Zsolt Katona and Matthew Stepka - The Business of AI

  Home | Research | Teaching | Dancing |  
   

Syllabus - The Business of AI (EWMBA267-11 - Spring 2019)

Note: this document may be updated in the future. Please check back for the latest version.
Last Update: February 9, 2019

Important: The class is full and there will not be any space for auditors. Only come to our first session if you are officially enrolled. For more information, please contact the EWMBA Program Office.

Dates, Times, Location

2/10: 9am-5pm, N270

2/17: 9am-5pm, N270

Instructors - Zsolt Katona and Matthew Stepka

Email: zskatona@berkeley.edu and mstepka@berkeley.edu - please use [EWMBA267] in the subject.
Office hours: by appointment - in person or via phone/skpye/hangouts

Introduction

From self driving cars to humanoid robots, Artificial Intelligence (AI) is here and changing the way we live, work and do business. The class is designed to introduce future managers to AI technology and its many business applications. Students will walk away with a foundational understanding of AI and its near and long term applications, explore the myths and realities surrounding the technology, and delve into the legal, social and policy implications of AI. Professor Katona will be joined by Haas Executive-in-Residence Matthew Stepka, to provide valuable insight into the current AI business landscape.

Zsolt Katona is the Cheryl and Christian Valentine Associate Professor of Marketing and has been at Haas since 2008. Zsolt has a Phd in Marketing and Computer Science. His research focuses on the several topics related to business analytics such complex networks, search advertising, network economics, social media and digital marketing.

Matthew Stepka is Executive-in-Residence at Haas. He is Managing Partner of Machina Ventures, an investment firm focused on early stage, artificial intelligence and data science enabled companies. Previously, Matthew was VP, Special Projects at Google, where he led and incubated strategic initiatives, especially mission-driven projects with high social impact.

Preparation and Participation

The success of this course depends on everybody's effort to prepare before class. Learning is the most effective when you are actively engaged in thinking about and doing marketing rather than passively absorbing the material. Everybody's contribution is important. It is rare that there is one right answer to a particular issue. Do not expect one. Rather, you should expect to learn from seeing how others address the problem that you have thought seriously about. The better prepared you are the more you will learn. Therefore, we will try to call on everyone, not just volunteers to contribute and defend their viewpoints. Lectures and cases will be interactive.

Readings

Required and Supplementary Readings

For each day, please read the case study(ies) listed under sessions before class. These are required readings. You can access the case studies via study.net. Given that there is only one week between the two session and you will have a homework assignment, it is recommended that you study the three cases assigned for the second meeting (2/17) before our first meeting (2/10).

Textbooks

We do not use a textbook in the class. If you want to learn more, we recommend these two:

Assignments

Deep Learning Homework (Individual)

You will learn to code deep learning yourself! Don't worry you don't have to write code, rather you will be given a step by step guide and the homework will involve changing bits of the code to experiment with a classification task. Details will be available on bCourses after the 2/10 session and you will have until Saturday night, 2/16 to complete the assignment.

The assignment will be run on Haas' Jupyterhub platform. The coding language will be Python and we will use the Tensorflow and Keras libraries. Learning/knowing python is not a prerequisite, but it is highly recommended that you complete the Jupyterhub Python tutorial before our first session.

To access the tutorial, go to https://jupyterhub.haas.berkeley.edu/ and click on Haas Tutorials. After you log in with your calnet account, click on "Start Server" and then click on the Python-Tutorials folder. Then click on the 1_Start_Here folder and the mp4 video file will walk you through the rest. The tutorial contains problem sets from the Data and Decisions class and goes through the solutions in Python. Completing the tutorial will give you a basic understanding of Python and the Jupyterhub platform, both of which are widely used by data scientist.

Due date: 2/16 11pm: Submit deliverable on bCourses

Online Quiz (Individual)

There will be a short multiple-choice quiz that you need to complete after our second meeting. The quiz will assess your knowledge of the most important points we learn in class. The quiz will be open book, but timed. You can start any time before the due date, but obviously do not discuss with anyone else.

Due date: 3/6 11pm: Take on bCourses

AI Application Business Plan (Group)

In this project, you will develop a plan for an AI application. Your final report should be a business plan much like you would make a pitch as the founders of a company to a venture capital investor. Final report format: PowerPoint deck with 15-20 slides including Appendix. Write out speaker notes as if you were presenting.

Click here for a detailed description of the project

Due date: 2/16 11pm: Submit a document containing

  1. Names of the members of your group
  2. The Title of your project (you can change this later if needed)
  3. A brief, one-paragraph description of the AI application idea that your group wishes to pursue

Due date: 3/6 11pm: Submit the final report.

Submission of Documents

Submit all the assignments on bcourses in .docx, .pptx or .pdf format, no paper submission is necessary. If there is a problem with bCourses, email me a copy before the deadline. The grades and our comments will be added to the file electronically which look better in Office, so .docx or .pptx are preferred to .pdf if you use Word. Your powerpoint slides should be self-explanatory as much as possible, but you can add presentation notes if you need to explain something in more detail. Once project groups are assigned bCourses will have a feature for groups to submit assignments. Until then, one submission per group is enough. If multiple members submit from a group, the last submission will be graded.

Grading

Your grade will be based on the number of points you get from the following assignments. The maximum total score is 100 points.
  • Deep Learning Homework: 25 points
  • Online Quiz: 15 points
  • Group Project: 60 points
Note that Haas policies require the average GPA in elective classes to not exceed 3.5.

Session Details

2/10 - Morning: 9:00am - 12:30pm. Introduction: AI and what's behind it

Topics:

  • What is AI?
  • How does AI work?
  • Supervised Learning and Neural Networks
  • Deep Learning

2/10 - Afternoon: 1:30pm - 5:00pm. AI Applications

Topics:

  • Business Applications of AI
  • Where is it useful? What are the limits, limiting factors?

Case Discussion: "Zebra Medical Vision"

Case Discussion: "HubSpot and Motion AI: Chatbot-Enabled CRM"

2/17 - Morning: 9:00am - 12:30pm. AI and Strategy

Topics:

  • Deep Learning Homework Debrief
  • AI and Business Strategy
  • Sources of Competitive Advantage

Case Discussion: "Tailor Brands: AI Driven Branding"

2/17 - Afternoon: 1:30pm - 5:00pm. AI in the Startup Space, AI and the Future of Humans

Topics:

  • Future Applications of AI and the Startup Space
  • Artifical and Human Intelligence Working Together
  • Policy Considerations: Algorithmic Bias

Case Discussion: "Google and Project Maven (A): Big Tech, Government and the AI Arms Race"

Read Case: "AI and the Machine Learning Revolution in Finance: Cogent Labs and the Google Cloud Platform"