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ABSTRACT 
 

As both a regulator and academic, Fred Kahn argued that end-use electricity consumers should 
face prices that reflect the time-varying marginal costs of generating electricity. This has been 
very slow to happen in the U.S., even in light of recent technological advances that have lowered 
costs and improved functionality for meters and automated demand response technologies. We 
describe these recent developments and discuss the remaining barriers to the proliferation of 
time-varying electricity pricing. 
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Fred Kahn was a passionate advocate for using sound economic principles to determine prices 

for regulated services such as electricity. His magnum opus The Economics of Regulation: 

Principles and Institutions (Kahn, 1970) devotes several chapters to the application of marginal 

cost pricing principles to the design of rate structures for regulated services. As the Chairman of 

the New York Public Service Commission (1974-77) he endeavored to put his academic research 

into practice by initiating regulatory proceedings to reform electric utility rates to better reflect 

marginal cost pricing principles and more broadly to adopt regulatory policies that would 

increase the efficiency with which regulated services were supplied and priced. 

 Kahn’s interest in pursuing regulatory reforms to improve the efficiency of utility rate 

structures made him an active proponent of peak-load pricing for retail electricity consumers in 

the United States. He understood that more efficient prices would reduce peak demand, and the 

need to build enough capacity to meet it, and would lead to an overall increase in economic 

welfare. He also understood that there would be winners and losers from such pricing changes 

and examined less distortionary mechanisms than uniform pricing to cushion the adverse impacts 

on disadvantaged consumers (e.g. non-linear tariffs).  

 In his 1979 Ely Lecture to the American Economic Association, Kahn wrote:  

One of my proudest accomplishments…was the progress we made [as regulators] in 

requiring electric and telephone companies in New York to introduce marginal cost 

related prices. If you are a large residential user of electricity on Long Island, you will 

soon…pay rates varying between 2½ cents at night to 30 cents on summer days when the 

temperature gets above 83o” (Kahn, 1979, p. 2). 

I. PROGRESS ON PEAK LOAD PRICING OF ELECTRICITY IN THE U.S. 

  The idea of moving from time-invariant electricity prices to “peak-load” pricing, where 
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prices are more closely tied to variations in the marginal cost of generating electricity, has been 

around for at least fifty years (e.g. Boiteux, 1964; Kahn, 1970). The marginal cost of electricity 

varies widely over time because (a) the demand for electricity varies considerably; (b) it is 

uneconomical to store electricity in most applications; and (c) the optimal mix of generating 

capacity to balance supply and demand at all hours given (a) and (b) includes a combination of 

base load capacity with high construction costs and low marginal operating costs, intermediate 

capacity with lower construction costs but higher marginal operating costs, and peaking capacity 

with the lowest construction costs and the highest marginal operating costs. When demand is low 

it is cleared with base load capacity and as demand rises, generating capacity with higher 

marginal operating costs are called upon to balance supply and demand. In general, marginal 

costs are low at night and high during the day, low when temperatures are moderate and 

potentially very high when temperatures are either extremely high or extremely low, depending 

on the price of substitute fuels and the attributes of the appliance stock in a region. 

If end-use consumers face retail prices that do not reflect these variations in marginal 

generation costs, they will consume too much when marginal costs are higher than retail rates, 

likely during peak periods, and too little when marginal costs are lower than retail rates, likely 

during off-peak periods. Distortions in consumption lead to distorted investment in and 

utilization of generating capacity. 

In regions with deregulated wholesale electricity markets, power prices reflect 

differences in marginal costs as well as time-varying differences in firms’ abilities to push prices 

above marginal costs by exercising market power. In this context, moving end-use customers to 

time-varying prices can also reduce firms’ incentives and ability to exercise market power by 

increasing the elasticity of their residual demand (Borenstein and Holland, 2005). 
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Until fairly recently, the application of marginal cost pricing principles to electricity had 

been limited to a few countries in Europe (Mitchel, Manning and Acton, 1978), to larger 

customers for whom the costs of metering and data processing were thought to be relatively low 

compared to potential efficiency gains, and to a small number of pilot programs designed to 

measure consumer responses. So, despite Kahn’s efforts as a teacher, scholar, and U.S. regulator, 

the diffusion of time-varying electricity pricing arrangements has been especially slow in the 

U.S. A 2010 survey conducted by the Federal Energy Regulatory Commission (FERC 2011, pp. 

28, 99) indicated that only about one percent of residential consumers are billed based on time-

of-use rates and only a handful of utilities offered “dynamic” pricing, where rates vary with real 

time or close to real time changes in marginal costs. Accordingly, almost all residential and small 

commercial consumers in the U.S. buy electricity on rate structures that do not vary with changes 

in overall supply and demand conditions, marginal costs or wholesale market prices from either 

an ex ante or real time perspective. 

II. OPPORTUNITIES AND PRESSURES TO EXPAND DYNAMIC PRICING 

 Several developments over the last decade have elevated interest in dynamic pricing. 

First, the evolution of competitive wholesale markets for generation services, where spot prices 

change as frequently as every ten minutes, has made it clear that there are wide variations in 

prices that reflect changing supply and demand conditions. Retail prices could be based on these 

transparent wholesale market prices rather than on marginal cost estimates. The wholesale 

market prices for electricity also have made it clear that traditional time-of-use (TOU) pricing, 

which used prices set ex ante based on expected generating costs during a small number of 

different time periods, only very roughly reflected varying marginal costs as conceived by Kahn 

and other scholars. Wholesale spot prices are extraordinarily high during a relatively small 
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number of hours on hot summer days and vary relatively little during the rest of the days of the 

summer. If peak-load pricing simply established all summer week-days as a high price period ex 

ante based on expectations, as almost all early applications of peak-load pricing did, consumers 

would not face powerful incentives to consume less when the system was highly stressed and 

wholesale prices were extremely high. 

 The second set of developments is associated with communications and metering 

technology. Internet and wireless communications did not exist when Kahn promoted peak-load 

pricing in New York, but technologies for real-time two-way communications between 

consumers and central data collection locations are now widely available. Further, technological 

progress continues to drive down costs and increase functionality for communications, as well as 

data storage, processing and acquisition. “Smart meters” (AMI) send real-time consumption data 

to the utility and enable various forms of dynamic pricing. Smart meters and associated 

communications and data acquisition and processing technologies also allow the utility, the 

consumer or third parties, to send signals back to the customer’s home or business to respond to 

price signals by controlling energy use (e.g. turning the air conditioning down), which can 

reduce peak demands when wholesale prices are high. 

Finally, at the federal level and in a growing number of states, policymakers are 

promoting a more modern and automated electric power network (Joskow, 2012, MIT, 2011). 

The federal government has provided significant incentives for utilities to adopt “smart grid” 

policies, including smart meters and variations on real-time pricing. The American Recovery and 

Reinvestment Act of 2009 (ARRA) provided about $5.0 billion for smart grid demonstration and 

technology deployment projects http://www.smartgrid.gov/federal_initiatives (November 29, 

2011). About 130 projects have been funded under these ARRA programs with about $5.0 billon 
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of matching funds from utilities and their customers. A large fraction of the funds awarded by 

the DOE from its ARRA smart grid subsidy program are for smart meters, supporting IT and 

billing software, communications capabilities, and other distribution network enhancements to 

take advantage of  smart meter capabilities (http://www.smartgrid.gov/recovery_act/overview, 

November 29, 2011). The DOE funds have also supported several randomized control trials 

involving smart meters and variations on real-time pricing, including simpler “critical peak 

period” real-time pricing mechanisms 

(http://www.smartgrid.gov/recovery_act/program_impacts/consumer_behavior_studies). 

Twenty-five states have adopted smart metering policies varying from pilot programs to 

mandates that smart meters be installed in all homes over a period of time 

(http://www.ncsl.org/?tabid=20672). It is estimated that over 20 million smart meters had been 

installed at residential and small commercial locations at the end of 2011, though real time 

pricing has diffused much more slowly than have smart meters 

(http://www.edisonfoundation.net/iee/issueBriefs/SmartMeter_Rollouts_0911.pdf). 

The interest in automating the local distribution grid with these new technologies has 

been stimulated by two additional factors. First, many portions of the U.S. electricity 

infrastructure, especially the lower voltage distribution network, are aging and need to be 

replaced. If long-lived replacement investments are made, there are good arguments to invest in 

cutting-edge technologies such as smart meters. Second, the federal government and about 30 

states have adopted policies to promote renewable energy technologies in an effort to reduce CO2 

emissions. Wind and solar technologies have received the bulk of federal support and interest 

from the states. While many of these technologies are connected to the high voltage network, 

solar photovoltaic (PV) technology is being promoted as a distributed generation source located 
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on customer premises or in small “farms” and connected to the local distribution system. The 

output from PV systems varies widely with insolation conditions, and the economic value of this 

kind of “intermittent” generations varies from hour to hour as market prices change. Smart 

meters and dynamic pricing will promote efficient use of PV technology and efficient use of new 

demand-side technologies, such as electric vehicle charging. 

III. UNRESOLVED ISSUES 

 Given the interest in dynamic pricing, it is useful to consider why it has not been adopted 

more widely. The historical arguments against introducing dynamic pricing were that (a) 

metering would be too costly for residential and small commercial customers given the potential 

for reducing deadweight losses, (b) meter reading and billing costs would increase with more 

complex rates, (c) retail consumers would not understand or effectively utilize complex rate 

designs, and (d) changing rate designs would lead to large redistributions of income reflecting 

the wide variations in consumption patterns across individuals. 

 The first two arguments appear largely irrelevant given current metering and billing 

technologies. Smart meters have certainly become technically and potentially economically 

attractive devices that, in addition to facilitating dynamic pricing, can significantly reduce meter 

reading costs, provide two-way communications capabilities and a wide range of other 

functionalities that can enhance information about demands and outages on the distribution grid, 

and use real time communications and control capabilities to help to manage new remote “smart” 

monitoring and control capabilities being installed on distribution networks. 

 In terms of customer response to time-varying pricing, there has been evidence dating 

back to the 1970s from well-designed TOU experiments and experience in other countries that 

consumers respond more or less as expected to price incentives (Aigner, 1985), suggesting that at 



  7 

least for a fraction of residential consumers the benefits of TOU rates exceed their costs 

(Mitchell and Acton, 1980). Results from more recent pilot programs suggest that consumers 

similarly understand and respond to critical-peak pricing programs (e.g., Faruqui and Sergici, 

2010; Wolak 2010). Existing studies have focused on consumers who voluntarily participate in 

dynamic pricing programs, so care must be taken before extrapolating to the entire population. 

Armed with estimates of likely customer responses as well as engineering estimates of 

the costs of smart meter roll-outs, Faruqui, Mitarotonda, Wood, Cooper and Schwartz (2011) 

perform cost-benefit analyses of smart meters for several prototypical utilities. Their estimates 

suggest that savings derived from lower meter-reading costs and increased ability to detect 

outages will cover at least one-third and for some utilities as much as 80 percent of the direct 

costs of installing smart meters. They simulate customer benefits by modeling several categories 

of consumers with different levels of awareness of and responsiveness to prices as well as 

different uses for electricity (e.g., space conditioning versus electric vehicle charging). While the 

benefits outweigh the costs for each of the modeled utilities, a large share of the benefits accrues 

to a small number of consumers who are very responsive and own electric vehicles. 

 While some customers will likely benefit from dynamic pricing, other customers will see 

higher bills. The fear of large redistributions across customers is possibly the largest impediment 

to further adoption of dynamic pricing. Under flat-rate pricing, customers whose demand is 

relatively constant across hours are subsidizing customers whose demand is “peakier,” i.e., who 

consume a greater share of their energy at times when wholesale prices are the highest. If those 

customers do not change their consumption patterns under dynamic pricing, their bills may go up 

considerably. Borenstein (2007) analyzes customer-level billing data for almost 1200 

commercial and industrial consumers in Northern California and finds large redistribution from 
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switching from flat-rate to real-time pricing, although most of the redistribution happens when 

utilities replace flat-rate pricing with simple time-of-use rates. Using similar data from the 

residential sector, Borenstein (2011) shows that most customers would benefit from critical peak 

pricing and low-income households would not be systematically hurt by it. A small share of 

customers could see greater than 20 percent bill increases. Recent experiences suggest that the 

press and consumer advocates will focus attention on consumers who are hit adversely by the 

change. Accordingly, more research is needed to better understand the attributes of winners and 

losers in additional areas of the country to encompass a full range of demand and rate design 

characteristics. 

Redistribution effects may be tempered if customers with peaky demand respond to time-

differentiated prices and cut their peak-period use. Most existing studies on price responsiveness 

have focused on demonstrating that the average demand elasticity is non-zero and less on 

understanding heterogeneity across customers. Wolak (2010) finds that low-income consumers’ 

are more responsive than higher income consumers. As the two-way capabilities of smart meters 

are developed further and the set of home-energy management tools expands, it becomes easier 

for customers to respond, although there is no guarantee that customers likely to be hurt the most 

by dynamic pricing will take advantage of these options. 

It is most likely that dynamic pricing programs will evolve slowly, and that most utilities 

will begin by allowing volunteers to opt on to alternatives tariffs while leaving flat-rate pricing 

the default option. Borenstein (2011) analyzes the impacts of allowing fewer than 20 percent of 

the customers to opt on to dynamic pricing. If customers whose demand is already flat are most 

likely to move away from flat rates, the cost of serving the households who remain on flat rates 

increases, since they will on average consume more during expensive peak periods. Borenstein 



  9 

(2011) finds that this effect is likely to be small. He does not model the offsetting effect, which is 

that as the first set of customers opt on to dynamic pricing and reduce their peak-period 

consumption, average prices fall, as do differences between peak and off-peak wholesale prices 

(Borenstein and Holland, 2005). This second effect suggests that the efficiency gains from 

forcing the remaining, unwilling customers onto dynamic pricing are smaller than the gains as 

the first customers move off flat-rate pricing. Particularly if mandatory changes face strong 

political opposition, this may not be a fight worth having. 

IV. CONCLUSIONS 
 

Fred Kahn strove to apply sound economic principles to important public policy 

decisions. One of his many contributions highlights the benefits of dynamic pricing. Many 

industries have taken advantage of the ability to amass and analyze real-time information about 

variations in supply and demand conditions and have used it to adopt sophisticated pricing 

strategies. Though recent technological advances have dramatically lowered the costs and 

expanded the capabilities of doing this in electricity, very few U.S. residential customers even 

have the option to pay dynamic prices. 
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