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Abstract

We study welfare, savings, and asset price distortions in economies with disagreement and pro-

duction, extending previous literature by our focus on settings in which there are real effects of

disagreement. We introduce a novel welfare measure, IK-efficiency, and show its usefulness in a

work-horse production economy. Aggregate savings may be significantly distorted under disagree-

ment, as may asset prices—especially for those assets about which there is little disagreement.

Overall, our results highlight the feedback effects of speculation in financial markets on real invest-

ments, and relate the model to several stylized facts and puzzles of capital markets.
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1 Introduction

In the aftermath of the financial crisis, welfare analysis in economies with heterogeneous beliefs has

received attention in several recent studies, see Brunnermeier et al. (2014), Gilboa et al. (2014); Gayer

et al. (2014), and Blume et al. (2018). These studies suggest that speculative trade between agents

create inefficiencies when some agents end up poor after speculating away much of their wealth.

Speculation in the heterogeneous beliefs economy, instead of increasing welfare by allowing agents to

hedge risks and smooth consumption, generates volatility of consumption and wealth at the individual

level (see Yan 2008, and Fedyk et al. 2013). It also distorts asset price dynamics, increasing volatility

and potentially leading to mispricing (see Buraschi and Jiltsov 2006, David 2008, Dumas et al. 2009,

Xiong and Yan 2010, Kubler and Schmedders 2012, Simsek 2013, Buss et al. 2016, and Ehling et al.

2018a, for recent contributions), effects that may be viewed as negative in their own right.1

The potential policy implications are, of course, huge, since the friction-free complete market

equilibrium—even when it is implementable—actually may be inefficient under such a view on the

welfare effects of speculation. For example, in a simple calibration, Blume et al. (2018) find that

restrictions on the traded asset span, such as borrowing limits and transaction taxes, offer substantial

welfare gains relative to the complete market benchmark. Understanding the general conditions under

which such inefficiencies arise is therefore important.

Previous literature has mainly focused on the exchange economy setting, in which disagreement

leads to redistribution and inefficient risk sharing. These issues are important, but the role of financial

markets in allocating resources to real productive assets is overlooked in exchange economies. When

there is speculation, the allocation of productive capital, i.e., real investments, may also be impacted.

Hence, understanding the feedback to the real economy becomes important once stepping outside the

exchange economy.

Studying welfare in production economies with disagreement raises new challenges. For example,

in an exchange economy the actual probabilities for different outcomes do not matter for whether

1See also Detemple and Murthy (1994), Zapatero (1998), Basak (2000), Basak (2005), Berrada (2006), Jouini and
Napp (2007), J.Cvitanic and Malamudand (2011), J.Cvitanic et al. (2012), Bhamra and Uppal (2014), Buraschi et al.
(2014), Cujean and Hasler (2017), Ehling et al. (2018b), Andrei et al. (2018).
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an allocation is efficient. In contrast, in economies with production, actual probabilities typically do

matter for whether an allocation is efficient. Identifying efficient outcomes that respect agents’ beliefs

is therefore more challenging.

To see the new challenges that arise when production is introduced, consider the following example.

In the late spring, Ann an Bob each own one unit of a consumption good they plan to consume in the

fall. Having realized that they disagree about the prospects for a sunny summer—Ann thinks that the

chance, q, is high that the amount of rainfall will be above a certain threshold, whereas Bob thinks

the chance is low—they decide to bet against each other and let the winner consume both units of

the good, come fall. If Ann and Bob are risk neutral, it follows that they both increase their expected

utilities through this bet, as long as Ann believes that q > 50% and Bob that q < 50%. If Ann and

Bob are moderately risk averse, they will enter the bet. If they are very risk averse, they can still find

a less aggressive bet, that allows for some consumption in case the bet is lost and that increases their

expected utilities. An outcome that is efficient in the ex ante sense, in that it maximizes Ann’s and

Bob’s respective expected utilities, is called an Arrow optimum.2 Such an outcome will thus induce

betting in this case. In the subsequent argument, we assume that both Anne and Bob are somewhat

risk averse.

The bet does not affect the aggregate endowment in the economy—which is so far an exchange

economy—and it does not arise because of hedging demands. Rather, the resulting transfer is purely

speculative. Ann and Bob cannot both be correct, and ex post one of them will surely end up with

low consumption, so the bet actually introduces risk where there previously was none. A social

planner may therefore be unconvinced about the bet’s benefits. Brunnermeier et al. (2014), building

on this argument, introduce the concept of belief-neutral inefficiency. In their terminology, Anne’s

and Bob’s bet leads to a belief-neutral inefficient allocation, since regardless of q there exists a Pareto

improvement with no risk. For an allocation to be belief-neutral efficient, it must be Pareto efficient

for a whole range of reasonable beliefs, q, that include Anne’s and Bob’s beliefs. Importantly, for

each q, both Ann and Bob’s utilities should be evaluated using the same q under this argument, in

contrast to the Arrow optimum. It is straightforward to show that belief-neutral efficient allocations

2See Starr (1973) and Harris (1978).
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in this setting coincide with Pareto efficient allocation in the economy without disagreement, namely

those allocations for which Ann’s and Bob’s consumption do not depend on the amount of rainfall.

Speculative outcomes are ruled out as inefficient regardless of the actual chance of a rainy summer,

and regardless of Anne’s and Bob’s beliefs.

Now consider an extension of the example that includes production. For simplicity, assume that

Ann and Bob have access to a field that can be used for farming. Instead of saving the two units

of the consumption good for consumption in the fall, they may sell them in the market and use the

proceeds to grow crops. Two crop technologies are available, an A-technology (as in “Almonds”) that

requires a lot of water to grow, and a B-technology (as in “Beans”) that requires little water. The

two technologies are mutually exclusive, i.e., the field can only be used to grow one of the crops.

In case of a rainy summer, Anne and Bob will be able to sell crops from the A-technology in the

fall, for eighteen units of the consumption good, whereas the B-technology produces nothing. In case

of a sunny summer, the outcome is the opposite: No A-technology crops will grow, whereas the B-

technology crops can be sold for eighteen units of the consumption good. Clearly, Ann, who believes

that the summer will be rainy, prefers investing in the A-technology over the B-technology in this

example, whereas Bob prefers the B-technology. Moreover, if Ann and Bob are only moderately risk

averse, they both prefer investing over saving (although they prefer different technologies).

Identifying efficient allocations is clearly more challenging in this setting than in the exchange

economy, since the benefits of the production technologies depend on q. For some values of q the

A-technology is superior, whereas for others the B-technology is better. As a consequence, the set

of belief-neutral efficient allocations is empty in this example. Moreover, for no value of q is saving

optimal, but for some values saving is better than investing in the A-technology, and for other values

saving is better than investing in the B-technology. A social planner who knows the actual value of q

may therefore rule out saving as inefficient, and consequently saving is belief-neutral inefficient in the

terminology of Brunnermeier et al. (2014).3 We argue that assuming such knowledge by the social

planner about q is to set the bar too high in many situations. Indeed, a crucial role of markets is to

3This does not immediately follow from the fact that the set of belief-neutral efficient allocations is empty. In general,
there may be a “gap” between belief-neutral efficiency and inefficiency, i.e., there may be allocations that are neither
belief-neutral inefficient, nor belief-neutral efficient.
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allow for the dissemination and aggregation of information, beyond that available to any individual

agent, and it is therefore unclear how the social planner would obtain such superior knowledge. When

the social planner has incomplete knowledge about the actual value of q, one may argue for saving

as a reasonable middle-ground approach compared with betting on one of the technologies. Finally,

so far in our example we have assumed that Anne and Bob only consume in the fall, after saving or

investing in crops. If Ann and Bob also choose how much to consume before the summer versus how

much to save or invest, the social planner’s problem becomes even more challenging, since the optimal

consumption choice typically depends on how good the production technologies are (i.e., on q).

In this paper, we address these challenges, and analyze the effects of heterogeneous beliefs on

welfare, consumption and savings in economies with production. We also study how heterogeneous

beliefs lead to asset pricing distortions. A general implication of our analysis is that the heterogeneous

beliefs economy may behave quite differently than under homogeneous beliefs—even though each

individual behaves in line with standard subjective expected utility theory.

Our main contribution, as described in more detail below, is three-fold. First, we introduce the con-

cept Incomplete Knowledge (IK) efficiency, a welfare measure that is suited for production economies.

Second, we analyze the real inefficiencies and distortions that arise in the production economy with

heterogeneous beliefs and, third, we show that under general conditions there will also be financial

distortions, i.e., mispricing.

Loosely speaking, an allocation, a, is IK-inefficient if there is an alternative allocation that domi-

nates a for some belief among a whole set of reasonable beliefs, and is not dominated by a for any such

reasonable belief. This approach is consistent with the view that the social planner has incomplete

knowledge about the correct beliefs in the economy. Our analysis has similarities with, and builds

upon, the concepts of belief-neutral inefficiency introduced in Brunnermeier et al. (2014), no-betting

Pareto dominance in Gilboa et al. (2014), and with unanimity efficiency in Gayer et al. (2014), but also

has significant differences. We also discuss the concept of U-efficiency, which is related to unanimity

efficiency. As suggested already by our previous example with Ann and Bob, the analysis is far from

trivial, and our framework is necessarily quite technical.

We next analyze a competitive production economy that satisfies the technical conditions, with
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focus on the real effects of heterogeneous beliefs. We show that agents’ savings—and therefore real

investments—in general are distorted. Especially, when agents’ elasticities of intertemporal substi-

tution are lower than one, agents save too little compared with what is socially optimal. We relate

this result to the under-savings puzzle, and in a simple numerical illustration show that the effect can

be substantial. The undersavings effect is especially severe in markets with large belief dispersion, in

markets that are complete, and/or in markets with a low degree of inequality, providing potentially

testable implications of our theory. The analysis of the effects on consumption and savings provides

our second contribution.

Finally, we study the effect of heterogeneous beliefs on asset prices. Equilibrium price distortions

are generically present in the heterogeneous beliefs economy, and is, perhaps a priori surprising,

easiest identified in assets for which there are low disagreement. This follows from the fact that for

an asset’s price to be identified as distorted, it must be so under all agents’ beliefs. In addition, we

show that disagreement may lead to under-diversification of agents’ portfolios, as well as to mispriced

idiosyncratic volatility.

The rest of the paper is organized as follows: In the next section, we analyze efficiency in the general

production economy. In Section 3 we, we study efficiency in a competitive market with production, and

analyze the effects of disagreement on aggregate consumption-savings and in generating mispricing.

Finally, concluding remarks are made in Section 4. Several additional examples are delegated to an

Appendix, and all proofs to an Internet Appendix.

2 Efficiency

In this section, we introduce IK efficiency and relate this concept to other efficiency measures. A main

takeaway from our analysis is that new challenges arise when disagreement has real effects on the

economy, but that it is possible to define efficiency in a robust manner when some natural technical

conditions are satisfied.

The IK-efficiency concept has two components that we take as given. The first is a view, in line

with several recent papers and motivated in the introduction, that welfare should not be measured
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based on individuals’ subjective ex ante expected utilities. All agents cannot be correct in their

different beliefs (a fact that agents agree about), and welfare gains from speculation, as measured by

aggregating ex ante expected utilities, may therefore be spurious.4,5

The second, incomplete knowledge, component is based on a sober view of the social planner’s

ability to identify the “true” probability distribution. Such a view may be considered quite pessimistic,

but we note that there are plenty of historical examples when it would have been appropriate. For

example, it is known that the presence of overoptimistic investors in the market together with short-

sale constraints may give rise to price and investment bubbles (see, e.g., Scheinkman and Xiong 2003,

and Gilchrist et al. 2005). However, although bubbles and overoptimism may be easy to identify in

hindsight, there is often considerable ex ante uncertainty about their presence. There was no consensus,

and relatively few warnings about there being a bubble in the run-up years before the crash of the

U.S. housing market in 2007, for example. Even former Chairman of the Federal Reserve Board, Alan

Greenspan, admitted to not “getting” that there was trouble on the horizon until very late.6 During

the New Economy boom and the associated dot-com bubble between 1997-2000, warnings about a

bubble were issued by some, whereas others argued that discontinuous technological transition made

“Old Economy” valuation formulas out-of-date. Shiller (2000) warned about a bubble generated

by irrational exuberance, borrowing the term from Alan Greenspan. Pastor and Veronesi (2006),

in contrast, argue that the uncertainty about future growth rates in the late 1990’s may well have

justified the valuation of the NASDAQ. Moreover, there are many examples throughout history of

technological innovations that turned out to be transformative, but that were originally dismissed by

many as fads, including the automobile, personal computers, mobile phones and the Internet.

4We note that the expected utility decomposition of agent preferences into a utility part and a probabilistic part is
interpreted literally in this argument. Without such a literal interpretation, e.g., if the expected utility specification is
viewed as merely a way of representing preferences that are linear over probabilities, in line with the axiomatic approach
in Savage (1954), the argument against using ex ante expected utility is not as straightforward.

5It has been argued that policies that are based on ex post measures, if they restrict the actions of agents, could be
viewed as paternalistic (see, e.g., Harris and Olewiler (1979), and Fleurbaey (2010)). For further discussion, we refer to
the extensive existing literature, see Starr (1973), Harris and Olewiler (1979), Hammond (1981), Harris (1978), Portney
(1992), Hausman and McPherson (1994), Pollak (1998), Salanie and Treich (2009), and also recent studies by Gilboa
et al. (2014), Brunnermeier et al. (2014), Gayer et al. (2014), and Blume et al. (2018). Our focus is not on this issue.

6CBS 60 Minutes, interview, September 13, 2007.
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2.1 IK-efficiency

To formalize the IK-efficiency concept, we consider a general economy with T + 1 dates, t = 0, . . . , T ,

M ≥ 2 states, and N ≥ 2 agents. A nonempty compact set, A ⊂ RM×N×T+ , determines the feasible

joint production and allocation of a consumption good among the agents in the economy, and will be

denoted the set of feasible allocations. Here, with a slight abuse of notation, we have denoted by T

the set of dates {0, . . . , T}. Specifically, for a ∈ A, am,n,t represents the allocation of the good in state

m to agent n at time t.7

Homogeneous beliefs: We first study the benchmark case when there is no disagreement about

the probabilities for different states. These probabilities are represented by a probability vector q ∈

SM , where SM is the interior of the unity simplex in RM ,

SM =

{
x ∈ RM : xm > 0,

M∑
m=1

xm = 1

}
.

Note that we assume that the probability for each state to occur is strictly positive. We denote the

closure of SM by S̄M .

Agents are expected utility maximizers. Specifically, agent n’s expected utility under allocation a

given probability vector q is

Un(a|q) =
M∑
m=1

Unm(a)qm, where Unm(a) =
T∑
t=0

unm,t(am,n,t). (1)

Here, we assume that each agent-, state-, and time-specific utility function, unm,t : R+ → R, is strictly

increasing, continuously differentiable, and weakly concave. With each allocation, we associate the

utility matrix, V = V(a) ∈ RM×N , through the mapping Vm,n = Unm(a), 1 ≤ m ≤ M, 1 ≤ n ≤ N , and

define the utility possibility set U = V(A) ⊂ RM×N (see Mas-Colell et al. 1995).

A social planner has a Bergson (1938) welfare function over feasible allocations, U(a|q, λ), defined

7Dynamic revelation of information over time can be incorporated into the model by introducing a filtration over the
states, and requiring feasible allocations to be adapted to that filtration. The results are identical in that setting, so we
exclude this extra step for the sake of parsimony.
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by

U(a|q, λ) =

N∑
n=1

λnUn(a|q), (2)

where λ ∈ SN are Pareto weights in the planner’s welfare function. Using the rules of matrix-vector

multiplication, and denoting the transpose of the vector q by qT , it then follows that

U(a|q, λ) = qTV(a)λ, (3)

i.e., given an allocation, a, the Bergson welfare function is a bilinear mapping from the probability

vector, q ∈ SM , and vector of Pareto weights, λ ∈ SN , to a real number.

If U(b|q, λ) > U(a|q, λ) for two allocations, a, b ∈ A, we write b >λq a, and if U(b|q, λ) ≥ U(a|q, λ),

we write b ≥λq a. It is straightforward to verify that standard Pareto efficiency within this setting can

be defined as follows:

Definition 1 (Pareto dominance and efficiency).

(i) Allocation b Pareto dominates a, given q, b �q a, if b >λq a for all λ ∈ SN .

(ii) Allocation b is not Pareto dominated by a, given q, b �q a, if b ≥λq a for some λ ∈ SN .

(iii) Allocation b is Pareto efficient, given q, if ∀a ∈ A : b �q a.

Note that an equivalent definition of b �q a is that b ≥λq a for all λ ∈ S̄N , with the inequality being

strict for at least one such λ. Moreover, an equivalent definition of allocation b being Pareto inefficient

given q is that

∃a ∈ A,∀λ ∈ SN : a >λq b. (4)

As pointed out, the homogeneous belief economy serves as a benchmark and it is therefore useful

to characterize the set of all Pareto efficient allocations under homogeneous beliefs.

Definition 2. We denote by Eq the set of all Pareto efficient allocations given probability vector q,

and note that this set is nonempty.
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Heterogeneous beliefs: Let agent n’s belief be denoted by qn. We introduce an Arrow optimum

in the economy with disagreement in an analogous way as in Definitions 1 and 2. We define the ex

ante welfare function8

U(a|q, λ) =
N∑
n=1

λnUn(a|qn), (5)

where the belief vector q = (q1, q2, . . . , qN ) ∈
∏N
n=1 S

M summarizes all agents’ beliefs. If U(b|q, λ) >

U(a|q, λ) for two allocations, we write b >λq a, and if U(b|q, λ) ≥ U(a|q, λ), we write b ≥λq a. Further

in accordance with Definition 1, we also write b �q a, if b ≥λq a for some λ ∈ SN .

Definition 3 (Arrow optimum). Allocation b is an Arrow optimum, given heterogeneous beliefs q, if

∀a ∈ A : b �q a. The set of Arrow optima given beliefs q is denoted by EAq .

From Definition 3, we see that an allocation is an Arrow optimum (ex ante efficient) if it is Pareto

efficient with respect to the ex ante expected utilities of agents, based on their own respective be-

liefs. Intuitively, being based on individual agents’ ex ante expected utilities, Arrow optima allow for

speculative outcomes, in which there may be significant variation in agents’ allocations across states,

since agents put lower weight on consumption in states they subjectively believe are highly unlikely.

Speculative allocations for which it is objectively known that many agents will end up poor may

therefore qualify as ex ante efficient, as discussed extensively in Brunnermeier et al. (2014), Gilboa

et al. (2014), and Blume et al. (2018). The example with Ann and Bob in the introduction exemplifies

such a situation. The novel efficiency measures are designed to rule out such allocations, by forcing

the same probability measure to be used across agents when comparing allocations.

Which probability measure should be used in the comparison? A sober view is that the planner

cannot identify the correct beliefs. Such a planner with incomplete knowledge (about probabilities)

views a whole nonempty set, QR ⊂ SN of beliefs as “reasonable.” The special case when qn = q

for all agents, n, reduces to the homogeneous beliefs setting, in which case we require the planner’s

reasonable beliefs set to be QR = {q}. We are agnostic about the choice of QR in the general case.

Brunnermeier et al. (2014) suggests using the convex hull of agents’ individual beliefs. Specifically,

for a set X ⊂ RK , define CH(X) =
{∑K

k=1 ρkxk : ρ ∈ S̄K , xk ∈ X, 1 ≤ k ≤ K
}

. The set suggested in

8See Starr (1973) and Harris (1978).
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Brunnermeier et al. (2014) is then

QCHR = CH
({
q1, qn, . . . , qN

})
. (6)

This choice may be appropriate in many applications, but other choices may be too. For example,

the planner may wish to exclude some agents’ beliefs that are obviously incorrect. Moreover, if agents

self-report their beliefs, they may for strategic reasons report beliefs that are different than the ones

they actually hold, and the social planner may therefore wish to filter out some reported beliefs.

Finally, under more complex information structures, nonlinear aggregation of probabilities may be

appropriate, rather than the linear aggregation that the convex hull corresponds to. We provide an

example where this is the case in Appendix A. The only restriction on the nonempty set QR we

impose is that the set contains a single element if and only if agents have homogeneous beliefs, i.e., if

and only if qn = q for some q, for all 1 ≤ n ≤ N , and that QR = {q} in that case.

Our novel efficiency measure takes into account the welfare associated with all reasonable beliefs.

Definition 4 (IK-dominance). Allocation b IK-dominates a with respect to Pareto weights λ, b �λ a,

if:

(∀q ∈ QR : b ≥λq a) and (∃q ∈ QR : b >λq a).

From Definition 4 it follows that an allocation dominates another if, given Pareto weights, it is never

strictly dominated under any reasonable belief, and there exist a reasonable belief under which it

strictly dominates the other allocation. We also define weak IK-dominance, a �λ b if ¬(b �λ a). Here,

“¬” denotes the logical negation symbol. IK-efficiency is now defined as follows:

Definition 5 (IK-efficiency). Allocation a is IK-inefficient if ∀λ ∈ SN ,∃b ∈ A: b �λ a. Equivalently,

a is IK-inefficient if

∀λ ∈ SN ,∃b ∈ A,∀q ∈ QR : b ≥λq a, (7)

where the inequality is strict for at least one q.

An allocation that is not IK-inefficient is called IK-efficient. We denote the set of IK-efficient
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allocations by IKE, and the set of IK-inefficient allocations is then the complement IKEc = A\IKE.

An IK-inefficient allocation is thus one for which whatever are the Pareto weights in the welfare

function, there exists another allocation that is not dominated by the first allocation regardless of q

in the set of reasonable beliefs, and that dominates the first allocation for some reasonable q.

Example 1. We revisit the example in the introduction with Ann and Bob, with no production,

under the assumption that Ann and Bob are risk averse expected utility maximizers, both with utility

of consumption u(c) =
√
c. They each have one unit of the consumption good. There are M = 2

states, state 1 representing a rainy summer and state 2 a sunny summer, and Ann and Bob disagree

about the probability, q, of state 1 occurring. Ann believes that q = 0.9 and Bob believes that q = 0.1.

As in Brunnermeier et al. (2014), let the set of reasonable beliefs be QR = {(q, 1− q) : q ∈ [0.1, 0.9]}.

Consider the winner-takes-it-all bet between Ann and Bob. It is straightforward to show that the

resulting speculative allocation is IK-inefficient. Specifically, consider the social planner with welfare

function defined by (2) and Pareto weights λ1 = λ, λ2 = 1 − λ, who regardless of the realized state

allocates the fixed fraction α of the consumption good to Ann and the remaining fraction 1−α to Bob.

It follows from the fist order conditions that the planner optimally chooses the fraction α = λ2

1−2λ+2λ2 ,

leading to total welfare
√

2(λ
√
α + (1 − λ)

√
1− α). Is is easy to verify that regardless of reasonable

belief, this fixed fraction allocation dominates the the speculative allocation, which is associated with

welfare λ(q
√

2 + (1− q)
√

0) + (1− λ)(q
√

0 + (1− q)
√

2)) =
√

2(λq+ (1− λ)(1− q)). Hence, betting is

IK-inefficient in this example.

It will be useful to introduce the following equivalent definition for allocation a to be IK efficient,

namely that

∃λ ∈ SN , ∀b ∈ A : a �λ b,

or equivalently,

∃λ ∈ SN , ∀b ∈ A : (∃q ∈ QR : a >λq b, or ∀q ∈ QR : a ≥λq b). (8)

As discussed in the introduction, IK-inefficiency is operational for a planner who is not able to decide

which q is correct among the set of reasonable beliefs, in that whatever the planner’s Pareto weights

are, there is another allocation b that improves upon an IK-inefficient allocation a regardless of the
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reasonable belief, q ∈ QR. The planner can thus switch from a to b without regret. The IK efficiency

concept thus requires the social planner to have a well-defined λ in the welfare function, but not to

take a stand on a unique q among the set of reasonable beliefs.

2.2 Alternative efficiency measures

The concepts in Brunnermeier et al. (2014) of belief-neutral efficiency and inefficiency are in our setting

defined as follows:

Definition 6 (Belief-neutral efficiency).

(i) Allocation a is belief-neutral inefficient, a ∈ BNI, if ∀q ∈ QR, ∃b ∈ A : b �q a, i.e., if

∀q ∈ QR, ∃b ∈ A,∀λ ∈ SN : b >λq a. (9)

(ii) Allocation a is belief-neutral efficient, a ∈ BNE, if ∀q ∈ QR, ∀b ∈ A : a �q b, i.e., if

∀q ∈ QR, ∀b ∈ A,∃λ ∈ SN : a ≥λq b. (10)

In words, an allocation, a, is belief-neutral inefficient if for every reasonable belief, q, there is another

allocation, b, that is strictly better regardless of the Pareto weights, λ.

The set of belief-neutral inefficient allocations is in general a strict subset of the complement of

the set of belief-neutral efficient allocations, BNI ( BNEc. Thus, there may be allocations that are

neither belief-neutral efficient, nor belief-neutral inefficient. To avoid the cumbersome terminology of

“not belief-neutral inefficient” allocations, we call such allocations “weakly belief-neutral efficient”:

Definition 7 (Weak belief-neutral efficiency). Allocation a is weakly belief-neutral efficient, a ∈

WBNE, if a /∈ BNI, i.e., if

∃q ∈ QR,∀b ∈ A,∃λ ∈ SN : a ≥λq b. (11)
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We stress that this terminology is not used in Brunnermeier et al. (2014). It follows immediately that

equivalent definitions of WBNE and BNE are:

WBNE = ∪q∈QR Eq, (12)

BNE = ∩q∈QR Eq, (13)

One verifies easily that the speculative outcome in Example 1 is belief-neutral inefficient.

Note that the roles of the Pareto weights, λ, and probabilities, q, are dual in the definitions of

IK-efficiency and belief-neutral efficiency. Specifically, under the IK-efficiency concept, the alternative

allocation is allowed to vary with λ but not q, whereas under belief-neutral efficiency it is allowed to

vary with q but not λ. Both concepts are reasonable, and if an allocation is efficient with respect to

one measure but not the other, there is an issue of robustness. For an allocation that is IK-efficient but

belief-neutral inefficient, it is unclear to a planner with incomplete knowledge about q what allocation

constitutes an improvement. For an allocation that is weakly belief-neutral efficient but IK-inefficient,

a planner who knows q may not be able to find a strict improvement,since the improvement need not

be strict for all q.

Finally, we introduce a concept that is related to unanimity Pareto efficiency, discussed in Gayer

et al. (2014)

Definition 8 (U-efficiency). Allocation a is U-inefficient if ∃b ∈ A, ∀q ∈ QR : b �q a, i.e., if

∃b ∈ A, ∀q ∈ QR,∀λ ∈ SN : b >λq a. (14)

An allocation, a, that is not U-inefficient is called U-efficient, i.e.,

∀b ∈ A, ∃q ∈ QR,∃λ ∈ SN : a ≥λq b. (15)

We denote the set of U-efficient allocations by UE. U-inefficiency is thus a strong form of inefficiency,

since it requires the existence of a unique allocation that dominates a current allocation regardless

of both Pareto weights, λ ∈ SN , and probabilities, q ∈ QR. This is in contrast to IK-inefficiency
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and belief-neutral inefficiency, which both allow the alternative allocation to vary with one of these

parameters. It follows that WBNE ⊂ UE, and IKE ⊂ UE.

As mentioned, U-efficiency has similarities with the unanimity efficiency-concept introduced in

Gayer et al. (2014), but there are also differences: First, Gayer et al. (2014) focus on agents involved

in a transaction, and require all those agents to be strictly better off. Second, they also require each

agent to be better off, given his or her own beliefs, for a reallocation to be identified as an improvement.

In a speculative Walrasian equilibrium outcome, in which all agents have strictly concave preferences

and participate voluntarily, these additional conditions will typically automatically be satisfied. The

aforementioned general relationships between the different efficiency sets are summarized in Figure 1.

A

UE

BNE

WBNE  IKE 

Figure 1: General relationship between heterogeneous beliefs efficiency concepts.

2.3 Comparison of measures, and robustness

In line with our previous discussions, for an economy to allow for a robust definition of efficiency,

we require that IK-inefficiency and belief-neutral inefficiency coincide. It follows immediately that

such an economy neither requires the social planner to know true probabilities, nor allows for purely

15



speculative outcomes.

We mainly focus on economies that allow for transfers between agents. Specifically, for a given

amount of aggregate production, such economies impose no restrictions on how the good may be shared

among agents. We introduce the mapping P : RM×N×T+ → RM×T+ , such that Xm,t = P(a) =
∑

n am,n,t

represents aggregate production in state m at time t for allocation a, and the aggregate production

set AX = P(A). Formally, we define:

Definition 9 (Economy with transfers). An economy is said to allow for transfers if for all a ∈

RM×N×T+ such that P(a) ∈ AX , a ∈ A.

As a benchmark, we first study homogeneous beliefs economies, in which we have:

Proposition 1. In a homogeneous beliefs economy with probability vector q:

(i) In general, IKE ⊂ Eq = WBNE = BNE = UE.

(ii) If the economy allows for transfers, IKE = Eq = WBNE = BNE = UE.

Thus, in economies that allow for transfers the efficiency concepts are all identical in the homogeneous

beliefs setting, as expressed by Proposition 1(ii), and a robust definition of efficiency is therefore

possible in this setting. Without transfers, IKE may be a strict subset of the other efficiency sets,

even when agents have homogeneous beliefs, as suggested by Proposition 1(i). An example where this

occurs is given in Appendix A.4.

We next study the case with heterogeneous beliefs, in which case qn 6= qn
′

for at least two agents,

and |QR| ≥ 2. First, going back to Example 1, one can show that betting is U-efficient in that

example, i.e., that there is no alternative allocation to betting that is better for all reasonable beliefs

and Pareto weights. Hence, in the example U-efficiency is not powerful enough to identify speculative

betting as inefficient. The following proposition extends the result to show that in general it is not

possible to use U-efficiency to rule out all speculative allocations that are Arrow optimal, whereas the

other efficiency concepts typically do rule out such speculative allocations:

Proposition 2. In the heterogeneous beliefs economy with transfers, such that qn ∈ QR for all agents,

1 ≤ n ≤ N :
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(i) There is an Arrow optimal allocation, a ∈ EAq , that is also U-efficient, a ∈ UE.

(ii) If all agents’ utility functions are strictly concave and aggregate production is the same for any

two Arrow optima, i.e., P(a) = P(b) for any a, b ∈ EAq , then all Arrow optimal allocations are

U-efficient, EAq ⊂ UE.

(iii) Any Arrow optimal allocation, a ∈ EAq , in which two agents who disagree about the relative

likelihood of two states to occur are allocated strictly positive amounts of the consumption goods in

both those states, is neither IK-efficient, nor weakly belief-neutral efficient, a /∈ IKE ∪WBNE.

Since competitive equilibria in a Walrasian economy can be identified with the economy’s Arrow

optima, via the welfare theorems, Proposition 2 implies that there will be at least one such speculative

equilibrium outcome that is identified as U-efficient. Hence, whereas both IK-efficiency and weak

belief-neutral efficiency rule out all speculative allocations, U-efficiency is under general conditions

not a strong enough criterion to do so.9 In fact, part (ii) of Proposition 2 shows that under additional

assumptions, that are satisfied in several workhorse models in the literature, the set of Arrow equilibria

is a subset of the U-efficient allocations.

We next relate WBNE and IKE. In general, these efficiency measures differ, but under additional

conditions that are satisfied in several work-horse models they coincide. We introduce the following

conditions:

C1. The utility possibility set, U ⊂ RM×N , is convex.

C2. The set of reasonable beliefs, QR, is convex.

C3. Strict dominance: For all a in WBNE, ∃λ ∈ S̄N ,∃q ∈ QR, ∀b 6= a : a >λq b.

The convexity condition for the utility possibility set, C1, is standard (see Mas-Colell et al. 1995). In an

economy that allows for transfers, a sufficient condition for U to be convex is, e.g., that the aggregate

production set, AX is convex. Another way of ensuring convexity of U is by allowing for random-

ization, see Yaari (1981). Specifically, if the planner uses a randomization device to choose between

9Belief-neutral inefficiency of Arrow optima—part (iii) of Proposition 2—actually follows from the analysis in Starr
(1973), see Starr’s Corollary 3.1, p. 88.
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allocations a1, . . . , aK with probabilities ρ1, . . . , ρK , the associated utility matrix is
∑K

k=1 ρkV(ak),

which consequently belongs to U . This rationale for a convex utility possibility set is of course more

subtle in our setting with disagreement than in Yaari (1981), because agents may not disagree about

the probabilities of the randomization device for the argument to hold. Machina (2004) discusses how

to construct events such that agents agree on the probabilities of those events. The construction is

nontrivial and only works under some technical regularity conditions. If such objective randomization

is used, however, convexity of the utility possibility set follows.

The convexity condition for the set of reasonable beliefs, C2, is satisfied under the assumptions

made in Brunnermeier et al. (2014), see equation (6). The strict dominance condition, C3, states that

each allocation that is Pareto efficient for some reasonable q is associated with a Pareto weight and

reasonable probability vector for which that allocation strictly dominates all other allocations. We

now have:

Proposition 3. In the heterogeneous beliefs economy with transfers:

(i) If C1 is satisfied and each utility function unm,t is strictly concave, then C3 is satisfied.

(ii) If C1 and C2 are satisfied, then IKE ⊂WBNE.

(iii) If C3 is satisfied, then WBNE ⊂ IKE.

Proposition 3(i) shows that in economies with strictly concave utility functions, condition C3 is

redundant. Moreover, it follows immediately from Proposition 3(ii)-(iii) that:

Corollary 1. In production economies with transfers, that satisfy conditions C1-C3, IK-inefficiency

and belief-neutral inefficiency are equivalent. Such economies thus allow for a robust definition of

efficiency.

We note that it follows from (12) that both WBNE and IKE are nonempty sets when conditions

C1-C3 are satisfied.

As suggested by (12,13), belief-neutral efficiency puts substantially stronger restrictions on alloca-

tions than weak belief-neutral efficiency, and we may therefore expect BNE to be a small set in many
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cases. Indeed, a belief-neutral efficient allocation must be efficient for all reasonable q. In economies

for which the optimal aggregate production depends on q, BNE may therefore be empty, as noted in

Brunnermeier et al. (2014), and as we now explore further.

We show that belief-neutral efficient allocations can never be associated with smooth boundary

points of the aggregate production set. Specifically, a boundary point of the production set, a ∈ ∂AX

is said to be smooth if it has a unique supporting hyperplane (see Gallier 2011, p. 108).10 Using

the formulation (3) for the planner’s optimization problem, it follows that q defines a supporting

hyperplane to the set {V λ : V ∈ U} at an efficient point. There can therefore not be multiple q’s

for which an allocation is efficient where the boundary of the production set is smooth, leading to an

empty belief-neutral efficient set. The argument can be made formal as long as the utility possibility

set is sufficiently thick, as guaranteed by the following condition:

C4. The aggregate production set has nonempty interior, Int(AX) 6= ∅.

We then have:

Proposition 4. In a heterogeneous beliefs economy with transfers that satisfies C1 and C4, BNE

contains no allocations that are associated with smooth boundary points of AX .

Corollary 2. In a heterogeneous beliefs economy with transfers that satisfies C1 and C4, that has has

a smooth efficient frontier, there are no belief-neutral efficient allocations, BNE = ∅.

Corollary 2 rules out the existence of belief-neutral efficient allocations in several standard mod-

els with production, for example, models with disagreement about the production technology in a

stochastic AK model. Only boundary points in the aggregate production set that are so “pointy” that

they allow for a whole set of supporting beliefs may be belief-neutral efficient. An extreme example

for which this holds is the exchange economy, in which the production set is a singleton, and in which

the belief-neutral and IK-efficiency concepts coincide. Indeed, in the exchange economy, belief neutral

efficiency, weak belief-neutral efficiency, and IK-efficiency are all equivalent, as shown by Proposition 5

below.

10In one dimension this condition reduces to the efficient frontier being differentiable at the point a.
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Definition 10 (Exchange economy). An exchange economy is an economy that allows for transfers,

in which the aggregate production set is a singleton, AX = {X}.

Proposition 5. In the exchange economy,

(i) Eq = Eq′ for all q, q′ ∈ SM ,

(ii) IKE = WBNE = BNE.

To summarize, the exchange economy allows for a robust definition of efficiency under heteroge-

neous beliefs,11 because the exchange economy setting avoids the challenges that arise when there

are real aggregate effects of heterogeneous beliefs. Conditions C1-C3, jointly ensure robustness in the

production economy, i.e., IKE and WBNE are equivalent under these conditions, whereas U-efficiency

and BNE, are usually too weak and strong concepts, respectively, even under these conditions.

We conclude this section with an example that highlights challenges that arise when we move away

from economies that satisfy conditions C1-C3:

Example 2. We revisit the example with Ann and Bob from the introduction, with production.

Specifically, Ann and Bob are risk averse expected utility maximizers with square root utility. There

are three mutually exclusive production technologies (safe, almonds, and beans), one consumption

date (the fall), and two states (rainy summer and sunny summer). The expected utility of agent

n ∈ {Ann,Bob} is

Un = q
√
cn1 + (1− q)

√
cn2 , (16)

where cnm is the consumption of agent n in state m ∈ {1, 2}, state 1 represents a rainy summer, state 2

a sunny summer, and q is the probability of state 1. Ann and Bob disagree about q. Ann believes that

the probability is qAnn = 0.9, whereas Bob believes it is qBob = 0.1. The social planner, not knowing

which beliefs are correct, views any probability in QR = {(q, 1− q) : q ∈ [0.1, 0.9]} as reasonable.

The first production technology is the safe technology, which generates a total output of 2 units

of the consumption good in either state. The second technology is production of Almonds, which

11Note that since an exchange economy always fails condition C4, Proposition 5(b) and Corollary 2 are mutually
consistent.
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generates 18 units after a rainy summer, and 0 units after a sunny summer. The third technology is

beans, which generates 18 units after a sunny summer and 0 after a rainy one. The economy neither

permits transfers, nor objective randomization over events.

There are four possible allocations, captured by the set A = {a1, a2, a3, a4}. Under allocations

a1−a3, Ann and Bob are each allocated one half of the total production of the safe, almond, and bean

technology, respectively. In allocation a4, the safee production technology is used, as in allocation

a1, but Ann receives 1.9 after a rainy summer and Bob receives 0.1, whereas Bob receives 1.9 after a

sunny summer and Ann receives 0.1. Allocation a4 is thus speculative. This is reminiscent of Example

1. Table 1 shows the consumption by the two agents for different allocations and states.

Allocation, a1 a2 a3 a4

Agent Ann Bob Ann Bob Ann Bob Ann Bob

Rain 1 1 9 9 0 0 1.9 0.1
Sun 1 1 0 0 9 9 0.1 1.9

Ex ante utility 1 1 2.7 0.3 0.3 2.7 1.27 1.27

Table 1: Four allocations in economy with two agents and two states. Allocation a1 and a4

are based on investments in the safe technology, with equal (a1) and unequal (a4) sharing
between agents in the two states. Allocation a2 and a3 both have equal sharing, but
invest in risky technologies that pay off in the rainy and sunny state, respectively.

It is easy to verify that the only ex ante inefficient (i.e., not Arrow optimal) allocation is a1, which

both agents agree is dominated by a4, based on their different beliefs. Of course, both agents also

agree that the welfare improvement is speculative, and that whatever the true q is, any allocation

in which individual consumption shares vary across states can be improved upon by risk sharing.

Thus, a4 is inefficient whenever the planner uses the same q for both agents’ utilities. This is the

speculative inefficiency that is captured by all the discussed welfare measures that are based on ex

post realizations.

In Figure 2, the right panel compares allocation a1 with a4. The horizontal (black) line represents

the (same) utility of the two agents under the safe allocation a1, whereas the sloped (blue) lines

represent the utilities of the two agents under the risky allocation a4. For low and high q’s, one of

the agents is better off under a4 than under a1, whereas the other is worse off, and for q close to 1/2
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both agents are worse off. Now, the reason one agent is better off for extreme q’s is exactly because of

speculative redistributions. Regardless of q, allocation a4 is therefore inferior when using any measure

that forces q to be the same for the two agents. So the planner can always improve upon a4.
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Figure 2: Expected utilities of agents as a function of q. Left panel: Comparing utilities of

allocations a1, a2 and a3. Right panel: Comparing utilities of allocations a1 and a4.

It follows from the efficiency definitions in the previous section that a1, a2, and a3 are all IK-

efficient (IKE = {a1, a2, a3}), that a1 and a4 are belief-neutral inefficient (WBNE = {a2, a3}), that

there are no belief-neutral efficient allocations (BNE = ∅), and that all four allocations are U-efficient

(UE = {a1, a2, a3, a4}). Also, it follows that conditions C2 and C3 are satisfied, whereas C1 is not.

These results remain the same even if we allow for transfers between agents, as discussed in the

appendix.

The results are consistent with our analysis in the previous section. Specifically, BNE ⊂WBNE ⊂

IKE ⊂ UE, with each inclusion being strict, in line with Figure 1 and Proposition 3. Importantly,

since the set of feasible allocations is not convex, it is possible for an allocation to be IK-efficient but

not weakly belief-neutral efficient (allocation a1 in this example), because the conditions for Proposi-

tion 3(ii) are not satisfied.
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We argue that it is reasonable to view allocation a1 as efficient in this example. As shown in the

left panel of Figure 2, a1 is dominated by some other allocation for every q ∈ QR, and is thereby

belief-netural inefficient. However, since the planner with incomplete knowledge about q is unable

to determine which allocation of a2 and a3 improves efficiency, allocation a1 is actually a reasonable

choice.

If objective randomization is possible, a1 no longer remains IK-efficient, because a randomization of

a2 and a3 with equal probability leads to expected utility of 1.5 for both agents in both states, regardless

of q. It follows that in this caseWBNE = IKE = {a2, a3}. This is in line with Proposition 3, Parts (ii)

and (iii), since the utility possibility set is convex when objective randomization is possible, making

condition C1 satisfied. As discussed, such objective randomization may be nontrivial.

3 A competitive market

We study the efficiency of market outcomes in an equilibrium model with production. This also

allows us to identify how an inefficient equilibrium leaves footprints in the economy. In other words,

we identify quantities that behave differently for efficient and inefficient equilibrium outcomes. We

refer to such quantities as being distorted when they differ from the values that could be reached

under efficient allocations. Identifying such distortions can potentially serve as a tool for the planner

in identifying inefficiencies and moving towards efficient allocations.. A general conclusion of our

analysis is that equilibrium outcomes are in general inefficient, and that in addition to speculation

and price distortions, aggregate consumption and savings are typically also distorted. We define

distortions formally in Definition 13 below, but simply put distortions look like anomalies when seen

from a the lens of representative agent models.

We consider a simple production economy with one linear production technology and two dates,

T = {0, 1}, that allows for transfers. There are M > 1 possible states, and N > 1 agents with

heterogeneous beliefs. The state is revealed at t = 1, so we require that am,n,0 = am′,n,0 for 1 ≤

m,m′ ≤ M , for all a ∈ A. Agents have strictly concave utility, i.e., the functions unm,t are strictly

concave for all n and m, and t ∈ {0, 1}. The set of reasonable beliefs is described by the convex hull
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of agents’ beliefs (6), as in Brunnermeier et al. (2014). Condition C2 is therefore satisfied.

Each agent has access to the production technology and is endowed with a strictly positive initial

amount of a divisible capital good, Kn > 0. We normalize the total supply of the good to unity,∑N
n=1K

n = 1. Agents can use the capital to consume today or invest for the next period. Each

unit invested yields a random strictly positive amount at time t = 1 at which point it is consumed.

The vector R ∈ RM+ summarizes the output yielded at t = 1 by one unit of investment, in the M

states. The initial endowment is represented by a vector, K = (K1, . . . ,KN ) ∈ SN . This leads to the

following set of feasible allocations and aggregate investments:

Definition 11 (Feasible allocation). An allocation is feasible, a ∈ A, with aggregate investment,

I ∈ [0, 1], if

(i) I =
∑N

n=1 (Kn − a1,n,0) = 1−
∑N

n=1 a1,n,0,

(ii)
∑N

n=1 am,n,1 ≤ IRm, m = 1, . . . ,M .

It follows that the aggregate production set, AX ⊂ RM×2
+ is convex, and therefore that Condi-

tion C1 is satisfied. Since utility functions are strictly concave, Condition C3 then also holds. From

Proposition 3 it follows that IK-efficiency and weak belief-netural efficiency coincide in this economy,

IKE = WBNE,

so the economy allows for a robust definition of efficiency.

Henceforth, we focus on the case in which all agents have separable power utility across states and

time

unm,t(c) = ρtu(c) = ρt
c1−γ

1− γ
,

for all n, m, and t, with γ > 0, ρ > 0, and with logarithmic utility as the special case when γ = 1.

We also define the elasticity of intertemporal substitution (EIS), ψ = 1
γ . For simplicity assume a

personal discount rate of zero, so that ρ = 1. As in the previous section, agent beliefs are summarized

by q ∈
∏N
n=1 S

M . The primitives of the competitive economy is summarized by the quadruple E =

(γ,q,K,R).
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3.1 Equilibrium

At t = 0, agents trade in a market for state-contingent Arrow Debreu (AD) claims on each state, with

the mth security paying off 1 at time t = 1, conditioned on state m occurring. The price of the mth

AD security, measured in time-0 units of the good, is pm. The absence of arbitrage implies that

∑
m

pmRm = 1,

since agents would otherwise form arbitrage portfolios in AD securities and the real asset that repre-

sents the production technology.12 The optimization problem for agent n is then

max
cn11,...,c

n
1M

u(cn0 ) +
M∑
m=1

u (cn1m) qnm, s.t., (17)

cn0 = Kn −
M∑
i=m

cn1mpm.

Here, cn1m is agent n’s demand for the mth AD security, and we define the demand vector dn =

(cn11, . . . c
n
1M ) ∈ RM . We restrict our attention to the case with strictly positive AD security prices,

since arbitrage opportunities would arise if some prices were nonpositive, inconsistent with equilibrium.

We define the state-price vector p = (p1, . . . , pM ) ∈ RM++. The strict concavity of agents’ preferences

implies that dn is a unique and smooth function of Kn, qn, and p, so we can write

dn = D(Kn, qn|p),

for a smooth function, D. We now have:

Definition 12 (Equilibrium). Given the economy, E, a competitive (Walrasian) equilibrium is defined

by a state-price vector, p, such that

∑
m

pmRm = 1, and

12Strictly speaking, this arbitrage argument only works for interior allocations, such that 0 < I < 1. This condition
will always hold in equilibrium, since the utility specification satisfies the Inada conditions.
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∑
n

(D(Kn, qn|p))m = IRm, m = 1, . . . ,M,

for some I ∈ (0, 1).

We say that p is an equilibrium state price vector, and we then have the following existence and

uniqueness result:

Proposition 6. In the economy, E = (γ,q,K,R), there exists an equilibrium state-price vector, p.

Moreover, there exists a γ < 1, such that p is unique when γ ≥ γ.

In our subsequent analysis, we assume that risk aversion is sufficiently high so that equilibrium is

unique, γ ≥ γ̄.13

The following result shows that equilibrium is always IK-inefficient under heterogeneous beliefs:

Proposition 7. Competitive equilibrium is efficient if and only if beliefs are homogeneous.

Thus, just as in the exchange economy setting, as discussed in Brunnermeier et al. (2014) and Blume

et al. (2018), the competitive equilibrium outcome is always inefficient under heterogeneous beliefs in

this economy.

An immediate reaction to Proposition 7 may be that the social planner should shut down the

market for contingent claims, since its main role is to generate speculation. We caution against

such an interpretation. To keep the model simple, we have assumed that agents are not exposed to

idiosyncratic endowment shocks, but similar results arise when this assumption is relaxed, as discussed

in Appendix A.2. When agents are exposed to idiosyncratic shocks, the market also facilitates risk

hedging, and shutting it down may be associated with significant welfare costs.

3.2 Distortions

We introduce a concept of distortion that does not depend on knowledge of q among the set of

reasonable beliefs. We then use the concept to detect over- and under-investment, and mispricing.

13Our uniqueness proof, which uses an approach that to the best of our knowledge is novel, does not rely on the gross
substitutes property of demand functions (see Arrow et al. 1959), which would restrict risk aversion to be less than unity
in this setting. Instead, based on our argument, uniqueness is not guaranteed if risk aversion is very low. It is commonly
believed that γ > 1 in practice. Hence, uniqueness is guaranteed for reasonable levels of risk aversion in our model,
which we view as a strength.
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Such distortions may be of interest on own merits. They may also be used to infer that equilibrium

is inefficient, because they never arise under efficiency.

Our approach is similar to that taken when defining efficieny. A real-valued equilibrium char-

acteristic of the economy is defined as distorted if it takes on a value that is inconsistent with any

equilibrium outcome under homogeneous beliefs in QR.14 We formalize the concept as follows: Let

Π(QR) =
{

q ∈
∏N
n=1 S

M : q = (q, q, . . . , q), q ∈ QR
}

denote the set of reasonable homogeneous belief

vectors.

Now, consider a real-valued characteristic, v of the equilibrium outcome, which in general can be

viewed as a function of the equilibrium allocation, a, and price, p. Since a and p in general depend on

initial endowments, K, and beliefs, q, we can write v = v(K,q). The set of unanimously reasonable

values of v is now defined as FUv =
{
v(K,q) : K ∈ SN ,q ∈ Π(QR)

}
, leading us to:

Definition 13 (Distortion). The real-valued characteristic v is said to be distorted in equilibrium if

v 6∈ FUv . It is too low if v < inf FUv , and too high if v > sup FUv .

It follows that distortions never arise in homogeneous beliefs economies, which in turn, via Propo-

sition 7, implies that a distortion is always associated with an inefficient outcome. A planner could

therefore potentially identify inefficiencies by detecting distortions, for example, in aggregate savings.

This approach may be easier in practice than directly detecting inefficiencies from agent preferences.

3.3 Consumption-savings distortions

We consider consumption-savings distortions, in a special case of the equilibrium model. Specifically,

we assume that there is no aggregate uncertainty, so that Rm = 1 for all states m = 1, . . . ,M . In

this case, investments in the production technology corresponds to risk-free savings (in a storage

technology), allowing a consumption-savings interpretation of aggregate consumption at times 0 and

1.15 We call this special case the savings economy.

14As the the set of competitive equilibria in the homogeneous beliefs economy, via the welfare theorems, is equivalent
to the set of efficient outcomes, we could equivalently have defined an outcome to be distorted with respect to the set of
efficient outcomes.

15The results in this section can easily be extended to economies with aggregate uncertainty, as long as agents only
disagree about idiosyncratic uncertainty. In Appendix A.5 we show in an example that similar results may also arise
when there is disagreement about aggregate uncertainty.
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It is easy to show that under homogeneous beliefs, there is a unique optimal level of aggregate

savings, I∗, regardless of agent beliefs and initial endowments, which is achieved in equilibrium. Under

heterogeneous beliefs, in contrast, we have:

Proposition 8. Under heterogeneous beliefs:

(i) If the elasticity of intertemporal substitution is less than one, ψ < 1, there is undersaving

(overconsumption) in equilibrium, I < I∗.

(ii) If the elasticity of intertemporal substitution is greater than one, ψ > 1, there is oversaving

(underconsumption) in equilibrium, I > I∗.

Thus, aggregate consumption and savings are always distorted when agents disagree, with the excep-

tion of for log utility. It may be a priori surprising that such unanimous agreement about the presence

of a distortion arises in the model. Indeed, one may conjecture that agents would disagree about the

optimal amount of savings.

The reason why there is a unanimous consensus about the savings distortion is because of a

wealth effect: When agents disagree, they all feel wealthier because of their anticipated gains from

speculation. They therefore readjust their consumption and savings at t = 0, decreasing savings

if the elasticity of intertemporal substitution ψ < 1 and increasing savings if ψ > 1. The effect of

increased wealth on savings is known to be intimately connected to ψ, and it is therefore not surprising

that the direction of the savings distortion also depends on ψ. The distortion is a consequence of

“spurious unanimity” (see Mongin 1995): Agents believe the distorted savings outcome to be optimal

for themselves, although they base their conclusions on different—mutually exclusive—beliefs. We

note that although wealth effects on investments are of course well known from previous literature,

what is special in our framework is that all agents agree that there is no aggregate wealth increase, but

still jointly behave as if there is one. In a production economy, this typically impacts the aggregate

investment in the economy. To the best of our knowledge this impact on the aggregate investment has

not been made previously, and creates a wedge between the behavior of a representative agent and

agents with heterogeneous beliefs.16

16The income and substitution effect have recently been studied in relation to disagreement for exchange economies;
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The aggregate investments distortions arise because of the speculation in financial markets. The

mechanism highlights the role of financial markets in channeling resources to productive assets, and

the associated real feedback effect of speculation that is not present in the exchange economy.

The results in Proposition 8 relate our heterogeneous beliefs model to the consumption-savings

puzzle. The personal savings rate is lower than predicted by the standard representative agent

consumption-savings model and has, moreover, decreased significantly over the last four decades,

see Parker (1999) and Guidolin and Jeunesse (2007). A recent suggested explanation is given in Han

et al. (2018), namely that individuals overestimate the consumption of their peers because of so-called

visibility bias. They therefore infer that the risk for adverse shocks in the future is low, and con-

sequently also the need for precautionary savings. The visibility bias mechanism is quite different

from our model, in which undersaving arises because of subjective wealth effects, and is driven by

disagreement and speculation. In our model, agents believe that other agents are not saving enough,

but that their own saving is optimal, an effect not present in Han et al. (2018).

We derive comparative statics, focusing on a tractable symmetric setting with M = N × J states,

where each agent n = 1, . . . , N is relatively optimistic about J ≥ 1 states and relatively pessimistic

about the rest of the states. There are no two agents that are optimistic about the same two states.

Every agent is, in the baseline version, endowed with 1
N unites of the capital. Agent n = 1, . . . , N

believes that the probability is ∆
M for his/her “own states” m ∈ {J (n− 1) + 1, . . . , Jn} and

1−J ∆
M

M−J for

all other states. In order to ensure that probabilities are strictly positive and that agents are relatively

optimistic about their own states, we impose the condition that 1 ≤ ∆ < N . A possible interpretation

is that the production technology corresponds to an investment in an index fund covering the whole

economy, whereas the states corresponds to individual firms—firms that agents disagree about the

prospects for.

Effect of varying disagreement: With ∆ = 1, agents believe that all states are equally likely,

and therefore there is no disagreement. A higher ∆ implies that agents are relatively more optimistic

about their own states relative to all the other states. Hence, in this setting, disagreement can be

in Ehling et al. (2018a), who look at the effect on the risk-free rate; in Guzman and Stiglitz (2016), who focus on the
sum of individual wealth expectations being higher than total wealth; and in Iachan et al. (2017), who study the effect
of introducing new speculative assets.
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measured by ∆. Define the aggregate savings to consumption ratio as Z = I
1−I . It can be shown that

Z = 1 for ∆ = 1, and for arbitrary ∆ ∈ (1, N), that ∂Z
∂∆ > 0 when γ < 1 and ∂Z

∂∆ < 0 when γ > 1.17

Moreover, in line with arguments earlier in this section, the only reasonable savings-to-consumption

ratio is Z = 1 regardless of probabilities q ∈ SM . Therefore, an increase in disagreement also increases

the magnitude of the equilibrium savings distortion.

Effect of market completeness: The source of the consumption-savings distortion is that

agents are speculating on their own beliefs. Hence, one would expect that as one restrict the access to

financial markets, consumption-savings distortions are reduced. Clearly, if agents only have access to

the investment technology, there is no savings distortion and consequently Z = 1 regardless of beliefs.

We study how the distortions are impacted by shutting down a subset of the markets. Specifically, we

assume that every agent can trade in J − l of the assets they are relatively optimistic about and the

(N − 1) (J − l) assets that they are relatively pessimistic about for ` = (0, . . . , J), which makes the

analysis tractable. Let Z` denote that investment-consumption ratio when ` markets are shut down.

It follows that Z` < Z`+1 ≤ 1 for γ > 1 and Z` > Z`+1 ≥ 1 for γ < 1, for ` ∈ {0, . . . , J − 1}. Hence,

distortions are reduced as we reduce the number of traded assets.

Effect of inequality: To study the effect of inequality, we vary the initial consumption share of

the agents. Specifically, we let the consumption share of the first agent be 1 − δN−1
N and δ

N for all

the other agents, with δ ∈ [0, 1]. Hence, when δ = 0 everything is consumed by the first agent and

when δ = 1 the consumption share is the same for every agent in the economy. So, as we increase δ

the initial consumption distribution is equalized. It can be shown that ∂Z
∂δ < 0 for γ > 1 and ∂Z

∂δ > 0

for γ < 1 and δ ∈ [0, 1]. Moreover, Z is maximized (minimized) for δ = 0 when γ is greater (less)

than one. Hence, as we increase δ, distortions increase. The reason for this is that the more equal the

initial consumption distribution is, the more room there is for speculative trade among agents and,

consequently, the more severe are the equilibrium savings distortions.18 In the extreme case, in which

one agent has all the wealth, there is no one for that agent to speculate against.

17With γ = 1 there is no investment distortions and Z = 1 for all values of disagreement.
18This result is robust to alternative ways of changing the degree of inequality. In the proof in the Appendix we also

show the case when there are three groups of agents and we increase the initial consumption of the first group at the
expense of the third group, keeping the initial consumption of the middle group constant. In that example, agents within
each group also disagree and therefore we are not concentrating all consumption in the hands of a single agent type as
in the above example.
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We summarize the comparative statics results on savings in:

Proposition 9. In the symmetric economy, the savings distortion is increasing in

(i) Disagreement,

(ii) Market completeness, and

(iii) Equality.

Proposition 9 provides potentially testable implications. The first two results suggest that in mar-

kets and times of high disagreement, and in well developed financial markets, the consumption-savings

puzzle will be more severe. As proxies for belief heterogeneity, analyst forecast disagreement or short

interest may, for example, be used, at the individual asset level. Measures of financial development

and inequality are harder to measure at the disaggregated level, but cross-country comparisons may

be possible.

The predictions separate our model from Han et al. (2018). The third prediction, that the puzzle is

more severe when inequality is low, also arises in Han et al. (2018). We note that the rapid development

of new financial markets in the U.S. over the last four decades is consistent with increased undersaving

over the time period.

To illustrate the size of consumption-savings numerically, we consider an economy with ten agent

types (N = 10), which could, for example, represents investor groups focusing on different sectors,

and with ten states per agent (J = 10), which could, for example, represent different firms within

each sector. As the effect is qualitatively different when γ < 1 and γ > 1 we consider both cases,

γ ∈ {0.8, 2}. We set ∆ = 9, so that the probability of “own” states are believed to be 0.09 and

for all other states the probability is believed to be 0.0011. There is thus significant disagreement

among the agents about which industries will prevail. From Figure 3, we see that the degree of

consumption-savings distortions can be significant.

We also note that when agents disagree in this symmetric economy, they adjust their portfolio

holdings away from the fully diversified investment portfolio with portfolio weight 1
M in each asset

(here represented by AD securities), to a portfolio with disproportionately large holdings in a few
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Figure 3: Equilibrium Consumption-Savings Distortions: The plots show the investment-

consumption ratio, Z. The left plot shows the effect of increasing disagreement, ∆. The middle

plot shows the effect of increasing the number of traded assets, J − `. The right plot shows the

effect of increasing equality, by increasing δ. Parameters: γ ∈ {0.8, 2}.

assets. That is, the more agents disagree, the more under-diversified their portfolios become, relating

disagreement to a major stylized fact of capital markets—the under-diversification puzzle. This effect

disagreement on under-diversification is consistent with Anderson (2013), who argues that under-

diversification is an outcome of agents being overoptimistic. Within our framework, disagreement—

whether overoptimisic or not—is sufficient for under-diversification to occur.

Proposition 10. In the symmetric economy, the more agents disagree, the more underdiversified

portfolios they hold in equilibrium.

A recent literature relates individual investors’ beliefs to their network position in the economy,

e.g., represented by geography (e.g., in Bhamra et al. 2019). In line with the previous results in this

section, our model predicts that an agent’s position should be related to the degree of diversification

of his/her investment portfolio, and also that the geographical distribution of investors in the economy

should be related to aggregate investments and savings. An alternative way of testing our model’s pre-

dictions may therefore be to use data on individual portfolio holdings and positions of the investment

population.

3.4 Price distortions

Historically, many have argued for the presence of significant mispricing of assets during so-called bub-

ble periods, see, for example, Shiller (2000). In our model, mispricing corresponds to price distortions.
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As was the case with consumption-savings distortions, it is a priori unclear whether price distortions

may arise in our model, since all agents agents need to agree about their presence. Our analysis in this

section shows that in markets with disagreement and rich state spaces, presence of price distortions is

the rule rather than exception, especially for assets about which there is low disagreement.

We proceed by defining price distortion as follows: Let the vector a ∈ RM represent the asset that

pays am in state m at t = 1, and P a =
∑

m ampm its corresponding equilibrium price, and similarly

for the vector b ∈ RM with price P b.

Definition 14 (Price distortion). There is an equilibrium price distortion, if there exist assets, a and

b, such that P b 6= 0, and Pa

P b
is distorted, as defined in Section 3.2. We denote this by an (a, b) price

distortion.

The asset b has the natural interpretation of being the numeraire, i.e., the price distortion is

defined in terms of the price of asset a measured in number of units of asset b. When b = R ∈ RM ,

this numeraire is in terms of t = 0 consumption, since PR = 1. The (gross) risk-free interest rate is

1∑
m pm

.

Price distortions occur generically, as long as the economic environment is rich enough to contain

many states and agents with sufficiently different beliefs, as shown in the following proposition:

Proposition 11. Consider an economy in which there are more states than agents, M > N , and

define the matrix A ∈ RM×N++ , with elements Amn = (qnm)1/γ. Assume that the rank of A is N . Then,

for all Pareto weights, λ ∈ SN , except possibly for a subset of Lebesgue measure zero, there exist

equilibrium price distortions.

The proof of Proposition 11 proceeds by constructing an asset that all agents agree upon the correct

price of, and then showing that the equilibrium price of this asset is different from that price, except

possibly in some knife-edge cases. That asset’s price is thus typically distorted in equilibrium. The

result is general, but does not describe which assets will have distorted prices. The following result

and its corollary provides further guidance.

Proposition 12. In the savings economy with elasticity of intertemporal substitution ψ 6= 1, any

33



Arrow Debreu security, m, about which agents agree in that qnm is the same for all n, is mispriced in

equilibrium. Specifically,

(i) If ψ > 1, then the mth Arrow Debrey security is underpriced, pm < p∗m,

(ii) If ψ < 1, then the mth Arrow Debreu security is overpriced, pm > p∗m,

where p∗m is the unique undistorted equilibrium price.

The intuition behind this result is that price distortions are difficult to identify in states that agents

disagree about, since such states have a wide range of reasonable prices. On the other hand, for a

state m, about which there is no disagreement, all agents also agree on the correct price and any

deviation from this agreed-upon price is then identified as a distortion. In the savings economy,

aggregate investments are distorted and hence the relative marginal utility between date zero and

one is also distorted. Specifically, when the EIS is less than one, the investment consumption ratio is

lower than in the no disagreement economy and therefore the relative marginal utility is higher, which

also implies a too high price. Vice versa, when the EIS is greater than one, Arrow Debreu prices of

no-disagreement states are too low.

A lesson to be drawn is that it may be easiest to identify mispricing by studying the prices of

assets about which there is the least disagreement. Moreover, the excess return depends on the EIS.

Specifically, when the EIS is less than one, low disagreement assets have lower return than in an

equivalent economy without disagreement. Note that the effect on the no-disagreement assets arises

because of the investment distortions, not because of the risk free rate which is the same with or

without disagreement. Rather, the price distortion is due to a lower risk premium.

For simplicity, we have stated the result for the savings economy. Generalizations are straight-

forward, as discussed in the proof of Proposition 12. Specifically, we show there that if there is an

idiosyncratic event B (i.e., an event that does not affect aggregate output) with at least three states

and agents agree about the probability of state m ∈ B, and if there is disagreement about some other

states in B then pm/(
∑

b∈B pb) is distorted.

The fact that mispricing is easiest found in idiosyncratic assets about which there is low disagree-

ment provides a potential link between disagreement and idiosyncratic mispricing. The idiosyncratic
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volatility puzzle states that assets with high idiosyncratic volatility underperform in the market. To

illustrate how such idiosyncratic mispricing may arise under disagreement, consider the following

“idiosyncratic asset economy” with six states, Ω = {L,H} × {1, 2, 3} = {L1, L2, L3, H1, H2, H3},

where {L,H} represents states with different aggregate outcomes, and {1, 2, 3} represents idiosyn-

cratic states. The payout of the production technology is RL in the low states {L1, L2, L3} and RH

in the high states {H1, H2, H3}, where, RL < RH . There are two agents with equal initial endow-

ment, who agree on the probability, qL, for the low states and consequently on the probability for

the high states, qH = 1 − qL. They also agree that the conditional probabilities for state 2 is 1/3:

qL2/qL = qH2/qH = 1/3. They disagree, however, about the probabilities for states 1 and 3. Agent n

believes the probability for states L1, L3, H1, and H3 are qLz
n, qL(2/3−zn), qHz

n, and qH(2/3−zn),

respectively.

The traded assets in this economy are aw = (1 − w)As + wAi, where w ∈ [0, 1], As represents a

systematic asset that pays RL in state L and RH in state H, and Ai represents an idiosyncratic asset

with payoff 1 in state 2 and zero otherwise. Asset a0 is therefore purely systematic, whereas a1 is

purely idiosyncratic. Moreover, the amount of idiosyncratic volatility is increasing in w.

We now have:

Proposition 13. In the idiosyncratic asset economy with disagreement, z1 6= z2, and EIS 6= 1:

• The systematic asset, a0 is not mispriced.

• All assets with idiosyncratic volatility, aw, w > 0, are mispriced. The degree of mispricing

increases in idiosyncratic volatility, w.

– The assets are overpriced if the EIS is less than one, ψ < 1,

– The assets are underpriced if the EIS, is greater than one, ψ > 1.

We conclude this section by comparing our production economy results to those in an exchange

economy in an example.

Example 3. The setup in this case is similar to the equilibrium production economy, with the

exception that agents cannot invest. Instead, they receive endowments en0 at time 0, and en1m at
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time 1, n = 1, . . . , N , m = 1, . . . ,M , and the total endowment is e0 =
∑N

n=1 e
n
0 , e1 =

∑N
n=1 e

n
1m,

m = 1, . . . ,M . Note that, just as in the savings economy, there is no aggregate uncertainty, i.e., e0

and e1 are known.19 Given a state price vector, p, the optimization problem of agent n is then

max
cn11,...,c

n
1M

u(cn0 ) +

M∑
m=1

u (cn1m) qnm, s.t. (18)

cn0 +

M∑
m=0

pmc
n
1m = en0 +

M∑
m=0

pme
n
1m.

Similar arguments as those leading to Proposition 6 implies the existence of a unique equilibrium

state-price vector. We then have

Proposition 14. In the savings economy with disagreement, the risk-free interest rate is never dis-

torted. In the exchange economy with disagreement, the risk-free interest rate is always distorted.

The reason for the difference is that in the savings economy, agents adjust their investments to

smooth out perceived gains from speculation across time. In the exchange economy, such smoothing is

not possible. Instead, prices have to adjust to keep aggregate consumption equal to total endowments

(see Ehling et al. (2018a)). Note that per definition savings distortions do not arise in the exchange

economy, whereas they are always present in the savings economy, except for in the knife-edge case of

logarithmic utility.

Altogether, the example highlights how the exchange economy and production economy may be-

have quite differently under disagreement.

4 Concluding remarks

Our results in this paper show the challenges of defining efficiency in production economies with

disagreement, but also that these challenges can be overcome under some natural technical conditions

that are satisfied in several standard work-horse models. Disagreement in the production economy

feeds back to the real economy, leading to investment distortions and thereby relating heterogeneous

19Just as the savings economy can be generalized, the exchange economy can easily be generalized to allow for aggregate
uncertainty.
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beliefs to the well-documented undersaving puzzle. It may also lead to agents holding underdiversified

portfolios (underdiversification puzzle), and to overpricing of assets with high idiosyncratic volatility

(idiosyncratic volatility puzzle). In general, under heterogeneous beliefs, there are assets that are

objectively mispriced in equilibrium.

Our approach does not rely on objective knowledge about “true” probabilities by a policy maker.

This is of practical importance. A potential application may arise during a period of disagreement

about whether novel technologies have created a bubble in a market—as in our previously mentioned

example when during the late 1990s some argued that there was a tech bubble, whereas others argued

that the high valuations of Internet startups and other companies were well justified. Our approach

suggests the possibility for a policy maker to take action during such periods, for example, by affecting

investors’ relative trade-off between investing and consuming. Importantly, such actions could be

justified without taking a stand on the future prospects of the novel technologies.
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A Further examples

A.1 Example in Section 2, allowing for transfers

When allowing for transfers in the example, A = {bτ1,τ21 , bτ2 , b
τ
3} for τ1, τ2, τ ∈ [0, 1], where the alloca-

tions are defined as in Table 2. It follows that a1 = b0.5,0.51 , a2 = b0.52 , a3 = b0.53 , and a4 = b0.95,0.05
1 .

Allocation, bτ1,τ21 bτ2 bτ3
Agent 1 2 1 2 1 2

State 1 2(1− τ1) 2τ1 18(1− τ) 18τ 0 0
State 2 2(1− τ2) 2τ2 0 0 18(1− τ) 18τ

Table 2: Economy with three mutually exclusive technologies, two agents and two states
with transfers.

Let us first focus on Eq for a specific q ∈ QR. For bτ1,τ21 with τ1 6= τ2, there is speculation since

individual consumption is state dependent even though aggregate output is not. No such speculative

allocation can be in Eq for any q, i.e., bτ1,τ21 /∈ ∪q∈QR
Eq = WBNE. The same argument as without

transfers implies that for any q, and τ , bτ,τ1 is dominated by either bτ2 or bτ3 , which in turn are undom-

inated. So WBNE = {bτ2 , bτ3 : τ ∈ [0, 1]}. It also follows immediately that bτ2 /∈ E(q1,1−q1) for large q1,

and bτ3 /∈ E(q1,1−q1) for small q1, so BNE = ∩q∈QR
Eq = ∅.

For IK-efficiency, among the bτ1,τ21 allocations, for a given λ, the allocation bτ,τ1 where τ is chosen

such that (1− λ)u′(2(1− τ)) = λu′(2τ), i.e., such that 1−τ
τ =

(
1−λ
λ

)2
, dominates all other allocations,

regardless of q. Now, any bτ,τ1 will dominate any of bτ2 and bτ3 for specific q ∈ QR, and therefore

IKE = {bτ,τ1 , bτ2 , b
τ
3 : τ ∈ [0, 1]}.

For U-efficiency, we know that IKE ⊂ UE, but there are also other bτ1,τ21 , allocations with τ1 6= τ2

that are U-efficient. From (15) it follows that for bτ1,τ21 to be U-efficient, it is sufficient for any candidate

of a dominant allocation, c, to find a q and a Pareto weight such that bτ1,τ21 ≥λq c. It is easy to see that

bτ2 candidates will always be dominated for some q ∈ QR and λ ∈ SN , as will bτ3 candidates.

For candidate allocations, c = bτ1,τ21 , for reasonable belief sets QR = {(q, 1 − q) : p ≤ q ≤ 1 − p}
where p < 0.5 (in our example, p = 0.1), the set (τ1, τ2) such that bτ1,τ21 ∈ UE,= includes all allocations

such that τ1 = τ2, but excludes some extreme allocations such that one of τ1 and τ2 is close to 0 and

the other is close to 1, as shown in Figure 4, for p = 0.1, 0.25, 0.4. The figure also shows the allocation

a4 = b0.95,0.05
1 , which when p = 0.1 (i.e., when QR = {(q, 1 − q) : 0.1 ≤ q ≤ 0.9}) consequently is

U-efficient.

Thus, the efficiency properties of a1, a2, a3, and a4 with respect to IKE, WBNE, BNE, and UE

are identical as in the original example without transfers.

A.2 Allowing for idiosyncratic endowment shocks

We introduce the additional assumption that agents are exposed to idiosyncratic endowment shocks.

Each agent faces a shock, ẽn, at t = 1, where enm is the size of agent n’s shock in state m. These
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Figure 4: Region of τ1, τ2, such that allocation bτ1,τ21 is U-efficient, for different choices if QR =

{(q, 1− q) : p ≤ q ≤ 1− p}, p = 0.1, 0.25, 0.4.

shocks are idiosyncratic, i.e., they are such that

N∑
n=1

enm = 0, m = 1, . . . ,M.

The endowment shocks are summarized in the vector

e = (e1
0, e

2
0, . . . , e

N
0 , e

1
11, . . . , e

N
11, e

1
12, . . . , e

N
1M ) ∈ RN×(M+1).

In the complete market equilibrium, these shocks affect agents’ wealths. We need to ensure that each

agents’ total wealth, including the value of endowment shocks, is strictly positive for equilibrium to

be well-defined. We do this by the following extension: Given the equilibrium state price vector in an

economy with no endowment shocks and initial endowment K, this state price vector also determines
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an equilibrium in any economy with initial endowments K ′, and endowment shocks e, such that

Kn = (K ′)
n

+
∑
m

enmpm, n = 1, . . . , N,

in which each agent, n, solves the optimization problem

max
dn1 ,...,d

n
M

U(cn0 , c̃
n
1 |qn), s.t., (19)

cn0 = (K ′)n −
M∑
i=1

dnmpm,

cn1m = dnm + enm,

Our analysis covers this extended set of economies with idiosyncratic shocks, summarized by the tuple

E = (γ, π,K, R̃, e). A sufficient condition for agent wealth to be strictly positive in the economy with

endowment shocks is that KnRm + enm > 0 for all n and m.

A.3 An economy with non-convex reasonable belief set, in which IKE ( WBNE

The example in Section 2 explored an economy in which the utility possibility set was not convex, and

as a consequence belief-netural inefficiency was distinct from IK-inefficiency. Similarly, the measures

may differ when the set of reasonable beliefs is not convex, as illustrated by the following example.

Consider a one-date economy with two agents and three mutually exclusive production technologies

that depend on the outcome of three tosses of a coin. If the outcome of the tosses is three tails,

production technology a2 delivers one unit of utility to each agent, otherwise 0. If the outcome

is three heads, production technology a3 delivers one unit of utility to each agent, otherwise 0. If

the outcome is neither 3 heads, nor 3 tails, production technology a4 delivers one unit of utility to

each agent, otherwise 0. The two agents agree that the three tosses are independent and identically

distributed, but not on the probability, p, for heads in each toss, believing it is p1 and p2, respectively,

where we assume that p1 < p2. The economy allows for objective randomization, and the example is

also robust to allowing for transfers.

The above probability structure may be viewed as a stylized model for a process where the outcome

depends on a multiplicative chain reaction. For instance, the three technologies could for instance

represent different types of seeds that a farmer can choose between. Let the states represent rain

or sun. Seeds of type 2 (corresponding to a2 above) require three days of sun, seeds of type 3

(corresponding to a3) require three days of rain and seeds of type 4 require at least one day of rain

and one day of sun.20

Since agents agree on the i.i.d. nature of the coin tosses but disagree on p, it is natural for the

20Multiplicative processes also arise naturally in biology (in epidemiology, for example, the reproductive ratio represents
the number of individuals infected by a single individual, which determines whether a virus spreads) and physics (in
nuclear physics, for example, the radioactive decay rate of an atom’s nucleus determines the success of fission).
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planner to include all probability vectors for the states

{All heads,All tails,Both heads and tails}

on the form

(q1, q2, q3) = (p3, (1− p)3, 1− p3 − (1− p)3),

for p ∈ [p1, p2]. Note that this corresponds to a view that either agent can be correct in his or her

belief about the probability, and that probabilities in-between the agents’ individual beliefs are also

reasonable. The corresponding set QR is obviously not the convex hull of the two agents’ beliefs,

which corresponds to

(q1, q2, q3) ∈ CH
(
Q̂
)
,

with Q̂ =
{

((p1)3, (1− p1)3, 1− (p1)3 − (1− p1)3), ((p2)3, (1− p2)3, 1− (p2)3 − (1− p2)3)
}

. In fact, it

is easy to check that QR is not even convex.

The convex hull corresponds to the planner taking the view that there is some probability that

agent 1 is correct about p, and that otherwise agent 2 is correct, but neglecting the possibility that

some p in-between their beliefs for heads may actually be correct. The convex hull represents such

mixtures of the two probability vectors.21

The utilities associated with the three technologies are shown in Figure 5 (blue lines), as a function

of p. In addition to the three risky technologies there is a risk-free technology a1 that delivers a utility

of 0.45 to all agents (the black straight line). We also show the utility of a randomization with equal

probabilities for the three risky production technologies (as represented by the dotted red straight

line).

Similarly to the example Section 2, we argue that a1 should be viewed as efficient. Indeed, it is easy

to check that a1 is IK-efficient, since it is above any other technology (including all randomizations) for

some p. Indeed IKE = {a1, a2, a3, a4}. However, a1 is belief-netural inefficient, WBNE = {a2, a3, a4},
since is below some other technology for each p. This is consistent with Proposition 3(iii), since

condition C2 is not satisfied in this economy.

A.4 Economies in which WBNE ( IKE

We provide two examples of economies in which there are allocations that are weakly belief-netural

efficient but not IK-efficient. The first example is a homogeneous beliefs economy with one state and

date, that does not allow for transfers. Thus part (i) of Proposition 1 holds, but not part (ii). There

are three allocations and two agents. The first allocation, a1, provides the utility of 3 to agent 1 and 0

21The problem described here of choosing an appropriate set, QR, is more generally related to that of defining ap-
propriate sets in dynamic multiple priors models, as, e.g., analyzed in Epstein and Schneider (2003). It is also related
to the literature on Bayesian updating. Specifically, Kyburg and Pittarelli (1992) discuss some problems with convex
Bayesianism where a convex set of probability functions replaces the single probability function used by strict Bayesians.
They argue that in many instances, using a convex set of reasonable beliefs is not always desirable. For instance, if it is
known that two random variables are independent, then the set of probabilities that maintain the independence between
the two random variables is in general non-convex. This issue is surveyed and further explored in Cozman (2012).
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Figure 5: Utilities associated with production technologies as a function of probability for heads,

p. The (blue) curves show utilities for the risky technologies, a2−a4, whereas the (black) straight

line represents utilities for the risk free technology, a1. The dotted (red) straight line shows

utilities from a randomization of the three risky technologies.

to agent 2, the second allocation, a2, 0 to agent 1, and 3 to agent 2, whereas the third allocation, a3,

provides the utility of 1 to both agents. There is thus no uncertainty in this example. The utility

possibility set is then U = {(3, 0), (0, 3), (1, 1)}.
The different production technologies could, for example, represent different prospective locations

of a new airport. Allocation a3 could represent a location that is very remote from both agents so

travel time is long, whereas a1 and a2 represent locations that are too close to one of the agents and

therefore give raise to noise pollution, but that are at an optimal distance of the other agent.

All three allocations are obviously Pareto efficient and consequently

WBNE = {a1, a2, a3}.

However, for Pareto weights (λ1, 1−λ1), with λ1 > 1
3 , it follows that a1 >

λ
q a3 , and for Pareto weights

(λ1, 1 − λ1), with λ1 < 2
3 , it follows that a2 >

λ
q a3. It is therefore possible to dominate a3 regardless

of Pareto weights, and a3 is therefore IK-inefficient, IKE = {a1, a2}. The issue is a manifestation

of the well-known fact that without transfers, Bergson optimality will not identify all Pareto efficient

allocations (see Chapter 8.4 in Kreps 2013). Specifically, without transfers, limited inferences can

be drawn about the efficiency of an allocation from the cardinal properties of the expected utility

specification, since marginal utilities may not line up across states. If transfers are allowed, the issue

disappears, because only the aggregate amount of the consumption good, (ai)1,1,1 + (ai)1,2,1, matters

for the ranking of the production technologies, ruling out a3, and possibly one of a1 and a2, from

being efficient. Thus, the IK-efficiency concept suffers from the same weaknesses as the Bergson

welfare measure in economies without transfers.
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Note that if objective randomization is allowed, the two efficiency measures are equivalent in

this example. For instance, a policy that randomizes between a1 and a2 with equal probability

dominates a3 both with respect to Pareto efficiency and IK-efficiency. Thus, by letting a coin flip

determine the position of the airport, a3 is ruled out as being IK-inefficient in the example, leading to

IKE = WBNE = {a1, a2}.
Another example for which there is an allocation that is weakly belief-neutral efficient, but not IK-

efficient is given by considering only allocations a2 and a3 in the example in Section 2, with reasonable

belief set, QR = {(q1, 1−q1) : q1 ∈ [0.2, 0.5]}. Both allocations are efficient in the homogeneous beliefs

economy with q1 = 0.5, and we therefore have WBNE = {a2, a3}. However, a3 is IK-inefficient, since

it is dominated by a2 for all q in QR except when q = (0.5, 0.5), and moreover does not dominate a2

for any q in QR, so IKE = {a2}. We argue that excluding a3 from the set of efficient allocations in

this example is indeed appropriate under incomplete knowledge. However, since WBNE = ∪q∈Q Eq,
there is no possibility to exclude an allocation that belongs Eq for some q ∈ QR because it is inferior

for some (all) other q′ ∈ QR.

A.5 Investment distortions with disagreement about aggregate uncertainty

Consider the economy in Section 3. Let there be three agents, γ = 2, and corresponding EIS, ψ = 1
2 .

There are four states in which investment returns are R1 = 1, R2 = 1, R3 = 1.4, and R4 = 1.4,

respectively, and no endowment shocks. Note that returns are the same in state 3 and 4, representing

purely idiosyncratic risk. Table 3 shows the agents’ beliefs about the probabilities for the states.

Figure 6 shows equilibrium investments (horizontal axis) and speculative component (vertical axis)

Agent 1 2 3

State 1 0.1 0.25 0.4
State 2 0.1 0.25 0.4
State 3 0.4 0.25 0.01
State 4 0.4 0.25 0.19

Table 3: The table shows the beliefs of agent n = 1, 2, 3 for the probability of each of states
m = 1, 2, 3, 4 to occur.

for all equilibrium outcomes, for different initial endowments, K ∈ SN , where we define the speculative

component as in Definition 15 below.

Definition 15. The speculative component of the complete market equilibrium outcome is

s =
1

N(M + 1)

N∑
n=1

(∣∣∣∣ cn0C0
− ηn

∣∣∣∣+

M∑
m=1

∣∣∣∣ cn1mC1m
− ηn

∣∣∣∣
)
,

where ηn = 1
M+1

(
cn0
C0

+
∑M

m=1
cn1
C1M

)
is agent n’s mean consumption share across states and time.
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Several observations are in order: The speculative component approaches zero at three points:

I = 0.4694, I = 0.4847 and I = 0.4984, corresponding to initial endowments where all capital is given

to agent 1, 2, and 3, respectively. Since we assume strictly positive initial capital for each agent, these

limit points are not part of the set of equilibrium outcomes.

The set of reasonable investments is FUI = [0.4694, 0.4984], is represented by the dotted (red)

line on the horizontal axis. This line also represents the set of IK-efficient allocations. Any value of

I outside of this interval is distorted. There is a nonempty set of equilibria with underinvestment

(I < 0.4694), but no equilibrium with overinvestment. This is in line with Proposition 8, since the

EIS, ψ, is less than one. Moreover, there is also a nonempty set of equilibria for which investments

are not distorted, which is also in line with Proposition 8, since agents also disagree on aggregate

investment opportunities in this example.

We note that there are no belief-neutral efficient allocations, again suggesting that the concept is

too strong in this setting. Specifically, any investment level is inefficient for some q ∈ QR, causing the

efficiency set to be empty. Moreover, U-efficiency is too weak to rule out any equilibrium allocations—

the whole equilibrium region is U-efficient.

Figure 6: Equilibrium distortions. The figure shows the possible investment (horizontal) and

speculative (vertical) equilibrium outcomes, for all different initial endowments, K ∈ SN in the

example described in Table 3.
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Internet Appendix

“Welfare in Production Economies under Heterogeneous Beliefs.”

This internet appendix includes all the proofs for the paper “Welfare in Production Economies
under Heterogeneous Beliefs” by Christian Heyerdahl-Larsen and Johan Walden.

Proof of Proposition 1:
(i): If a is IK-efficient, from (8) it follows that with homogeneous beliefs ∃λ ∈ SN ,∀b ∈

A, a ≥λq b, which of course is stronger than (10), since λ is allowed to depend on b in (10), so
IKE ⊂ WBNE. Also, Eq = BNE = WBNE trivially follows from (12,13). Finally, (9) is
obviously equivalent to (14) when QR = {q}, so BNE = UE.

(ii): From (i), it is sufficient to show that Eq ⊂ IKE, i.e., that a /∈ IKE ⇒ a /∈ Eq. From
(7), it follows that if a is IK-inefficient, ∀λ ∈ SN ,∃b ∈ A : b >λ

q a. However, such an a can
clearly not be the solution to the planner’s problem for any λ ∈ SN (recall that λ ∈ ∂SN can
be excluded in economies that allow for transfers), and therefore cannot be in Eq.

Proof of Proposition 2:
(i): First note that UE is non-empty. This follows from the fact that WBNE ⊂ UE, with

WBNE = ∪q∈QR Eq, and that Eq is non-empty. Assume that a ∈ EA
q . Then either a ∈ UE

and the result follows, or a /∈ UE. If a is not in UE, then since UE is non-empty there exists
a b ∈ UE such that b dominates a. It follows that b >λ

q a for all q ∈ QR and λ ∈ SN , which
implies that Un(b|q) ≥ Un(a|q) for all n and q ∈ QR, with the inequality being strict for at
least one n (for each q). Consequently U(b|q, λ) ≥ U(a|q, λ), so b ∈ EA

q .
(ii): Following similar arguments as above, assume that a ∈ EA

q , with associated λ in (5),
but that a /∈ UE. Then there is an allocation b ∈ A such that b >λ

q a for all q ∈ QR and
λ ∈ SN , which implies that Un(b|q) ≥ Un(a|q) for all n and q ∈ QR, with the inequality being
strict for at least one n (for each q). If there is an agent n for which Un(b|qn) > Un(a|qn), then
it immediately follows that a /∈ EA

q which leads to a contradiction. If there is no agent for which
Un(b|qn) > Un(a|qn), i.e., Un(b|qn) = Un(a|qn) for all n, then we can consider the allocation
b′ = 1

2
b + 1

2
a. It follows that P(b′) = P(b) = P(a), and as transfers are allowed b′ ∈ A. By

strict concavity of the utility function, Un(b′|qn) > 1
2
Un(b|qn) + 1

2
Un(a|qn) = Un(a|qn) which

implies that a /∈ EA
q , again leading to a contradiction.

(iii): Without loss of generality, we assume that agents 1 and 2 disagree about the relatively

likelihood of states 1 and 2 such that
q1
1

q1
2
>

q2
1

q2
2
. Since redistribution is possible, the social

planner’s first order conditions imply that

q1
1u

1′
1,t(a1,1,t)

q1
2u

1′
2,t(a2,1,t)

=
q2

1u
2′
1,t(a1,2,t)

q2
2u

2′
2,t(a2,2,t)

,

(see (21) in the proof of Proposition 4). However, for any q ∈ QR, the planner’s first order

1



conditions are
u1′

1,t(a1,1,t)

u1′
2,t(a2,1,t)

=
u2′

1,t(a1,2,t)

u2′
2,t(a2,2,t)

,

so a /∈ Eq for any such q, and thus a /∈ WBNE. Now, an identical argument as will be used in
Proposition 5 (ii), shows that if such improving redistributions are possible without changing
the aggregate production, i.e., keeping X the same, then a /∈ IKE.

Proof of Proposition 3:
(i): Since the economy allows for transfers, and since unm,t are differentiable on [0,∞) and

thus (unt,m)′(0) is finite for all n, m, and t, for small enough strictly positive λn it will not be
optimal to allocate the good to agent n in any state. It follows that Eq = ∪λ∈SNEq,λ in this
case, where Eq,λ = arg maxa∈A U(a|q, λ), i.e., that Pareto weights on ∂SN are not needed in
determining efficiency. Thus, from (12) it follows that WBNE = ∪q∈QR ∪λ∈SN Eq,λ. Strict
dominance is therefore equivalent to |Eq,λ| = 1 for all q ∈ QR, and λ ∈ SN .

Now, for a ∈ WBNE, and associated q ∈ QR, λ ∈ SN , assume that Eq,λ contains another
allocation b 6= a, and therefore that U(a|q, λ) = U(b|q, λ). Since the production set is convex,
c = 1

2
a+ 1

2
b ∈ A. Moreover, from (3) and the strict concavity of agents’ utilities, it follows that

U(·|q, λ) is strictly concave over allocations, and thus

U(c|q, λ) >
1

2
U(a|q, λ) +

1

2
U(b|q, λ) = U(a|q, λ),

contradicting the assumption that a ∈ Eq,λ. So, no such b 6= a ∈ Eq,λ exists, |Eq,λ| = 1, and
the result thus follows.

(ii): The planner’s optimization problem, given q and λ is to maximize

max
X∈AX

max
a|X

∑
n

λn
∑
t

∑
m

unm,t(am,n,t)qm = max
V ∈U

qTV λ. (20)

Note that from the first welfare theorem it follows that if we define Eq,λ = {aq,λ} as the solutions
to the planner’s problem given q ∈ QR and λ ∈ SN , and Eλ = ∪q∈QREq,λ, then EQ = ∪λ∈SNEλ,
since transfers are allowed.

The F.O.C., given X is that

λn(unm,t)
′(am,n,t) = ρm,t (21)

across all m, and t, for all agents for which am,n,t > 0, and

λn(unm,t)
′(0) ≤ ρmt (22)

2



for all agents such that am,n,t = 0, where ρm,t > 0 are the Lagrange multipliers that make total
consumption equal to total production in each state.

Let us assume that a /∈ EQ. Then, it could either be (i) that (21,22) are not satisfied across
states for any λ ∈ SN , or (ii) that an optimal X is not chosen, or both (i) and (ii).

If a /∈ EQ because of (i), then regardless of λ ∈ SN , there is some state and time for which
(3,4) are not satisfied for two agents, at least one of which has a strictly positive consumption,
which we w.l.o.g. assume are agents 1 and 2. But this then means that a redistribution of
consumption between the two agents will improve welfare, regardless of q ∈ QR. Indeed, it is
possible to strictly increase

λ1u1
m,t(am,1,t)qm + λ2u2

m,t(am,2,t)qm (23)

regardless of qm > 0, since the FOC is not satisfied in the state t, m. But this then implies
that for all q ∈ QR, (6) in the paper is satisfied with strict inequality, so the allocation is
IK-inefficient.

If (i) is satisfied for some nonempty set Λ ⊂ SN , but a /∈ EQ because of (ii), then for any
λ′ /∈ Λ, a redistribution such that (21,22) holds, with the same X, leads to a strict improvement
regardless of q ∈ QR, along the same lines as the previous point when (i) failed. Therefore,
(7) holds for any such λ′ /∈ Λ. It remains to be shown that (7) also holds for λ ∈ Λ for which
(21,22) are satisfied, given that X is not optimal for any q ∈ QR.

For such a λ, define the mapping Fλ : U → RM , by Fλ(V ) = V λ, and the set Fλ = Fλ(U),
which is a closed, convex, and bounded subset of RM , because of Q2. Now, defining fa =
Fλ(R(a)), since a /∈ EQ it follows from (9) that

max
q∈QR

min
f∈Fλ

qT (fa − f) = s < 0,

where s < 0 follows from the fact that the optimum is realized for some f ∗, q∗ (since both QR
and Fλ are compact).

Sion’s minmax theorem then implies that

min
f∈Fλ

max
q∈QR

qT (fa − f) = s,

where the same, f ∗, q∗ can be chosen for the maxmin and minmax problems, and thus that for
all q ∈ QR,

qT (fa − f ∗) ≤ s < 0.

This, in turn, implies that (7) holds for any such λ ∈ Λ.
The allocation a is therefore IK-inefficient, so indeed a /∈ EQ ⇒ a /∈ IKE.
(iii): Consider an a ∈ WNBE, i.e., a ∈ EQ, with associated q ∈ QR, λ ∈ SN (∂SN excluded

since transfers are allowed). Then, ∀b 6= a, a >λ
q b, immediately implying (8) for λ and q, not

3



even depending on b, so a ∈ IKE.

Proof of Proposition 4:
Assume that a ∈ BNE, then a ∈ Eq and a ∈ Eq′ for q ∈ QR, q′ ∈ QR, q 6= q′, and with

associated Pareto weights λ ∈ SN , λ′ ∈ SN (see proof of Proposition 3(ii)), and with associated
X ∈ AX . Given that (21,22) do not depend on q, the allocation to individual agents can
be written W (X,λ), and therefore, W (X,λ) = W (X,λ′) (otherwise a would not be in both
Eq,λ and Eq′,λ′). Moreover, (21,22) imply that λ and λ′ are basically unique, down to possible
differences on weights for agents that are not allocated the good in any state. Indeed, there is
a λ̂ ∈ SN that puts extremely low weight on any such agents, such that λi/λj = λ′i/λ

′
j = λ̂i/λ̂j

for all agents i, j who receive strictly positive allocation in any state, and such that a is in both
Eq,λ̂ and Eq′,λ̂.

But this then means that fa = Fλ̂(R(a)), as defined in the proof of Proposition 3(ii), is
a point in the convex set Fλ̂ that has both the hyperplanes defined by q and q′ as supporting
hyperplanes. It follows (see, e.g., Gallier (2011)) that fa must be a non-smooth point on ∂Fλ̂
(as defined on the whole of RM). Indeed, Fλ̂ does not lie in any proper affine subspace of
RM (because AX has nonempty interior), and must therefore be a nonsmooth point to have
multiple supporting hyperplanes (see Definition 3.3.3 in Gallier (2011), page 108). Finally,
since Fλ̂ : RM×N → RM , V : RT×M×N → RM×N and P : RT×M×N → RM×N are all smooth
mappings, it follows that P(a) is also nonsmooth in AX .

Proof of Proposition 5:
(i) The planner’s problem in the exchange economy is simplified since only one X is feasible.

The F.O.C., w.r.t. λ, (21,22), are q independent, and the result therefore follows immediately.
(ii) Since QR = {q}, it follows immediately that EQ = ∩qEq = ∪qEq, so BNE = EQ =

WBNE. Now, Q3 is satisfied in the exchange economy, because efficient allocations are char-
acterized by (21,22), and X is fixed, which implies that whether an allocation is considered
efficient does not dependent of q. Thus for all a ∈ EQ,

∃λ ∈ SN ,∀b ∈ A,∀q ∈ SN : a >λ
q b. (24)

It is easy to show that if transfers are allowed, then the definition of Q3 can equivalently be
stated using λ ∈ SN , implying that (24) is stronger than Q3 (the argument is identical as in
the proof of Proposition 3(i): for any λ ∈ ∂SN , there is a close enough λ ∈ SN that leads to
an identical allocation, that can be chosen instead). It therefore follows that WBNE ⊂ IKE
from Proposition 3(iii).

For a /∈ WBNE, we follow the same argument as in the proof of Proposition 3(ii). Given
that AX = {X} the reason why a /∈ WBNE must be that equality of Pareto weighted marginal
utilities across agents and states fails. An identical argument as in the proof of Proposition 3(ii)
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(which in that part does not depend on convexity of either QR or U) implies that a is IK-
inefficient, so BNI ⊂ IKI, i.e., IKE ⊂ WBNE.

Proof of Proposition 6: Existence:
We follow Basak 2005 (exchange economy) and Baker et al. 2014 (production economy) to

use the corresponding planner problem

U = max
I,c1,...,cN

N∑
n=1

λnU(cn0 , c̃
n
1 |qn), s.t., (25)

N∑
n=1

cn0 = K − I,

N∑
n=1

cn1m = RmI,m = 1, . . . ,M,

to generate equilibria. From the FOC we have

λn (cn0 )−γ = λn
′
(
cn
′

0

)−γ
,

λnqnm (cn1m)−γ = λnqn
′

m

(
cn
′

1m

)−γ
.

Using the market clearing conditions we can solve for the optimal consumption share of agent
n

cn0 =
(λn)

1
γ∑N

n′=1 (λn′)
1
γ

(K − I) ,

cn1m =
(λn)

1
γ (qnm)1/γ∑N

n′=1 (λn′)
1
γ (qn′m)1/γ

RmI.

Rather than working with the Pareto weights, λn it is convenient to define, λ̂n = (λn)
1
γ . In

addition, define amn = (qnm)
1
γ . We can then write the consumption shares as

cn0 =
λ̂n∑N
n′ λ̂

n′
(K − I) , (26)

cn1m =
λ̂namn∑N

n′=1 λ̂
n′
mamn′

RmI. (27)
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Let zm = R1−γ
m , Tm =

∑
n′ λ̂

n′amn′ and α(λ̂) =
∑M

m=1 zmT
γ
m. Plugging the optimal consump-

tion share into the the social planner’s problem, we get

U = max
I


(∑N

n=1 λ̂
n
)γ

1− γ
(1− I)1−γ + α(λ̂)

1

1− γ
I1−γ

 .

The first-order condition is

−

(
N∑
n=1

λ̂n

)γ

(1− I)−γ + α
(
λ̂
)
I−γ = 0.

Solving for the optimal I gives

I =
Z∑N

n=1 λ̂
n + Z

,

where Z is the investment to consumption ratio given by

Z =
α
(
λ̂
) 1
γ∑N

n′=1 λ̂
n′
. (28)

We calculate the mapping from the planner’s weights, λ̂ to initial endowments, K. To this
end, note that the budget condition for agent n = 1, . . . , N is given by

Kn = cn0 + E
[
ξ̃nc̃n1 |qn

]
, (29)

where ξn =
(
cnm
cn0

)−γ
is the stochastic discount factor. Using the optimal consumption of agent
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n we can calculate the expression in Equation (29) as

Kn = cn0 + E
[
ξ̃nc̃n1 |qn

]
=

λ̂n∑N
n′ λ̂

n′
(1− I(λ̂)) +

M∑
m=1

qnm

 λ̂namn∑N
n′=1 λ̂

n′
mamn′

RmI(λ̂)

λ̂n∑N
n′ λ̂

n′

(
1− I(λ̂)

)
−γ λ̂namn∑N

n′=1 λ̂
n′
mamn′

RmI(λ̂)

=
λ̂n∑N
n′ λ̂

n′
(1− I(λ̂)) + I(λ̂)

λ̂n

α
(
λ̂
) M∑
m=1

zmamnT
γ−1
m

=
λ̂n∑
n′ λ̂

n′
(1− I(λ̂) + I(λ̂)F n(λ̂))

= Y n(λ̂), (30)

where we have defined F n(λ̂) = L
α
Gn(λ̂), Gn(λ̂) =

∑
m zmamnT

γ−1
m and L =

∑
n′ λ̂

n′ . We note

that the function Y (λ̂) = (Y 1(λ̂), . . . , Y N(λ̂))′ is defined on the whole of S̄N .
Because of the functional mapping K = Y (λ̂), it is easy to show that the mapping K = Y (λ̂)

is surjective, that is, that for every K, there exists a λ̂ such that K = Y (λ̂). Note that

Y (λ̂) = λ̂n∑
n′ λ̂

n′ (1 − I(λ̂) + I(λ̂)F n(λ̂)) is homogeneous of degree zero. Hence, we can without

loss of generality focus on λ̂ on the unit simplex, S̄N , which is a compact and convex set. It
follow immediately that Y is continuous on S̄N , being a product of continuous functions on
this domain.

Define the function f : S̄N → S̄N , by f(λ̂) = Y (λ̂) − K + λ̂. Here, K is treated as a
constant parameter. That f(λ̂) maps the unit simplex into itself follows from the fact that∑

n Y
n(λ̂) = 1, and

∑
nK

n = 1. Since f is continuous, and S̄N is compact and convex,

Brouwer’s fixed theorem point now immediately implies that f has a fixed point, λ̂∗, and it
therefore follows that Y (λ̂∗) = K.

Thus, Y is a surjective mapping from Pareto weights to capital on the unit simplex, associ-
ated with the resulting equilibrium state prices (A.5):

pm = E
[
ξ̃nδm|qn

]
=

(
cnm
cn0

)−γ
qnm, m = 1, . . . ,M,

where δm is the random variable, such that δm(ωw) = 1, and δm(ωm′) = 0, m′ 6= m, representing
the payout of the m:th AD security, and any n = 1, . . . , N can be chosen. We have shown the
first part of the theorem.
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Uniqueness : We first study the case γ ≥ 1. Define

Gnj =
∑
m

zmamnamjT
γ−2
m ,

F nj =
L2

α
Gnj.

The mapping from Pareto weights to capital, K = Y (λ̂), is given in Equation (30). The
partial derivatives are

∂I

∂λ̂j
=

1∑
n′ λ̂

n′
I(1− I)(F j − 1),

∂F

∂λ̂j
=

1∑
n′ λ̂

n′

(
F n + (γ − 1)F nj − γF nF j

)
.

We define the matrix Q, with elements

[Q]nj = −(1− I)2 − I(1− I)(F n + F j)− (γ − 1)IF nj − (γ + I − 1)IF nF j, 1 ≤ n, j ≤ N,

and then get

∂Y n

∂λ̂j
=

λ̂n

L2
Qnj, j 6= n.

Moreover, we get

∂Y n

∂λ̂n
=

1

L
(1− I + IF n) +

λ̂n

L2
Qnn.

We next do a change of coordinate transformation to y, where yn = log(λ̂n), i.e., λ̂n = eyn ,
i.e., we write

Kn = Ŷ (y) =
eyn

L
(1− I(ey) + I(ey)F n(ey)). (31)

It follows from the chain rule that partial derivatives w.r.t. y will be similar as w.r.t. λ̂, but

8



with extra eyj inner derivative terms:

∂Ŷ n

∂yj
=

eyneyj

L2
Qnj, j 6= n,

∂Ŷ n

∂yn
=

eyn

L
(1− I + IF n) +

eyneyn

L2
Qnn.

Now we rewrite this on matrix form, defining the matrix H(ey), with elements [H]nj = ∂Ŷ n

∂yj
, to

get:

H(λ̂) =
1

L2
Λλ̂QΛλ̂ +

1

L
Λ

1/2

λ̂
ΛwΛ

1/2

λ̂
. (32)

Here, for a general vector, x, we use the notation Λv = diag(x), and we define the vector

w = (1− I)1 + IF,

treating F as a vector. Moreover,

Q = −(1− I)211′ − I(1− I)(F1′ + 1F ′) + (γ − 1)IR− (γ + I − 1)IFF ′

= −
(
(1− I)211′ + I(1− I)(F1′ + 1F ′) + I2F ′

)
+ (γ − 1)I(R− FF ′)

= −ww′ + (γ − 1)I(R− FF ′), (33)

so we have

H(λ̂) =
1

L
Λ

1/2

λ̂
ΛwΛ

1/2

λ̂
− 1

L2
Λλ̂(ww

′)Λλ̂︸ ︷︷ ︸
C

+(γ − 1)I
1

L2
Λλ̂(R− FF

′)Λλ̂. (34)

Here, the matrix R is the matrix with elements [R]nj = F nj, and we note that by defining
the matrix a ∈ RM×N

+ with elements amn, it can be written on self adjoint matrix form as
R = L2

α
a′Λva, where vm = T γ−2

m zm. Thus, R is positive semidefinite. Note that homogeneity of
Y implies that

H(λ̂)1 = 0. (35)
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We have F = L
α
a′w, where wm = T γ−1zm, and thus FF ′ = L2

α2 a
′ww′a, leading to

R− FF ′ =
L2

α
a′
(

Λv −
1

α
ww′

)
a

=
L2

α
a′Λ1/2

v

(
E − 1

α
Λ−1/2
v ww′Λ−1/2

v

)
Λ1/2
v a,

Note that Λ
−1/2
v w = (T

γ/2
1 z

1/2
1 , . . . , T

1/2
M z

1/2
m ). Also, recall that the eigenvalues of the 1-rank

perturbation of the identity matrix E − xx′ are 1 with multiplicity N − 1, and 1− (x′x) with

multiplicity 1, where x is the vector with eigenvalue 1 − (x′x). Now, (Λ
−1/2
v w)′(Λ

−1/2
v w) =∑

m(T
γ/2
m z

1/2
m )2 = α, and thus the eigenvalues of E − 1

α
Λ
−1/2
v ww′Λ

−1/2
v are 1 with multiplicity

N−1, and 0 with multiplicity 1. So, Sylvester’s law of inertia (on general rectangular form, see
Higham and Cheng (1998)), implies that R−FF ′ is also positive semidefinite, with number of
0 eigenvalues dependent on N , M , and the rank of a.

It is easy to verify that RΛλ̂1 = Rλ̂ = LF , which in turn implies that the generic zero

eigenvalue is generated by 1, since FF ′Λλ̂1 = FF ′λ̂ = FL, so

(R− FF ′)Λλ̂1 = 0.

Next, consider the remaining term

C =
1

L
Λ

1/2

λ̂
ΛwΛ

1/2

λ̂
− 1

L2
Λλ̂ww

′Λλ̂

=
1√
L

Λ
1/2

λ̂
Λ1/2
w (E − gg′) Λ1/2

w Λ
1/2

λ̂

1√
L

where

gn =

√
λ̂nwn
L

.

It immediately follows that g′g = 1
L

∑
n λ̂n((1− I) + IFn) = 1, and therefore a similar argument

as for R−FF ′ implies that there is one eigenvalue of C which is 0, and all the other eigenvalues
are 1. It is also easy to check that 1 is the eigenvector that corresponds to the eigenvalue 0.

Thus, altogether, since q′(A+B)q = q′Aq+q′Bq for general matrices A and B, it follows that
H is positive semidefinite, with exactly one zero eigenvalue and the corresponding eigenvector
1, for all λ̂.

Now, assume that Y (λ̂1) = Y (λ̂2) for distinct λ̂1 and λ̂2 (i.e., such that it is not the case
that λ̂2 is proportional to λ̂1). Define y1 = log(λ̂1) and y2 = log(λ̂2). It then follows that
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Ŷ (y2)− Ŷ (y1) = 0, and thus that (y2 − y1)′(Ŷ (y2)− Ŷ (y1)) = 0. Define ∆y = y2 − y1, to get

Ŷ (y2)− Ŷ (y1) =

∫ s=1

s=0

H(ey1+s∆y)(∆y)ds = 0,

and therefore ∫ s=1

s=0

(∆y)′H(ey1+s∆y)(∆y)ds = 0.

However, since H is positive semidefinite for all y, with eigenvector 1, this is only possible if

y2 − y1 = c1, for some constant c, i.e., only in the proportional case,
λ̂n2
λ̂1
n

= ec for all n.

For γ < 1, it follows immediately from the definition of Q that as long as γ − 1 + I > 0,
∂Y n/∂λ̂j < 0, which means that the Gross Substitution property holds, and thereby that
equilibrium is unique. Since I > 0, there is thus always a γ < 1, such that this property holds
for all γ > γ. This completes the second part of the Proposition.

Proof of Proposition 7: In an economy with homogeneous beliefs q, it follows from the first
welfare theorem that any equilibrium allocation, a ∈ Eq, and by Proposition 1, the allocation
is therefore IK-efficient.

In the heterogeneous beliefs economy, qnm > qn
′

m and qnm′ < qn
′

m′ for some n, n′, m, m′, and
the equilibrium condition:

1

vn
cn1m(qnm)1/γ =

1

vn′
cn
′

1m(qn
′

m)1/γ, m = 1, . . . ,M

implies that consumption shares are not constant across states. Therefore, the allocation does
not belong to Eq for any q. Again using Proposition 6, it follows that the equilibrium allocation
is IK-inefficient.

Proof of Proposition 8: We consider the slightly more general case when there is aggregate
uncertainty, but agents agree on aggregate uncertainty. They still disagree about idiosyncratic
risk. Define λ̄n = λ̂n∑N

n′=1 λ̂
n′ . The equilibrium investment-to-consumption ratio, Z, is given by

Z =

(
M∑
m=1

R1−γ
m

(
N∑
n=1

λ̄n (qnm)
1
γ

)γ) 1
γ

. (36)
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By Jensen’s inequality we have that

Z >

(
M∑
m=1

R1−γ
m

(
N∑
n=1

λ̄n (qnm)

)) 1
γ

, γ < 1

Z =

(
M∑
m=1

R1−γ
m

(
N∑
n=1

λ̄n (qnm)

)) 1
γ

, γ = 1

Z <

(
M∑
m=1

R1−γ
m

(
N∑
n=1

λ̄n (qnm)

)) 1
γ

, γ > 1.

As agents agree on aggregate risk we have that
(∑M

m=1R
1−γ
m

(∑N
n=1 λ̄

n (qnm)
)) 1

γ
=
(
E[R̃1−γ|qn]

) 1
γ

for all n = 1, .., N . Hence, the only case in which the aggregate investment is equal to the unan-
imously reasonable investments is when agents have log utility.

Proof of Proposition 9: To prove part (i) that distortions are increasing in disagreement note
that we have the following:

Z =

(
M∑
m=1

(
N∑
n=1

λ̄n (qnm)
1
γ

)γ) 1
γ

= (Mα (∆)γ)
1
γ , (37)

where

α (∆) =
1

N

(
∆

M

) 1
γ

+
N − 1

N

(
1− J ∆

M

M − J

) 1
γ

. (38)

Differentiating α (∆) we get

α′ (∆) =
1

γNM

(∆

M

) 1
γ
−1

−

(
1− J ∆

M

M − J

) 1
γ
−1
 , (39)

and therefore α′ (∆) < 0 for γ > 1 and α′ (∆) > 0 for γ < 1 for ∆ ∈ (1, N). As the derivative
of Z has the same sign as that of α it follows that distortions are increasing in disagreement,
∆.
Next to prove (ii), let the probability of the optimists be q1 and the pessimists be q2 with
q1 > q2. Due to symmetry we have that the optimal investment-consumption ratio, Zj, when
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j markets per agent are open

Zj = (jNαγ + (M − jN) q̄)
1
γ , (40)

where α = 1
N
q

1
γ

1 + N−1
N
q

1
γ

2 and q̄ = 1
N
q1 + N−1

N
q2. By Jensen’s inequality we have that αγ ≤ q̄

when γ > 1 and αγ ≥ q̄ when γ < 1. Hence, Zj+1 < Zj when γ > 1 and Zj+1 > Zj when γ < 1
for j = {0, . . . , J − 1}. Hence, the distortions are increasing in the number of open markets, j,
as long as γ 6= 1.
Finally, to prove (iii) note that the consumption share of agent n at time zero is given by the
normalized Pareto weight λ̄n. Hence, rather than working with the initial consumption share,
we can work with λ̄. We have that λ̄1 = 1− δN−1

N
and λ̄n = δ

N
for n = 2, . . . , N . We have the

following

Z = (Jα1 (δ)γ + (M − J)α2 (δ)γ)
1
γ , (41)

with

α1 (δ) =

(
1− δN − 1

N

)
q

1
γ

1 + (N − 1)
δ

N
q

1
γ

2 (42)

α2 (δ) =
δ

N
q

1
γ

1 +

(
1− δ

N

)
q

1
γ

2 . (43)

Note that α1 (δ) ≥ α2 (δ) for δ ∈ [0, 1]. Moreover, α′1 (δ) = N−1
N

(
q

1
γ

2 − q
1
γ

1

)
< 0 and α′2 (δ) =

1
N

(
q

1
γ

1 − q
1
γ

2

)
> 0. Therefore, Z ′ (δ) = Z (δ)1−γ (α1 (δ)γ−1 − α2 (δ)γ−1) J(N−1)

N

(
q

1
γ

1 − q
1
γ

2

)
.

Hence, we have

Z ′ (δ) > 0 for γ < 1

Z ′ (δ) = 0 for γ = 1

Z ′ (δ) < 0 for γ > 1.

We can also study the effect of equality by perturbing the weights in a different way. Specif-
ically, we consider three groups where the consumption share at time zero of a member of group
one, two and three are given by 1+δ

N
, 1−δ

N
and 1

N
, respectively. Hence, as we increase δ we are

making group one’s consumption share bigger at the expense of group two. The third group is
unaffected by the perturbation. We assume that there are equally many agents in group one
and two while the number of agents in group three can be arbitrary. Let k be the number of
agents in group one and two. For instance, if N = 2 and k = 1, then as δ approaches one, the
economy moves to the homogeneous agent economy and clearly there are no distortions. It can
be shown that ∂Z

∂δ
< 0 for γ < 1 and ∂Z

∂δ
> 0 for γ > 1 for δ ∈ [0, 1). Moreover, Z is minimized
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(maximized) for γ greater (less) than one. Hence, as we increase δ the distortions are reduced.
The reason for this is that as more weight is put on a subset of agents, the less room there is
for speculative trade and consequently, the less severe are the equilibrium savings distortions.
Let K ≤ N , K even and k = K

2
. We can split the agents into three groups with the following

normalized Pareto shares

λ̄i =
1 + δ

N
for i = 1, . . . , k

λ̄i =
1− δ
N

for i = k + 1, . . . , K

λ̄i =
1

N
for i = K + 1, . . . , N if K < N.

We then have the following

Z = (Jkα1 (δ)γ + Jkα2 (δ)γ + J (N −K)α3 (δ)γ)
1
γ , (44)

where

α1 (δ) = q
1
γ

1

(
1 + δ

N

)
+ q

1
γ

2

(
1− 1 + δ

N

)
(45)

α2 (δ) = q
1
γ

1

(
1− δ
N

)
+ q

1
γ

2

(
1− 1− δ

N

)
(46)

α3 (δ) = q
1
γ

1

(
1

N

)
+ q

1
γ

2

(
1− 1

N

)
. (47)

Next, note that α′1 (δ) =
q

1
γ
1 −q

1
γ
2

N
= −α′2 (δ) and α′3 (δ) = 0. It follows that sign (Z ′ (δ)) =

sign
(
α1 (δ)γ−1 − α2 (δ)γ−1). Moreover,

α1 (δ)− α2 (δ) = 2

(
q

1
γ

1 − q
1
γ

2

)
δ > 0 when q1 > q2, (48)

hence we have

Z ′ (δ) > 0 for γ > 1 (49)

Z ′ (δ) = 0 for γ = 1 (50)

Z ′ (δ) < 0 for γ < 1. (51)
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Proof of Proposition 10: Note that due to symmetry we have that the optimal consumption
of every agent at time t = 0 is 1

N
, and that the normalized Pareto weights are λ̄n = 1

N
. It

follows from the derivations in the proof of Proposition 6 that the optimal consumption of

agent n in the states he is relatively optimistic about is 1
N

(
q1
q2

) 1
γ
, with q1 and q2 defined as in

the proof of Proposition 9. Hence, with ∆ = 1, i.e, no disagreement we have that the optimal
consumption is 1

N
in each state. As there are M states, this implies a fraction 1

M
in each, i.e.

perfect diversification. As
∂ 1
N

(
q1
q2

) 1
γ

∂∆
> 0 for ∆ ∈ [1, N) the agents move further away from the

fully diversified portfolio as disagreement, ∆, increases.

Proof of Proposition 11: Define zm = R−γm , m = 1, . . . ,M . In homogeneous beliefs equilibrium
for agent n, we have:

zm
zm′

qnm
qnm′

=
pnm
pnm′

, 1 ≤ m,m′ ≤M, 1 ≤ n ≤ N.

Consider portfolios w and v. Agent n’s value ratio for these two portfolios is:∑
mwmp

m
n∑

m vmp
n
m

=

∑
mwmzmq

n
mp

n
1/(z1q

n
1 )∑

m vmzmq
n
mp

n
1/(z1qn1 )

=

∑
mwmzmq

n
m∑

m vmzmq
n
m

.

If
∑

mwmzmq
n
m = 0, n = 1, . . . , N , all agents therefore agree that the price of asset w should

be 0. In matrix form, defining the matrix Π with Πmn = qnm = (Amn)γ, we write this as

ΠΛzw = 0.

Now, since N < M , it is clear that a nontrivial such asset with unanimous price 0 exists. For
convenience, we define r = Λzw, and we then have Πr = 0. Note that every agent with beliefs
in QR also agrees on the reasonable price being zero, since∑

m

wmzm(λqn1
m + (1− λ)qn2

m ) = λ
∑
m

wmzmq
n1
m + (1− λ)

∑
m

wmzmq
n2
m

= λ× 0 + (1− λ)× 0

= 0.

The equilibrium price of w under Pareto weights λ ∈ Sn, in terms of time 0 consumption, is∑
m(
∑

nAmnλ
n)γrm∑

m(
∑

nAmnλ
n)γR̃1−γ

,
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so there is intertemporal mispricing of this asset if and only if

Q(λ) =
∑
m

(∑
n

Amnλ
n

)γ

rm 6= 0. (52)

We wish to show that under the conditions of the proposition, (52) is typically satisfied except
for possibly a small set of λ’s. In other words, if we define the set X = {λ ∈ SN : Q(λ) = 0},
we want to show that the Lebesgue measure of X is zero, µSN (X) = 0. Of course, since Q is a
continuous function, and X = Q−1({0}) is the preimage of a Borel set, X is measurable.

We use the following standard lemma:

Lemma 1. Consider the function f(x) =
∑M

m=1(1 + cmx)γbm, where γ > 0, γ 6= 1, cm > −1,
bm ∈ R, m = 1, . . . ,M . If there are at least two distinct c’s, cm 6= cm′, the number of roots of
f(x) in x ∈ [0, 1] is finite.

Proof : The proof follows from the Principle of Permanence, given the facts that f is a real
analytic function on the interval x ∈ [−ε, 1 + ε] for some ε > 0, and that f is not a constant
function as long as cm 6= cm′ .

We use Lemma 1 to show that on any ray between two distinct Pareto weights, λa, λb ∈ SN ,
Q(λ) is nonzero, except possibly at a finite number of points. Indeed, consider the function

g(x) =
∑
m

(
x
∑
n

Amnλa + (1− x)
∑
n

Amnλb

)γ

rm

=
∑
m

(∑
n

Amnλ
n
b + x

(∑
n

Amnλ
n
a −

∑
n

Amnλ
n
b

))γ

rm

=
∑
m

(
1 + x

∑
nAmnλ

n
a −

∑
nAmnλ

n
b∑

nAmnλ
n
b

)γ (∑
n

Amnλ
n
b

)γ

rm

=
∑
m

(1 + cmx)γbm.

For all cm’s to be the same, it must be that Aλa = kAλb, but since the rank of A is N , this
implies that λa = kλb, and given that both λa and λb are in Sn, that λa = λb, contradicting
our assumption that the two vectors are distinct. Thus, Lemma 1 implies that there is a finite
number of roots of (52) on any such line.

That µSN (X) = 0 now follows immediately from Fubini’s theorem. Specifically, consider
the characteristic function on X, χX . Any line integral of χX is zero,

∫
λ1
χX(λ)dλ = 0, since X

only contains a finite number of points along any line. Fubini’s theorem then implies that the
total Lebesgue integral can be viewed as an N −2-dimensional integral over such line integrals,
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each of which integrates to zero, and therefore that

∫
SN
χX(λ)dλ =

∫
λ2,...,λN−1

(∫
λ1

χX(λ)dλ1

)
dλ2 · · · dλN−1 = 0.

We are done.

Proof of Proposition 12: The unanimously reasonable relative price pm
pB

, where pB =
∑

m′∈B pm′

is P(ωm|B) = qnm∑
m′∈B q

n
m′

= qn
′
m∑

m′∈B q
n′
m′

for all n, n′ = 1, . . . , N . The equilibrium price is

pm
pB

=

(∑N
n=1 λ̄

n (qnm)
1
γ

)γ
∑

m′∈B

(∑N
n=1 λ̄

n (qnm′)
1
γ

)γ
=

(∑N
n=1 λ̄

n (qnm)
1
γ

)γ
∑

m′∈B

(∑N
n=1 λ̄

n
(
qn
m′
qnm

) 1
γ

(qnm)
1
γ

)γ
=

1

∑
m′∈B

∑N
n=1

λ̄n(qnm)
1
γ(∑N

n=1 λ̄
n(qnm)

1
γ

)γ ( qnm′qnm

) 1
γ

γ

=
1∑

m′∈B

(∑N
n=1 Wn

(
qn
m′
qnm

) 1
γ

)γ ,

where
∑N

n=1Wn = 1. Note that the only reasonable price can be written as 1∑
m′∈B

qn
m′
qnm

. Hence,

only if
∑

m′∈B
qn
m′
qnm

=
∑

m′∈B

(∑N
n=1Wn

(
qn
m′
qnm

) 1
γ

)γ
will there be no mispricing. Define H =
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∑
m′∈B

(∑N
n=1Wn

(
qn
m′
qnm

) 1
γ

)γ
. By Jensen’s inequality we have

H >
∑
m′∈B

(
N∑
n=1

Wn

(
qnm′

qnm

))
=
∑
m′∈B

qnm′

qnm
, γ < 1

H =
∑
m′∈B

(
N∑
n=1

Wn

(
qnm′

qnm

))
=
∑
m′∈B

qnm′

qnm
, γ = 1

H <
∑
m′∈B

(
N∑
n=1

Wn

(
qnm′

qnm

))
=
∑
m′∈B

qnm′

qnm
, γ > 1.

Hence, as long as γ 6= 1, which we rule out by assumption, there will be mispricing.

Proof of Proposition 13: First, it is useful to show that there are investment distortions in this
economy. Specifically, the investment-consumption ratio, Z, is

Z = ZUB
1
γ , (53)

where
ZU =

(
R1−γ
L qL +R1−γ

H qH
) 1
γ , (54)

and

B =

(
1

2

(
z1
) 1
γ +

1

2

(
z2
) 1
γ

)γ
+ 1/3 +

(
1

2

(
2/3− z1

) 1
γ +

1

2

(
2/3− z2

) 1
γ

)γ
. (55)

Note that B = 1 when z1 = z2, i.e., when they agree. Hence, ZU is the investment-consumption
ratio without disagreement. Moreover, by Jensen’s inequality B > 1 for γ < 1 and B < 1 for
γ > 1 and therefore there are investment distortions when there is disagreement. Next consider
the price of the systematic claim, As:

As =

(
qLR

1−γ
H + qHR

1−γ
H

)
B

(ZU)γ B
=

(
qLR

1−γ
H + q1−γ

H RH

)
(ZU)γ

= 1. (56)

Hence, the As is not distorted. This also follow directly as As is the value of the aggregate
investment technology and this cannot be distorted in our production economy. Note also that
the risk free asset is not distorted either as

1

Rf

=
(qL + qH)B

(ZU)γ B
=

1

(ZU)γ
(57)
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where Rf is the gross risk free rate. Next, consider the price of the idiosyncratic asset Ai

Ai = qL1/3Z−γR1−γ
L + qH1/3Z−γR1−γ

H =
AUi
B
, (58)

where AUi = 1/3
(
qLR

1−γ
L + qHR

−γ
H

) (
ZU
)1−γ

= 1/3 is the price of the idiosyncratic asset with-
out disagreement. Consequently, Ai is too low when γ < 1 and too high when γ > 1. It
immediately follows that a0 = As is not mispriced and that Aw for w > 0 is mispriced and that
it increases in the idiosyncratic volatility. The direction of the mispricing follows from the EIS
with the asset being overpriced when EIS is less than one and underpriced when EIS is greater
than one. Finally, as the risk free rate is not distorted, the equilibrium price distortion is a risk
premium effect.

Proof of Proposition 14: In the production economy without aggregate uncertainty we have
that Rm = R for all m = 1, . . . ,M . Hence, the unanimously reasonable value of the risk free
rate is R. In equilibrium, the risk free rate is

Rf =

(
R1−γ

R−γ

)(∑N
n=1 T

γ
m∑N

n=1 T
γ
m

)
= R.

Since the equilibrium risk free rate is always equal to the unanimously reasonable value, the
risk free rate is thus not distorted.

Exchange economy : Let aggregate consumption at time zero be C0 and the aggregate con-
sumption at time 1 be C1. Then, the unanimously reasonable value of the risk free rate is

Rf = E

[(
C1

C0

)−γ∣∣∣∣∣ q
]

=

(
C1

C0

)−γ
,

for all q ∈ QR. In equilibrium the risk free rate is

Rf = E

[(
c̃n1
cn0

)−γ∣∣∣∣∣ qn
]

=

(
C1

C0

)−γ (∑M
m=1 T

γ
m

Lγ

)
.

Since
(∑M

m=1 T
γ
m

Lγ

)
6= 1 for γ 6= 1 due to Jensen’s inequality, the risk free rate is always distorted.
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