngersoll 1987). It can also
be derived using methods from the real-options literature. Similar toDixit and Pindyck(1994, 142–44), the
expectation can be derived as a solution (of the form (13)) to an ordinary differential equation. Here,κ is the

positive root to the characteristic equationσ
2

2 κ2 − µκ − ρ = 0.

12

 at U
niversity of C

alifornia, B
erkeley on F

ebruary 19, 2011
rfs.oxfordjournals.org

D
ow

nloaded from
 

http://rfs.oxfordjournals.org/


Revisiting Asset Pricing Puzzles in an Exchange Economy

level of B = 1. The first term in the equation corresponding to (14) therefore
contains onlyε (not 1+ ε) in the denominator. It follows that such claims will
be much more valuable in the one-tree economy because when the agent’s con-
sumption is low (ε low), her marginal utility will be very high and therefore
the value of such claims will explode. In this way, the risky tree becomes in-
finitely valuable. We will return to this point in more detail in Section3, where
we show that a similar argument also holds for finite-horizon economies.

It is possible to derive the following asymptotic results for largeD for the
behavior of the market price-dividend ratio in the MC economy.14

Proposition 3. The asymptotic price-dividend ratio in the MC model de-
pends on the parameter region. Specifically,

(i) Below the breakpoint (i.e., forα < 1 so that the value function is finite
in the one-tree model), for largeD the price-dividend ratio converges to
P(D)
1+D =

1
η .

(ii) Above the breakpoint (i.e., forα > 1 so that the value function is in-
finitely negative in the one-tree model), for largeD the price-dividend
ratio converges tocDα−1, for some constantc > 0, whereα is defined
in (4).

It is immediate from Proposition3 that the exponent of the asymptotic price-
dividend ratio behaves like max(α, 1)−1. It is thus the “convexity parameter,”
max(α,1), which governs the behavior of price-dividend ratios (and prices) for
largeD. Figure2 shows the convexity parameter as a function of risk aversion
(γ ) for some different parameter choices.

The convexity of the price function lies at the heart of our analysis of the
asset pricing puzzles, to which we now turn.15

2.1 The Risk Premium
It is important to stress that reasonable values of the exogenous parameters
are consistent with the region in which prices and price-dividend ratios are un-
defined in the standard model. In the MC economy, the asymptotic expected
return on the market depends on the parameter values. Recall that the instanta-
neous expected return on the market is

re dt = E

[
dP

P
+

1+ D

P
dt

]
. (15)

14 Throughoutthe article, we study the value of the totalB+D consumptionflows. We obtain identical asymptotic
results for the purely risky part of the economy, i.e., the value of theD consumptionflows.

15 Theconvexity of the price function above the breakpoint (shown in Proposition3(ii)) is crucial for the subse-
quent results. The convexity can also be verified numerically. We provide Mathematica code for the numerical
calculations in the Appendix.
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Figure 2
Convexity parameter,max(α,1), as a function of risk aversion,γ
Parameters:̂µ = 0.75%, ρ = 1%, σ = 2.5%,3%,4%,6%,12%.

We have

Proposition 4. For z close to 1,

(i) Below the breakpoint, the expected return on the market is the same as in

the standard model:re = ρ + γµ− γ (γ − 2)σ
2

2 .

(ii) Above the breakpoint, the expected return on the market isre = αµ +

α2 σ2

2 , whereα is defined in (4).

To get an intuition for the results in Proposition4, we note that below the
breakpoint, the price is essentially the same as in the standard model (as shown
in Proposition3(i)), so expected returns will essentially be the same. Above
the breakpoint, however, the second term in (15) becomes small for largeD
(as implied by Proposition3(ii)). Moreover, sinceP(D) ∼ Dα, the first term
behaves like

E

[
dP

P

]
=
(µ+ σ2

2 )P
′ dt + σ2

2 D2P′′ dt

P
≈ α(µ+

σ 2

2
) dt+α(α−1)

σ 2

2
dt.

It follows that the market risk premium can also become large. In fact, it is well
known that the risk premium,re− rs, can be expressed as

(re− rs) dt = − cov

(
dM

M
,

dP

P

)
, (16)
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wherers is the short-term risk-free rate andM is the pricing kernel, which is
equal toe−ρt (1+D)−γ in the MC economy (withB = 1). It therefore follows
from standard It̂o calculus that

re− rs = γ max(α,1)σ2. (17)

For α < 1, the risk premium is thus the same as in the standard model. For
α > 1, however, it is larger, due to the convexity ofP as a function ofD. In
this case, throughα, the risk premium now depends on the economy’s growth
rate,µ, and the personal discount factor,ρ, and is decreasing in both of these
parameters.

One immediate implication of Proposition4 is

Corollary 1. For z close to one, for low values ofµ andρ, or high values of
σ , the risk premium is close toγ 2σ 2.

Thus,if µ andρ are low and/orσ is large, thenκ is close to zero and the
risk premium,γ max(γ − k, 1)σ2, is close toγ 2σ 2. The result emphasizes
that the risk premium has a very different dependence on the parameters of
the economy here, compared with the standard one-tree economy, in which the
risk premium isγ σ 2. Since it is always the case thatκ > 0, γ 2σ 2 is also an
upper bound on the risk premium in the MC economy, regardless of parameter
values.

The intuition behind the equation for the risk premium (17) is clear. As we
saw in Section2, below the breakpoint, the discount effect dominates the risk-
aversion effect, so the values of digital options that pay off in bad states of
the world are marginal for largeD. Therefore, the pricing in the states of the
world close to currentD will dominate the pricing function. Since the risk-free
asset is marginal in these states of the world, asset dynamics will look much
like in the one-tree model. Specifically, below the breakpoint all variables of
interest converge to the same values as in the one-tree economy asD becomes
large—or equivalently, asz→ 1.

Above the breakpoint, on the other hand, the risk-aversion effect dominates
the discount effect. The value of digital options that pay off in bad states of
the world now increases asDα, whenD increases. Therefore, the price func-
tion is very different from the one-tree price function, even asz → 1. The
convexity of the price function immediately implies a higher equity premium.
Specifically, from (16) it follows that there are two parts of the risk premium.
The first part depends on the pricing kernel,dM

M , and the contribution of this
part whenz is close to 1 isγ σ in both the one-tree and MC economies. The
contribution of the second part,dP

P , however, is different in the two models.
Whereas the contribution isσ , leading to a risk premium ofγ σ × σ = γ σ 2

whenthe price function is linear, it isασ when P(D) grows likeDα, α > 1.
The risk premium is thereforeγ σ × ασ = γασ 2 above the breakpoint in the
MC economy forz close to 1.
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Figure 3
Market risk premium as a function of z, for fixed risk aversion
Parameters:̂µ = 0.75%, ρ = 1%, σ = 4%, γ = 12.25, implying thatα = 2.55. The asymptotic risk premium is
γασ2 = 5.0%.

These are asymptotic results, forz close to 1. In Figure3, we illustrate the
market risk premium for a fixed risk aversion,γ = 12.25 (which is above the
breakpoint), as we vary the risky share,z (recall thatz= D

D+B ∈ (0,1)), using
the parameters in (9). As z approaches 1, there is indeed convergence to the
asymptotic value of 5.0%. Comparing this with the risk premium implied by
the standard model,γ σ 2 = 2.0%, we see that the premium in the MC model
is substantially higher.

The following Figure4 displays the market risk premium forz close to 1 as
we vary both risk aversion and volatility (each curve corresponds to a different
volatility). Beyond the breakpoint, the risk premium increases very quickly in
a convex fashion, implying that a small increase in risk aversion drastically
increases the market risk premium.

2.2 The Term Structure
The term structure is also quite different in the MC economy. From (3), it
follows that a zero-coupon risk-free bond with maturity dateτ has the price

Pτ = e−ρτ E0

[(
B+ D0

B+ Dt

)γ ]
. (18)

We can rewrite this expectation in terms of the risky share,z= D0
B+D0

,

Pτ = e−ρτ E0

[(
1+ z

(
Dt

D0
− 1

))−γ]

, (19)

and since the distribution ofDt
D0

does not depend onD0, it immediately follows
that the price can be written as a function ofz alone, Pτ (z), given by the
following proposition:

16
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Figure 4
Market risk premium for large z close to 1, as a function of risk aversion,γ
Below the breakpoint, the risk premium is the same as in the standard model, and linear inγ , re − rs = γ σ2.
Above the breakpoint, the risk premium is a steeply convex function. Parameters:µ̂ = 0.75%, ρ = 1%, σ =
2.5%,3%,4%,6%,12%.

Proposition 5. Define the log-relative size of the sectors asd = log(z/(1−
z)). Then, the price of aτ -period zero-coupon bond is given by

Pτ = (1+ ed)γ e−ρτ
1

√
2πσ2τ

∫ ∞

−∞

e−(y−d−µτ)2/(2σ2τ )

(1+ ey)γ
dy. (20)

This result follows immediately from Equation (19). An equivalent expres-
sion (Equation (29)) that is more convenient for calculation appears in the
Appendix.

Martin (2009) independently characterizes the term structure in an economy
with many trees. His framework is more general than ours, in that it allows for
general Levy processes and multiple trees, but his solution is based on Fourier
transform techniques and so is different from those in Proposition5 and in the
Appendix.

In the MC economy, the term structure is no longer constant. Defining the
τ -period spot rate as

r τ = −
log(Pτ )

τ
,

we use Equation (29) in the Appendix to study the yield curve with parameters
chosen according to (9), z = 70%, and risk-aversion coefficients between 6
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Figure 5
Term structure of interest rates in the MC model
Parameters:z = 0.7, γ varies between6 (highest curve) and12 (lowest curve). Other parameters are according
to (9).

and 12. The choice ofz = 70% means that the risky tree initially dominates
the economy, and the risky share converges toz = 1 ast grows, so the con-
sumption growth rate is fairly stable in this economy. The results are shown in
Figure5.

We note that the yield curves in the figure can slope upward or downward,
and can even be hump-shaped. The slope increases with the risk-aversion coef-
ficient,γ , and so, in general, does the curvature. Moreover, although the short
end of the curve is sensitive toγ , as in the one-tree model, there seems to be
an asymptotic long-term rate that does not vary much withγ . To understand
these properties of the yield curve, we analyze the short rate,rs, and the long
rate,rl , defined to be

rs = lim
τ↘0

r τ , and rl = lim
τ→∞

r τ ,

respectively.

Proposition 6. In the MC economy, the short-term rate is

rs = ρ + γ z

(

µ+
σ 2

2

)

− γ (γ + 1)
σ 2

2
z2.

For z ∈ (0,1), if µ ≤ γ σ 2, the long-term rate is

rl = ρ +
1

2
×
µ2

σ 2
. (21)

If, on the other hand,µ > γσ 2, the long-term rate is

rl = ρ + γ

(

µ+
σ 2

2

)

− γ (γ + 1)
σ 2

2
. (22)
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Thus, the short rate has the same structure as in the standard model and, as
long asµ > γσ 2, the long rate is also the same as in the standard model. This
makes intuitive sense, since the economy will almost surely be very similar to
the one-tree economy in the long run. Ifµ < γσ 2, however, the long rate is a
constant, independent of the risk-aversion parameter. Since

η= ρ + (γ − 1)µ− (γ − 1)2
σ 2

2
> (γ − 1)

(

µ− (γ − 1)
σ 2

2

)

> (γ − 1)
(
µ− γ σ 2

)
,

it will always be the case that the long rate is independent of risk aversion
above the breakpoint (i.e., whenη is negative).

In our previous numerical example, with parameters according to (9) and
γ = 12.25, this implies that the long rate isrl = 2.4%. The short rate depends
on z, as shown in Figure6. Forz close to unity, i.e., for largeD, it becomes
negative. Atz = 1, it is−2.8%. While negative, this is nevertheless far more
reasonable than the values we would obtain if we calibrated the standard model
to the market risk premium. For example, a risk premium of 5% would imply
a risk-free rate of−58% in the standard model. We are, of course, dealing with
real variables, so a negative discount rate is obviously possible, although this
value is clearly extreme.

Our focus is on the case whenz is close to one. We note in passing, however,
that for lowerz (i.e., when the relative size of the risk-free tree is not negligi-
ble), the short rate is also positive. In our calibration, forz ≤ 0.8, the short
rate is positive. From Figure3, we see that the risk premium is about 3% at
z = 0.8. Finally, we note that the volatility of the short rate,σ(rs), is low and
depends onz. In our example,σ(rs) varies between 0 and 0.08% and reaches
its maximum atz≈ 0.75.

Figure 6
Short rate as a function ofz
Parameters of the model are according to (9) andγ = 12.25.
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This γ -independenceabove the breakpoint stands in stark contrast to the
results in the standard model, where the interest rate is very sensitive to risk
aversion. Specifically, in the MC model, the long rate is always greater than
the personal discount rate,rl > ρ, regardless of the aggregate risk aversion in
the economy, and is therefore positive.16,17 Thisγ -independencethus offers a
resolution to the risk-free rate puzzle at the long end of the term structure.

The reason why risk aversion becomes unimportant for bond yields as the
horizon increases, even though bond prices depend on risk aversion, is that
differences between bond prices in economies indexed by different levels of
risk aversion are sufficiently small, compared with the compounding inherent
in the yield calculation, that the price differences become unimportant at the
long end of the curve. The price of a bond is the expected discounted value
of a dollar multiplied by the representative agent’s marginal utility. In the MC
model, the marginal utility (irrespective of risk aversion) is bounded above
and below. If the agent consumes the fruit of a risk-free tree, which provides
insurance, then marginal utility is always bounded above. Indeed, one can find
an upper bound on the ratio of marginal utilities for two agents with the same
personal discount factor but different risk-aversion coefficients independently
of time horizon. Therefore, bond prices for the same maturity for any two
economies that differ only in the risk aversion of their representative agents
will not differ “by much.” For long maturities, this will lead to similar yields.

The difference between the long rates in the standard and MC economies
further underscores the fragility of the CRRA-lognormal model over longer
time horizons. Regardless of how closez is to 1 in the MC model, the long-
term rate is drastically different from whenz is identically equal to 1. The
differences between the two models are driven by the insurance the risk-free
tree provides in the far-left tails. Moreover, although the long rate is alwaysγ -
independent above the breakpoint, there are also regionsbelowthe breakpoint
in which it isγ -independent.

At a broad level, our results are reminiscent of, but distinct from, those found
in Weitzman(1998,2001). Weitzman argues that if there is parameter uncer-
tainty, the long-term discount rate is lower than that inferred from the short-
and mid-term rates. We agree with Weitzman that a careful analysis of the
implicit assumptions about return distributions and utility in the tails is needed
to understand the long-term discount rate. Both Weitzman’s and our results are

16 A somewhat related result on the long rate is presented inDybvig, Ingersoll, and Ross(1996), who show that
long rates can never fall over time. Within our specific economy, our result is stronger than the Dybvig-Ingersoll-
Ross theorem, since it states thatr l is constant over time and across risk aversion.

17 We have verified that the formula is indeed correct by numerically integrating Equation (18) directly. Mathemat-
ica code is provided in the Appendix, showing that with parametersρ = 1%, µ = 3.5%, σ = 20%, γ = 2.5, the

long rate converges torl = ρ +
µ2

2σ2 = 2.53%(in line with Equation (21), since3.5%< 2.5× 20%2). On the

contrary, Equation (22) would, for example, giverl = ρ+γµ−γ
2σ2/2= 1%+2.5×3.5%−2.52×20%2/2=

−2.75%. By varying B, D0, andγ , it is easily verified thatr l doesnot depend on these parameters.
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driven by the extreme importance of the worst states in longer horizons. Unlike
in Weitzman(1998,2001), however, the long rate in our model may be higher
than the short rate. This distinction is obviously important if existing market
data are used to infer a maximum possible discount rate.

2.3 Excess Volatility
Above the breakpoint, prices are not linearly related to consumption, but, as
we observed in Proposition2, are a convex function of dividends. It naturally
follows, then, that the volatility of prices is much higher than the volatility of
the underlying dividends. In fact, it is easy to show that the price volatility is

vol

(
dP

P

)
= max(α,1)σ. (23)

In our numerical example, with parameters according to (9) andγ = 12.25,
this implies a market price volatility of 10.3%, which is more than 2.5 times
the dividend (and consumption) volatility of 4%. SinceC = B + D, if we
think of B as a bond andD as a stock, then the volatility of consumption will
actually be somewhat lower than that of dividends. This is, of course, in line
with what we see in practice. The magnitude of the difference will be small,
though, as our focus is on the case whereB � D. If we alternatively inter-
pret bothB and D as being (different) parts of the stock market, one riskier
than the other (somewhat reminiscent ofRubinstein 1983), dividend and con-
sumption volatility will be exactly equal. The model thus naturally leads to
excess volatility, both with respect to consumption and with respect to divi-
dends. Sinceα < γ , an upper bound on the excess volatility is given by the
risk-aversion parameter.

Table2 summarizes the formulas and numerical results we have derived.

Table 2
Properties of the MC model for large D

Variable Formula Value-MC

Shortrate,rs ρ + γ
(
µ+ σ2

2

)
− γ (γ + 1)σ

2
2 −2.8%

Long rate,rl ,whenµ < γ σ
2

2 ρ + µ2

2σ2 2.4%

Long rate,rl , whenµ > γ σ
2

2 ρ + γ
(
µ+ σ2

2

)
− γ (γ + 1)σ

2
2

Market return,re, whenα > 1 αµ+ α2 σ2
2 2.2%

Market return,re, whenα < 1 ρ + γ
(
µ+ σ2

2

)
− γ (γ − 1)σ

2
2

Riskpremium,re− rs γ max(α,1)σ2 5.0%
Consumptionvolatility σ 4%
Dividend volatility σ 4%
Pricevolatility max(α,1)σ 10.3%
Market Sharpe ratio γ σ 0.49

An example is given with parameters according to (9), µ̂ = 0.75%, σ = 4%, ρ = 1%, andγ = 12.25, implying
thatα = 2.58.
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3. Discussion and Generalizations

3.1 Sensitivity of Standard Model
Our model shows how minor changes to the process in low-consumption states
(when CRRA expected utility becomes unbounded as consumption approaches
zero) drastically change the results obtained from the standard one-tree model.
The fragility of expected utility when utility is unbounded has been much stud-
ied, supported by the theoretical work ofNielsen(1984,1987), who develops
an axiomatic foundation for expected utility theory that allows for unbounded
utility functions. More recently,Geweke (2001) shows that the CRRA-
lognormal framework is very fragile with respect to distributional assumptions
in the far-left tails. For example, he shows that forγ > 1, expected utility at
some future date is not finite if log(C) has at-distribution with any number
of degrees of freedom,ν, so we cannot use expected utility to make optimal
choices (even though, for high values ofν, this distribution is impossible to
distinguish econometrically from lognormality). Thus, even if the true distri-
bution is normal, but the mean and variance are unknown (with standard forms
for their priors), expected utility to a Bayesian updater is not finite even in the
limit as the sample length goes to infinity.

Geweke(2001) notes that the extreme sensitivity of the finiteness of ex-
pected utility to assumptions about tail distributions carries over to implica-
tions we might draw about quantities such as the equity premium and the
level of real interest rates. However, neitherNielsen(1984) norGeweke(2001)
provides any specific quantitative implications. Pursuing this line of thought,
Barro(2005) (followingRietz 1988) generates empirically reasonable risk pre-
mia by allowing for some additional probability of extremely low consumption
states.Weitzman(2007) adds additional weight to low-consumption states via
parameter uncertainty.18 Theimportance of very low consumption states in the
CRRA-lognormal framework was also emphasized inKogan et al.(2006), who
studied the price impact of irrational traders in capital markets.

The intuition behind our model is, in spirit, somewhat similar, in that we also
focus on the impact of very bad outcomes. However, whereas the papers above
all fatten the lower tail of the consumption distribution, we make the lower
tail thinner. This allows us to study regions of parameter space, invalid under
the standard model, where bad events have a much larger effect on expected
utility. In these regions, the risk premium is higher even though there is no
“jump risk” in the MC model. In addition, whereas the other papers focus on
one puzzle at a time (usually the equity premium puzzle), we show that our
modification of the standard model is able at the same time to substantially
mitigate the equity premium puzzle, risk-free rate puzzle, and excess volatility
puzzle.

18 Otherpapers making small changes to the distributional assumptions includeGeweke(2000),Tsionas(2005),
andLabadie(1989).
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3.2 Bonds in Positive Net Supply
Ours is not the first model to provide a minimum consumption level via riskless
bonds in positive net supply. In particular,Cochrane, Longstaff, and Santa-Clara
(2008), in the original “two-trees” model, consider an example (Section 2.8)
where one tree has a riskless dividend (though this is not the main focus of their
paper). However, because they assume log utility, they are unable to consider
parameter values beyond the breakpoint, so all of their economies converge to
a standard one-tree economy as one of the trees gets large.Heaton and Lucas
(1996) consider agents with general CRRA utility who can trade stocks and
bonds and face stochastic labor income. Although they mostly assume bonds
are in zero net supply, they do also consider one example with bonds in positive
net supply (Section IV F). They find (p. 473) that this can have a significant
impact on prices and expected returns, but their solution technique (approx-
imating the true continuous-state model with a discrete-state Markov chain)
rules out extremely low consumption states, so they are unable to address the
issues studied here.

3.3 Finite Time Horizons
The standard model is not defined above the breakpoint in the infinite-horizon
setting. It is, however, well defined above the breakpoint when the time horizon
is finite, with the same low market risk premium,re− rs = γ σ 2, as below the
breakpoint. Similarly, it is straightforward to show that the MC economy with
a long but finite horizon converges to the MC economy with infinite horizon.19

Here,by convergence we mean that given anyz> 0, there is a large but finite
T such that the finite-horizon MC economy behaves in a manner similar to the
infinite-horizon economy with the samez.

How can the results then be so different? We argue that it is the standard
model that behaves strangely above the breakpoint. The price function in the

finite-horizon case isP(t, D) = 1−e−η(T−t)

η D . Below the breakpoint, this con-

verges toD
η for largeT . Above the breakpoint, on the other hand, the price

explodes as time to maturity increases. The low risk premium then comes from
the fact thatPt

P ≈ η, i.e., there is a large expected price decrease at each point
in time whenη is negative. This decrease is driven by the low-state digital op-
tions we discussed previously. These claims are extremely valuable for long
time horizons, but their value decreases very quickly over time when the ter-
minal date approaches, since the risk that these states will ever be reached
decreases rapidly. The behavior of the entire tree’s value is driven in large part
by the extreme behavior of these low-state digital options. Since such negative
expected returns with time horizon do not seem to be present in practice, we
conclude that the standard model also provides a poor characterization above
the breakpoint with finite horizons.

19 Theconvergence follows much easier than in the standard model since, forγ > 1 andB > 0, the utility function
and its derivative are bounded below and above for all states of the world.
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3.4 Relation to Literature on Bubbles
Price-dividend ratios in the MC model are nonstationary beyond the break-
point. In fact, the convex price function is similar for largeD to what oc-
curs in the rational-bubble models that have been introduced to explain the
excess-volatility puzzle (see, for example,Froot and Obstfeld 1991). In fact,
our mechanism leading to excess volatility is technically similar to the intrinsic
(rational) bubble mechanism used inFroot and Obstfeld(1991). The standard
way of introducing rational bubbles in an infinite-horizon economy is to ignore
transversality conditions (see, for example,Ingersoll 1987; Froot and Obstfeld
1991;Gilles and LeRoy 1997). Within our setting, allowing for rational bub-
bles would amount to changing the pricing function (3) by adding a non-zero
rational-bubble term to the formula.

Without transversality conditions, there are multiple pricing functions con-
sistent with rational pricing. As shown, e.g., inFroot and Obstfeld(1991), in a
constant discount rate and investment opportunity setting, the bubble solutions
take the formcDα for someα > 1, as opposed to the no-bubble solutions,
which haveα = 1. Thus, these rational bubbles have the same functional form
as our price function above the breakpoint, and are also nonstationary. In the
MC economy, however, even though price-dividend ratios are nonstationary,
there is no bubble, since the discounted cash flow formula (3) prices all as-
sets in the economy. In fact, as noted already inCochrane(1992), Appendix
B, even with stationary distributions for consumption growth, price-dividend
ratios need not be stationary. Thus, although the price functions have similar
forms in the MC economy and in the rational-bubble literature, the underlying
economic reason is very different.

The empirical literature that has tested for explosive stock market price dy-
namics has produced mixed results. For example,Diba and Grossman(1988)
use a cointegration-augmented Dickey-Fuller test to conclude that prices are
not explosive, a conclusion that is supported byCochrane(1992). On the other
hand,West(1987) andFroot and Obstfeld(1991) do find evidence for explo-
sive price dynamics, findings that are also supported byEngsted(2006), who
uses a cointegrated VAR method. In the MC model, the price-dividend ratios
explode quite slowly and may therefore be hard to detect. In our numerical ex-
ample, for example, it takes about 65 years for price-dividend ratios to double.
This compares with an observed increase in the market price-dividend ratio of
3.2 times during the 65 years between 1943 and 2008.20

3.5 Relation to Hansen-Jagannathan Bounds
We have developed our results with respect to the market risk premium. In
other words, our analysis has rested on the assumption that the equity portfolio
makes up the whole market portfolio. This is the formulation developed in

20 This calculation is based on annual price and dividend data obtained from Robert Shiller’s website,
http://www.econ.yale.edu/ shiller/data.htm.
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Mehraand Prescott(1985) and many other papers. With that formulation, it is
shown that, all else equal, the risk premium is much higher in the MC model
than what seems to be implied by the standard model.

An alternative approach to the equity premium is given inHansen and
Jagannathan(1991), in which it is described as a bound on the Sharpe ratio of the
equityportfolio.ThisboundputsrestrictionsontheSDFintheeconomy,whereas
the market model puts joint restrictions on the SDF and the price function.
Since the risk premium in our approach increases due to a more volatile price
function, our approach therefore has less to say about the Hansen-Jagannathan
bounds. It does have two implications, though. First, the interpretation of a high
equity volatility differs from that in the standard model. In the standard model,
a high equity volatility implies that the equity market is a highly leveraged
claim on consumption. This is not the case in the MC model, in which the
high volatility is introduced because of the convex price function. Second,
since the price function is nonlinear, the unconditional correlation between
consumption and equity returns may be low even though the two processes
are instantaneously perfectly correlated. In fact, it follows from Figure1 that
for low D, equity and consumption are perfectly negatively correlated, which
will decrease the unconditional correlation and, in turn, artificially make the
required risk premium look higher than it actually is (for further analysis of
this argument, seeBerk and Walden 2009).

3.6 More General Utility
The focus of this article is on standard time-separable expected utility. One
may wonder what the results would be in a model in which a more general
utility specification is used. Specifically, it is well known that the standard
time-separable expected utility specification jointly restricts risk aversion,γ ,
and the elasticity of intertemporal substitution (EIS), such that the inverse of
the EIS,ψ , is equal toγ . If the representative investor has stochastic differ-
ential utility, ψ andγ may not be the same, raising the question of whether
ψ or γ determines the breakpoint. It turns out that the breakpoint depends
on bothψ andγ in this case. For example, under the Kreps-Porteus stochas-
tic differential utility (Duffie and Epstein 1992), the breakpoint occurs atρ +

(ψ−1)
(
µ− (γ − 1)σ

2

2

)
, asfollows from the analysis inRoche(2001; Equa-

tion 2.3) andBhamra, Kuehn, and Strebulaev(2010). Both the EIS and risk-
aversion parameter, therefore, contribute to the breakpoint under stochastic dif-
ferential utility.

3.7 Generalizations
For simplicity, we have derived our results in a two-trees framework with one
risk-free, constant-size tree. The results, however, are much more general. As
long as there is a lower bound on consumption (which could grow determin-
istically at some rate), and the risk of ending up in these low-consumption

25

 at U
niversity of C

alifornia, B
erkeley on F

ebruary 19, 2011
rfs.oxfordjournals.org

D
ow

nloaded from
 

http://rfs.oxfordjournals.org/


TheReview of Financial Studies / v 00 n 0 2010

statesis bounded below by an i.i.d. growth process that, givenγ , is above the
breakpoint, similar results apply. The general consumption process could, for
example, contain mean-reverting growth, as well as long-term i.i.d. growth. To
fix ideas, we illustrate one such generalization and show how a convex price
function arises under general conditions.

Proposition 7. Consider an exchange economy, with a representative agent
with CRRA expected utility with risk-aversion coefficientγ > 1 and personal
discount rateρ > 0, in which the consumption isCt = f (Dt ), whereDt = est ,
andwhere f : R+ → R+ is a continuous, increasing function, such that for
larged, c0d ≤ f (d) ≤ c1d, for some constants 0< c0 ≤ c1 <∞.

For the stochastic process,st ∈ R, define the c.d.f.F(s, t |s∗, I ) = P(st ≤
s|s0 = s∗, I ), whereI captures the information known aboutst at t = 0.
Assumethat the following condition is satisfied:

∃µ, σ > 0, t ≥ 0, s, s,

suchthat∀t ≥ t, s∗ ≥ s : F(s, t |s∗, I ) ≥ Φ
(

s− s∗ − µt

σ
√

t

)
. (24)

Here,Φ is the cumulative normal distribution function. Further, assume that

the economy is beyond the breakpoint, i.e., thatα = γ − µ+
√
µ2+2ρσ 2

σ2 > 1.
Then,

(i) If f (x) ≤ c2x in a neighborhood ofx = 0, for some constantc2 ≥ 0,
thenthere is no equilibrium in the economy.

(ii) If f (0) > 0, then in any equilibrium the price of the market satisfies
P(C0) ≥ c3Cα

0 , for some constantc3 > 0.

Equation(24) states that for largeD0 (i.e., for D0 ≥ es) and larget (i.e., for
t ≥ t), the risk of ending up in low-consumption states (st ≤ s) is at least as
high as ifs were a constant coefficient Brownian motion with growth rateµ
and volatilityσ .21

Example 1. The MC economy is a special case of Proposition7, in which
f (x) = 1 + x, andst ∼ N(s0 + µt, σ 2t). It therefore satisfies (24) as an
equality forall t > 0, s, ands.

Moreover,

Example 2. Consider an MC economy withf (x) = 1 + x and a mean-
reverting growth process,

dst =µt dt + σ dω1,

21 While Proposition7 generalizes our results to different probability distributions for consumption, pricing de-
pends only on the product of the p.d.f. and marginal utility at each possible consumption value, so our results
could also be extended to more general utility functions.
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dµt = β(µ− µt ) dt + σµ dω2,

whereµ, σ , σµ, andβ are positive constants and wherecov(dω1, dω2) =
ρ dt . Similar processes are, for example, assumed inKim and Omberg(2002),
Wachter(2002), andBansal and Yaron(2004), and it is well known thatst is
normallydistributed,

st ∼ N

(

s0+ µt +
µ0− µ

β

(
1− e−βt) ,

σ 2
µ + 2σµβρσ + β2σ 2

β2
t

−
3σ2
µ + 4σµβρσ

2β3
+

2e−βt

β3

(
σ 2
µ + σµβρσ

)
−

e−2βtσ 2
µ

2β3

)

.

Therefore,for larget , (24) is satisfied withσ 2 def
=

σ2
µ+2σµβρσ+β2σ2

β2 . Here,σ >
0, as long asρ > −1 or σµ 6= βσ . From Proposition7, it therefore follows
that similar price dynamics occur beyond the breakpoint in the MC economy
with a mean-reverting growth process.

Thus, our theory is really about minimum consumption levels in exchange
economies, not about specific tree economies. In particular, referring back to
the discussion after Equation (17), this result implies that if the representative
investor has a low discount rate and believes that growth will slow down some
time (arbitrarily far) in the future, then the effective equity premium for high
D will still be approximatelyγ 2σ 2, regardless of the value ofµ today (since
it is only the asymptotic growth that matters). With this line of reasoning, the
observed risk premium in the example we have studied throughout this article
would be matched byγ =

√
5%/4%2 = 5.6 (instead ofγ = 12.25 needed

when the expected growth rate is constant). Further, if we use the numbers in
Weitzman(2007)—a risk premium of 6% and consumption volatility of 2%—
the risk premium is matched byγ =

√
6%/2%2 = 12.25 (compared with

γ = 6%/2%2 = 150,obtained inWeitzman 2007under the assumption that
re − rs = γ σ 2). Thus, a high risk premium may be a sign that the economy
will not be able to continue to grow fast in the long run.

4. Concluding Remarks

We have established that if risk aversion is sufficiently high, the stochastic dis-
count factor in a simple one-tree exchange economy with minimum consump-
tion can be a convex function of the dividend (and hence consumption) stream.
This immediately leads to explosive price-dividend ratios, excess volatility,
modest interest rates, and risk premia that are in line with those observed.

Intuitively, there are two main channels through which future low-
consumption states affect how the representative agent values the market. The
first is how the representative agent currently values these low states, and is
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thereforecaptured by the difference between marginal utility at current con-
sumption and at the low-consumption states; the higher the current consump-
tion, the greater the difference. Further, since marginal utilities are convex
functions of consumption (when risk aversion is greater than 1), this channel
also makes current market prices convex in consumption. The second channel
is how likely the representative agent is to hit one of these low states; the higher
her current consumption, the lower the risk that the low-consumption states
will ever be reached (and the longer it will take if they are reached). Below
the so-called breakpoint, the second effect outweighs the first, which means
that the influence of the consumption provided in low-consumption states on
the current price becomes negligible when current consumption is high. This
corresponds to the standard model, in which the value of the agent’s consump-
tion stream is essentially linear in that consumption. However, when risk aver-
sion is high enough to be above the breakpoint, the first effect dominates: The
value of being able to consume in the low-consumption statesincreasescon-
vexly as current consumption grows. There is a ready analogy to this intuition
in the rare-disaster literature; while there are no “disasters” in this framework,
the existence of low-consumption states completely changes the properties of
the model above the breakpoint.

Two immediate conclusions can be drawn from our work. First, the stan-
dard long-horizon one-tree model with a CRRA representative investor and
a lognormal consumption process is highly sensitive to small perturbations,
especially when risk aversion is high. In short, the framework is not robust.
Second, an economically plausible assumption that is quite innocuous (subsis-
tence consumption) renders predictions that are more in accord with empirical
work. Of course, this one augmentation does not solve all puzzles; the short-
term risk-free rate is still too low and consumption volatility a bit too high, as
is the coefficient of risk aversion. However, we find it fascinating that such a
small modification of the classic workhorse consumption model can improve
the “fit” so significantly.

Finally, and more broadly, our results indicate that there is yet more to learn
about the effect of the consumption process on asset prices. Because con-
sumption (as opposed to utility) is observable, exhausting the implications
of tractable models with plausible consumption streams presents a fruitful
research agenda.

Proofs

Proof of Propositions1 and 2:
Starting with Proposition2, we have

P(D0)= (1+ D0)E

[∫ ∞

0
e−ρs

(
1+ D0

1+ Dt

)γ−1

ds

]
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= (1+ D0)
γ

∫ ∞

−∞

∫ ∞

0
e−ρs

(
1

1+ D0ey

)γ−1 e
− (y−µs)2

2σ2s

√
2πσ 2s

ds dy

= (1+ D0)
γ

∫ ∞

−∞

(
1

1+ D0ey

)γ−1 e
µy−q|y|
σ2

q
dy

= (1+ D0)
γ

[∫ 0

−∞

(
1

1+ D0ey

)γ−1 eyκ

q
dy

+
∫ ∞

0

(
1

1+ D0ey

)γ−1 ey
(
κ−2q/σ2

)

q
dy

]

= (1+ D0)
γ D−κ0

q

[

V(D0, κ, 2− γ )

+ D
2q
σ2

0 V

(
1

D0
, α +

2q

σ 2
− 1,2− γ

)]

,

where

V(y,a, b)
def
=
∫ y

0
ta−1(1+ t)b−1 dt (25)

is defined fora > 0.
In the last step, we used the transformationt = D0ey for the first integral.

For the second integral, we rewrote
(

1
1+D0ey

)γ−1
=
(

D−1
0 e−y

D−1
0 e−y+1

)γ−1

andthen

used the transformationt = D−1
0 e−y to get the expression. The functionV is

related to the incomplete Beta function,B(x,a, b)
def
=
∫ x

0 ta−1(1−t)b−1 dt (see
Gradshteyn and Ryzhik 2000), via the relationV(x,a, b) = (−1)aB(−x,a, b).
However, the Beta function is complex valued for negative values, so we prefer
using the real-valued functionV . Also, since the Beta function and the hyper-
geometric function satisfy the relationshipB(x,a, b) = 2F1(1−b,a,a+1,x),
we could equivalently have expressed the formula in terms of hypergeometric
functions.

This proves Proposition2. For Proposition1, for z= D0/(B+D0), we have

w(z)= (B+ D0)
γ−1U (0|B, D0) =

1

1− γ

P(B, D)

B+ D

=
1

1− γ

B

B+ D
P

(
D0

B

)
=

1

1− γ
zP

(
z

1− z

)
,

29

 at U
niversity of C

alifornia, B
erkeley on F

ebruary 19, 2011
rfs.oxfordjournals.org

D
ow

nloaded from
 

http://rfs.oxfordjournals.org/


TheReview of Financial Studies / v 00 n 0 2010

wherethe second equality holds for the CRRA utility, which follows from (3).
Therefore, from Equation (11), we immediately have that forz ∈ (0,1),

w(z)=
z−κ(1− z)1−γ−κ

q(1− γ )

[
V

(
1− z

z
, κ, 2− γ

)
(26)

+
(

1− z

z

) 2q
σ2

V

(
z

1− z
, α +

2q

σ 2
− 1,2− γ

)]
. (27)

For w(0) and w(1), we defineŵT (z) = E
[∫ T

0 e−ρt u (1− z+ zeyt ) dt
]
,

whereyt = log(Dt/D0). Thus,w(z) = ŵ∞(z). It follows immediately that
w(1) = ŵ∞(1) =

∫∞
0

e−ρt

1−γ dt = 1
ρ(1−γ ) . Moreover,ŵT (0) =

∫ T
0

e−ηt

1−γ dt =
1−e−ηT

η(1−γ ) , so forη > 0,w(0) = ŵ∞(0) = 1
η(1−γ ) , whereas forη < 0, limT→∞

ŵT (0)= −∞. The proposition is proved.
We note that althougĥw∞(0) = limT→∞ limz→0 ŵT (z) = −∞ whenη <

0, it does not immediately follow that limz→0w(z) = limz→0 limT→∞ ŵT (z)
is equal to−∞ (for example, ifŵT (z) = − 1

zT , then the former expression is
infinite, whereas the second is zero). However, the latter result follows, since
ŵT (z) is decreasing inT for arbitrary z ∈ [0, 1], and ŵT (z) is continuous
in z for arbitrary finiteT . Specifically, for an arbitrary constant,k > 0, it
follows that forT∗ large enough,̂wT∗(0)≤ −2k, and because of the continuity
in z, ŵT∗(z) ≤ −k for all z ≤ z∗, for somez∗ > 0. Therefore,ŵ∞(z) ≤
ŵT∗(z) ≤ −k for all z ≤ z∗, and sincek was arbitrary, it is indeed the case
that limz→0w(z) = limz→0 ŵ∞(z) = −∞. �

Proof of Proposition 3: We first study the case whenα > 1. We look at
P(D)
(1+D)α , for largeD. From (11), it follows that

P(D)

(1+ D)γ−κ
=
(

1+ D

D

)κ 1

q

[
V(D, κ, 2− γ )

+ D
2q
σ2 V

(
1

D
, α +

2q

σ 2
− 1,2− γ

)]

=
1+ o(1)

q

[∫ D

0
tκ−1(1+ t)1−γ dt

+ D
2q
σ2

∫ 1/D

0
t
α+ 2q

σ2−2
(1+ t)1−γ dt

]

. (28)

Here, limD→∞ o(1) = 0. Sinceκ > 0 andγ − κ > 1, limD→∞
∫ D

0 tκ−1(1+
t)1−γ dt = c1, where 0< c1 <∞. Moreover,

D
2q
σ2

∫ 1/D

0
t
α+ 2q

σ2−2
(1+ t)1−γ dt = D

2q
σ2

∫ 1/D

0
t
α+ 2q

σ2−2
dt

= c2D
2q
σ2 D

−
(
α+ 2q

σ2−1
)

= c2D1−α,
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which converges to zero for largeD. The finiteness of the integral is ensured,
sinceα + 2q

σ2 − 2> −1.
Thus,for largeD, the expression converges toc1

q .
For α < 1, we use that

P(D)

1+ D
= (1+ D)γ−1 D−κ

q

[
V(D, κ, 2− γ )

+ D
2q
σ2 V

(
1

D
, α +

2q

σ 2
− 1,2− γ

)]

=
1+ o(1)

q
Dγ−1−κ

[∫ D

0
tκ−1(1+ t)1−γ dt

+ D
2q
σ2

∫ 1/D

0
t
α+ 2q

σ2−2
(1+ t)1−γ dt

]

.

For the first term, we note that

∫ D

0
tκ−1(1+ t)1−γ dt =

Dκ

κ
2F1(γ − 1,κ, 1+ κ,−D)

=
Dκ−γ+1

κ
2F1

(
γ − 1,1,1+ κ,

D

D + 1

)
.

For largeD, the first term therefore converges to

1

qκ
2F1 (γ − 1,1,1+ κ, 1)=

Γ (κ + 1)Γ (1+ κ − γ )

Γ (2+ κ − γ )Γ (κ)
=

1

q(1− γ + κ)

=−
σ 2

q
×

1

(γ − 1)σ2− µ− q
.

For the second term, we note that

∫ 1/D

0
t
α+ 2q

σ2−2
(1+ t)1−γ dt

=
D

1−α− 2q
σ2 σ 2

2q + (α − 1)σ2 2F1

(
γ − 1,α +

2q

σ 2
− 1,α +

2q

σ 2
,−

1

D

)
.

Since2F1

(
γ − 1,α + 2q

σ2 − 1,α + 2q
σ2 , 0

)
= 1, andα = γ − κ, the second

term therefore converges to

σ 2

q(2q + (α − 1)σ2)
=
σ 2

q
×

1

(γ − 1)σ2− µ+ q
.
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Thus,

lim
D→∞

P(D)

1+ D
=
σ 2

q
×
(

1

(γ − 1)σ2− µ+ q
−

1

(γ − 1)σ2− µ− q

)

=
σ 2

q
×

2q

((γ − 1)σ2− µ)2− q2

=
1

ρ + µ(γ − 1)− (γ − 1)2 σ
2

2

=
1

η
. �

Proof of Proposition 4. It is easy to see from (28) of Proposition3 that for

large D, whenα > 1, d
dD

[
P(D)
(1+D)α

]
converges to 0, as doesd

2

dD2

[
P(D)
(1+D)α

]
.

Therefore,in this case,P′ = α(1+o(1))c2Dα−1, andP′′ = α(α−1)(1+o(1))

c2Dα−2 for large D, and it follows thatP′(D)D
P(D) converges toα and P′′(D)D2

P(D)
converges toα(α − 1). (ii) then follows from standard Itô calculus.

Forα < 1, an identical argument forP(D)D proves (i). �

Proof of Proposition 5. Defining F(x) = ex2
Erfc(x), where Erfc is the error

function, Erfc(x) = (
√
π)−1

∫∞
z e−t2

dt , we show that Equation (20) can be
expressed in the following form:

Pτ =
(1+ ed)γ e−ρτ−(d+µτ)

2/(2σ2τ )

2
× lim
ε↘0

∞∑

n=0

(−1)ne−εnan

(

F

(
ε + d + µτ + nτσ 2

√
2σ2τ

)

+ F

(
ε − d − µτ + (n+ γ )τσ 2

√
2σ2τ

))

. (29)

Here,

an =
Γ (γ + n)

Γ (γ )Γ (n+ 1)
,

whereΓ (x) =
∫∞

0 e−t t x−1 dt , which reduces toan =
(n+γ−1

γ

)
whenγ is

integer-valued.

(i) The function 1
(1+z)γ is analytic in the complex plane,|z| < 1, and can

therefore be expanded in the power expansion

1

(1+ z)γ
=
∞∑

n=0

(−1)nanzn.
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For y < 0, we use this expansion to get 1/ (1+ ey)γ =
∑∞

n=0(−1)n

aneny, and fory > 0, we get a similar expansion 1/(1+ ey)γ = e−γ y
∑∞

n=0(−1)nane−ny.
Now, from Equation (18), it follows that

√
2πσ 2τ

Pτ
(
1+ ed

)γ
e−ρτ

=
∫ ∞

−∞

e−(y−d−µτ)2/
(
2σ2τ

)

(1+ ey)γ
dy

=
(∫ −ε

−∞
+
∫ ∞

ε
+
∫ ε

−ε

)
e−(y−d−µτ)2/

(
2σ2τ

)

(1+ ey)γ
dy

=
∫ −ε

−∞

e−(y−d−µτ)2/
(
2σ2τ

)

(1+ ey)γ
dy

+
∫ ∞

ε

e−(y−d−µτ)2/
(
2σ2τ

)

(1+ ey)γ
dy+ O(ε)

=
∫ 0

−∞

e−(y−ε−d−µτ)2/
(
2σ2τ

)

(
1+ ey−ε

)γ dy

+
∫ ∞

0

e−(y+ε−d−µτ)2/
(
2σ2τ

)

(
1+ ey+ε

)γ dy

+O(ε) (30)

for all ε > 0 andy < 0. However, since

e−(y−d−ε−µτ)2/(2σ2τ )

(1+ ey−ε)γ
=
∞∑

n=0

(−1)nane−(y−ε−d−µτ)2/(2σ2)+n(y−ε)

=
∞∑

n=0

(−1)nane−
ε
2ne(y−ε−d−µτ)2/(2σ2)τ+n(y− ε2 ),

thefirst term is equal to

∫ 0

−∞

∞∑

n=0

(−1)nane−
ε
2ne−(y−ε−d−µτ)2/(2σ2τ)+n(y− ε2 ) dy. (31)

Now, definegM,ε(y)=
∑M

n=0 an(−1)ne−εn/2e−(y−ε−d−µτ)2/(2σ2τ)+n(y− ε2 ),

y < 0, M ∈ N, andhε(y) = e−(y−ε−d−µτ)2/(2σ2τ). Then, sincean ∼
Cnγ for largen, it is clear that supn≥0 ane−εn/2 = C <∞. Therefore,

∣
∣gM,ε(y)

∣
∣≤C

M∑

n=0

e−(y−ε−d−µτ)2/(2σ2τ)+n(y− ε2 )
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≤C
∞∑

n=0

e−(y−ε−d−µτ)2/(2σ2τ)+n(y− ε2 )

=C
e−(y−ε−d−µτ)2/(2σ2τ )

1− e−ε/2ey

≤C′εe
−(y−ε−d−µτ)2/(2σ2τ) = C′εhε(y).

Clearly,
∫ 0
−∞C′εhε(y) dy < ∞, and therefore the dominated conver-

gence theorem implies that
∫ 0
−∞ limn→∞ gM,ε(y) dy = limn→∞

∫ 0
−∞

gM,ε(y) dy, i.e.,

∫ 0

−∞

e−(y−ε−d−µτ)2/(2σ2τ )

(1+ ey−ε)γ
dy

=
∞∑

n=0

∫ 0

−∞
(−1)nane−

ε
2ne−(y−ε−d−µτ)2/(2σ2τ)+n(y− ε2 ) dy

=
∞∑

n=0

(−1)nane−
ε
2n
∫ 0

−∞
e−(y−ε−d−µτ)2/(2σ2τ)+n(y− ε2 ) dy.

Define F(x) = ex2
Erfc(x), where Erfc is the error function Erfc(x) =

(
√
π)−1

∫∞
z e−t2

dt (seeAbramowitz and Stegun 1964). Then, since

1
√

2πσ 2τ

∫ 0

−∞
e−(y−εd−µτ)

2/(2σ2τ)+n(y−ε/2) dy

=
1

2
en(ε/2+d+µτ)+n2τσ 2/2Erfc

(
ε + d + µτ + nτσ 2

√
2σ2τ

)

=
e−n ε2 e−(ε+d+µτ)2/(2σ2τ )

2
F

(
ε + d + µτ + nτσ 2

√
2σ2τ

)

,

it follows that

1
√

2πσ2τ

∫ 0

−∞

e−(y−ε−d−µτ)2/(2σ2τ )

(1+ ey−ε)γ
dy

=
1

2

∞∑

n=0

(−1)nane−εne−(ε+d+µτ)2/(2σ2τ)F

(
ε + d + µτ + nτσ2

√
2σ2τ

)

= (1+ O(ε))
1

2
e−(d+µτ)

2/(2σ2τ)

×
∞∑

n=0

(−1)nane−εnF

(
ε + d + µτ + nτσ2

√
2σ2τ

)

.
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An identical argument for the
∫∞

0
e−(y+ε−d−µτ)2/(2σ2τ )

(1+ey+ε )γ
dy term leads to

1
√

2πσ2τ

∫ ∞

0

e−(y+ε−d−µτ)2/(2σ2τ )

(1+ ey+ε)γ
dy

=
1

2

∞∑

n=0

(−1)nane−εne−(ε+d+µτ)2/(2σ2τ)

×F

(
ε − d − µτ + (n+ γ )τσ2

√
2σ2τ

)

= (1+ O(ε))e−(d+µτ)
2/(2σ2τ)

∞∑

n=0

(−1)nane−εn

×F

(
ε − d − µτ + (n+ γ )τσ2

√
2σ2τ

)

.

Puttingit all together in Equation (30), we get

Pτ =
(1+ ed)γ e−ρτ
√

2πσ 2τ

(∫ 0

−∞

e−(y−ε−d−µτ)2/(2σ2τ )

(1+ ey−ε)γ
dy

+
∫ ∞

0

e−(y+ε−d−µτ)2/(2σ2τ )

(1+ ey+ε)γ
dy+ O(ε)

)

= O(ε)+
(1+ ed)γ e−ρτ−(d+µτ)

2/(2σ2τ )

2

×
∞∑

n=0

(−1)ne−εnan

(

F

(
ε + d + µτ + nτσ 2

√
2σ2τ

)

+ F

(
ε − d − µτ + (n+ γ )τσ 2

√
2σ2τ

))

,

andthus, asε ↘ 0, we get convergence to Equation (29).
The formula is straightforward to use, sinceF(x) ∼ 1/x for large x.
An error analysis implies that ifn terms are used in the expansion,ε ∼
log(n)/n should be chosen.

(ii) Whenγ = 1, an = 1 for all n, and we can chooseε = 0 and still apply
the dominated convergence theorem in Equation (31) to get

Pτ =
(1+ ed)γ e−ρτ−(d+µτ)

2/(2σ2τ )

2
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×
∞∑

n=0

(−1)nan

(

F

(
d + µτ + nτσ 2

√
2σ2τ

)

+ F

(
−d − µτ + (n+ γ )τσ 2

√
2σ2τ

))

. (32)

(iii) For

d + µτ

σ 2τ
= m ∈ N,

Equation(32) reduces to a case for which closed-form expressions exist,
so

Pτ =
(1+ ed)e−ρτ−m2σ2τ/2

2

(

1+ 2
m−1∑

n=1

(−1)nen2σ2τ/2

)

.

Finally, we note that sincePτ = e−r (τ )τ , wherer (τ ) is the time-τspot rate,
we have

r (τ )= ρ +
µ2

2σ2
+

1

τ

(
log

(
−
(1+ ed)γ

2

)
+

d2

2σ2τ
+

dµ

σ 2
+ log(z)

)
,

wherez= limε↘0
∑∞

n=0(−1)ne−εnan
(
F
( ε+d+µτ+nτσ 2

√
2σ2τ

)
+F

( ε−d−µτ+(n+γ )τσ 2
√

2σ2τ

))
.�

Proof of Proposition 6. The result forrs is standard. Using Feynman-Kac,
we know that

Pτt +
1

2
σ 2z2(1− z)2Pτzz+

[
−µ̂z(1− z)+ 2σ2z(1− z)2

]
Pτz

−
[
ρ + γ µ̂(1− z)−

1

2
γ (γ + 1)σ2(1− z)2

]
Pτ = 0,

andsincePτ (τ, z) = 1, it is clear thatP(0,z) = 1−
[
ρ+γ µ̂(1−z)− 1

2γ (γ +
1)σ2(1−z)2

]
τ+o(τ ), for smallτ . Since− log(1−s) = s+O(s2) for smalls,

it is clear thatrs = limτ↘0−
log(Pτ )
τ = ρ+γ µ̂(1− z)− 1

2γ (γ +1)σ2(1− z)2.
For rl , we proceed as follows: We have

Pτ = (1+ ed)γ e−ρτ
1

√
2πσ 2τ

∫ ∞

−∞

e−(y−µτ)
2/(2σ2τ )

(1+ ed+y)γ
dy

= (1+ ed)γ e−ρτ
1
√

2π

∫ ∞

−∞

e−x2/2

(1+ edexσ
√
τ+µτ )γ

dx.
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We study the behavior of 1√
2π

∫∞
−∞

e−x2/2

(1+edexσ
√
τ+µτ )γ

dx for large τ . We

decompose

1
√

2π

∫ ∞

−∞

e−x2/2

(1+ edexσ
√
τ+µτ )γ

dx

=
1
√

2π

∫ −µτ+d
σ
√
τ

−∞

e−x2/2

(1+ exσ
√
τ+µτ+d)γ

dx

+
1
√

2π

∫ ∞

−µτ+d
σ
√
τ

e−x2/2

(1+ exσ
√
τ+µτ+d)γ

dx. (33)

We prove the results forrl by studying the first and second terms in
Equation (33) separately for the two casesµ ≤ γ σ 2 andµ > γσ 2, respec-

tively. By showing that the first term behaves likee
− µ

2σ2 τ for largeτ for all

µ, whereas the second term behaves likee
− µ

2σ2 τ whenµ ≤ γ σ 2 and like
e−(γµ−γ

2σ2/2)τ whenµ > γσ 2, the result will follow.
Since 0< exσ

√
τ+µτ+d ≤ 1 for x ≤ −µτ+d

σ
√
τ

, we have

1
√

2π

∫ −µτ+d
σ
√
τ

−∞

e−x2/2

(1+ exσ
√
τ+µτ+d)γ

dx

= C
1
√

2π

∫ −µτ+d
σ
√
τ

−∞
e−x2/2 dx = C × N

(
−
µτ + d

σ
√
τ

)
,

for someC ∈ [1/2γ , 1], where N(·) is the cumulative normal distribution

function,N(v)
def
= 1√

2π

∫ v
−∞ e−y2/2 dy. Now, we use

N(−v) = C2
e−v

2/2

v
, C2 ∈

1
√

2π

[
v2

1+ v2
, 1

]

, (34)

which is valid forv � 0, to get

1
√

2π

∫ −µτ+d
σ
√
τ

−∞

e−x2/2

(1+ exσ
√
τ+µτ+d)γ

dx

= C × C2
e−q2/2

q
= C3

e
− µ2

2σ2 τ−
µd
σ2−

d2

2σ2τ

q
,

where

C3 ∈
1
√

2π

[
1

2γ+1
, 1

]
, and q =

µτ + d

σ
√
τ
.
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We next study the second term in Equation (33), whenµ < γσ 2. First, we
note thatµ < γσ 2 implies thatγ σ − µ

σ > 0. Obviously, 1
(1+exσ

√
τ+µτ+d)γ

≤

e−γ (xσ
√
τ+µτ+d), so

0≤
1
√

2π

∫ ∞

−µτ+d
σ
√
τ

e−x2/2

(1+ exσ
√
τ+µτ+d)γ

dx

≤
1
√

2π

∫ ∞

−µτ+d
σ
√
τ

e−(x
2+2xγ σ

√
τ)/2−γµτ−γd dx

=
1
√

2π

∫ ∞

−µτ+d
σ
√
τ

e−(x+γ σ
√
τ)2/2+γ

2σ2τ
2 −γµτ−dγ dx

= e−γde−τ(γµ−γ
2σ2/2) 1

√
2π

∫ ∞

−µτ+d
σ
√
τ
+γ σ
√
τ

e−x2/2 dx

= e−γde−τ(γµ−γ
2σ2/2) 1

√
2π

∫ ∞

(γ σ−µσ )
√
τ− d

σ
√
τ

e−x2/2 dx

= e−γde−τ(γµ−γ
2σ2/2)N

(
−
(
γ σ −

µ

σ

)√
τ +

d

σ
√
τ

)

≤ e−γde−τ(γµ−γ
2σ2/2) 1

√
2π

e−q2
2/2

q2

= e−γde−τ(γµ−γ
2σ2/2) 1

√
2π

e
− d2

2σ2τ
+γd− dµ

σ2−(γ
2 σ2

2 −γµ+
µ2

2σ2 )τ

q2

= e
− d2

2σ2τ
− dµ
σ2 ×

1
√

2π

e
−µ2

2σ2 τ

q2
,

whereq2 =
(
γ σ − µ

σ

)√
τ − d

σ
√
τ
, and we used that 1√

2π

∫∞
v e−y2/2 dy =

N(−v), and Equation (34). Thus,

1
√

2π

∫ ∞

−µτ+d
σ
√
τ

e−x2/2

(1+ exσ
√
τ+µτ+d)γ

dx = C4e
− d2

2σ2τ
− dµ
σ2 ×

e
−µ2

2σ2 τ

q2
,

whereC4 ∈
[
0, 1√

2π

]
. Putting it all together, for largeτ we get

Pτ = (1+ ed)γ e−ρt

(
1
√

2π

∫ −µτ+d
σ
√
τ

−∞

e−x2/2

(1+ exσ
√
τ+µτ+d)γ

dx

+
1
√

2π

∫ ∞

−µτ+d
σ
√
τ

e−x2/2

(1+ exσ
√
τ+µτ+d)γ

dx

)
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= (1+ ed)γ e−ρt




C3

e
− µ2

2σ2 τ−
µd
σ2−

d2

2σ2τ

q
+ C4e

− d2

2σ2τ
− dµ
σ2 ×

e
−µ2

2σ2 τ

q2






= e
−
(
ρ+ µ2

2σ2

)
τ
(1+ ed)γ e

−µd
σ2−

d2

2σ2τ

(
C3

q
+

C4

q2

)
.

Therefore,

−
log(Pτ )

τ
= ρ +

µ2

2σ2
+

Q(τ )

τ
, where

Q(τ ) = log

(
(1+ ed)γ e

−µd
σ2−

d2

2σ2τ

(
C3

q
+

C4

q2

))
.

Now, Q(τ ) = log
(
(1+ ed)γ

)
− µd

σ2 −
d2

2σ2τ
+ log

(
C3
q +

C4
q2

)
, and sinceC3 ∈

1√
2π

[
1

2γ+1 , 1
]
, C4 ∈

[
0, 1√

2π

]
, q = µτ+d

σ
√
τ

, andq2 =
(
γ σ − µ

σ

)√
τ − d

σ
√
τ
,

it follows that|Q(τ )| = o(τ ) for largeτ , i.e., that limτ→∞
|Q(τ )|
τ = 0. From

this, it immediately follows that limτ→∞−
log(Pτ )
τ = ρ + µ2

2σ2 .

We now consider the case whenµ > γσ 2 anddefinev = µ/σ − γ σ > 0.

We first note thatµ
2

2σ2 ≥ γµ − γ
2σ 2/2, sinceµ2/(2σ2) − γµ + γ 2σ 2/2 =

1
2σ2 (µ− γ σ

2)2 ≥ 0. Thus, since the
∫ −µτ+d

σ
√
τ

−∞
e−x2/2

(1+edexσ
√
τ+µτ )γ

dx-term in Equa-

tion (33) behaves likee−τ×µ
2/(2σ2) for largeτ , if the

∫∞
−µτ+d

σ
√
τ

e−x2/2

(1+exσ
√
τ+µτ+d)γ

dx ∼ e−τ(µγ−γ
2σ2/2) for largeτ , then the result we wish to prove follows,

since it is always the case thatc1e−α1τ + c2e−α2τ ∼ e−min(α1,α2)τ for largeτ ,
for arbitraryc1 > 0, c2 > 0,α1 > 0,α2 > 0.

We have

1
√

2π

∫ ∞

−µτ+d
σ
√
τ

e−x2/2

(1+ exσ
√
τ+µτ+d)γ

dx

≤
1
√

2π

∫ ∞

−µτ+d
σ
√
τ

e−(x
2+2xγ σ

√
τ)/2−γµτ−γd dx

=
1
√

2π

∫ ∞

−µτ+d
σ
√
τ

e−(x+γ σ
√
τ)2/2+γ

2σ2τ
2 −γµτ−dγ dx

= e−γde−τ(γµ−γ
2σ2/2) 1

√
2π

∫ ∞

−µτ+d
σ
√
τ
+γ σ
√
τ

e−x2/2 dx

= e−γde−τ(γµ−γ
2σ2/2)N

(
v
√
τ +

d

σ
√
τ

)

= e−γde−τ(γµ−γ
2σ2/2)(1− O(e−vτ )).
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Also, since 1+ exσ
√
τ+µτ+d ≤ 2exσ

√
τ+µτ+d,

1
√

2π

∫ ∞

−µτ+d
σ
√
τ

e−x2/2

(1+ exσ
√
τ+µτ+d)γ

dx

≥
1

2γ
1
√

2π

∫ ∞

−µτ+d
σ
√
τ

e−(x
2+2xγ σ

√
τ)/2−γµτ−γd dx

=
1

2γ
1
√

2π

∫ ∞

−µτ+d
σ
√
τ

e−(x+γ σ
√
τ)2/2+γ

2σ2τ
2 −γµτ−dγ dx

=
1

2γ
e−γde−τ(γµ−γ

2σ2/2) 1
√

2π

∫ ∞

−µτ+d
σ
√
τ
+γ σ
√
τ

e−x2/2 dx

=
1

2γ
e−γde−τ(γµ−γ

2σ2/2)N

(
v
√
τ +

d

σ
√
τ

)

=
1

2γ
e−γde−τ(γµ−γ

2σ2/2)(1− O(e−vτ )).

Thus,it is the case that

1
√

2π

∫ ∞

−µτ+d
σ
√
τ

e−x2/2

(1+ exσ
√
τ+µτ+d)γ

dx = C5e−τ(γµ−γ
2σ2/2),

whereC5 ∈
[

e−γd

2γ − ε, e
−γd + ε

]
, for arbitraryε > 0, for large enoughτ .

We therefore get

−
log(Pτ )

τ
=−

1

τ
log

(
(1+ ed)γ e−ρτ

×
(

e
−τ µ2

2σ2 e
−µd
σ2−

d2

2σ2τ
C3

q
+ C5e−τ(γµ−γ

2σ2/2)
))

.

Now, since µ2

2σ2 ≥ γµ− γ
2σ 2/2, the second term within the log expression

dominates the first, so we get

−
log(Pτ )

τ
=−

1

τ

(
log

(
(1+ ed)γ e−ρτC5e−τ(γµ−γ

2σ2/2)
)
+ o(τ )

)

=
(ρ + γµ− γ 2σ 2/2)τ + o(τ )

τ
,

soindeed limτ→∞−
log(Pτ )
τ = ρ+γµ−γ 2σ 2/2= ρ+γ (µ+σ 2/2)−γ (γ +

1)σ2/2. �

Proof of Proposition7.
Without loss of generality, we assume thats ≤ s, since the whole proof

otherwise goes through by replacings with s.
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We begin with (ii): It is easy to show the following inequality, which is valid
for an arbitrary constant,x ≤ 0:

∫ ∞

t
e−ρs e

− (x−µs)2

2σ2s

√
2πσ 2s

ds ≥
e−(ρ+µt)

q
eκx, (35)

whereκ andq aredefined in (4).
Now,

P(C0)= E

[∫ ∞

0
e−ρt

(
f (D0)

f (Dt )

)γ
f (Dt ) dt

]

≥ f (D0)
γ E

[∫ ∞

t
e−ρt f (Dt )

1−γ dt

]

≥ cγ0 Dγ
0

∫ ∞

t
e−ρt E

[
f (Dt )

1−γ
]

dt

≥ cγ0 Dγ
0

∫ ∞

t
e−ρt E

[
f (Dt )

1−γ Ist≤s

]
dt

≥ cγ0 Dγ
0 f (es)1−γ

∫ ∞

t
e−ρt E

[
Ist≤s

]
dt

≥ cγ0 Dγ
0 f (es)1−γ

∫ ∞

t
e−ρtΦ

(
s− s0− µt

σ
√

t

)
dt

= cγ0 Dγ
0 f (es)1−γ

∫ ∞

t

∫ s−s0

−∞
e−ρt e

− (x−µt)2

2σ2t

√
2πσ 2t

dx dt

= cγ0 Dγ
0 f (es)1−γ

∫ s−s0

−∞

∫ ∞

t
e−ρt e

− (x−µt)2

2σ2t

√
2πσ 2t

dt dx

≥ cγ0 Dγ
0 f (es)1−γ

e−(ρ+µt)

q

∫ s−s0

−∞
eκx dx

= cγ0 Dγ
0 f (es)1−γ

e−(ρ+µt)

q

eκs

κ
× e−κs0

= cγ0 Dγ
0 f (es)1−γ

e−(ρ+µt)

q

eκs

κ
× D−κ0

= cγ0 f (es)1−γ
e−(ρ+µt)

q

eκs

κ
× Dα

0

≥ cγ0 f (es)1−γ
e−(ρ+µt)

q

eκs

κ
c−α1 × f (D0)

α

= c3Cα
0 .
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For (i), we note that whenf (ε) < c2ε, we can choose an arbitrarym >
max{0,−s}, to bound

P(C0)= E

[∫ ∞

0
e−ρt

(
f (D0)

f (Dt )

)γ
f (Dt ) dt

]

≥ f (D0)
γ E

[∫ ∞

t
e−ρt f (Dt )

1−γ dt

]

≥ cγ0 Dγ
0

∫ ∞

t
e−ρt E

[
f (Dt )

1−γ
]

dt

≥ cγ0 Dγ
0

∫ ∞

t
e−ρt E

[
f (Dt )

1−γ Ist≤−m

]
dt

≥ cγ0 Dγ
0 f (e−m)1−γ

∫ ∞

t
e−ρt E

[
Ist≤−m

]
dt

≥ cγ0 Dγ
0 f (e−m)1−γ

∫ ∞

t
e−ρtΦ

(
−m− s0− µt

σ
√

t

)
dt

= cγ0 Dγ
0 f (e−m)1−γ

∫ ∞

t

∫ −m−s0

−∞
e−ρt e

− (x−µt)2

2σ2t

√
2πσ 2t

dx dt

= cγ0 Dγ
0 f (e−m)1−γ

∫ −m−s0

−∞

∫ ∞

t
e−ρt e

− (x−µt)2

2σ2t

√
2πσ 2t

dt dx

≥ cγ0 Dγ
0 f (e−m)1−γ

e−(ρ+µt)

q

∫ −m−s0

−∞
eκx dx

= cγ0 Dγ
0 f (e−m)1−γ

e−(ρ+µt)

q

e−κm

κ
× e−κs0

= cγ0 Dγ
0 f (e−m)1−γ

e−(ρ+µt)

q

e−κm

κ
× D−κ0

= cγ0 f (e−m)1−γ
e−(ρ+µt)

q

e−κm

κ

≥ cγ0 c1−γ
2

e−(ρ+µt)

q

1

κ
Dα

0 × em(γ−κ−1)

= c4(D0)e
m(α−1).

Now, sinceα > 1 andm is arbitrary,P(C0) must therefore be infinite, and
the equilibrium does not exist. Equivalently, we could have used the iden-
tity 1

1−γ
P(C0)

C0
= U to show that expected utility is negative infinity for this

case. �
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Mathematica code

Price-dividend Ratios
We have verified numerically that the formulae for the prices given in Proposi-
tion 2 are indeed correct, both above and below the breakpoint. The following
Mathematica code calculates the price-dividend ratios for differentD, for a
long, but finite, horizon economy (T = 1000), using direct numerical integra-
tion of (10), and produces results identical to those shown in Figure1.

In[1]:= γ = 5;σ = 4/100;µ = 0.75/100;ρ = 1/100;ξ = µ− σ2

2 ; T =
1000;B = 1; PD={};

In[2]:= v=Range[1/4,8,1/4];

In[3]:= For[i=1,i<32,

e=Extract[v,i];

v=NIntegrate[(( B+ e)/(B+ e∗ Exp[y])) γ−1 ∗ Exp[−ρ ∗ τ −
(y− ξ ∗ τ)2/(2 ∗ σ 2 ∗ τ)]

/Sqrt[2 ∗ π ∗ σ 2 ∗ τ ], {y,−∞,∞}, {τ, 0,T}];

PD=Append[PD,{ e,v} ],

i=i+1];

In[4]:= ListPlot[PD,PlotJoined->True,PlotRange->All];

Long-term Risk-free Rate
We have verified numerically that the formulae for the long rate given in Propo-
sition6 are indeed correct, by directly evaluating Equation (18). The following
Mathematica code calculates the yield for different maturities.

For example, with parametersρ = 1%,µ = 3.5%,σ = 20%,γ = 2.5, the

long rate is close tor l = ρ + µ2

2σ2 = 2.53%,in line with Equation (21). The
list L provides pairs of time to maturity and yields,{t, rt }. For example, the
last element inL shows that for a time to maturity of 10,000 years the yield is
2.56% in this example.

By varying B0, D0, andγ in the code, it is easily verified that the long rate
does not depend on these parameters. It can also be checked that forµ > γσ 2,
Equation(22) provides the correct long rate.

In[1]:= B0 = 2;D0 = 1;σ = 0.2;µ = 0.035;γ = 2.5;ρ = 0.01;
Off[Integrate::gener];

In[2]:= L = {}; T = {1,10,100,1000,10000,−1};

In[3]:= For[t = First[ T ], t > 0,

P= N[Integrate[( B0+ D0)γ ∗ Exp[−ρt ]∗
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1/Sqrt[2π ∗σ 2t ]∗Exp[− (y−µt)2/(2∗σ 2t)]/(B0+D0∗Exp[ y])γ ,
{y,−∞,∞}]];

r = −Log[ P]/ t ;

L = Append[ L, {t, r }]; T = Delete[ T , 1]; t= First
[ T ];]

In[4]:= L ( * L is a list with elements {t, rt }, from
numerical calculations * )

Out[4]= {{1,0.0362381} ,{ 10,0.0350963} ,{ 100,0.0307781} ,
{1000,0.026798} ,{ 10000,0.0255731}}

In[5]:= rl = If[µ < γσ 2, ρ+ µ2

2σ2 , ρ+γµ−γ
2σ 2/2]( * Theoretical

value of long rate * )

Out[5]= 0.0253125
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