Bank Capital, Risk-taking and the Composition of Credit

Milton Harris† Christian C. Opp‡ Marcus M. Opp§

January 23, 2017

Abstract

We propose a general equilibrium framework to analyze the cross-sectional distribution of credit and its exposure to shocks to the financial system, such as changes to bank capital, capital requirements, and interest rates. We characterize how over- and underinvestment in different parts of the borrower distribution are linked to the capitalization of the banking sector and the distribution of borrowers’ risk characteristics and bank dependence. Our model yields a parsimonious asset pricing condition for firms’ cost of capital that sheds light on heterogeneity in interest rate pass-through across borrower types, as well as its dependence on the health of the banking sector.

Keywords: Risk-taking, Credit-rationing, Composition of credit supply, Bank regulation, Bailouts, FDIC insurance.

JEL Classification: G21 (Banks, Depository Institutions, Mortgages), G28 (Government Policy and Regulation).

*We are grateful to Anat Admati, Elena Carletti, George Pennacchi, Giorgia Piacentino, and Jeremy Stein for discussions of earlier drafts of this paper, as well as Hayne Leland, Nicolae Gârleanu, José-Luis Peydró, Jean-Charles Rochet, Christine Parlour, Furzad Saidi, Valerie Shen, and Ivo Welch for helpful comments. In addition, we thank seminar participants at the Berkeley-Stanford joint seminar, Bocconi, INSEAD, London School of Economics, Stockholm School of Economics, UC San Diego, University of Chicago, University of Northern Carolina at Chapel Hill, University of Minnesota, Pompeu Fabra, Bundesbank Frankfurt, Federal Reserve Bank of New York, Federal Reserve Board of Governors, NBER SI credit ratings, NBER SI corporate finance, FIRS, WFA meetings, Barcelona GSE summer symposium, and the Econometric Society World Meetings.

†University of Chicago, Booth School of Business, e-mail: milt@chicagobooth.edu.
‡University of Pennsylvania, The Wharton School, e-mail: opp@wharton.upenn.edu.
§Harvard University (on leave from UC Berkeley). e-mail: marcus_opp@fas.harvard.edu.
1 Introduction

Following Bernanke (1983) a central strand of research in finance and macroeconomics aims to understand the channels through which banks and, more generally, the financial system affect real investment and propagate shocks. As highlighted by the literature, shocks to the banking sector affect real activity only if some firms are "bank dependent" in the sense that they are unable to frictionlessly substitute to alternative funding sources when bank credit is unavailable (see, e.g., Blum and Hellwig, 1995). Building on Kashyap et al. (1993), the empirical literature has made continuous progress in identifying the importance of a bank lending channel and has established its effects on real activity, in particular, among small, entrepreneurial firms. Implicit in this line of research is a benevolent view of banking — banks affect the real economy by alleviating credit rationing of bank-dependent firms. Hence, a main concern regarding reductions in firm investment in response to negative shocks affecting banks is the possibility of underinvestment.

Nonetheless, the periods leading up to the Great Recession and the European Sovereign Debt Crisis suggest that banks’ lending decisions may also be motivated by risk-taking incentives associated with subsidies of banks’ debt financing cost (e.g., via access to implicit or explicit public guarantees). Such behavior may result in overinvestment, implying that a reduction in bank credit is not necessarily harmful. Indeed, recent studies by Acharya et al. (2014) and Jiménez et al. (2014) have identified the empirical importance of bank risk-taking in European data. Overall, the real effects of changes in the credit supply thus depend on which types of borrowers are affected — the composition of credit matters, rather than just the aggregate volume.

Motivated by these observations, we develop a tractable general equilibrium framework of the composition of credit that can flexibly accommodate cross-sectional borrower heterogeneity along several dimensions known to be essential for credit decisions. Economies typically exhibit simultaneously over- and underinvestment in different parts of the borrower distribution. We characterize how these misallocations are linked to the current capitalization of the banking sector, security-specific regulatory capital requirements, and the cross-sectional distribution of borrowers’ risk characteristics, value added, and bank dependence. We derive a parsimonious asset pricing condition for bank-funded borrowers’

1 See, e.g., Peek and Rosengren (2000), Khwaja and Mian (2008), Jiménez et al. (2012), Iyer et al. (2014), and, Chodorow-Reich (2014).
2 See, e.g., Gertler and Gilchrist (1994), Kashyap et al. (1994), and Iyer et al. (2014).
3 See also Greenwood and Hanson (2013), who find that the composition of corporate debt financing, in particular issuer quality, is a more reliable signal of credit market overheating than rapid aggregate credit growth.
cost of capital that reflects both a premium for a loan’s use of scarce bank capital and a discount due to implicit government subsidies of banks’ funding cost. Our framework characterizes the distributional effects of policies and shocks affecting the financial sector, such as changes to bank capital, capital ratio requirements, and interest rates.

In particular, we address the following research questions relating to the composition of credit: Will banks primarily expand risk-taking, alleviate credit rationing of bank-dependent firms, or simply crowd out public markets when capital is injected into the banking system? Will banks cut lending to small and medium sized firms when being subjected to higher capital requirements, and if so, will these borrowers have access to alternative funding sources? To which extent will banks pass on changes in interest rates to various types of borrowers in the economy and how does interest rate pass-through depend on the capitalization of the banking sector? The answers to these questions are central to policymakers, both in times of crises, when designing emergency policy interventions, and in normal times, when designing capital requirements and other macroprudential policies.

The following set of features are central building blocks of our framework. First, the cross-sectional distribution of potential borrowers in our model can be flexibly specified and captures borrowers value added, bank dependence, cash flow risk, and security-specific regulatory capital requirements. Second, consistent with empirical evidence, banks can play both a socially valuable role by alleviating credit frictions of bank-dependent borrowers (as in Holmstrom and Tirole, 1997) and a parasitic role by engaging in excessive risk-taking that exploits public subsidies of banks’ debt financing cost. Access to deposit insurance, or equivalently, implicitly insured debt, allows banks to raise debt at rates that do not reflect banks’ true riskiness (as in Hellmann et al., 2000, Repullo and Suarez, 2004, 2013). Third, since banks’ behavior in practice is also affected by the regulatory environment, we further integrate central features of existing bank capital regulations into our framework — as in Basel I-III, equity ratio requirements limit the amount of debt that banks can raise as a function of equity capital and asset-specific regulatory risk-weights. Finally, we allow banks’ outside equity issuances to be costly, which implies that shocks to bank capital can affect the credit supply, consistent with the above-mentioned literature on the bank lending channel.

Based on this framework we derive the following sets of predictions. Regarding banks’

4 Hanson et al. (2011) argue in favor of a macroprudential approach to financial regulation by accounting for general equilibrium effects and the impact on the financial system as a whole.
5 See also Kareken and Wallace (1978) for a partial equilibrium analysis of bank risk-taking incentives due to FDIC deposit insurance.
6 See, e.g., Hellmann et al. (2000), Decamps et al. (2011), and Bolton et al. (2013) for papers that also feature costly equity issuances.
asset portfolio choices we find that typically a subset of banks chooses to specialize in borrower types with correlated downside risks, which exploits the “put” value (see Merton, 1977) obtained from public guarantees of bank debt. This prediction is consistent with existing empirical evidence that Spanish and Italian banks primarily hold government debt of their respective home countries (Acharya et al., 2014), and that banks tend to hold specialized portfolios (Rappoport et al., 2014). In general equilibrium, where credit demand has to equal credit supply, this behavior implies that loans with different risk exposures are held and priced by different institutions, that is, marginal investors vary across different securities. An important implication of such endogenous segmentation is that one cannot simply extrapolate from the response of a single bank to a given shock to infer the response of the entire banking sector.

Using the banking sector’s privately optimal lending decisions, we characterize the endogenous distribution of firm investment, cost of capital, and the supply of credit from banks and public markets. When the banking sector’s aggregate equity capital is sufficiently high, underinvestment does not occur. Yet access to subsidized debt causes banks to overvalue risky assets that command relatively low capital charges, such as, for example, mortgage backed securities (MBS) did in the pre-crisis period. This overvaluation causes banks to be willing to provide credit at interest rates that are lower than those at which uninsured investors in public markets are willing to provide funds. As a result, bank credit may not only cause overinvestment by borrowers with surplus-destroying projects, but also crowd out other investors. That is, within our framework, banks may become marginal investors in publicly traded corporate (or sovereign) debt and bid up prices to the point where these securities earn negative expected excess returns, consistent with empirical evidence by Greenwood and Hanson (2013).

When bank equity capital is scarce, the economy may also feature underinvestment for bank-dependent borrowers. Shareholder value maximization dictates that constrained banks shed borrowers according to loan profitability. However, loan profitability reflects not only the social value added of bank lending, but also a loan-specific subsidies associated with distortions in banks’ funding cost. As a result, the economy generally features simultaneously underinvestment, overinvestment, and crowding out of regular public market investors in different parts of the borrower distribution. This feature of the equilibrium is key for understanding policy interventions’ heterogenous impact on the cross-sectional distribution of credit.

In particular, we highlight the effects of three major policy interventions that have been widely discussed in recent years: capital injections into the banking sector, changes to bank capital requirements, and changes to interest rates. First, we analyze the effects
of injecting capital into the banking sector, which has material effects when bank capital is currently scarce. A general effect of such a policy is a reduction in the yields of loans provided by banks, due to a decrease in the scarcity of bank capital. Yet, an increase in the amount of bank capital does not affect the relative profitability of various borrower types. In line with empirical evidence by Giannetti and Simonov (2013), an injection of capital thus typically causes heterogeneous responses by banks, leading to a simultaneous increase in overinvestment in risky surplus-destroying projects, a reduction in underinvestment, and additional crowding out of regular public market investors. The relative magnitude of the respective changes depends on the distribution of borrowers seeking finance and the development of public markets. Our framework thus predicts how the same policy intervention, say an injection of capital by the European Central Bank (ECB), will have heterogeneous effects across different countries.

Next, we consider a systemwide increase in capital ratio requirements, as proposed for example by Admati et al. (2011). Unlike an injection of capital, such a policy affects the banking sector’s profitability ranking of various borrower types. In particular, it lowers the relative profitability of loans to high-risk borrowers that benefit more from public guarantees of bank debt. As capital ratio requirements are increased, banks’ equity holders have greater skin in the game, causing private loan profitability and allocative efficiency to become better aligned. When bank capital is not scarce, an increase in capital ratio requirements thus always weakly improves allocative efficiency. However, when an increase in capital ratio requirements either causes bank capital to become scarce, or scarcer than it previously was, aggregate bank credit also contracts. Paradoxically, in this case, there may be a non-monotonic relationship between capital ratio requirements and bank risk-taking. A moderate increase in capital ratio requirements may lead banks to disproportionately cut lending to firms with relatively safe cash flows and low profitability, causing an increase in risk taking by the average bank. In contrast, if capital ratio requirements are increased by a sufficiently large amount, risk-taking can be always completely eliminated due to the skin-in-the-game channel. However, such stringent capital requirements may not be desirable, as they can cause credit rationing for bank-dependent borrowers.

Finally, we evaluate the effects of changes to interest rates (e.g., due to monetary policy shocks), in particular, how banks pass through interest rate changes to their borrowers. We show why pass-through can be incomplete or excessive, varies across various borrower types in the cross-section, and depends on the scarcity of aggregate bank capital. When aggregate bank capital is scarce, pass-through may be severely limited: If the marginal borrower type is bank dependent, banks already extract all rents from this borrower, which prohibits banks from charging higher loan rates in response to a marginal interest
rate increase. This, in turn, also dampens pass-through for all inframarginal bank-funded borrowers.

Literature. As in Holmstrom and Tirole (1997) banks in our model can create social value by lending to otherwise credit-rationed borrowers (see related empirical evidence mentioned above). Following Diamond (1984), banks’ advantage emanates from the ability to monitor borrowers and thus reduce moral hazard. It is important to note that while our paper aims to provide a framework to examine the composition of credit in an economy, banks may also create important social value on their liability side through the provision of liquidity services (see Diamond and Dybvig, 1983, Gorton and Pennacchi 1990).

Concerns about the effects of shocks to intermediary capital on real activity is also at the core of dynamic macroeconomic models with a financial sector (see, e.g., Bernanke and Gertler 1989, Brunnermeier and Sannikov 2014). Dynamic models have recently also been used to assess the effects of financial regulation, in particular capital requirements (see, e.g., Gertler et al. 2012, Martinez-Miera and Suarez 2012, Nguyen 2014, Klimenko et al. 2015, Begenau 2016). Our study has a different objective than these papers. Instead of focusing on dynamics in environments where banks either directly own investment projects or face a small set of investment opportunities, our paper provides a static framework that can accommodate rich cross-sectional distributions of potential borrowers and allows analyzing the determinants of the composition of credit in the presence of public markets.

An important channel affecting the credit supply by banks in our model are risk-taking incentives. Risk-taking has implications for banks’ portfolio decisions, banking sector segmentation, and asset prices, connecting our paper to several strands of the literature. In a partial equilibrium setting, Rochet (1992) shows theoretically that banks typically choose specialized, risky portfolios when their deposits are insured, even in the presence of capital ratio requirements (see also Repullo and Suarez 2004). In our general equilibrium framework with heterogeneous borrowers, risk-taking (“reaching for yield”) not only induces financial sector segmentation but also causes distortions in the cross-section of

7 DeAngelo and Stulz (2015) argue that tighter capital ratio requirements may be costly as they inhibit the production of liquid claims. Kashyap et al. (2014) also recognize the importance of liquidity creation in their theoretical analysis of macroprudential financial regulation.

8 It is useful to contrast our prediction of “segmentation” with the “herding” result by Acharya and Yorulmazer (2007, 2008) and Farhi and Tirole (2012). In these models, herding by banks induces bailouts. In contrast, bailouts (or, equivalently deposit insurance) are a primitive of our environment. Yet, endogenous segmentation in our model still implies that subsets of banks choose the same portfolio strategies and default in the same states of the world.

9 Kahn and Winton (2004) show that “segmentation” may even obtain within a bank by creating subsidiaries without mutual recourse.
This feature relates our paper to a growing literature on the pricing of securities when intermediaries are marginal investors (see, e.g., Garleanu and Pedersen, 2011; He and Krishnamurthy, 2013). In the cross-section, asset prices are most distorted for securities that have high downside risk relative to the regulatory risk-weights they command. Since credit ratings played a significant role for regulatory risk-weights in the pre-crisis period (see, e.g., Opp et al., 2013), our theory predicts that credit ratings have a direct impact on security prices, holding security cash flows constant, which is consistent with empirical evidence by Kisgen and Strahan (2010).

Finally, our paper relates to the literature that explores the role of competition for banks’ risk-taking incentives. In Marcus (1984) and Keeley (1990), increased competition between banks encourages risk-taking by affecting an intertemporal trade-off. An increase in competition reduces the continuation value of staying solvent, and hence, increases banks’ incentives to gamble. Boot et al. (1993) similarly argue that excessive risk-taking can be mitigated by reputation effects that in turn depend on imperfect competition. In such dynamic settings, banks may endogenously choose to hold capital in excess of regulatory minimums (see, e.g., Elizalde and Repullo, 2007; Allen et al., 2011; Repullo and Suarez, 2013). The role of capital requirements and their interaction with banks’ concerns about franchise value is a central theme in Hellmann et al. (2000) and Repullo (2004). In our static model, banks compete with each other and with investors in public markets. When the set of firms that can obtain funding from public markets becomes larger (e.g., due to improvements in the development of public markets), banks’ profits from socially valuable lending decline, encouraging the funding of high-risk borrowers. Consistent with these predictions, Hoshi and Kashyap (1999, 2001) show empirically that deregulations leading up to the “Japanese Big Bang” allowed large corporations to switch from banks to public capital markets, which caused banks to take greater risks.

Our paper is organized as follows. We describe the economy in Section 2. In Section 3, we first characterize bank behavior in partial equilibrium and then analyze the composition of credit, prices, and investment in general equilibrium. Section 4 considers policy experiments, and Section 5 concludes. We relegate proofs to the Appendix.

2 Model Setup

We consider a discrete-state, incomplete-markets economy with two dates, 0 and 1. At date 1, the aggregate state of the world \(s \in S \) is realized. The ex-ante probability of state \(s \) is denoted by \(p_s > 0 \). The economy consists of entrepreneurs, investors, and bankers. All agents in the economy are risk-neutral and have a rate of time preference of zero.

2.1 Firms

There is a continuum of firms of total measure one, indexed by \(f \in \Omega_f \)\(^{11}\). Each firm \(f \) is owned by a cashless entrepreneur who has access to a project that requires a fixed-scale investment \(I \) at time 0, and produces state-contingent cash flows \(C_s \) at time 1. Firm cash flows \(C_s(q,a) \) are affected by the entrepreneur’s discrete quality type \(q_f \in \Omega_q \) and her unobservable binary action \(a_f \in \{0,1\} \). Going forward, we will at times omit firm subscripts when doing so does not create ambiguity.

Firms are subject to limited liability and have access to monitored financing from banks and unmonitored financing from public markets. In public markets, regular investors and banks compete for firms’ securities. Both investors and bankers can observe the firm quality \(q \), implying that there is no ex-ante asymmetric information between issuers and providers of capital. There is, however, a moral hazard problem following Holmstrom and Tirole (1997). Shirking, \(a = 0 \), allows the entrepreneur to enjoy a private benefit of \(B(q) \) when unmonitored, and 0 when monitored\(^{12}\). As a result of this moral hazard problem, some firm types may be credit-rationed in public markets, providing a role for bank monitoring.

Assumption 1 Parameters satisfy the following relations:

1) \(NPV(q) := \mathbb{E}[C_s(q,1)] - I > 0 \) for some \(q \in \Omega_q \),

2) \(B(q) + \mathbb{E}[C_s(q,0)] - I < 0 \quad \forall q, \)

3) \(C_s(q,0) < I \quad \forall s, \forall q \).

The first condition implies that there exists at least one quality type that generates positive social surplus under high effort, that is, a positive net present value (\(NPV \)).\(^{13}\)

The second condition implies that no project generates positive social surplus (including

\(^{11}\) Formally, \(f = (f_1, f_2) \) with \(f_i \in [0,1] \) for \(i \in \{1,2\} \) and \(\Omega_f = [0,1] \times [0,1] \). The double continuum assumption for firms will ensure that firms are atomistic relative to banks.

\(^{12}\) The assumption that the private benefit under monitoring is zero simplifies the analysis, but it is not an essential ingredient for our main results. In principle, banks are effective monitors as long as they reduce the private benefit of shirking below \(B(q) \).

\(^{13}\) Otherwise, the optimal aggregate investment by firms is (trivially) zero.
the private benefit) under shirking. The third restriction is made for expositional reasons. It simplifies the firm’s incentive problem when funding is provided by public markets and implies that debt is the optimal contract (see Lemma 1 below).

2.2 Investors

There is a continuum of competitive investors with sufficient wealth to finance all projects in the economy. At date 0, investors have access to the following investment opportunities: (1) securities issued by firms in public markets, (2) bank deposits and bank equity, and (3) a storage technology with zero interest. Competition, capital abundance, risk-neutrality, a zero rate of time preference, and access to the storage technology imply that investors’ expected rate of return is zero on all investments in equilibrium.

Financing of firms via public markets first requires that the entrepreneur’s stake in her company provides her with sufficient incentives to exert effort \((a = 1)\), as Assumption 2 renders financing under shirking \((a = 0)\) infeasible. Second, securities purchased by investors must allow them to break even on their investment. Taken together, a firm \(f\) of quality \(q\) can obtain financing from regular investors in public markets if there exists a security with promised state-\(s\) cash flows, \(CF_s \geq 0\), that satisfies both the entrepreneur’s IC constraint and investors’ IR constraint:

\[
\begin{align*}
\mathbb{E} \left[\max \{C_s(q, 1) - CF_s, 0\} \right] &\geq B(q) + \mathbb{E} \left[\max \{C_s(q, 0) - CF_s, 0\} \right], \\
\mathbb{E} \left[\min \{C_s(q, 1), CF_s\} \right] &\geq I.
\end{align*}
\]

Lemma 1 A firm \(f\) of quality \(q_f\) can obtain financing from regular investors in public markets if and only if \(NPV(q_f) \geq B(q_f)\). The optimal form of financing is debt, and the value of an entrepreneur’s equity is \(NPV(q_f)\) if the entrepreneur receives funding from regular investors in public markets.

Lemma 1 states that a firm can obtain funding from regular investors in public markets if it either has a sufficiently profitable investment opportunity (high \(NPV\)) or if the required moral hazard rent is sufficiently small (low \(B\)). While our model relates bank-dependence to moral hazard rents, one may also view \(B\) as a firm-specific parameter capturing other characteristics determining bank-dependence in reduced form. Empirically, large firms tend to be firms with low barriers to public markets (low \(B\)) as compared to small- and medium sized firms (see e.g., Gertler and Gilchrist (1994) or Iyer et al. (2014)).

\footnote{In Section 4.3 we consider the case where interest rates on cash holdings differ from zero and analyze the determinants of interest rate pass-through in the economy.}
The equity value obtained by entrepreneurs that obtain funding from regular investors in public markets is equal to the project NPV since investors act competitively and are not wealth constrained. Similar to Innes [1990], the optimal choice of outside financing is debt, as it provides entrepreneurs with the strongest incentives to exert effort15.

Although regular investors participate in public markets, debt issued by firms in these markets may also be purchased by banks, in particular, when banks are willing to invest at lower interest rates. However, firms with $NPV(q) < B(q)$ can never obtain funding from regular investors in public markets and may resort only to monitored bank financing. We now turn to banks’ financing and investment decisions.

2.3 Banks

There is a continuum of competitive bankers $b \in \Omega_b$ of mass 1. Each banker has initial wealth $E_I > 0$ in the form of cash at time 0, so that aggregate bank capital is E_I. While both bankers and investors can observe a firm’s type, only bankers have a costless monitoring technology that allows them to eliminate an entrepreneur’s private benefit from shirking, $B(q)16$. This monitoring skill gives bankers a social role, as they can effectively raise the pledgeable income of firms and thus prevent credit rationing.

Banks may raise additional funds in the form of outside equity E_O and deposits D. Funds are used to finance investment in non-cash assets A or to hold cash (money) M. We obtain the standard balance sheet accounting identity:

$$A + M = E + D,$$

where $E = E_I + E_O$ is the total book value of equity. To streamline the analysis we assume that banks can invest only in senior debt of firms, such that non-cash assets A represent a bank’s holdings of such debt securities (which can be both monitored bank loans and unmonitored debt issued in public markets)17. This assumption ensures that we can abstract from security design and the origination and trading of synthetic (derivative)

15 Unlike in Innes [1990], the optimality of debt is implied by Assumption 13 rather than the joint assumption of the monotone likelihood ratio property (MLRP) and the monotonicity constraint of investors’ payoff in firm cash flows. There are cash flow distributions that satisfy Assumption 13, but not MLRP, and vice versa. Hence, neither assumption is more general.

16 By assuming a costless monitoring technology, we do not need to consider an additional incentive compatibility constraint for the banker (see e.g., Holmstrom and Tirole [1997]), which greatly simplifies the exposition of our results.

17 In practice, U.S. banks are subject to a risk-weight of 300\% for publicly traded stocks and 400\% for non-publicly traded equity exposures under Basel III, which makes it very costly for banks to hold other securities, in particular, common stocks.
External financing frictions. Banks are subject to limited liability and face external financing frictions, a necessary model ingredient to replicate the empirically relevant bank lending channel (see evidence in the motivating paragraph of the Introduction). Since we aim to develop a setup that remains tractable when considering rich cross-sectional distributions of firms — going beyond a homogeneous cash flow distribution as considered in Holmstrom and Tirole (1997) — we model bankers’ financing frictions in reduced form. Issuing outside equity is associated with a cost $c(E_O)$, where c is an increasing, convex function of outside equity E_O. In contrast, issuing deposits is not associated with issuance costs, as in Klimenko et al. (2015). The differential cost associated with issuing deposits and equity captures the general insight of models where moral hazard impedes outside financing and debt provides better incentives than equity (see Innes 1990, Tirole 2005). It may also be interpreted as an adverse selection discount that investors demand for information-sensitive securities such as equity (see Gorton and Pennacchi 1990).

Bank capital regulation. In reality, banks do not operate in a regulatory vacuum, and, one of our key premises is that banks’ financing and credit supply decisions are also affected by the regulatory and political environment. In particular, bank deposits are fully insured by FDIC insurance, and more generally, potentially via implicit bailout guarantees. The objective of our paper is to provide a flexible framework for positive analyses of the composition of credit, accounting for the effects of bank capital regulations in the presence of such bailout guarantees. As a result, both capital regulations and bailout guarantees are primitives of our environment. Given our paper’s objective, we do not aim to analyze the potential distortions caused by the financing of bailouts and presume that the government finances bailouts via lump-sum taxes that are levied from investors. The implication of bailout guarantees is that competitive investors in our model are willing to provide debt financing to banks at a net promised interest rate of $r_D = 0$, regardless of the asset positions of a bank (see, e.g., Rochet 1992).

18 See, e.g., Decamps et al. (2011) and Bolton et al. (2013) for papers using similar reduced-form specifications. For the purpose of our paper, which focuses on the positive analysis of the composition of credit, it is irrelevant whether the cost of raising equity is private or social (in contrast to a normative analysis. See e.g., Admati et al. 2011). Moreover, it is irrelevant whether firms also face costs when raising outside equity since Lemma 1 already implies that equity is a suboptimal form of financing for firms even without these additional costs.

19 There is a substantial literature that provides rationales for deposit insurance (see, e.g., Diamond and Dybvig 1983) or bailouts (see e.g., Bianchi 2016 or Chari and Kehoe 2016).

20 If guarantees were imperfect, the deposit rate would reflect a bank’s default risk, but less than justified by a bank’s asset risk. The qualitative results of our analysis would be unaffected in this case.
To mitigate risk-taking incentives, banks are subject to capital regulations that may be based on firm-specific signals of risk (ratings) $\rho_f \in \Omega_{\rho}$ but not directly on firm quality, q. We do not impose any restriction on the relationship between ρ and q other than that the signals ρ do not fully reveal different firm types q, which captures the idea that any risk signals used in practice, such as credit ratings, asset classifications, and accounting variables, are inherently noisy. In particular, we suppose that for any signal ρ and any quality q, the mass of firms with signal ρ and quality q is greater than 0. This technical condition ensures that an infinitesimal bank’s asset demand never exceeds the total supply of firms with quality q and signal ρ, for any combination of q and ρ.

Let $x(q, \rho)$ denote the weight of loans (or debt securities) of type (q, ρ) in a bank’s portfolio and let \mathbf{x} denote the associated vector containing all the bank’s portfolio weights, then bank capital regulation prescribes that the book equity ratio of every bank, $e \equiv \frac{E}{A}$, be above some minimum threshold $e_{\min}(\mathbf{x})$ that depends on the asset portfolio of a bank, that is,

$$e \geq e_{\min}(\mathbf{x}),$$

where the minimum capital requirement $e_{\min}(\mathbf{x})$ is a weighted average of asset-specific capital requirements $e(\rho)$ (as in the regulatory framework of Basel I-III).

$$e_{\min}(\mathbf{x}) = \sum_{q, \rho} x(q, \rho) \cdot e(\rho).$$

For our subsequent comparative statics analysis, it is useful to express $e(\rho)$ as a product of a risk-weight, $rw(\rho)$, and an overall level of capital requirements, e, that is,

$$e(\rho) = rw(\rho) \cdot e.$$ \hfill (4)

In this paper we focus on capital regulation as the most prominent regulatory tool in practice and make the simplifying assumption that banks are not additionally charged deposit insurance premia. This approach is also in line with our objective to capture the effects of implicit bailout guarantees, for which banks do not pay insurance premia.

In sum, our setup features two deviations from Modigliani-Miller that will play distinct roles for our analysis. First, deposit insurance generates risk-taking incentives for bankers even if depositors can observe bank risk-taking. Absent deposit insurance, an asset substitution problem may arise after a bank has issued debt. However, incentives for risk shifting would be reduced since depositors would require higher yields from banks that take risks (in particular, in the presence of covenants that address banks’ asset choice). Second, the wedge between the cost of internal equity and outside equity implies balance sheet effects when the regulatory bank

\hfill (21)
capital constraint binds.

Bankers’ Objective. For banks, the typical asset is a loan (or debt purchase) of size I provided to a firm, where the loan has a promised yield y. Competitive banks take equilibrium yields y charged to firms of type (q, ρ) as given. Let $y(q, \rho)$ denote this competitive equilibrium yield. Since a bank receives a borrowing firm’s total cash flow whenever the firm cannot fully repay its loan at date 1, the state-contingent return for a loan is given by:

$$r_s(q, \rho) = \min\left\{ y(q, \rho), \frac{C_s(q,1)}{I} - 1 \right\}. \quad (5)$$

The overall rate of return on the bank’s loan portfolio in state s, r_A^s, satisfies:

$$r_A^s(x) = \sum_{q, \rho} x(q, \rho) \cdot r_s(q, \rho). \quad (6)$$

Thus, after issuing outside equity E_O and deposits D, the total market value of a bank’s equity is

$$E_M = \mathbb{E}\left[\max\{(1 + r_A^s(x)) A + M - D, 0\} \right], \quad (7)$$

which accounts for a bank’s limited liability. Before raising outside finance, a banker’s objective is to maximize the value of her equity share, i.e., the market value of the inside equity, $E_{M,I}$, taking into account that the value outside equity holders obtain must be equal to the capital they provide, E_O, and that outside equity issuances are associated with cost $c(E_O)$. This value is given by

$$E_{M,I} = \max_{E_O, M, D, x} E_M - E_O - c(E_O). \quad (8)$$

It is useful to express this objective function in terms of the equity ratio $e = \frac{E_I + E_O}{A}$. Using this definition and the balance sheet identity [1] we can eliminate the variables D and M and write the expected rate of return on bank book equity (ROE) before the cost of outside equity as follows:

$$r_E(x, e) \equiv \mathbb{E}\left[\max\left\{ \frac{r_A^s(x)}{e}, -1 \right\} \right]. \quad (9)$$

This representation allows us to rewrite a banker’s maximization problem in the following

22 Note that at the equilibrium yield funding may be zero.
tractable form:

$$E_{M,I} - E_I = \max_{E_O, e, x} \left[(E_I + E_O) r_E (x, e) - c(E_O) \right]$$

\[(10) \]

s.t. \(e \geq e_{\text{min}}(x) \).

\[(11) \]

That is, a banker maximizes her expected profit, which is the difference between the market value of her inside equity, \(E_{M,I} \), and the book value of her inside equity, \(E_I \).

3 Analysis

We now analyze optimal decisions by investors and firms in the economy.

Definition 1 A Competitive Equilibrium is a yield function, \(y(q, \rho) \), specifying the promised yield on a loan to a firm of quality \(q \) with signal \(\rho \), an investment and effort strategy for each entrepreneur, an outside equity, equity ratio, and portfolio strategy for each banker, and an investment strategy for each investor such that:

a) Given its quality \(q \) and rating \(\rho \), the entrepreneur of each firm \(f \) decides whether to raise \(I \) units of capital at the equilibrium yield \(y(q, \rho) \) and whether to shirk or not.

b) Each banker \(b \) chooses her outside equity \(E_O \), her equity ratio \(e \geq \sum_{q, \rho} x(q, \rho) \cdot e(\rho) \), and her portfolio \(x \geq 0 \) to maximize \((10) \).

c) Investors decide on investments in firm debt, deposits, and bank outside equity.

d) Markets for loans, deposits, and bank outside equity clear.

Our analysis of the equilibrium proceeds as follows. We first study the optimal behavior of an individual bank in partial equilibrium. In the competitive equilibrium, an individual bank takes the promised loan yields \(y(q, \rho) \), as exogenously given. In a second step, we will determine the prices of all assets in the economy as part of our general equilibrium analysis.

3.1 Bank Optimization in Partial Equilibrium

It is convenient to separate the maximization problem of an individual bank \((10) \) into two steps — a problem of optimal outside equity issuance and the jointly optimal portfolio
and leverage choice, that is,

\[E_{M,I} - E_I = \max_{E_O} \left[\left(E_I + E_O \right) \max_{e,x} r_E(x,e) - c(E_O) \right], \]

First consider the inner (ROE) maximization problem given the exogenous yields on loans \(y(q, \rho) \):

\[
\max_{x,e} r_E(x,e) \text{ s.t. } e \geq e_{\text{min}}(x).
\tag{12}
\]

Given a solution \((x^*, e^*)\) to this maximization problem, define a bank’s failure states and its survival states as \(\Sigma_F(x^*, e^*) \) and \(\Sigma_S(x^*, e^*) \), respectively. In bank failure states, \(\Sigma_F(x, e) \), the loss on assets is greater than a bank’s capital buffer, that is, \(-r_A^*(x^*) > e\).

Lemma 2 Jointly optimal bank leverage \(e^* \) and portfolio choices \(x^* \)

i) **Leverage:** The regulatory leverage constraint binds, that is, \(e^* = e_{\text{min}}(x^*) \), if either

1) there exists a portfolio \(x \) that yields a strictly positive ROE, \(r_E(x, e_{\text{min}}(x)) > 0 \),

or

2) deposit insurance pays a positive amount in some state \(s \) if the bank takes maximum leverage, \(r_A^*(x^*) < -e_{\text{min}}(x^*) \).

ii) **Portfolio choice:** All loans of type \((q, \rho)\) with a strictly positive weight in the portfolio of a particular bank \((x^*(q, \rho) > 0)\)

1) generate the same bank ROE conditional on bank survival, i.e.,

\[
\mathbb{E} \left[r_s(q, \rho) | \Sigma_S(x^*, e^*) \right] = k \text{ for some } k \geq 0,
\]

2) and exhibit correlated downside risk, i.e.,

\[
-r_s^*(q, \rho) > \xi(\rho) \iff -r_A^*(x^*) > \xi(\rho) \iff s \in \Sigma_F(x^*, e^*),
\]

\[
-r_s^*(q, \rho) \leq \xi(\rho) \iff -r_A^*(x^*) \leq \xi(\rho) \iff s \in \Sigma_S(x^*, e^*).
\]

Leverage. Part i.1 states that if the equilibrium loan yields allow banks to obtain a positive expected return on bank equity, \(r_E(x, e_{\text{min}}(x)) > 0 \), banks have a strict incentive to choose the maximum leverage allowed by the regulatory constraint. To understand condition 2, observe that upon bank default in some state \(s \), government transfers to bank depositors, \(A \cdot (-r_A^*(x) - e) \), are strictly decreasing in \(e \). Total payments to all security holders are thus increasing in leverage, a key departure from the Modigliani-Miller framework.
While these transfers accrue *ex post* to depositors, competition among investors on the deposit rate ensures that the present value of these transfers, $E(A \max \{-r_s(x) - e, 0\})$, is passed on to bank equity holders *ex ante*. The present value of these transfers is the value of a put (see [Merton, 1977][23]). Thus, shareholder value maximization requires the value of the put be maximized for any given optimal portfolio x^\star. This is achieved by taking on maximal leverage for a given portfolio x^\star.

Portfolio choice. Portfolio diversification confers no benefit in our setup as agents are risk neutral[24]. In particular, naïve diversification of the loan portfolio is generally suboptimal, as it lowers the subsidy derived from deposit insurance and hence reduces a banker’s ROE. In fact, a portfolio with holdings concentrated in borrowers of one specific type $(\hat{q}, \hat{\rho})$ is an optimal portfolio provided that

$$(\hat{q}, \hat{\rho}) = \arg \max_{(q, \rho)} E \left[\max \left\{ \frac{r^s(q, \rho)}{\xi(\rho)}, -1 \right\} \right].$$

More generally, Lemma 2 highlights that optimally designed loan portfolios may consist of multiple, imperfectly correlated borrower types as long as the following properties are satisfied. First, each loan in the portfolio must generate the same expected asset return per unit of required equity capital $\xi(\rho)$ conditional on bank survival. This is because bank equity holders only care about asset returns in survival states $s \in \Sigma_S(x^\star, e^\star)$. Second, a bank optimally aligns individual loan payoffs with overall bank survival states. That is, for each state s, the returns on each loan type in a portfolio either wipe out each respective loan type’s capital cushion, or none of them. Forming portfolios with such correlated downside risk allows banks to maximally exploit deposit guarantees.

For example, consider a bank that can invest in US treasuries with zero default risk and in Greek sovereign bonds with positive default risk. Depending on the yields on the two types of bonds the bank might obtain a higher expected return on equity by investing either exclusively in US treasuries (and not default for sure) or exclusively in Greek bonds (and default in some states). Suppose that investing exclusively in Greek bonds yields the *weakly* higher ROE of the two options. Then the bank will receive a *strictly* lower ROE if, starting from a portfolio with 100% Greek bonds, it increases the portfolio weight of US treasuries. This is because the expected return on treasuries across the bank’s

[23] Note, however, that once we endogenize loan yields for firms in general equilibrium, banks pass on (part of) the value of the put to firms.

survival states must be strictly lower than for Greek bonds and the banker does not value the treasuries’ payoffs in bank default states. Conversely, if investing exclusively in treasuries weakly dominates investing exclusively in Greek bonds, the bank strictly lowers its ROE when marginally increasing the portfolio weight of Greek bonds, starting from a portfolio with 100% US treasuries. A bank that moves from a portfolio with 100% US treasuries to a portfolio with 99.99% US treasuries and 0.01% Greek sovereign bonds will still not default. Thus, it also can’t get the same marginal benefit from Greek bonds as when exclusively investing in Greek bonds and benefiting from the bailout put. In short, comparative advantages of financing different borrower types emerge endogenously in our model (see Rappoport et al. (2014) for related empirical evidence).

Given a solution \(e^* \) and \(x^* \) yielding \(r_E^* = r_E(x^*, e^*) \), we can now characterize the incentives of an individual bank to issue additional equity in parsimonious way.

Lemma 3 Raising equity in partial equilibrium

1) If \(r_E^* \leq c'(0) \), a bank does not raise outside equity.
2) A bank has a strict incentive to increase outside equity as long as \(r_E^* > c'(E_O) \).

3.2 Credit Supply and Loan Terms in General Equilibrium

In the previous section, we analyzed how individual banks optimally invest in loans taking the yields on each loan type, \(y(q, \rho) \), as given. We now analyze how the pricing of all loans is determined in a competitive equilibrium where firms can potentially obtain funds from both banks and investors in public markets. We first study the capital supply decisions of regular investors in public markets.

Investors are willing to provide capital to borrower types with access to public markets (see Lemma 1) as long as loan yields are set such that

\[
\mathbb{E}[r^*(q, \rho)] \geq 0, \quad (13)
\]

where \(r^*(q, \rho) \) was defined in (5). This restriction pins down the minimum yield at which public market investors are willing to invest. Let \(y_P(q) \) denote the yield at which (13) holds with equality (which does not depend on \(\rho \)). In equilibrium, the loan yield for a borrower with access to public markets and quality \(q \) cannot exceed \(y_P(q) \), since investors in public markets have sufficient funds to finance all entrepreneurs.

\[25 \] Recall that we started with the supposition that exclusively investing in Greek bonds (and defaulting in some states) yields a weakly higher ROE than exclusively investing in US treasuries (and defaulting in no states).
Banks’ investment decisions differ from those of regular investors for several reasons. First, bankers can fund borrower types that do not have access to public markets. Second, bankers have access to deposits at rate \(r_D = 0 \) and have limited liability. Third, bankers’ capital may be scarce.

Ex-ante identical banks typically choose heterogeneous portfolio and leverage strategies in equilibrium as doing so maximizes their private surplus from implicit government subsidies of banks’ funding cost. Definition 2 captures differences in portfolio and leverage strategies that will matter for loan supply decisions.

Definition 2 We say that banks \(b \) and \(b' \) have the same “strategy type” if and only if they fail in the same states of the world, i.e.,

\[
\Sigma_F (x^*(b), e^*(b)) = \Sigma_F (x^*(b'), e^*(b')).
\]

We now turn to the aggregate implications of banks’ optimal leverage and portfolio choices (see Lemma 2).

Proposition 1 The competitive equilibrium satisfies the following two properties:

1) **Banking sector segmentation:** Suppose borrowers of two different types \((q, \rho)\) and \((q', \rho')\) obtain loans from banks in equilibrium and \(\mathbb{1}_{r^*(q, \rho) \leq \mathbb{E}(\rho)} \neq \mathbb{1}_{r^*(q', \rho') \leq \mathbb{E}(\rho')}\) for some state \(s\), then the two borrowers must be financed by banks with different strategy types.

2) **Loan yields:** The cost of capital for all bank-financed borrowers satisfies

\[
\mathbb{E}[r^*(q, \rho)] = \mathbb{E}(\rho) r^*_E - \sigma(q, \rho),
\]

where

\[
\sigma(q, \rho) = \mathbb{E}\left[\max\left\{-\frac{C_s(q, 1) - I}{I} - \mathbb{E}(\rho), 0\right\}\right] \geq 0.
\]

The first part of the Proposition follows immediately from Lemma 2.ii.2 (correlated downside risks). The second part follows from optimal bank loan supply decisions: borrower types that obtain loans from banks must have loan yields such that banks specializing in these borrower types obtain the same ROE — otherwise banks could improve their objective by providing loans only to the borrower types yielding the higher ROE. Given this condition, basic algebra yields the parsimonious asset pricing condition (14) for a firm’s cost of capital.\(^\text{27}\)

\(^{26}\) There are thus \(2^S - 1\) potential bank strategy types. The strategy of defaulting in all states of the world can never be a profitable strategy.

\(^{27}\) See Proof of Proposition 1 in Appendix A.5 for a derivation.
According to equation (14), the cost of capital can be decomposed into a premium related to the scarcity of bank capital \(r_\ast^E \) and a discount due to implicit government subsidies of banks’ funding cost.\(^{28}\) Subsidies arise as banks can finance their loan portfolio with deposits at a rate \(r_D = 0 \) that is insensitive to banks’ asset risk, implying a “put” as in Merton (1977). This put is captured by the term \(\sigma (q, \rho) \), which represents the expected loan return shortfall relative to the regulatory capital cushion for a given loan, that is, \(\varepsilon (\rho) \). Thus, the subsidy is high if a borrower type has high downside risk relative to the associated regulatory capital requirement \(\varepsilon (\rho) \), a fitting description for structured securities in the period leading up to the Great Recession. Consistent with empirical evidence, our model predicts the prices of these structured securities to be too low relative to a frictionless benchmark. Our setup thus formalizes how risk signals used for regulation, such as credit ratings, will be reflected in prices, holding cash flow characteristics constant. The pricing implications of a ratings change, for example from \(\rho = AAA \) to \(\rho = B \), thus depend on how capital requirements vary across ratings classes.

Equation (14) expresses a borrower’s cost of capital in terms of exogenous variables, except for the equilibrium rate of return on bank equity, \(r_\ast^E \). Although banks behave competitively in our model, bankers may earn a scarcity rent (\(r_\ast^E > 0 \)) if aggregate inside bank equity \(E_I \) is below some endogenous threshold. At this threshold level, a maximally levered banking sector has just enough funds to provide all weakly profitable loans. To determine this threshold and the equilibrium ROE \(r_\ast^E \), we now characterize whether a borrower type can be profitably financed by the banking sector.

Lemma 4 The incremental private surplus that bank financing of a borrower of type \((q, \rho)\) generates is given by

\[
\Pi (q, \rho) = NPV (q) \mathbb{1}_{B(q) > NPV(q)} + I \sigma (q, \rho) .
\]

\(\Pi(q, \rho) \) reflects the two competitive advantages that banks possess relative to regular public market investors. First, banks can finance firms with \(B(q) > NPV(q) \) that are credit rationed by regular investors. Second, banks have access to implicit government subsidies. The value of this subsidy for a loan of size \(I \) is given by \(I \sigma (q, \rho) \). The incremental private surplus \(\Pi(q, \rho) \) will be shared between banks and firms depending on the scarcity of bank capital (as reflected by \(r_\ast^E \)).

Figure[] illustrates how borrowers’ state-contingent cash-flows relate to \(\Pi, NPV \), and borrowers’ access to public markets. \(NPV \) increases toward the “north” and “east.”

\(^{28}\) Section 4.3 shows how the cost of capital expression (14) can be extended in a straightforward way to accommodate a positive interest rate on cash.
Figure 1. Incremental private surplus from bank finance, social surplus, and access to public markets. The three solid lines (orange, black, blue) indicate cash flows in two equiprobable macro-states $s \in \{L, H\}$ that give rise to zero incremental private surplus from bank finance $\Pi = 0$, zero social surplus $NPV = 0$, and $NPV = B$, respectively. The parameters are: $I = 1$, $B = 0.2$ and $\varepsilon = 0.3$. The firm marked with a black cross has cash flows $(C_L, C_H) = (1.1, 1.1)$, such that $NPV = \Pi = 0.1 < B$.

Borrowers in the area between the $\Pi = 0$ line and the $NPV = 0$ line have a negative NPV, but create positive private surplus when bank financed. A maximally levered bank holding these loans does not value payoffs below $I(1 - \varepsilon)$ in state $s = L$ (left of the vertical dashed line) or $s = H$ (below the horizontal dashed line), as these payoffs accrue exclusively to depositors. Firms in the corridor between $NPV = 0$ and $NPV = B$ — such as the borrower type marked with a black cross — are firms with socially valuable investments that do not have access to public markets and hence require bank finance. Finally, borrowers above the $NPV = B$ line have access to public markets.

For the remaining analysis it is useful to define a bank profitability index, denoted by PI, which determines banks’ private ranking of borrower types:

$$PI(q, \rho) = \frac{\Pi(q, \rho)}{I \cdot \varepsilon(\rho)}.$$ (17)

$PI(q, \rho)$ can be interpreted as the expected return on equity that a bank could obtain when funding only borrowers of type (q, ρ) if the bank did not face competition from other banks. Due to competition from other banks a bank may, however, not be able to
extract this surplus in equilibrium. Since the profitability index is a function of social surplus and deposit insurance subsidies (see (16)), the private ranking based on \(PI(q, \rho) \) is generally not aligned with the social ranking based on \(NPV(q) \). In particular, the private ranking is misaligned when a sufficient fraction of borrowers have high downside risk, low capital requirements, and a negative \(NPV \). To streamline the analysis and avoid knife-edge cases, we presume that the finite number of borrower types \((q, \rho)\) in the model have distinct profitability indices.

We also define \(E_R(\widehat{PI}) \) as the aggregate equity capital that a maximally levered banking sector requires to fund all borrower types with a profitability index greater or equal to \(\widehat{PI} \), that is:

\[
E_R(\widehat{PI}) = \sum_{(q, \rho) : PI(q, \rho) \geq \widehat{PI}} I \cdot e(\rho) \cdot m(q, \rho),
\]

where \(m(q, \rho) \) denotes the mass of firms of type \((q, \rho)\). We now characterize when bank inside equity is scarce in the economy.

Definition 3 Inside bank equity is scarce when maximally levered banks with aggregate equity \(E_I \) cannot fund all privately profitable borrowers in the economy, that is, when:

\[
E_I < E_R(0).
\]

(18)

Our equilibrium analysis of investment decisions and prices in the economy will hence distinguish between the cases \(E_I > E_R(0) \) and \(E_I < E_R(0) \).

Case: \(E_I > E_R(0) \). We first discuss the case when banks’ inside equity is not scarce.

Proposition 2 When inside bank equity is not scarce

1) banks fund all borrowers with \(\Pi(q, \rho) > 0 \),
2) of the remaining firms public market investors fund all firms with \(NPV(q) \geq B(q) \),
3) funded firms obtain all private surplus in equilibrium, that is,

\[
\Pi(q, \rho) + NPV(q) \mathbb{1}_{NPV(q) \geq B(q)}.
\]

(19)

Since banks have excess inside equity, all borrower types with positive private surplus from bank finance are funded. In the economy illustrated in Figure [1], all borrowers to the north-east of the \(\Pi = 0 \) line would be funded. This includes the set of all borrowers with positive-NPV projects, but also firms with negative-NPV projects, provided that their financing subsidy \(\sigma \) is sufficiently high.
Case: $E_I < E_R(0)$. In the case when banks’ inside equity is scarce, banks cannot fund all privately profitable borrowers in the economy unless outside equity is raised. If the banking sector does not fund all such borrowers, it will rationally shed the borrower types with the lowest profitability indices $PI(q, \rho)$. Let $(\tilde{q}_{EO}, \tilde{\rho}_{EO})$ denote the type of the marginal firm funded by the banking sector given outside equity issuances E_O:

$$(\tilde{q}_{EO}, \tilde{\rho}_{EO}) = \arg \min_{(q, \rho)} PI(q, \rho) \text{ s.t. } E_R(PI(q, \rho)) \geq E_I + E_O$$ (20)

The borrower type (q, ρ) with the smallest profitability index in the set of bank-funded borrowers is the marginal borrower type. The profitability index of the marginal type absent outside equity issuances, $PI(\tilde{q}_0, \tilde{\rho}_0)$, plays a crucial role in determining whether the banking sector has incentives to raise outside equity. If $c'(0) \geq PI(\tilde{q}_0, \tilde{\rho}_0)$ the banking sector does not raise outside equity. In this case, equilibrium yields are such that firms of the marginal type $(\tilde{q}_0, \tilde{\rho}_0)$ pledge the entire incremental surplus from bank finance $\Pi(\tilde{q}_0, \tilde{\rho}_0)$ to banks, while keeping the surplus from public market finance $NPV(q_1) \mathbb{1}_{NPV(q_1) \geq B(q_1)}$.

The banking sector’s return on equity from this loan is $r_E^* = PI(\tilde{q}_0, \tilde{\rho}_0)$. Equilibrium loan yields for all other borrower types funded by banks are such that all banks earn the same expected ROE.

In contrast, when $c'(0) < PI(\tilde{q}_0, \tilde{\rho}_0)$, the return on the marginal funded firm absent equity issuances exceeds the marginal cost of raising outside equity. Thus, an equilibrium without equity issuances cannot obtain. Banks raise outside equity up to the point where all borrower types with $PI(q, \rho) > c'(E_O^*)$ are funded, where E_O^* refers to the equilibrium amount of outside equity that each bank raises. Market clearing implies that the equilibrium rate of return of the banking sector is given by $r_E^* = c'(E_O^*)$. We summarize these insights in

Proposition 3 When inside bank equity capital is scarce ($E_I < E_R(0)$)

1) no bank raises equity if $c'(0) \geq PI(\tilde{q}_0, \tilde{\rho}_0)$. Otherwise, E_O^* solves

$$PI(\tilde{q}_{EO}, \tilde{\rho}_{EO}) = c'(E_O^*),$$

(21)

where $(\tilde{q}_{EO}, \tilde{\rho}_{EO})$ denotes the marginal borrower type after issuing outside equity E_O.

2) banks fund all firms of type (q, ρ) with $PI(q, \rho) > r_E^* = \min \{PI(\tilde{q}_0, \tilde{\rho}_0), c'(E_O^*)\}$,

3) of the remaining firms public markets fund all firms with $NPV(q) \geq B(q)$.

29 If $c(E_O)$ is strictly convex, then symmetric outside equity issuances are the unique equilibrium outcome. If $c(E_O)$ is linear, individual banks may raise different amounts of equity, but the aggregate amount of issuance is still uniquely determined.
funded firms of type \((q, \rho)\) obtain the following expected surplus

\[
\Pi(q, \rho) \cdot \max \left\{ 1 - \frac{r_E^*}{\Pi(q, \rho)}, 0 \right\} + NPV(q) \cdot 1_{NPV(q) \geq B(q)}.
\]

With scarce inside bank equity capital, it is possible that some firms with positive-NPV projects remain unfunded. Such capital rationing occurs for firm types that do not have access to public markets and are not sufficiently profitable for banks \((\Pi(q, \rho) < r^*_E)\). Scarcity not only affects the credit supply but also allows banks to earn equilibrium rents. Each firm that is funded by the banking sector now needs to pledge a fraction \(\frac{r_E^*}{\Pi(q, \rho)}\) of the private surplus \(\Pi(q, \rho)\) to bankers.

4 Policy Experiments and Comparative Statics

Using the equilibrium characterization provided in the previous section we now discuss the comparative statics of our model to obtain its predictions and policy implications. The goal of our framework is to facilitate the analysis of the volume of credit and its composition. For the subsequent comparative statics analysis, it is useful to define a summary statistic of the efficiency of firm investment.

Definition 4 Total social surplus is the sum of the NPVs of all projects financed in the economy.

It is important to emphasize that total social surplus as defined here should not be interpreted as a broad measure of welfare, as it does not account for the cost associated with banks’ outside equity issuances. Moreover, our analysis does not aim to shed light on the magnitudes of distress cost and default externalities associated with bank failures, or tax distortions resulting from the financing of bailouts.

4.1 Changes to Banks’ Inside Equity

First, we analyze the effects of changes to the aggregate amount of inside bank equity in the economy. In practice, various economic shocks can lead to declines or increases in aggregate bank capital. For example, a macroeconomic downturn might be associated with higher loan default rates, and thus, decreasing levels of aggregate bank equity. On the other hand, equity capital injections by governments during crises could increase aggregate bank equity (see, e.g., Giannetti and Simonov, 2013). The following Corollary to Propositions 2 and 3 summarizes general results regarding the effects of changes to aggregate bank capital.
Corollary 1: A decline in the aggregate amount of inside bank equity, E_I
1) weakly increases banks’ ROE, r^*_E, and borrowers’ loan yields $y(q, \rho)$,
2) weakly decreases aggregate investment, but weakly increases funding by regular investors,
3) has an ambiguous effect on total social surplus.

The expected return on bank equity, r^*_E, is weakly decreasing in inside equity E_I, as higher levels of inside equity decrease the scarcity of bank equity. As a result of this scarcity, all borrowers funded by banks after the negative shock have to pledge a larger fraction of private surplus to bankers to still obtain financing, i.e., $y(q, \rho)$ increases. The loan pricing condition (14) pins down by how much. The borrowers that are shed by banks can either access public markets at less favorable rates than before or lose funding altogether. Moreover, borrower types that previously did not receive bank finance will not start to receive bank finance either, since changes to E_I do not affect banks’ ranking of borrower types (see definition of $PI(q, \rho)$ in equation (17)). Taken together, aggregate investment must decrease, even though the reduction in bank lending is partially compensated by increased direct funding provided by regular investors in public markets (see empirical evidence for substitution by Becker and Ivashina (2014)). The effect of this decline in aggregate investment on total social surplus is generally ambiguous, which follows immediately from the fact that banks’ private ranking of investment opportunities based on $PI(q, \rho)$ is generally not aligned with the social ranking based on $NPV(q)$.

Parameterized example. We consider a stylized parameterization of the model with two aggregate states $s \in \{L, H\}$, which allows illustrating the qualitative effects of changes to aggregate bank capital with simple two-dimensional graphs. In this economy, borrower types only differ in terms of their state-contingent cash flows $C_s(q, 1)$. Thus, they share the same moral hazard parameters $B(q)$ and risk-weights $rw(\rho) = 1$. Figures 2 and 3 illustrate how equilibrium outcomes vary with the level of inside equity E_I. Figure 2 plots the expected ROE (black) and the total social surplus generated by firms funded in the economy (orange). It shows that the equilibrium ROE is declining in E_I (by Corollary 1), whereas the effect on total surplus is non-monotonic. While Figure 2 plots aggregate statistics as a function of E_I, Figure 3 illustrates the corresponding cross-sectional implications. In Panels A to D, we plot the equilibrium source of financing for the entire cross-section of borrowers for 4 distinct levels of bank capital E_I. A borrower type that receives funding in equilibrium is represented by either an orange cross (if funded by banks) or a blue cross.

30 This holds even when banks are raising outside equity. A decline in E_I leads to a weakly higher amount of outside equity E^*_O being raised, and thus, a weakly higher expected ROE, $r^*_E = c'_E(E^*_O)$ by convexity of c_E.

23
Figure 2. The figure plots equilibrium bank ROE and social surplus created by firms receiving credit as a function of aggregate bank inside equity E_I. Model parameters are chosen as follows: there are two aggregate states $\{L, H\}$ with $p_H = 0.5$ and 10,000 borrower-types of equal mass with cash flows (C_L, C_H) drawn from a bivariate log-normal distribution with means $(-0.1, 0.15)$, variances $(0.2, 0.1)$, and a covariance of -0.1. All firms have a risk weight $rw = 1$, $B = 0.4$, and $I = 1$. The capital requirement is $\varepsilon = 0.08$, and the marginal cost of outside equity is $c'_E(E_O) \equiv 1$. (if funded by regular investors in public markets). Each cross indicates a borrower’s state-contingent cash flows (C_L, C_H). Borrower types that do not receive funding are represented by red circles.

Figure 3 also reveals the segmentation of banks’ equilibrium strategies (see Proposition 1). Borrowers to the north of the $\Pi = 0$ line and the west of the vertical dashed line are funded by banks that default in state L. Borrowers to the east of the vertical dashed line, the northeast of the $\Pi = 0$ line, and to the north of the horizontal dashed line are funded by “safe” banks that never default. Borrowers to the west of the $\Pi = 0$ line and the south of the horizontal dashed line are funded by banks that default in state H.

For levels of E_I below 0.053, the ROE is sufficiently high to incentivize banks to raise outside equity. Equity is issued up to the point where the ROE and the marginal cost of raising outside equity are equalized. Since the marginal cost of raising outside equity $c'(E_O)$ is chosen to be constant in the parameterization, the equilibrium ROE is invariant to E_I for low levels of E_I (see Figure 2). In this region, the total social surplus created by funded borrowers (orange line) is also independent of the level of inside equity, since banks
Figure 3. The panels illustrate the cross-sectional distribution of borrower types and their access to finance for different values of aggregate bank inside equity $E_I \in \{0.04, 0.05, 0.06, 0.07\}$. Each borrower type is characterized by a cash flow tuple (C_L, C_H) corresponding to two aggregate states $\{L, H\}$. Model parameter values are detailed in the caption of Figure 2.

always end up with the same amount of total equity and the same aggregate assets. Thus, the cross-sectional distribution of borrowers looks identical for $E_I = 0.04$ and $E_I = 0.05$, as shown in Panels C and D of Figure 3. Banks use their scarce capital to focus on the funding of two broad groups of firms: (1) firms that do not have access to public markets (located below the $NPV = B$ line) and (2) firms with large cash flow risks, that is, with highly asymmetric payoffs across aggregate states. These two groups correspond to banks’ two competitive advantages — their monitoring ability and their access to cheap

31 If the cost of raising equity was strictly convex, the aggregate assets would be affected, too.
deposits irrespective of the riskiness of their asset holdings. The second advantage leads bank finance to crowd out regular public market investors for some borrower types that have access to public markets. Borrowers marked with red circles in Figure 3 are credit rationed, as they do not have access to public markets and rank low in terms of their profitability indices. Note that credit rationing obtains both for firms with negative NPV projects (below the solid black line) and for firms with positive NPV projects (above the solid black line).

For levels of inside equity E_I above 0.053, banks have sufficient capital to fund borrower types with profitability indices $PI(q, \rho) < c'(0)$ such that banks do not raise costly outside equity. In this region, further increases in E_I lead to lower bank ROEs, since expansions in banks’ aggregate loan book lead to declines in the profitability of the marginally funded borrower type (see Figure 2). The ROE bottoms out at zero for $E_I \geq 0.067$, as banks always prefer to hold cash or pay dividends instead of extending loans to firms with negative profitability. Increases in E_I beyond 0.067 thus have no effect on banks’ ROE and the set of firms in the economy receiving credit.

However, before reaching $E_I = 0.067$, banks’ loan book expansion first tends to increase total surplus (for $0.053 < E_I < 0.057$) and then to decreases it (for $0.057 < E_I < 0.067$). For $0.057 < E_I < 0.067$, marginal borrower types have a negative NPV on average, such that increases in equity capital tend to be used to expand lending to surplus-destroying borrower types, reducing allocative efficiency. Figure 3 illustrates why the marginal borrower types tend to have a negative NPV in this region. At $E_I = 0.06$ (Panel B), credit rationed firms indicated by red circles are mostly below the black solid line, and thus, have a negative NPV. Hence, an increase in equity from $E_I = 0.06$ (Panel B) to $E_I = 0.07$ (Panel A), which alleviates the credit rationing of these borrower types, leads to a net-decline in total surplus.

4.2 Changes to Capital Ratio Requirements

Channels of capital requirements. Changes to capital ratio requirements affect equilibrium outcomes through two channels — a skin-in-the-game channel and a balance-sheet channel. Increases in ratio requirements have a positive effect on allocative efficiency through the skin-in-the-game channel: a system-wide increase in ξ lowers the implicit de-

\[\text{Note that the NPV of the marginal borrower type generally switches multiple times between positive and negative values when } E_I \text{ is gradually increased. As the mass of each borrower type is small in the parameterization considered in Figure 2, these switches are not visible in the graph as positive and negative slopes for the orange line — the graph effectively smoothes out the NPVs of marginal borrower types within narrow regions of } E_I. \]
posit insurance subsidy for each borrower type $\sigma(q, \rho)$ (see equation 15), and thus, weakly improves the alignment of banks’ private ranking of borrowers based on $PI(q, \rho)$ with the social ranking based on $NPV(q)$. On the other hand, increases in ratio requirements have an ambiguous effect on allocative efficiency through the balance sheet channel: imposing stricter limits on leverage causes bank balance sheets to contract (weakly), which can have either a positive, neutral, or negative effect on allocative efficiency. The balance sheet effect is positive if the marginal borrower types have negative NPV projects, since these borrower types will become credit-rationed. The effect is neutral when bank capital is not scarce, or when marginal borrower types that become credit rationed by banks have access to public markets (that is, when $NPV(\tilde{q}) > B(\tilde{q})$). Finally, the effect is negative when marginal borrower types are bank dependent and have positive NPV projects, that is, for marginal borrower types \tilde{q} where $0 < NPV(\tilde{q}) < B(\tilde{q})$.

Overall, the allocative effects of changes to capital ratio requirements thus generally depend on the distribution of borrower types, and in particular, the marginal borrower types. Only when bank capital is not scarce do marginal increases in capital requirements always have a weakly positive effect on allocative efficiency, since only the skin-in-the-game channel is operational.

Proposition 4 An increase in capital ratio requirements from ϵ to $\epsilon + \varepsilon$

1) weakly increases loan yields for all borrowers if bank capital is not scarce before the increase in capital ratio requirements,
2) weakly decreases aggregate investment,
3) weakly increases total social surplus if bank capital is not scarce after the increase.

If bank capital is not scarce before an increase in capital ratio requirements, loan rates to borrowers increase through two channels reflected in the loan pricing condition (14). First, the ROE of the banking sector must weakly increase (since $\bar{r}_E = 0$ before the increase), which enables banks to capture a higher fraction of the private surplus Π. Second, the subsidy $\sigma(q, \rho)$ is reduced (strictly so for all borrowers with $\sigma(q, \rho) > 0$), such that the total private surplus Π is reduced. The second statement of Proposition 4 must hold in the aggregate. However, it masks compositional aspects. It is possible that some borrower types’ credit rationing gets alleviated rather than worsened (see example below). Third, if bank capital is not scarce after the increase in capital ratio requirements all positive NPV projects in the economy must receive funding (either from banks or from investors in public markets). As a result, the firms that are shed by banks must have had negative NPV projects, so that total social surplus increases. However, if bank capital is scarce after the increase in capital ratio requirements, the allocative effects on total surplus will
generally depend on the distribution of borrower types, and, in particular, the marginal borrower types.

Parameterized example. We illustrate these general insights with a parameterization of the model, similar to the one considered in the previous subsection. For pedagogical reasons, we initially consider an economy where raising outside equity is prohibitively costly. Moreover, all bank loans are again subject to the same risk weight \(rw = 1 \). Figure 4 plots the cross-sectional distribution of borrower types and their access to finance for different capital requirement regimes in the economy (see the caption for additional details). Capital ratio requirements \(e \) are increasing from Panel A to Panel D.

Panel A plots outcomes for an economy where capital ratio requirements are infinitely lax, that is, for \(e \downarrow 0 \). In such an environment, banks providing credit to risky borrowers finance themselves with infinite leverage so that any potential losses on their loan book are absorbed by the government through bailouts of depositors. Since banks do not internalize credit risk, all borrowers with a cash flow greater than \(I = 1 \) in at least one state of the world obtain bank finance at a yield \(y = 0 \). Thus, there is substantial overinvestment in the economy and firms’ credit spreads become completely uninformative about credit risk. Banks are the marginal investors for all loans and crowd out regular public market investors, who cannot compete at these distorted yields.

In Panel B of Figure 4 capital ratio requirements are increased to \(e = 0.1 \). In the parameterization, this increase in \(e \) does not cause bank capital to become scarce. Thus, all statements of Proposition 4 apply for the change from Panel A to Panel B. Only the skin-in-the-game effect operates, and allocative efficiency strictly improves — the \(\Pi = 0 \) line (orange) shifts outwards, graphically illustrating the better “alignment” of private surplus with social surplus. Only negative-NPV borrower types are credit rationed, which are located below the solid black line (see part 3 of Proposition 4).

In Panel C, capital ratio requirements are further increased to \(e = 0.3 \). Now, bank capital is scarce, such that banks cannot fund all borrower types that are privately profitable, which are located above the solid orange line. We indicate these rationed borrower types with red circles. Note that a significant fraction of these rationed borrowers lie above the black solid line and thus have a positive NPV. As a result, overall surplus created by firms in the economy declines in response to the increase in capital ratio requirements from \(e = 0.1 \) to \(e = 0.3 \), even though there are also some negative-NPV borrowers that become credit rationed after the increase in \(e \).

Finally, in Panel D, capital ratio requirements are \(e = 0.7 \). Despite the absence of outside equity issuances the economy now does not feature any credit rationing for firms.
Figure 4. The panels illustrate the cross-sectional distribution of borrower types and their access to finance for different values of capital ratio requirements $\epsilon \in \{0, 0.1, 0.3, 0.7\}$. Model parameters are chosen as follows: there are two aggregate states $\{H, L\}$ with $p_H = 0.5$ and 10,000 borrower-types of equal mass with cash flows (C_L, C_H) drawn from a bivariate log-normal distribution with means $(0.15, -0.1)$, variances $(0.1, 0.2)$, and a covariance of -0.1. All firms have a risk weight of 1, $B = 0.4$, and $I = 1$. Inside equity is $E_I = 0.08$, and the marginal cost of outside equity is $c'_E(E_O) = 100$. with positive NPV projects. Bank capital is not scarce such that statements 2) and 3) of Proposition 4 apply for the change from Panel C to Panel D. Since equity ratio requirements are high and bankers have substantial skin in the game, banks consider almost all negative-NPV borrowers to be unprofitable — these borrowers’ profitability indices drop below zero. The banking sector now uses the freed-up capital to focus on its one remaining competitive advantage: its ability to monitor and fund bank-dependent borrowers with positive NPV.
projects, which are located in the corridor between the $NPV = 0$ line (orange) and the $NPV(q) = B(q)$ line (blue). As the skin-in-the-game effect causes the set of profitable borrowers to shrink, higher capital requirements can, surprisingly, relax banks’ balance sheet constraints and, hence, alleviate credit rationing for safe, bank-dependent borrower types.

Outside equity issuances. While the parameterization considered in Figure 4 presumes that equity issuances are prohibitively costly, this assumption affects equilibrium outcomes only when bank capital is scarce. Thus, the possibility of equity issuances is only relevant in Panel C ($e = 0.3$), where banks are not funding all borrower types they consider to be profitable. In Figure 5 we therefore replicate the economy for $e = 0.3$ and sufficiently decrease equity issuance cost to create incentives for banks to raise outside equity. The newly funded borrower types (relative to Figure 4.C) are indicated by green diamonds in Figure 5. The graph illustrates why the effects of such equity issuances on allocative efficiency are generally ambiguous. First, banks use the newly available funds to provide loans to risky negative-NPV firms, thereby exacerbating overinvestment. Second, banks also extend more loans to bank-dependent, positive NPV firms that were previously rationed, absent equity issuances. Third, banks use their access to cheap deposit financing to crowd out regular public market investors. The net effect of equity issuances on total social surplus thus depends on the cross-sectional distribution of borrower types and the magnitude of equity issuance cost.

Aggregate bank capital and capital ratio requirements. While our paper does not aim to design optimal bank regulation, such analyses typically are also concerned with the effects of capital requirements on real activity.\(^{33}\) In particular, our results suggest that procyclical capital requirements, as mandated by Basel III, are appropriate when the level of bank capital varies significantly over the business cycle (as argued by Kashyap and Stein [2004]).\(^{34}\) In good times, when bank capital is high relative to investment opportunities, underinvestment is less of a concern, and hence higher capital requirements have primarily a positive effect through the skin-in-the-game channel. In contrast, in bad times when capital is scarce, underinvestment is a first-order concern warranting lower capital requirements, even when such looser regulations incentivize an expansion in risk-taking.

\(^{33}\) Additionally, optimal bank regulation design would have to account for distortions caused by taxation required to fund government bailouts and bank default externalities. See Bhattacharya et al. (1998) and Thakor (2014) for survey articles on the literature analyzing optimal bank regulation.

\(^{34}\) See also Malherbe (2015).
Outside equity issuances E_O

![Graph illustrating the effects of equity issuances on the cross-sectional distribution of borrower types and their access to finance for the case of $e = 0.3$ (corresponding to Panel C of Figure 4). Each borrower type is characterized by a cash flow tuple (C_L, C_H) corresponding to two aggregate states $\{L, H\}$. Outside equity issuance cost are given by $c(E_O) = 0.2 \cdot E_O$. All other model parameter values are detailed in the caption of Figure 4.](image-url)

Figure 5. The graph illustrates the effects of equity issuances on the cross-sectional distribution of borrower types and their access to finance for the case of $e = 0.3$ (corresponding to Panel C of Figure 4). Each borrower type is characterized by a cash flow tuple (C_L, C_H) corresponding to two aggregate states $\{L, H\}$. Outside equity issuance cost are given by $c(E_O) = 0.2 \cdot E_O$. All other model parameter values are detailed in the caption of Figure 4.

4.3 Interest Rate Pass-through

One of the puzzles in the aftermath of the recent financial crises has been that bank lending has been sluggish despite the fact that interest rates have reached record lows. In this section, we analyze how changes in the interest rate agents earn on cash holdings (e.g., when depositing money with a central bank or investing in international safe assets) are passed through to various borrower types in the economy depending on the capitalization of the banking sector. In particular, we now consider the case where agents, including depositors, have access to a cash investment opportunity that yields a safe return of $r_M \geq 0$ compared to the baseline case of $r_M = 0$ that we considered so far. As a result, depositors now demand a deposit rate of $r_D = r_M$, and a bank’s expected return on equity (ROE) can be represented as follows:

$$r_E(x, e) \equiv \mathbb{E} \left[\max \left\{ r_M + \frac{r_A^s(x) - r_M}{e} , -1 \right\} \right].$$

(22)

In survival states, a bank’s return on equity is thus equal to the sum of the return on cash r_M and the levered excess return on the asset portfolio.
If a borrower type is funded by regular investors in public markets, (marginal) pass-through, \(\frac{d\mathbb{E}[r^*(q, \rho)]}{dr_M} \), is always equal to one, since equilibrium yields for such a borrower type are implied by the pricing condition

\[
\mathbb{E}[r^*(q, \rho)] = r_M. \tag{23}
\]

Yet, when a borrower type is funded by banks, its cost of capital reflects a premium for the use of scarce bank capital and a discount due to banks’s implicit funding subsidies. In the presence of \(r_M \geq 0 \), the cost of capital expression in (14) generalizes to

\[
\mathbb{E}[r^*(q, \rho)] = r_M + \xi(\rho) \left(r^*_E - r_M \right) - \sigma(q, \rho), \tag{24}
\]

where the private value of bailout guarantees is now given by:

\[
\sigma(q, \rho) = \mathbb{E}\left[\max\left\{ (1 + r_M)(1 - e(\rho)) - \frac{C_s(q, 1)}{I}, 0 \right\} \right] \geq 0. \tag{25}
\]

To keep the analysis parsimonious we focus on marginal changes in interest rates, presuming that they leave banks’ optimal equity issuances and ranking of borrowers unaffected. Using equation (24), we can measure the pass-through of interest rate changes for bank-funded borrowers by:

\[
\delta \mathbb{E}[r^*(q, \rho)] = \xi(\rho) \cdot \frac{dr^*_E}{dr_M} + (1 - \xi(\rho)) \cdot p_{sol}(q, \rho), \tag{26}
\]

where we define

\[
p_{sol}(q, \rho) = \Pr\left[\frac{C_s(q, 1)}{I(1 - e(\rho))} \geq (1 + r_M) \right] \tag{27}
\]
as the probability with which a bank specializing in borrower type \((q, \rho)\) remains solvent, that is, the probability with which the borrower type’s gross-return on investment \(C_s/I\) times the ratio of bank assets to bank deposits, \(1/(1 - e) = A/D\), exceeds the promised gross-return on deposits \((1 + r_M)\).

Equation (26) reveals that pass-through depends on loan-specific equity ratio requirements. To the extent that a bank has to finance a loan investment with equity (that is, \(\xi(\rho)\)), pass-through is determined by the response of banks’ common expected return on equity to a change in \(r_M\), which is further discussed below. To the extent that a bank can finance a loan investment with debt (that is, \((1 - \xi(\rho))\)), pass-through is given by the probability with which a bank specializing in the borrower type remains solvent — pass-through is absent to the extent that marginal increases in the required payments to
debt holders are covered by government bailouts.

Equation (26) reveals that pass-through for bank borrowers is always below one when pass-through for the expected return on bank equity, \(\frac{dr^*_E}{dr_M} \), is weakly lower than one. The following proposition characterizes pass-through for banks’ expected return on equity \(r^*_E \).

Proposition 5 Pass-through of marginal changes in the interest rate \(r_M \) to banks’ expected return on equity \(r^*_E \) depends on the scarcity of aggregate bank capital and the bank-dependence of the marginal borrower type.

1. \(\frac{dr^*_E}{dr_M} = 1 \) if bank capital is not scarce.

2. \(\frac{dr^*_E}{dr_M} < 0 \) if bank capital is scarce and the marginal borrower type \((\tilde{q}_{E_O}^*, \tilde{\rho}_{E_O}^*)\) is bank dependent, that is, \(NPV(\tilde{q}_{E_O}^*) < B(\tilde{q}_{E_O}^*) \).

3. \(\frac{dr^*_E}{dr_M} > 1 \) if bank capital is scarce and the marginal borrower type \((\tilde{q}_{E_O}^*, \tilde{\rho}_{E_O}^*)\) is not bank dependent, that is, \(NPV(\tilde{q}_{E_O}^*) \geq B(\tilde{q}_{E_O}^*) \).

Proposition 5 provides sharp predictions on how pass-through \(\frac{dr^*_E}{dr_M} \) varies depending on whether bank capital is scarce and whether the banking sector’s marginal borrower is bank dependent. Pass-through for banks’ ROE is only greater than one when bank capital is scarce and the marginal borrower type is not bank dependent. Only in this case, pass-through for some borrower types’ may be greater than one, in particular for those borrower types that command higher capital requirements than the marginal borrower type (see Proof of Proposition 5). Pass-through for banks’ ROE is equal to one when bank capital is not scarce, as in that case banks’ ROE is always equal to \(r_M \). Finally pass-through for banks’ ROE is below zero when bank capital is scarce and the marginal borrower type is bank dependent — as banks already extract all rents from marginal borrowers that are bank dependent, banks cannot pass on rate increases to these borrowers. As a result, banks’ ROE falls in response to interest rate increases.

Overall, these predictions suggest that pass-through for bank borrowers in the years following the financial crisis may have been particularly low because bank capital has been scarce and bank-dependent borrowers have been the marginal borrowers of the banking sector.

5 Conclusion

Following the recent crises in the United States and Europe, a substantive empirical literature has highlighted the complex behavior of the composition of credit and its importance for macroeconomic stability and efficiency. Nonetheless, the literature to date lacks
tractable frameworks that can simultaneously explain the risk-taking behavior by banks in the years leading up to the financial crisis (see Jiménez et al. (2014)) and the credit crunch in its aftermath (see Ivashina and Scharfstein (2010)). To this end, we develop a general equilibrium framework in which banks can play both a socially valuable role by alleviating credit frictions of bank-dependent borrowers and a parasitic role by engaging in excessive risk-taking that exploits public subsidies of banks’ debt financing cost. The key feature of our model is that it can flexibly capture cross-sectional borrower heterogeneity along multiple dimensions known to be essential for credit decisions, such as risk characteristics, profitability, and bank dependence.

Our model yields a parsimonious intermediary asset pricing condition for a firms’ cost of capital. Relative to a frictionless benchmark, a firm’s cost of capital reflects a premium for a loan’s use of scarce bank capital and a discount due to implicit government subsidies of banks’ (debt) funding cost. As a result of these financing distortions, economies typically exhibit simultaneously over- and underinvestment in different parts of the borrower distribution. While relatively safe, bank-dependent borrower types are credit rationed, some surplus-destroying high-risk borrowers obtain funding from risk-seeking banks. We characterize how these cross-sectional misallocations are linked to the current capitalization of the banking sector and how they are affected by shocks to the financial system, such as capital injections, changes in capital ratio requirements, or changes in interest rates (e.g., via monetary policy). In particular, our model sheds light on heterogeneity in interest rate pass-through across borrower types and may explain why pass-through was relatively low in the aftermath of the Great Recession.

We believe that our framework suggests several fruitful avenues for future research. First, our framework could be applied to micro-level data of an entire economy, as studied in recent papers by e.g., Jiménez et al. (2012) and Iyer et al. (2014). By viewing the empirical results through the lens of our framework, it may be possible to address external validity concerns, that is, how empirical results obtained from a particular country during a specific episode extend to other countries and other time periods.

Second, to inform the debate on optimal financial regulation, it may be useful to analyze the impact of alternative financial regulations, going beyond the standard regulatory interventions that we consider for our positive analysis of the composition of credit. Further, the model could be extended to incorporate shadow banking activities, that is, the practice of moving assets and liabilities off the regulated balance-sheet in an effort to cir-
cumvent capital regulations35 A framework of the cross-section of credit like ours could help predict which types of assets are moved off balance-sheet in response to new regulations, and how the composition of credit is affected by regulatory arbitrage. Similarly, the framework could inform the financial sector’s incentives to design securities to minimize regulatory burdens.

A Proofs

A.1 Proof of Lemma 1

First, we show that if $NPV(q) < B(q)$, the entrepreneur cannot raise financing under any contract. Assumption 1.2 implies that public financing requires high effort, i.e., $a = 1$. If the entrepreneur exerts effort, the maximum value of the entrepreneur’s stake is given by $NPV(q)$, since the IC constraint and investor competition imply that investors’ expected payoff is equal to I, and $NPV(q)$ is equal to the difference between the firm’s total expected payoff $\mathbb{E}[C_s(q, 1)]$ and I. Second, as reflected by the IC constraint, the entrepreneur’s payoff under shirking is bounded from below by $B(q)$, due to limited liability. Hence, if $NPV(q) < B(q)$, it is impossible to jointly satisfy IC and IR.

We next show that whenever $NPV(q) \geq B(q)$, the entrepreneur can raise financing with a debt contract that gives all surplus to the entrepreneur, which also proves the optimality of debt. Set $CF_s = FV$ for all s. Then IR implies that $FV \geq I$. Moreover, using Assumption 1.3, we obtain that $\mathbb{E} \left[\max \{C_s(q, 0) - CF_s, 0\} \right] = 0$ and the right hand side of IC achieves the lower bound $B(q)$ under any debt contract that satisfies IR. Since investors are competitive, the face value of debt is set such that IR binds, so that the entrepreneur’s payoff is $NPV(q)$. We have thus proven that whenever $NPV(q) \geq B(q)$, there exists a debt contract that satisfies IR and allows the entrepreneur to extract the entire NPV.

A.2 Proof of Lemma 2

We consider a bank’s individually optimal portfolio choice, taking as given state-dependent returns on securities $r^s(q, \rho)$. The analysis is in partial equilibrium and presumes that a bank faces a perfectly elastic supply of securities that yield these returns. In addition,

35 During the financial crisis, government support was provided not only to traditional banks, but also to investment banks, insurance companies, and other institutions in the shadow banking system, in particular money market mutual funds. See Gennaioli et al. (2013), Ordonez (2014), Plantin (2014), and Moreira and Savov (forthcoming) for theories of shadow banking.
banks can only make positive investments in loans \(x(q, \rho) \geq 0\).

Recall a bank’s inner (ROE) maximization problem given exogenous returns:

\[
\max_{e, \mathbf{x}} r_E(\mathbf{x}, e) \text{ s.t. } e \geq e_{\min}(\mathbf{x}),
\]

where we define

\[
r_E(\mathbf{x}, e) = \frac{1}{e} \mathbb{E} \left[\max \{ r_A^s(\mathbf{x}), -e \} \right].
\]

Leverage. Taking the partial derivative of \(r_E(\mathbf{x}, e)\) w.r.t. \(e\) yields

\[
\frac{\partial r_E(\mathbf{x}, e)}{\partial e} = -\frac{1}{e^2} \mathbb{E} \left[\max \{ r_A^s(\mathbf{x}), -e \} \right] - \frac{1}{e} \Pr [r_A^s(\mathbf{x}) < -e].
\]

Note that if \(r_E(e, \mathbf{x}) > 0\) for some \((e, \mathbf{x})\) then it must be the case that

\[
\mathbb{E} \left[\max \{ r_A^s(\mathbf{x}), -e \} \right] > 0.
\]

It follows that \(\frac{\partial r_E(\mathbf{x}, e)}{\partial e} < 0\) if \(r_E(\mathbf{x}, e) > 0\). Further, if \(r_E(\mathbf{x}, e) = 0\) then \(\frac{\partial r_E(\mathbf{x}, e)}{\partial e} < 0\) as long as there is one state \(s\) with positive probability, where the bank defaults, that is, \(\Pr [r_A^s(\mathbf{x}) < -e] > 0\).

Thus, for any choice \((\mathbf{x}, e)\) that yields \(r_E(\mathbf{x}, e) > 0\) it is optimal to decrease \(e\) at the margin, unless the constraint \(e \geq e_{\min}\) is already binding. Since decreasing \(e\) increases \(r_E(\mathbf{x}, e)\), the condition \(r_E(\mathbf{x}, e) > 0\) remains satisfied after any decrease in \(e\). Thus, for any \((\bar{\mathbf{x}}, \bar{e})\) such that \(r_E(\bar{\mathbf{x}}, \bar{e}) > 0\) it is the case that \(\arg \max_e r_E(\bar{\mathbf{x}}, \bar{e}) = e_{\min}\).

Further, for any choice \((\mathbf{x}, e)\) that yields \(r_E(\mathbf{x}, e) = 0\) and \(\Pr [r_A^s(\mathbf{x}) < -e] > 0\), marginally decreasing \(e\) also increases \(r_E\) (provided such a decrease is feasible, that is, the constraint \(e \geq e_{\min}\) is not already binding). Since marginally decreasing \(e\) increases \(r_E(\mathbf{x}, e)\) (maintaining the condition that \(r_E(\mathbf{x}, e) \geq 0\)) and weakly enlarges the set of default states (maintaining \(\Pr [r_A^s(\mathbf{x}) < -e] > 0\)), it is optimal to decrease \(e\) until the constraint \(e \geq e_{\min}\) is binding. Formally, for any \((\mathbf{x}, \bar{e})\) such that \(r_E(\mathbf{x}, \bar{e}) = 0\) it is the case that \(\arg \max_e r_E(\bar{\mathbf{x}}, \bar{e}) = e_{\min}\) if \(\Pr [r_A^s(\bar{\mathbf{x}}) < -e] > 0\).

This concludes the proof of the two statements about optimum leverage.

Portfolio choice. The analysis in the previous paragraph implies that it is optimal for banks to choose \(e = e_{\min}\) as long as there exists a portfolio \(\mathbf{x}\) such that \(r_E(\mathbf{x}, e) > 0\), or \(r_E(\mathbf{x}, e) = 0\) and \(\Pr [r_A^s(\mathbf{x}) < -e] > 0\).

Presume that such a portfolio \(\mathbf{x}\) exists and that banks (optimally) choose \(e = e_{\min}\).
Then we can re-write the expected return on a bank’s book equity as follows:

\[
r_E(x, e_{\text{min}}) = \mathbb{E} \left[\max \left\{ \frac{\sum_{q,\rho} x(q, \rho) r^s(q, \rho)}{e(\rho)}, -1 \right\} \right]
\]

\[
= \mathbb{E} \left[\max \left\{ \frac{r^s(q, \rho)}{e(\rho)} \frac{x(q, \rho)e(\rho)}{\sum_{q,\tilde{\rho}} x(q, \tilde{\rho})e(\tilde{\rho})}, -1 \right\} \right].
\]

(29)

(30)

Defining \(w(q, \rho) = \frac{x(q, \rho)e(\rho)}{\sum_{q,\rho} x(q, \rho)e(\rho)} \in [0, 1]\) for all \((q, \rho)\) as the new choice variables we obtain:

\[
r_E(w) = \mathbb{E} \left[\max \left\{ \sum_{q,\rho} w(q, \rho) r^s(q, \rho) \frac{e(\rho)}{e(\rho)}, -1 \right\} \right]
\]

Maximizing subject to the constraint that \(\sum_{q,\rho} w(q, \rho) = 1\) and \(w(q, \rho) \geq 0\) (short-sales constraint), we obtain for all \((q, \rho)\) with \(w^*(q, \rho) > 0\) the following condition at the optimum:

\[
\frac{\partial r_E(w)}{\partial w(q, \rho)} = \nu,
\]

where \(\nu\) is the Lagrange multiplier on the constraint \(\sum_{q,\rho} w(q, \rho) = 1\). Further, we can write:

\[
\frac{\partial r_E(w)}{\partial w(q, \rho)} = \mathbb{E} \left[\frac{r^s(q, \rho)}{e(\rho)} \mathbb{1}_{\{r_A > -e_{\text{min}}\}} \right]
\]

\[
= \mathbb{E} \left[\frac{r^s(q, \rho)}{e(\rho)} \left| s : r^s_A > -e_{\text{min}} \right| \cdot \Pr \left[s : r^s_A > -e_{\text{min}} \right] \right].
\]

(31)

Thus, we obtain at the optimum the following condition for all \((q, \rho)\) with \(w^*(q, \rho) > 0\) (and thus \(x^*(q, \rho) > 0\)):

\[
\frac{\mathbb{E} \left[r^s(q, \rho) \left| s : r^s_A(x^*) > -e_{\text{min}} \right| \right]}{e(\rho)} = \frac{\nu}{\Pr \left[s : r^s_A > -e_{\text{min}} \right]} = k.
\]

(32)

Correlated down-side risks. First, note that we established above that for any optimal choice \((x^*, e^*)\) the expected asset return conditional on bank survival scaled by \(e(\rho)\) is identical across firm types \((q, \rho)\) with \(x^*(q, \rho) > 0\). Suppose there is a type \((\tilde{q}, \tilde{\rho})\) with \(x^*(\tilde{q}, \tilde{\rho}) > 0\) in the optimal portfolio that yields \(r^s(\tilde{q}, \tilde{\rho}) > -e(\tilde{\rho})\) in some state \(s\) where the bank defaults, that is, where \(\sum_{q,\rho} x^*(q, \rho) r^s(q, \rho) < -e_{\text{min}}\). Then the bank could obtain a higher expected return on equity \(r_E > r_E(x^*, e^*)\) by investing only in this asset \((\tilde{q}, \tilde{\rho})\), as it not only yields the same expected levered return across previous survival states (under the previous policy \((x^*, e^*)\)) but also allows the bank to survive in at least one additional
state \(s \), yielding equity holders a levered return greater than \(-1\) in that state. Thus, any loan to a firm of type \((q, \rho)\) that has a strictly positive weight in an optimal portfolio (that is, \(x^*(q, \rho) > 0\)) can obtain returns \(r^*(q, \rho) > -\varepsilon(\rho)\) only in states \(s \) in which the bank survives.

Conversely, suppose \(x^* \) is an optimal portfolio and there is an asset of type \((\tilde{q}, \tilde{\rho})\) in the optimal portfolio with a strictly positive weight \(x^*(q, \rho) > 0\) that yields \(r^*(q, \rho) \leq -\varepsilon(\rho)\) in some state \(\tilde{s} \) where the bank survives and has strictly positive equity value, that is, where \(\sum_{q,\rho} x^*(q, \rho) r^*(q, \rho) 1_{\varepsilon(q, \rho)} = \sum_{q,\rho} w^*(q, \rho) r^*(q, \rho) 1_{\varepsilon(q, \rho)} > -1\). Then it must be the case that in this survival state \(\tilde{s} \) other assets in the portfolio yield \(r^*(q, \rho) > -\varepsilon(\rho)\), otherwise the bank would default in that state. For notational simplicity define the set of states where the bank survives under policy \((x^*, e_{\text{min}}(x^*))\) as \(\Sigma_S(x^*, e_{\text{min}}(x^*)) = \{ s : r_A^s(x^*) > -e_{\text{min}}(x^*) \}\). We showed above that
\[
\mathbb{E} \left[\frac{r^s(q, \rho)}{\varepsilon(q, \rho)} \right]_{\Sigma_S} = k
\]
for all \((q, \rho)\) with \(x^*(q, \rho) > 0\). However, since asset \((\tilde{q}, \tilde{\rho})\) performs worse than other assets in the portfolio in state \(\tilde{s} \), that is, \(r^*(\tilde{q}, \tilde{\rho}) < -1 \leq r^*(q, \rho) 1_{\varepsilon(q, \rho)}\), it must outperform, relative to the other assets in the portfolio in expectation in the other survival states, to ensure that equation \([32]\) can hold, that is:
\[
\mathbb{E} \left[\frac{r^s(q, \rho)}{\varepsilon(q, \rho)} \right]_{\Sigma_S \setminus \tilde{s}} > \mathbb{E} \left[\frac{r^s(q, \rho)}{\varepsilon(q, \rho)} \right]_{\Sigma_S \setminus \tilde{s}} \text{ for all } (q, \rho) \neq (\tilde{q}, \tilde{\rho}) \text{ with } x^*(q, \rho) > 0.
\]
If we set \(w(\tilde{q}, \tilde{\rho}) = 1\) and \(w(q, \rho) = 0\) for all \((q, \rho) \neq (\tilde{q}, \tilde{\rho})\) we obtain the following expected return on equity conditional on the states \(\Sigma_S\):
\[
(1 - \Pr[\tilde{s} | \Sigma_S]) \cdot \mathbb{E} \left[\frac{r^s(q, \rho)}{\varepsilon(q, \rho)} \right]_{\Sigma_S \setminus \tilde{s}} + \Pr[\tilde{s} | \Sigma_S] \cdot (-1) > (1 - \Pr[\tilde{s} | \Sigma_S]) \mathbb{E} \left[\frac{r^s(q, \rho)}{\varepsilon(q, \rho)} \right]_{\Sigma_S \setminus \tilde{s}} + \Pr[\tilde{s} | \Sigma_S] \frac{r^s(q, \rho)}{\varepsilon(q, \rho)} = k,
\]
that is, we obtain a conditional expected return that is greater than the one obtained from portfolio \(x^*\). Further, in failure states \(\Sigma_F\), this new portfolio cannot yield equity holders lower returns than the previous portfolio \(x^*\), since equity holders are protected by limited liability. This implies that setting \(x(q, \rho) = 1\) and \(x(q, \rho) = 0\) for all \((q, \rho) \neq (\tilde{q}, \tilde{\rho})\) increases \(r_E\), contradicting the supposition that \(x^*\) was an optimal portfolio.

Thus, if \(x^*\) is an optimal portfolio then any asset \((q, \rho)\) in this optimal portfolio with a strictly positive weight \((x^*(q, \rho) > 0)\) must yield \(r^*(q, \rho) > -\varepsilon(\rho)\) in all states \(s \) where
the bank survives and has strictly positive equity value.

A.3 Proof of Lemma 3

Recall that the optimal bank inside equity value can be written as follows:

$$E_{M,I} = E_I + \max_{E_O} \left[(E_I + E_O) \max_{e,x} r_E(x,e) - c(E_O) \right],$$

Let \((x^*, e^*)\) denote the optimal solution to the inner (ROI) maximization problem. It follows that if \(c'(0) \geq r_E(x^*, e^*)\) the bank optimally sets \(E_O = 0\) (note that \(c\) is weakly convex). Further, at any \(E_O\) where \(c'(E_O) < r_E(x^*, e^*)\) the bank can strictly increase its objective function at the margin by increasing \(E_O\).

A.4 Proof of Lemma 4

The firm’s payoff under bank financing for a given \(\bar{r}_E\) is given by the expected cash flow for its project net of the total financing cost of the investment.

$$V_B(\rho, q) = \mathbb{E}[C_s(q, 1)] - I \left(1 + \mathbb{E}[r^s(q, \rho)]\right)$$

By setting \(\bar{r}_E = 0\) so that \(\mathbb{E}[r^s(q, \rho)] = -\sigma(q, \rho)\), the banker is at his outside option. Thus, by using \(\mathbb{E}[r^s(q, \rho)] = -\sigma(q, \rho)\) in (34) we obtain the sum of the firm’s payoff and the banker’s payoff resulting from the financing of this project

$$\Pi_{Gross}(q, \rho) = NPV(q) + \sigma(q, \rho) I.$$

(35)

By Lemma 4, the outside option for a borrower with quality \(q\) from public markets is given by:

$$V_P(q) = NPV(q) \mathbb{1}_{B(q) \leq NPV(q)}$$

(36)

Thus, the incremental surplus that bank financing delivers is given by the difference of (35) and (36).

39
A.5 Proof of Proposition 1

The first part is proved in the main text. It remains to show how (14) is derived. Recall, that in equilibrium all bank-financed borrower types must satisfy:

$$E \left[\max \left\{ \frac{r^s(q, \rho)}{\xi(\rho)}, -1 \right\} \right] = r^*_E.$$

Multiplying by $\xi(\rho)$ yields and rewriting yields

$$E \left[r^s(q, \rho) \right] + E \left[\max \left\{ -\xi(\rho) - r^s(q, \rho), 0 \right\} \right] = \xi(\rho) r^*_E. \quad (37)$$

Since $y(q, \rho) \geq 0$, we obtain that $r^s(q, \rho) = \frac{C_s(q, 1) - I}{I}$ whenever $r^s(q, \rho) < -\xi(\rho)$. Hence, we can rewrite (37) as (14).

A.6 Proof of Proposition 2

Part (1) Since all banks are ex ante identical they have to obtain the same expected profits in equilibrium. Suppose there was an equilibrium where banks didn’t obtain the same expected profits. By definition this equilibrium would have to satisfy market clearing. Yet, taking prices as given, banks with lower profits would prefer to deviate and mimic the strategies of banks that are more profitable. Suppose banks made identical, strictly positive profits in equilibrium and aggregate bank capital was not scarce. Then there would exist banks that are not at their leverage constraint (that have $e > e_{\min}$) and who have $r_E(x, e) > 0$. Yet, by Lemma 2 we know that these choices would not be optimal, since these banks could increase their expected profits by increasing leverage (that is, lower e) and funding more borrowers of the same type. Only equilibrium yields that lead to zero expected profits ($r_E(x^*, e^*) = 0$) are thus consistent with an equilibrium where bank capital is not scarce and loan markets clear. Now suppose there is a borrower type $(\tilde{q}, \tilde{\rho})$ with $\Pi(\tilde{q}, \tilde{\rho}) > 0$ that does not obtain funding from any bank. Then a bank that makes zero profits would have a strict incentive to increase the portfolio weight of borrower type $(\tilde{q}, \tilde{\rho})$, violating optimality and contradicting the supposition that there was an equilibrium where borrower type $(\tilde{q}, \tilde{\rho})$ does not obtain bank finance.

Part (2) In the competitive equilibrium, yields on borrowers with $NPV(q) \geq B(q)$ have to be set such that investors in public markets break even; otherwise there would be excess supply of capital, violating market clearing. For firms of type (q, ρ) with $\Pi(q, \rho) \leq 0$ public market finance generates just as much private surplus as bank finance. Thus, for
these borrowers, equilibrium yields are such that banks make at best zero profits on those borrowers as well. Thus, banks do not have an incentive deviate and expand the supply of capital to borrowers of type \((q, \rho)\) with \(\Pi(q, \rho) \leq 0\) when those borrowers are funded by investors in public markets.

Part (3) Suppose that when bank capital is not scarce there existed an equilibrium where a borrower type \((\tilde{q}, \tilde{\rho})\) did not extract all private rents in equilibrium. Then banks making zero expected profits would be strictly better of setting \(x(\tilde{q}, \tilde{\rho}) = 1\), as doing so would yield them strictly positive expected profits. Yet, since banks have to make zero profits in equilibrium, it cannot be the case that there exists a borrower type that does not extract all private surplus in equilibrium.

A.7 Proof of Proposition 3

The profitability index \(\Pi(q, \rho)\). First, we derive the proposed profitability index \(\Pi(q, \rho)\). The maximum surplus a bank can potentially extract from a borrower type \((q, \rho)\) is given by \(\Pi(q, \rho)\). For a given amount of outside equity \(E_O\), the quantity of borrowers a bank can fund if it invests only in borrowers of same type \((q, \rho)\) is:

\[
 n(q, \rho) = \frac{A}{I} = \frac{E_I + E_O}{\epsilon(\rho) I}.
\] (38)

The total surplus a bank can extract by investing in these borrowers is at most:

\[
 \Pi(q, \rho) \cdot n(q, \rho) = \frac{\Pi(q, \rho)}{\epsilon(\rho) I} (E_I + E_O) = PI(q, \rho) \cdot (E_I + E_O)
\] (39)

\(PI(q, \rho)\) is thus a sufficient statistic for the maximum surplus a bank can extract from a borrower type given the bank has some equity \((E_I + E_O)\). \(PI(q, \rho)\) can be interpreted as the expected return on equity that a bank could obtain when funding only borrowers of type \((q, \rho)\) if the bank did not face competition from other banks. Due to competition from other banks a bank may, however, not be able to extract this surplus in equilibrium.

Part (1) Lemma 3 implies that a bank will not raise equity when \(c'(0)\) weakly exceeds the maximum expected return on equity attainable. \(PI(\tilde{q}_0, \tilde{\rho}_0)\) is the maximum expected return on equity that is attainable if the bank extracts \(\Pi\) from the borrower type that is marginal absent equity issuances by the banking sector. Thus, if \(c'(0) \geq PI(\tilde{q}_0, \tilde{\rho}_0)\) banks will not raise any outside equity. Lemma 3 further implies that banks optimally
increase the amount of outside equity E_O up to the point where all firms of type (q, ρ) with $PI(q, \rho) > c'(E_O)$ are funded, since otherwise, marginally increasing outside equity and funding additional borrowers with $PI(q, \rho) > c'(E_O)$ strictly increases those banks’ objectives that are invested in borrowers of type (q, ρ).

Part (2) If there is no bank that raises outside equity in equilibrium then the marginal firm type that is funded has a profitability index $PI(\tilde{q}_0, \tilde{\rho}_0)$ and all banks obtain an expected return on equity of $r^*_E = PI(\tilde{q}_0, \tilde{\rho}_0) < c'(0)$. If there was a portfolio and leverage strategy that yielded a higher expected return on equity, optimizing banks would deviate and choose that strategy.

For equilibria with equity issuances we focus on symmetric equilibria in equity issuances where all banks choose E_O^* in equilibrium. If $E_O^* > 0$ in equilibrium then every bank’s expected return on equity has to be equal to the marginal cost of outside equity, $r^*_E = c'(E_O^*)$. If there was some bank with a portfolio and leverage strategy that yielded $r_E > c'(E_O^*)$ then this bank would want to raise more equity to increase its expected profits, contradicting the supposition that E_O^* is the equilibrium quantity of outside equity for all banks. If there was a bank that in equilibrium followed a strategy yielding an expected return $r_E < c'(E_O^*)$ then this bank could improve its objective by choosing a smaller amount of outside equity than E_O^*, contradicting the supposition that E_O^* is the equilibrium quantity of outside equity for all banks. Finally, all banks have to obtain the same expected return on equity $r_E = r^*_E$ in equilibrium as they are ex ante identical and can always mimic each others’ portfolio and leverage strategies (which determine r_E).

Part (3) By Lemma 1, Firms that do not obtain financing from banks obtain competitive financing from public markets as long as they are fundable, that is, as long as $NPV(q) \geq B(q)$.

Part (4) A borrower can always extract at least the component of private surplus that is attainable through public market financing, that is, $NPV(q)1_{NPV(q) \geq B(q)}$. Further, borrowers may be able to extract a fraction of the surplus that is additionally generated through bank financing, which we denote by $\Pi(q, \rho)$. As noted above, for a given amount of outside equity E_O^*, the quantity of borrowers a bank can fund if it invests only in borrowers of type as (q, ρ) is:

$$n(q, \rho) = \frac{A}{I} = \frac{E_I + E_O^*}{\ell(\rho) I}$$

(40)
Thus, after having raised outside equity E^*_O, a bank that specializes in lending to borrowers of type (q, ρ) makes the following expected surplus per borrower:

$$\frac{(E_I + E^*_O)r^*_E}{n(q, \rho)} = r^*_E \ell(\rho) I.$$ \hspace{1cm} (41)

A borrower receives the part of $\Pi(q, \rho)$ that is not extracted by banks, that is:

$$\max\{\Pi(q, \rho) - r^*_E \ell(\rho) I, 0\} = \Pi(q, \rho) \max\left\{1 - \frac{r^*_E}{\ell(q, \rho)}, 0\right\}. \hspace{1cm} (42)$$

Overall, a borrower of type (q, ρ) thus obtains the following expected surplus:

$$\Pi(q, \rho) \max\left\{1 - \frac{r^*_E}{\ell(q, \rho)}, 0\right\} + \text{NPV}(q) \mathbb{1}_{\text{NPV}(q) \geq B(q)}. \hspace{1cm} (43)$$

A.8 Proof of Proposition 4

Part (1) Let r^0_E and r^1_E denote the banking sector’s ROE before and after the increase in capital ratio requirements, respectively. Likewise, let $y^0(q, \rho)$ and $y^1(q, \rho)$ denote the corresponding yields for a borrower of type (q, ρ). If bank capital is not scarce before the increase, then Proposition 2 implies that $r^0_E = 0$, so that $r^1_E \geq r^0_E$. By (14), the respective loan pricing conditions before and after the increase are given by:

$$\mathbb{E}^0 [r^*(q, \rho)] = \xi(\rho) r^0_E - \sigma^0(q, \rho),$$

$$\mathbb{E}^1 [r^*(q, \rho)] = (\xi(\rho) + \varepsilon) r^1_E - \sigma^1(q, \rho),$$

Since both $r^0_E \leq r^1_E$, $\varepsilon > 0$, and σ is decreasing in $\xi(\rho)$ it must be true that $y^1(q, \rho) \geq y^0(q, \rho)$. The result holds strictly if either $r^1_E > 0 = r^0_E$ or if the put value associated with borrower of type (q, ρ) before the increase was positive, i.e., $\sigma^0(q, \rho) > 0$, which occurs if $(1 - \varepsilon) - \frac{C_{s_1}(q, \rho)}{\ell} > 0$ for at least one state s.

Part (2) A tighter capital ratio requirement weakly decreases the set of borrower types that the banking sector finds profitable to finance (since Π is decreasing in ξ) and decreases the size of the total loan portfolio for any given amount of equity E. As a result, aggregate investment by the banking sector must (weakly) decline. As long as some of the firms that are dropped by banks are bank dependent, i.e., $\text{NPV}(q) < B(q)$, public markets will not fully compensate for the reduction in bank lending. In this case, aggregate investment strictly declines. If all dropped borrowers have access to public markets, then aggregate
investment is unchanged.

Part (3) The proof shows that an increase in capital ratio requirements both leads to a weak reduction in underinvestment and a weak reduction in overinvestment. Taken together, these two results imply that social surplus must weakly increase.

Weak reduction in underinvestment: If bank capital is not scarce after the increase, the economy features no underinvestment, i.e., all socially valuable projects are financed. To see this, note that we can write the profitability index as follows:

\[
PI(q, \rho) = \frac{NPV(q) I_{B(q) > NPV(q)} + \mathbb{E} \left(\max \left\{ I \left(1 - rw(\rho) \cdot e \right) - C_s(q), 0 \right\} \right)}{rw(\rho) \cdot e \cdot I} \tag{44}
\]

All bank-dependent borrowers with positive-NPV projects have \(PI(q, \rho) > 0 \), so that all borrowers with positive-NPV projects are either funded by banks or public markets when bank capital is not scarce. Since there is no underinvestment after the increase, there has to be a weak reduction in underinvestment.

Weak reduction in overinvestment: For all borrower types \((q, \rho)\) where the numerator of the profitability index was negative before the increase in \(e \) it will still be negative after the increase because:

\[
\frac{\partial}{\partial e} \left\{ NPV(q) I_{B(q) > NPV(q)} + \mathbb{E} \left(\max \left\{ I \left(1 - rw(\rho) \cdot e \right) - C_s(q), 0 \right\} \right) \right\} \leq 0.
\]

Further, if the numerator is still negative after the increase, then \(PI(q, \rho) < 0 \) and the negative-NPV borrower type will still not be funded after the increase in \(e \) either. Thus, if any borrower type is dropped by the banking sector, it must have a negative NPV, which implies a decrease in overinvestment.

A.9 Proof of Proposition 5

We consider how banks’ common return on equity \(r^*_E \) responds to changes in \(r_M \). We distinguish between the case where bank capital is scarce and where it is not scarce. When bank capital is not scarce the expected return on bank equity equals the return on cash, \(r^*_E = r_M \), implying that \(\frac{dr^*_E}{dr_M} = 1 \). Thus, pass-through is limited only because of the government absorbing marginal changes in bank default states. Formally, equation \(26\) simplifies to

\[
\frac{d\mathbb{E}[r^*(q, \rho)]}{dr_M} = 1 - (1 - \xi(\rho)) \cdot (1 - p_S(q, \rho)) \leq 1. \tag{45}
\]
In contrast, when bank capital is scarce, banks’ expected return on equity generally exceed r_M, and depends on the banking sector’s marginal borrower type $(\tilde{q}_{E^{*}O}, \tilde{\rho}_{E^{*}O})$. Since we are considering only marginal changes in r_M to evaluate pass-through, we suppose that the marginal change in r_M does not change the ranking of borrower types or the marginal borrower type. If the marginal borrower type is bank dependent ($NPV(\tilde{q}_{E^{*}O}) < B(\tilde{q}_{E^{*}O})$) then banks extract the full surplus from this borrower type. As a result, a change in the interest rate on cash has no effect on yields and on the expected loan return of the marginal borrower type. By setting equation (26) to zero for the marginal borrower type, we obtain the implied change in the equilibrium rate of return of the banking sector:

$$\frac{dr^*_E}{dr_M} = (1 - 1/e(\rho))p_S(\tilde{q}_{E^{*}O}, \tilde{\rho}_{E^{*}O}) < 0.$$

When aggregate bank capital is scarce and the marginal borrower types are bank dependent, pass-through is thus lower for all borrower types when compared to the case where aggregate bank capital is abundant.

When the marginal borrower type $(\tilde{q}_{E^{*}O}, \tilde{\rho}_{E^{*}O})$ is not bank dependent, then this borrower type is exactly indifferent between receiving bank finance and public market finance, that is, $E[r^*(\tilde{q}_{E^{*}O}, \tilde{\rho}_{E^{*}O})] = r_M$. As a result, pass through is equal to one for this marginal borrower type. By setting equation (26) to one for the marginal borrower type, we obtain the implied change in the equilibrium rate of return of the banking sector:

$$\frac{dr^*_E}{dr_M} = 1/E(\tilde{\rho}_{E^{*}O}) - (1/E(\tilde{\rho}_{E^{*}O}) - 1) \cdot p_S(\tilde{q}_{E^{*}O}, \tilde{\rho}_{E^{*}O})$$

$$= 1/E(\tilde{\rho}_{E^{*}O}) (1 - p_S(\tilde{q}_{E^{*}O}, \tilde{\rho}_{E^{*}O})) + p_S(\tilde{q}_{E^{*}O}, \tilde{\rho}_{E^{*}O}) \geq 1,$$

that is, the return on bank equity responds more than one-for-one to an increase in the return on cash. Whereas the marginal borrower type experiences a pass-through of one other borrower types experience a pass-through that can be below or above one. Pass through for borrower types with equity requirements (risk classifications) that are marginally above the one of the marginal borrower type is greater than one since:

$$\frac{\partial E[r^*(q,\rho)]}{\partial r_M} = \frac{dr^*_E}{dr_M} - p_S(q, \rho) > 0.$$

Conversely, borrower types that considered to be “safer” according to the regulatory framework will experience pass-through below one.

Borrower types that cause a marginally lower default risk for specialized banks also
experience pass through greater than one since

\[\frac{\partial \mathbb{E}[r^*(q, \rho)]}{\partial r_M} = 1 - \varepsilon(\rho) > 0. \]

(47)

Proposition 6 Pass-through of changes in the rate \(r_M\) to borrowers’ cost of capital depends on the scarcity of aggregate bank capital and the bank-dependence of the marginal borrower type.

1. If bank capital is not scarce then pass through for all borrower types is weakly lower than one and given by:

\[\frac{\partial \mathbb{E}[r^*(q, \rho)]}{\partial r_M} = \varepsilon(\rho) + (1 - \varepsilon(\rho))p_S(q, \rho) \leq 1. \]

(48)

2. If bank capital is scarce and the marginal borrower type \((\tilde{q}_{E^0}, \tilde{\rho}_{E^0})\) is bank dependent, then pass through for all bank-funded borrowers is weakly lower than one and given by:

\[\frac{\partial \mathbb{E}[r^*(q, \rho)]}{\partial r_M} = (1 - \varepsilon(\rho)) \cdot (p_S(q, \rho) - p_S(\tilde{q}_{E^0}, \tilde{\rho}_{E^0})) \leq 1. \]

(49)

3. If bank capital is scarce and the marginal borrower type \((\tilde{q}_{E^0}, \tilde{\rho}_{E^0})\) is not bank dependent, then pass through for bank-funded borrowers is given by:

\[
\begin{align*}
\frac{\partial \mathbb{E}[r^*(q, \rho)]}{\partial r_M} = &\ (1 - \varepsilon(\rho)) \cdot (p_S(q, \rho) - p_S(\tilde{q}_{E^0}, \tilde{\rho}_{E^0})) \\
&+ \frac{\varepsilon(\rho)}{\varepsilon(\tilde{\rho}_{E^0})} (1 - p_S(\tilde{q}_{E^0}, \tilde{\rho}_{E^0})) + p_S(\tilde{q}_{E^0}, \tilde{\rho}_{E^0}),
\end{align*}
\]

(50)

which can be greater or smaller than one.

References

