This appendix material solves the problem faced by liquidity supplying investors in the infinite-horizon version of the simultaneous trade model. It appears in the paper “Inventory Information,” by H. Cao, M. Evans, and R. Lyons (March 2002).

A.1. Proof of Proposition 1: Public Investors

The liquidity-supplying (LS) investors have the following utility defined over intertemporal consumption c_t (per equation 1):

\[
U_i = \sum_{t=0}^{\infty} -\delta^t \exp(-\gamma c_t)
\]

We begin by conjecturing a value function, which we show below is consistent with optimizing behavior on the part of LS investors:

\[
V_t = -\alpha \exp(-\gamma W_t - \psi h_t^2)
\]

where W_t is the LS investors’ nominal wealth at the end of day t and h_t is the total holding of the risky asset at the end of day t (defined in equation 9). We need to determine the conditions under which h_t is willingly held by the LS investors.

Given the proposed price function $P_t = -ah_t$ in text proposition 1, our task is to begin with the Bellman equation corresponding to the maximum of equation (1) and derive explicit expressions for the three coefficient values γ, ψ, and α, in this conjectured value function, as well as an expression for the parameter a in the price function. We shall show that we must have:

\[
\hat{\gamma} = \left(\frac{r}{1+r} \right) \gamma
\]

\[
\psi = \left(\frac{1}{2n\sigma_s^2} \right) + (1+r)\alpha \hat{\gamma} - \left(\frac{\alpha \hat{\gamma} + \frac{1}{n\sigma_s^2} (1+r)a - \sigma_\alpha^2 \hat{\gamma}}{2a} \right) + \left(\frac{\sigma_\alpha^2 \hat{\gamma}}{2} \right)
\]

\[
\alpha = \left(\frac{\hat{\gamma}}{\gamma} \alpha \sqrt{1+2n\sigma_s^2 \psi} \right)^{1+r} + \left(\frac{\hat{\gamma}}{\gamma} \alpha \sqrt{1+2n\sigma_s^2 \psi} \right)^{1+r} \left(\frac{\alpha}{1+r} \sqrt{1+2n\sigma_s^2 \psi} \right)
\]
and
\[a^2 \hat{\gamma} - a \left(\frac{r}{n\sigma_s^2} + 2\psi + 2n\psi \right) + \left(\frac{1}{n\sigma_x^2} + 2\psi \right) \hat{\gamma} \sigma_R^2 = 0 \]

To prove these conditions, write down the Bellman equation:
\[V_t = \max_{\{c_t, D_t\}} \left(-\gamma c_t \right) - \delta E_t \left[\alpha \exp\left(-\hat{\gamma} W_{t+1} - \psi h_{t+1}^2 \right) \right] \]
where
\[W_{t+1} = (1+r) \left(W_t - c_t \right) + D_t \left(P_{t+1} + R_{t+1} - (1+r)P_t \right) \]
and where we have used \(D_t \) to denote the LS investors’ demand for the risky asset. The first order condition with respect to \(c_t \) is:
\[\gamma \exp\left(-\gamma c_t \right) = \delta \hat{\gamma} \left(1+r \right) E_t \left[\alpha \exp\left(-\hat{\gamma} W_{t+1} - \psi h_{t+1}^2 \right) \right] \]

Notice that the consumption decision is unaffected by the investment decision \(D_t \) due to CARA utility. To get an explicit expression for the right-hand side, we calculate the following expectation with respect to the two random variables \(R_{t+1} \) and \(x_{t+1} \), both of which are normally distributed with mean zero and respective variances \(\sigma_R^2 \) and \(\sigma_x^2 \):

(A1) \[E_t \left[-\exp\left(-\hat{\gamma} W_{t+1} - \psi h_{t+1}^2 \right) \right] = \]
\[- \left(\sqrt{1 + 2\hat{\gamma} \psi} \right) \exp\left(-\hat{\gamma} (1+r)(W_t - c_t) \right) + \left(\frac{\alpha \hat{\gamma} D_t + \frac{h_t}{n\sigma_x^2}}{4\psi + 2/(n\sigma_x^2)} \right)^2 + \left(\hat{\gamma}^2 D_t^2 \sigma_x^2 \right) - (1+r)\hat{\gamma} \alpha D_t h_t - \left(\frac{h_t^2}{2n\sigma_x^2} \right) \]

Maximizing with respect to the choice of risky asset demand \(D_t \), we get
\[D_t = \left(\frac{a(1+r) - \left(\frac{a}{n\sigma_x^2} \right) \left(\frac{1}{n\sigma_x^2} + 2\psi \right)^{-1}}{\hat{\gamma} \sigma_R^2 + a^2 \hat{\gamma} \left(\frac{1}{n\sigma_x^2} + 2\psi \right)^{-1}} \right) h_t \]

For market clearing we must have \(D_t = h_t \), so:
\[
1 = \frac{a(1+r) - \left(\frac{a}{n\sigma^2_x}\right) \left(\frac{1}{n\sigma^2_x} + 2\psi\right)^{-1}}{\hat{\gamma}\sigma^2_x + a^2\hat{\gamma} \left(\frac{1}{n\sigma^2_x} + 2\psi\right)^{-1}}
\]

which equates to the expression above that pins down the pricing parameter “\(a\)”. Now, collecting terms in equation (A1) involving \(h^2\), we get the coefficient \(\psi\) on \(h^2\) in the value function:

\[
\psi = \left(\frac{1}{2n\sigma^2_x}\right) + (1+r)a\hat{\gamma} - \frac{\left(a\hat{\gamma} + \frac{1}{n\sigma^2_x}\right)(a(1+r) - \sigma^2_x\hat{\gamma})}{2a} - \left(\frac{\sigma^2_x\hat{\gamma}}{2}\right)
\]

Substituting the expected value function in the next period back to the Bellman equation, we get the expression for \(\alpha\):

\[
\alpha = \left(\frac{\hat{\gamma}}{\gamma} \sqrt{1 + 2n\sigma^2 \hat{\psi}}\right)^{\frac{1}{1+r}} + \left(\frac{\hat{\gamma}}{\gamma} \alpha \sqrt{1 + 2n\sigma^2 \hat{\psi}}\right)^{\frac{r}{1+r}} \left(\frac{\alpha}{1+r}\right) \sqrt{1 + 2n\sigma^2 \hat{\psi}}
\]

It is easy to show that when \(\gamma\) is sufficiently small, there exists a positive solution for the parameters. Finally, that a value function with this simple exponential form exists ensures that the linear equilibrium pricing rule described in proposition 1 also exists (recall that the mean payoff on the risky asset is zero). Q.E.D.