Regulatory reform and risk-taking
replacing ratings

Bo Becker and Marcus Opp

Stockholm, UC

2015
Regulatory reform and risk-taking: replacing ratings

considers an important capital requirement reform for insurance companies
Regulatory reform and risk-taking: replacing ratings

considers an important capital requirement reform for insurance companies

In 2009, the NAIC makes two fundamental changes

- In 2009, the NAIC makes two fundamental changes
Regulatory reform and risk-taking: replacing ratings

considers an important capital requirement reform for insurance companies

- In 2009, the NAIC makes two fundamental changes
 - **Inputs to capital regulation**
Regulatory reform and risk-taking: replacing ratings

considers an important capital requirement reform for insurance companies

- In 2009, the NAIC makes two fundamental changes

 1. **Inputs to capital regulation**

 - Ratings are replaced by assessments from Pimco & BlackRock
 - Motivation: failure of credit rating agencies before/in the crisis
Regulatory reform and risk-taking: replacing ratings

considers an important capital requirement reform for insurance companies

- In 2009, the NAIC makes two fundamental changes

1. **Inputs to capital regulation**
 - Ratings are replaced by assessments from Pimco & BlackRock
 - Motivation: failure of credit rating agencies before/in the crisis

2. **Model of capital regulation**

 "This regulation changed the MBS world" (Wheeler, 2014)
Regulatory reform and risk-taking: replacing ratings

considers an important capital requirement reform for insurance companies

- In 2009, the NAIC makes two fundamental changes
 1. **Inputs to capital regulation**
 - Ratings are replaced by assessments from Pimco & BlackRock
 - Motivation: failure of credit rating agencies before/in the crisis
 2. **Model of capital regulation**
 - Recalibrates capital regulation to new input
 - Motivation: eliminate “excess” capital requirements
Regulatory reform and risk-taking: replacing ratings

considers an important capital requirement reform for insurance companies

- In 2009, the NAIC makes two fundamental changes

 1. Inputs to capital regulation
 - Ratings are replaced by assessments from Pimco & BlackRock
 - Motivation: failure of credit rating agencies before/in the crisis

 2. Model of capital regulation
 - Recalibrates capital regulation to new input
 - Motivation: eliminate “excess” capital requirements

- New regulation only applies to non-agency MBS
Regulatory reform and risk-taking: replacing ratings

considers an important capital requirement reform for insurance companies

- In 2009, the NAIC makes two fundamental changes

 1. **Inputs to capital regulation**
 - Ratings are replaced by assessments from Pimco & BlackRock
 - Motivation: failure of credit rating agencies before/in the crisis

 2. **Model of capital regulation**
 - Recalibrates capital regulation to new input
 - Motivation: eliminate “excess” capital requirements

- New regulation *only* applies to *non-agency MBS*
 - MBS play important role for insurers’ capital requirements / risk
 - Other asset classes (corporate bonds, ABS) are “control group”
Regulatory reform and risk-taking: replacing ratings

considers an important capital requirement reform for insurance companies

- In 2009, the NAIC makes two fundamental changes
 1. **Inputs to capital regulation**
 - Ratings are replaced by assessments from Pimco & BlackRock
 - Motivation: failure of credit rating agencies before/in the crisis
 2. **Model of capital regulation**
 - Recalibrates capital regulation to new input
 - Motivation: eliminate “excess” capital requirements

- New regulation *only* applies to *non-agency MBS*
 - MBS play important role for insurers’ capital requirements / risk
 - Other asset classes (corporate bonds, ABS) are “control group”

 “This regulation changed the MBS world” (Wheeler, 2014)
Main results

1 New inputs to capital regulation
 ▶ Useful measures of credit risk (similar to ratings)
 ▶ We cannot detect manipulation by Pimco / BlackRock

2 New system of capital regulation
 ▶ Theory: redesign of capital buffers
 ⋆ applies the law of large numbers to structured securities
 ⋆ no cushion against adverse macro scenarios
 ▶ Empirical results: capital requirements reduced by 81% ($15.63 bn)

3 Response by insurers
 significant increase in risk-taking by insurers within MBS portfolio
 ▶ but not for asset classes unaffected by regulatory change
 ▶ more pronounced among capital constrained insurers
Main results

1. New inputs to capital regulation
 - Useful measures of credit risk (similar to ratings)
 - We cannot detect manipulation by Pimco / BlackRock

2. New system of capital regulation
 - Theory: redesign of capital buffers
 - applies the law of large numbers to structured securities
 - no cushion against adverse macro scenarios
Main results

1. New inputs to capital regulation
 - Useful measures of credit risk (similar to ratings)
 - We cannot detect manipulation by Pimco / BlackRock

2. New system of capital regulation
 - Theory: redesign of capital buffers
 - Applies the law of large numbers to structured securities
 - No cushion against adverse macro scenarios
 - Empirical results: capital requirements reduced by 81% ($15.63 bn)
Main results

1. New inputs to capital regulation
 ▶ Useful measures of credit risk (similar to ratings)
 ▶ We cannot detect manipulation by Pimco / BlackRock

2. New system of capital regulation
 ▶ Theory: redesign of capital buffers
 ★ applies the law of large numbers to structured securities
 ★ no cushion against adverse macro scenarios
 ▶ Empirical results: capital requirements reduced by 81% ($15.63 bn)

3. Response by insurers
 significant increase in risk-taking by insurers within MBS portfolio
 ▶ but not for asset classes unaffected by regulatory change
 ▶ more pronounced among capital constrained insurers
Potential rationales for regulatory reform

1. Industry interests (Stigler, 1971), conflicts of interest (Zingales, 2013)
Potential rationales for regulatory reform

1. Industry interests (Stigler, 1971), conflicts of interest (Zingales, 2013)
 - regulatory capture
Potential rationales for regulatory reform

1. Industry interests (Stigler, 1971), conflicts of interest (Zingales, 2013)
 - regulatory capture
 - regulator got tricked by industry to apply law of large numbers to MBS

2. Macroprudential view
 - Insurance market: avoid failures of (life) insurers
 - MBS market: avoid causing firesale due to regulatory capital requirements
 - regulators spot “alpha” in MBS market

3. Housing market: support US mortgage market
Potential rationales for regulatory reform

1. Industry interests (Stigler, 1971), conflicts of interest (Zingales, 2013)
 1. regulatory capture
 2. regulator got tricked by industry to apply law of large numbers to MBS

2. Macroprudential view
Potential rationales for regulatory reform

1. Industry interests (Stigler, 1971), conflicts of interest (Zingales, 2013)
 1. regulatory capture
 2. regulator got tricked by industry to apply law of large numbers to MBS

2. Macroprudential view
 1. Insurance market: avoid failures of (life) insurers

Potential rationales for regulatory reform

1. Industry interests (Stigler, 1971), conflicts of interest (Zingales, 2013)
 - regulatory capture
 - regulator got tricked by industry to apply law of large numbers to MBS

2. Macroprudential view
 - Insurance market: avoid failures of (life) insurers
 - MBS market
Potential rationales for regulatory reform

1. Industry interests (Stigler, 1971), conflicts of interest (Zingales, 2013)
 - regulatory capture
 - regulator got tricked by industry to apply law of large numbers to MBS

2. Macroprudential view
 - **Insurance market**: avoid failures of (life) insurers
 - **MBS market**
 - avoid *causing* firesale due to regulatory capital requirements
Potential rationales for regulatory reform

1. Industry interests (Stigler, 1971), conflicts of interest (Zingales, 2013)
 1. regulatory capture
 2. regulator got tricked by industry to apply law of large numbers to MBS

2. Macroprudential view
 1. **Insurance market**: avoid failures of (life) insurers
 2. **MBS market**
 1. avoid *causing* firesale due to regulatory capital requirements
 2. regulators spot “alpha” in MBS market
Potential rationales for regulatory reform

1. Industry interests (Stigler, 1971), conflicts of interest (Zingales, 2013)
 - regulatory capture
 - regulator got tricked by industry to apply law of large numbers to MBS

2. Macroprudential view
 - Insurance market: avoid failures of (life) insurers
 - MBS market
 - avoid causing firesale due to regulatory capital requirements
 - regulators spot “alpha” in MBS market
 - Housing market: support US mortgage market
Potential rationales for regulatory reform

1. Industry interests (Stigler, 1971), conflicts of interest (Zingales, 2013)
 - regulatory capture
 - regulator got tricked by industry to apply law of large numbers to MBS

2. Macroprudential view
 - **Insurance market**: avoid failures of (life) insurers
 - **MBS market**
 - avoid *causing* firesale due to regulatory capital requirements
 - regulators spot “alpha” in MBS market
 - **Housing market**: support US mortgage market

difficult to disentangle “ultimate intentions” and unintended consequences
Literature

- Insurance companies and capital regulation
 - Product market distortions (Koijen, Yogo 2013a, 2013b)
 - Portfolio allocation: reaching for yield (Becker, Ivashina 2012)

- Criticism of credit ratings
 - Use of ratings in regulation feeds back into the accuracy of ratings (Opp, Opp, Harris 2013)
 - Credit ratings do not distinguish between idiosyncratic and systematic risk (Coval, Jurek, Stafford 2008, Iannotta, Pennacchi 2012)
 - CRAs exploit naivete of investors (Bolton, Freixas, Shapiro 2012)
 - Competition leads to lower standards (Becker, Milbourn 2011)
A primer in insurance regulation

- All insurance companies are subject to minimum capital regulation based on risk-based capital ratio (determined yearly)

\[
\text{RBC ratio} = \frac{\text{Equity}}{\text{Risk-based capital requirement}} \geq 2
\]

Risk-based capital requirement depends on asset risk and liability risk:

\[
\text{Risk-based capital requirement} = R_0 + \sqrt{R_1^2 + 5 \sum_{i=2}^{n} R_i^2}
\]

- Asset risks: (subsidiaries, fixed income, and equities)
- Liability risks: (insurance business)

Square-root formula treats risk sources as independent.
A primer in insurance regulation

- All insurance companies are subject to minimum capital regulation based on risk-based capital ratio (determined yearly)

\[
\text{RBC ratio} = \frac{\text{Equity}}{\text{Risk-based capital requirement}} \geq 2
\]

- Risk-based capital requirement depends on asset risk and liability risk

\[
\text{Risk-based capital requirement} = R_0 + \sqrt{R_1^2 + \sum_{i=2}^{5} R_i^2}
\]

- \(R_0 - R_2 \) = asset risks (subsidiaries, fixed income, and equities)
- \(R_3 - R_5 \) = liability risks (insurance business)
- Square-root formula treats risk sources as independent
A primer in insurance regulation

- All insurance companies are subject to minimum capital regulation based on risk-based capital ratio (determined yearly)

\[
\text{RBC ratio} = \frac{\text{Equity}}{\text{Risk-based capital requirement}} \geq 2
\]

- Risk-based capital requirement depends on asset risk and liability risk

\[
\text{Risk-based capital requirement} = R_0 + \sqrt{R_1^2 + \sum_{i=2}^{5} R_i^2}
\]

- \(R_0 - R_2 \) = asset risks (subsidiaries, fixed income, and equities)
- \(R_3 - R_5 \) = liability risks (insurance business)
- Square-root formula treats risk sources as independent

- Our study concerns a regulatory change in fixed income \(R_1 \)
Previous ratings-based system for fixed income

- Risk-based capital requirement for fixed income portfolio:

\[R_1 = \sum_{j=1}^{N} \text{RBC\%}_j \text{BV}_j \]
Previous ratings-based system for fixed income

- Risk-based capital requirement for fixed income portfolio:

\[R_1 = \sum_{j=1}^{N} RBC\%_j BV_j \]

- Risk classification based on ratings

<table>
<thead>
<tr>
<th>NAIC</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>RBC% Life</td>
<td>0.4%</td>
<td>1.3%</td>
<td>4.6%</td>
<td>10%</td>
<td>23%</td>
<td>30%</td>
</tr>
<tr>
<td>Rating cutoff</td>
<td>A</td>
<td>BBB</td>
<td>BB</td>
<td>B</td>
<td>CCC</td>
<td>D</td>
</tr>
</tbody>
</table>

Regulatory reform and risk-taking 2015 7 / 24
Institutional background

Previous ratings-based system for fixed income

- Risk-based capital requirement for fixed income portfolio:

\[
R_1 = \sum_{j=1}^{N} \text{RBC}\%_j \text{BV}_j
\]

- Risk classification based on ratings

<table>
<thead>
<tr>
<th>NAIC</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>RBC% Life</td>
<td>0.4%</td>
<td>1.3%</td>
<td>4.6%</td>
<td>10%</td>
<td>23%</td>
<td>30%</td>
</tr>
<tr>
<td>Rating cutoff</td>
<td>A</td>
<td>BBB</td>
<td>BB</td>
<td>B</td>
<td>CCC</td>
<td>D</td>
</tr>
</tbody>
</table>

still applies for all fixed income assets, except non-agency MBS
Regulatory change: replacing ratings

- Regulator solicited for bids from alternative credit risk providers
 - RMBS (since 2009): Pimco selected based on “expertise and safeguards against conflict of interest”
 - CMBS (since 2010): Using a similar process, BlackRock was selected
Regulatory change: replacing ratings

- Regulator solicited for bids from alternative credit risk providers
 - RMBS (since 2009): Pimco selected based on “expertise and safeguards against conflict of interest”
 - CMBS (since 2010): Using a similar process, BlackRock was selected

- Discounted expected losses of principal for each bond (by CUSIP)
 - state-contingent losses \(L \) are discounted by coupon rate \(c \)
 - continuous measure \(ELOSS = \frac{\mathbb{E}(L)}{1+c} \in [0, 1] \) vs. ordinal ratings
Regulatory change: replacing ratings

- Regulator solicited for bids from alternative credit risk providers
 - RMBS (since 2009): Pimco selected based on “expertise and safeguards against conflict of interest”
 - CMBS (since 2010): Using a similar process, BlackRock was selected

- Discounted expected losses of principal for each bond (by CUSIP)
 - state-contingent losses L are discounted by coupon rate c
 - continuous measure $ELOSS = \frac{\mathbb{E}(L)}{1+c} \in [0, 1]$ vs. ordinal ratings

- $ELOSS$ determines intrinsic value, the reference point for regulation

\[IV = 1 - ELOSS \]
Major takeaway: Intrinsic value (IV) is a proxy for market price.

On average: IV > Market Price = 1 − ELOSS (reason: see next slide).
Major takeaway: Intrinsic value (IV) is proxy for market price
Major takeaway: Intrinsic value (IV) is proxy for market price

- On average: $IV > MP = 1 - ELOSS$ (reason: see next slide)
Theory: market price versus intrinsic value

Market price of any risky-bond can be decomposed into:

$$MP = 1 - R_F - ELOSS_M + PV\ (\text{Coupons})$$

Present value of Principal

$ELOSS_M = E(L^m) = E(L) + r_F + Cov(m, L)$

denotes (correctly) discounted state-contingent losses of principal

$Iv = 1 - ELOSS$

$Iv - MP = ELOSS - ELOSS + R_F - PV\ (\text{Coupons})$

$ELOSS > 0$ since $ELOSS = E(L) + c < E(L) + r_F < E(m\cdot L)$

Bonds with low (high) coupons are more likely above (below) 45 degree line. (Generally, MBS tranches are issued below par)
Theory: market price versus intrinsic value

Market price of any risky-bond can be decomposed into:

\[MP = 1 - R_F - ELOSS_M + PV(\text{Coupons}) \]

- \(1 - R_F \) is price of risk-free zero-coupon bond with same maturity and present value of principal.

Bonds with low (high) coupons are more likely above (below) 45 degree line. (Generally, MBS tranches are issued below par)
Theory: market price versus intrinsic value

- Market price of any risky-bond can be decomposed into:

\[
MP = 1 - R_F - ELOSS_M + PV(\text{Coupons})
\]

- \(1 - R_F\) is price of risk-free zero-coupon bond with same maturity and
- \(ELOSS_M = \mathbb{E}(m \cdot L) = \frac{\mathbb{E}(L)}{1 + r_F} + \text{Cov}(m, L)\) denotes (correctly) discounted state-contingent losses of principal \(L\).
Theory: market price versus intrinsic value

- Market price of any risky-bond can be decomposed into:

\[MP = 1 - R_F - ELOSS_M + PV(\text{Coupons}) \]

- \(1 - R_F\) is price of risk-free zero-coupon bond with same maturity and
- \(ELOSS_M = \mathbb{E}(m \cdot L) = \frac{\mathbb{E}(L)}{1 + r_F} + \text{Cov}(m, L)\) denotes (correctly) discounted state-contingent losses of principal \(L\)

- Using \(IV = 1 - ELOSS\)

\[IV - MP = ELOSS_M - ELOSS + R_F - PV(\text{Coupons}) \]
Theory: market price versus intrinsic value

- Market price of any risky-bond can be decomposed into:

\[MP = 1 - R_F - ELOSS_M + PV (\text{Coupons}) \]

\[\text{Present value of Principal} \]

- \(1 - R_F \) is price of risk-free zero-coupon bond with same maturity and
- \(ELOSS_M = \mathbb{E} (m \cdot L) = \frac{\mathbb{E}(L)}{1+r_F} + \text{Cov} (m, L) \) denotes (correctly)
discounted state-contingent losses of principal \(L \)

- Using \(IV = 1 - ELOSS \)

\[IV - MP = ELOSS_M - ELOSS + R_F - PV (\text{Coupons}) \]

- \(ELOSS_M - ELOSS > 0 \) since \(ELOSS = \frac{\mathbb{E}(L)}{1+c} < \frac{\mathbb{E}(L)}{1+r_F} < \mathbb{E} (m \cdot L) \)
Theory: market price versus intrinsic value

- Market price of any risky-bond can be decomposed into:

\[
MP = 1 - R_F - ELOSS_M + PV \text{ (Coupons)}
\]

Present value of Principal

- \(1 - R_F\) is price of risk-free zero-coupon bond with same maturity and
- \(ELOSS_M = \mathbb{E} (m \cdot L) = \frac{\mathbb{E}(L)}{1 + r_F} + \text{Cov} (m, L)\) denotes (correctly) discounted state-contingent losses of principal \(L\)

- Using \(IV = 1 - ELOSS\)

\[
IV - MP = ELOSS_M - ELOSS + R_F - PV \text{ (Coupons)}
\]

- \(ELOSS_M - ELOSS > 0\) since \(ELOSS = \frac{\mathbb{E}(L)}{1 + c} < \frac{\mathbb{E}(L)}{1 + r_F} < \mathbb{E} (m \cdot L)\)
- Bonds with low (high) coupons are more likely above (below) 45 degree line. (Generally, MBS tranches are issued below par)
Intuition for VAR system (RBC*) and new system (RBC)
Intuition for VAR system (RBC*) and new system (RBC)
Intuition for VAR system (RBC*) and new system (RBC)
Intuition for VAR system (RBC*) and new system (RBC)
Intuition for VAR system (RBC*) and new system (RBC)

Actual risk-based capital requirements do not account for “risk!”

\[RBC \approx BV - IV \]
Actual implementation of new system (NAIC 1-6)

Cutoffs are designed so that "intuition" is approximated discontinuously.
Actual implementation of new system (NAIC 1-6)

Cutoffs are designed so that “intuition” is approximated discontinuously.
What’s risk got to do with it?

- Toy example with two equi-probable macro states and two securities:
 - Bond 1 defaults only in low macro state with 0% recovery rate
 - Bond 2 always defaults, 50% recovery rate in both states

Both have high credit “risk” (poor ratings, high ELOSS) but different systematic risk: bond 1 is risky, bond 2 is risk-free

Assume risk-neutrality and no discounting: IV = MP = BV = 0.5

- New system: Both bonds riskless (RBC% = 0)
- Old system: Both bonds risky (RBC% = 30%)

Structured securities are Economic Catastrophe Bonds

- Losses don’t wash out (Law of large numbers does not apply)
- RMBS / CMBS resemble type 1 bonds

⇒ Insufficient capital
What’s risk got to do with it?

- Toy example with two equi-probable macro states and two securities:
 - Bond 1 defaults only in low macro state with 0% recovery rate
 - Bond 2 always defaults, 50% recovery rate in both states
What’s risk got to do with it?

- Toy example with two equi-probable macro states and two securities:
 - Bond 1 defaults only in low macro state with 0% recovery rate
 - Bond 2 always defaults, 50% recovery rate in both states

both have high credit “risk” (poor ratings, high ELOSS) but different systematic risk: bond 1 is risky, bond 2 is risk-free
What’s risk got to do with it?

- Toy example with two equi-probable macro states and two securities:
 - Bond 1 defaults only in low macro state with 0% recovery rate
 - Bond 2 always defaults, 50% recovery rate in both states

 both have high credit “risk” (poor ratings, high ELOSS) but different systematic risk: bond 1 is risky, bond 2 is risk-free

- Assume risk-neutrality and no discounting: $IV = MP = BV = 0.5$
What’s risk got to do with it?

- Toy example with two equi-probable macro states and two securities:
 - Bond 1 defaults only in low macro state with 0% recovery rate
 - Bond 2 always defaults, 50% recovery rate in both states

 both have high credit “risk” (poor ratings, high ELOSS) but different systematic risk: bond 1 is risky, bond 2 is risk-free

- Assume risk-neutrality and no discounting: \(IV = MP = BV = 0.5 \)
 - New **system**: Both bonds riskless (\(RBC\% = 0 \))
 - Old **system**: Both bonds risky (\(RBC\% = 30\% \))
What’s risk got to do with it?

- Toy example with two equi-probable macro states and two securities:
 - Bond 1 defaults only in low macro state with 0% recovery rate
 - Bond 2 always defaults, 50% recovery rate in both states

 both have high credit “risk” (poor ratings, high ELOSS) but different systematic risk: bond 1 is risky, bond 2 is risk-free

- Assume risk-neutrality and no discounting: IV = MP = BV = 0.5
 - New system: Both bonds riskless (RBC% = 0)
 - Old system: Both bonds risky (RBC% = 30%)

- Structured securities are Economic Catastrophe Bonds
 - Losses don’t wash out (Law of large numbers does not apply)
 - RMBS / CMBS resemble type 1 bonds ⇒ Insufficient capital
Data

- ELOSS for all non-agency MBS securities for the first two years
 - CMBS: (2010) 5,293 CUSIPs and (2011) 5,974 CUSIPs

- Ratings and asset information (seniority, par value, etc.) from S&P, Moody’s, and eMAXX. Of RMBS 2009 universe
 - 6.8% of securities are unrated,
 - 22.7% have one rating
 - 70.6% have two or more ratings
 - S&P, Moody’s and Fitch cover 82%, 89% and 27% of securities

- Year-end holdings by CUSIP for all US insurers and other institutional investors (Pimco / BlackRock) from NAIC and eMAXX

- Regulatory RBC ratios for all insurers from Ellul et al. (2013)
The outcome: massive capital relief

RMBS

- **RBC new**
- **RBC old**

CMBS

- **RBC new**
- **RBC old**

2011 aggregate MBS RBC: $3.7 billion vs. $19.4 billion – 81% “discount.”
The outcome: massive capital relief

2012 aggregate MBS RBC: $3.7 billion vs. $19.4 billion – 81% “discount.”
Fixed income holdings and capital savings

FIXED INCOME

<table>
<thead>
<tr>
<th></th>
<th>BV</th>
<th>MV</th>
<th>RBC FI Share</th>
<th>BV</th>
<th>MV</th>
<th>RBC new</th>
<th>RBC old</th>
<th>RBC save</th>
<th>RBC save FI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Life</td>
<td>2445</td>
<td>2542</td>
<td>30 4%</td>
<td>110</td>
<td>100</td>
<td>3</td>
<td>13</td>
<td>-77%</td>
<td>-24%</td>
</tr>
<tr>
<td>P&C</td>
<td>893</td>
<td>923</td>
<td>4 2%</td>
<td>14</td>
<td>14</td>
<td>0</td>
<td>1</td>
<td>-92%</td>
<td>-19%</td>
</tr>
<tr>
<td>Other</td>
<td>137</td>
<td>142</td>
<td>1 3%</td>
<td>4</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>-80%</td>
<td>-25%</td>
</tr>
<tr>
<td>Total</td>
<td>3475</td>
<td>3607</td>
<td>36 4%</td>
<td>127</td>
<td>117</td>
<td>3</td>
<td>14</td>
<td>-78%</td>
<td>-24%</td>
</tr>
</tbody>
</table>

RMBS

<table>
<thead>
<tr>
<th></th>
<th>BV</th>
<th>MV</th>
<th>RBC new</th>
<th>RBC old</th>
<th>RBC save</th>
<th>RBC save FI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Life</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-7%</td>
</tr>
<tr>
<td>P&C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0%</td>
</tr>
<tr>
<td>Other</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>20%</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0%</td>
</tr>
</tbody>
</table>

CMBS

<table>
<thead>
<tr>
<th></th>
<th>BV</th>
<th>MV</th>
<th>RBC new</th>
<th>RBC old</th>
<th>RBC disc.</th>
<th>RBC disc. FI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Life</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-7%</td>
<td>0%</td>
</tr>
<tr>
<td>P&C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-15%</td>
<td>0%</td>
</tr>
<tr>
<td>Other</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>20%</td>
<td>0%</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-7%</td>
<td>0%</td>
</tr>
</tbody>
</table>
Fixed income holdings and capital savings

<table>
<thead>
<tr>
<th>FIXED INCOME</th>
<th>RMBS</th>
</tr>
</thead>
<tbody>
<tr>
<td>BV</td>
<td>MV</td>
</tr>
<tr>
<td>Life</td>
<td>2445</td>
</tr>
<tr>
<td>P&C</td>
<td>893</td>
</tr>
<tr>
<td>Other</td>
<td>137</td>
</tr>
<tr>
<td>Total</td>
<td>3475</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CMBS</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Share</td>
<td></td>
<td>BV</td>
<td>MV</td>
<td>RBC new</td>
<td>RBC old</td>
<td>RBC disc.</td>
<td>RBC disc. FI</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Life</td>
<td>2445</td>
<td>2542</td>
<td>30</td>
<td>6%</td>
<td>143</td>
<td>145</td>
<td>1.8</td>
<td>1.9</td>
<td>-7%</td>
<td>0%</td>
</tr>
<tr>
<td>P&C</td>
<td>893</td>
<td>923</td>
<td>4</td>
<td>3%</td>
<td>24</td>
<td>25</td>
<td>0.1</td>
<td>0.1</td>
<td>-15%</td>
<td>0%</td>
</tr>
<tr>
<td>Other</td>
<td>137</td>
<td>142</td>
<td>1</td>
<td>3%</td>
<td>4</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>20%</td>
<td>0%</td>
</tr>
<tr>
<td>Total</td>
<td>3475</td>
<td>3607</td>
<td>36</td>
<td>5%</td>
<td>172</td>
<td>175</td>
<td>1.9</td>
<td>2</td>
<td>-7%</td>
<td>0%</td>
</tr>
</tbody>
</table>

- Despite small portfolio share of non-agency MBS, savings are large
- Met Life and Teachers Insurance and Annuity with $1.5bn savings
Regulatory reform and risk-taking

- Examination of aggregate response of industry to a regulatory change
Regulatory reform and risk-taking

- Examination of aggregate response of industry to a regulatory change
- Regulation also applies to new issues (mostly CMBS)
Regulatory reform and risk-taking

- Examination of aggregate response of industry to a regulatory change
- Regulation also applies to new issues (mostly CMBS)
- Only non-agency MBS are affected by regulatory change

First (raw) prediction:
- The fraction of investment grade purchases by insurers is smaller for non-agency MBS (relative to other asset classes)
- post reform (relative to before 2010)
Regulatory reform and risk-taking

- Examination of aggregate response of industry to a regulatory change
- Regulation also applies to new issues (mostly CMBS)
- Only non-agency MBS are affected by regulatory change
- First (raw) prediction:
Regulatory reform and risk-taking

- Examination of aggregate response of industry to a regulatory change
- Regulation also applies to new issues (mostly CMBS)
- Only non-agency MBS are affected by regulatory change
- First (raw) prediction: The fraction of investment grade purchases by insurers is smaller
Regulatory reform and risk-taking

- Examination of aggregate response of industry to a regulatory change
- Regulation also applies to new issues (mostly CMBS)
- Only non-agency MBS are affected by regulatory change
- First (raw) prediction:
 The fraction of investment grade purchases by insurers is smaller
 - for non-agency MBS (relative to other asset classes)
Regulatory reform and risk-taking

- Examination of aggregate response of industry to a regulatory change
- Regulation also applies to new issues (mostly CMBS)
- Only non-agency MBS are affected by regulatory change
- First (raw) prediction: The fraction of investment grade purchases by insurers is smaller
 - for non-agency MBS (relative to other asset classes)
 - post reform (relative to before 2010)
New issues: risk-taking across asset classes

The figure plots the composition of the insurance industry's purchases of newly issued securities 2008-2012, by asset category. Asset categories are Corporate Bonds, Municipal Bonds, MBS, Other Asset Backed (Federal Government securities are excluded). Only rated securities with a category indicated in NAIC data are included. Each graph represents the fraction of aggregate purchases in a category (valued at par) that are rated investment grade. For expository clarity, exact values are only displayed for MBS. Total purchases of $980 billion are reflected in the graph.

New, low capital requirements implemented for CMBS end 2010.
Regulatory reform and risk-taking

Formal empirical analysis in two steps
Regulatory reform and risk-taking

Formal empirical analysis in two steps

1. **New issues prediction:**
 Insurers purchase a larger fraction (compared to other investors) post-reform (relative to pre) in non-agency MBS (relative to other asset classes) if asset is of high risk (relative to low risk).

 ▶ Exploit cross-sectional variation of MP and IV across securities

 Prediction: Trade towards assets with high yields and low ELOSS.
Regulatory reform and risk-taking

Formal empirical analysis in two steps

1. New issues prediction:
 Insurers purchase a larger fraction (compared to other investors)
 post-reform (relative to pre)

2. If asset is of high risk (relative to low risk)

Existing stock of securities (within MBS)

▶ Exploit cross-sectional variation of MP and IV across securities

▶ Prediction: Trade towards assets with high yields and low ELOSS
Regulatory reform and risk-taking

Formal empirical analysis in two steps

1. New issues prediction:
 Insurers purchase a larger fraction (compared to other investors)
 - post-reform (relative to pre)
 - in non-agency MBS (relative to other asset classes)
Analysis

Regulatory reform and risk-taking

Formal empirical analysis in two steps

1. New issues prediction:
 Insurers purchase a larger fraction (compared to other investors)
 1. post-reform (relative to pre)
 2. in non-agency MBS (relative to other asset classes)
 3. if asset is of high risk (relative to low risk)

Regulatory reform and risk-taking

2015 19 / 24
Regulatory reform and risk-taking

Formal empirical analysis in two steps

1. New issues prediction:
 - Insurers purchase a larger fraction (compared to other investors)
 - post-reform (relative to pre)
 - in non-agency MBS (relative to other asset classes)
 - if asset is of high risk (relative to low risk)

2. Existing stock of securities (within MBS)

Exploit cross-sectional variation of MP and IV across securities
Prediction: Trade towards assets with high yields and low ELOSS
Regulatory reform and risk-taking

Formal empirical analysis in two steps

1. New issues prediction:
 Insurers purchase a larger fraction (compared to other investors)
 1. post-reform (relative to pre)
 2. in non-agency MBS (relative to other asset classes)
 3. if asset is of high risk (relative to low risk)

2. Existing stock of securities (within MBS)
 ▶ Exploit cross-sectional variation of MP and IV across securities
 ▶ Prediction: Trade towards assets with high yields and low ELOSS
New issues: risk-taking across asset classes II

<table>
<thead>
<tr>
<th>Dep. Variable</th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
<th>(6)</th>
<th>(7)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Share of new issue bought by insurers</td>
<td>0.039</td>
<td>0.130</td>
<td>0.037</td>
<td>0.148</td>
<td>0.040</td>
<td>0.535</td>
<td></td>
</tr>
<tr>
<td>Low RBC share</td>
<td>0.148</td>
<td>0.040</td>
<td>0.130</td>
<td>0.037</td>
<td>0.148</td>
<td>0.040</td>
<td>0.535</td>
</tr>
</tbody>
</table>

Indicator (MBS; Post change; High yield security)
- **(1)** 0.056^{***}
- **(2)** 0.099^{***}
- **(3)** 0.094^{**}
- **(4)** 0.127^{***}
- **(5)** 0.013^{*}

Indicator (MBS; Post change)
- **(6)** 1.363^{***}
- **(7)** 3.169^{***}

Dimensions
- **Issue year * High Yield indicator FE**
- **Category * High Yield indicator FE**
- **Issue year FE * coupon yield**
- **Category FE * coupon yield**

Other Statistics
- **R-squared**
- **N**

Becker Opp (BO) (Stockholm, UC) [Regulatory reform and risk-taking](#) 2015 20 / 24
Existing securities: MBS portfolio

<table>
<thead>
<tr>
<th>Category</th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
<th>(6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Insurance companies</td>
<td>All</td>
<td>Very Low RBC</td>
<td>Low RBC</td>
<td>High RBC</td>
<td>All</td>
<td>All</td>
</tr>
<tr>
<td>Dep. Variable</td>
<td>One year % change in par value, non-defaulted securities</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dep. Var. mean</td>
<td>-0.210</td>
<td>-0.491</td>
<td>-0.220</td>
<td>-0.150</td>
<td>-0.192</td>
<td>-0.192</td>
</tr>
<tr>
<td>Market price – Intrinsic value</td>
<td>-0.571*** (0.022)</td>
<td>-0.759*** (0.230)</td>
<td>-0.653*** (0.102)</td>
<td>-0.460*** (0.024)</td>
<td>-0.569*** (0.037)</td>
<td></td>
</tr>
<tr>
<td>Market price</td>
<td>-0.743*** (0.044)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intrinsic value</td>
<td>0.205*** (0.033)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Par at issue, log</td>
<td>-0.016*** (0.006)</td>
<td>-0.011* (0.006)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mezzanine tranche</td>
<td>-0.037** (0.014)</td>
<td>-0.092*** (0.015)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Subordinated tranche</td>
<td>-0.059*** (0.022)</td>
<td>-0.138*** (0.0122)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Credit rating</td>
<td>-0.003*** (0.001)</td>
<td>0.003** (0.001)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Issue year FE</td>
<td>Yes</td>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maturity year FE</td>
<td>Yes</td>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R-squared</td>
<td>0.045</td>
<td>0.026</td>
<td>0.025</td>
<td>0.037</td>
<td>0.054</td>
<td>0.066</td>
</tr>
<tr>
<td>N</td>
<td>11,437</td>
<td>538</td>
<td>1,096</td>
<td>8,561</td>
<td>6,136</td>
<td>6,136</td>
</tr>
</tbody>
</table>
Conflicts of interest by provider

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Intrinsic value (= 1 - ELOSS)</td>
<td>Intrinsic value (= 1 - ELOSS)</td>
<td></td>
<td>Intrinsic value (= 1 - ELOSS)</td>
<td></td>
</tr>
<tr>
<td>Pimco</td>
<td>0.819</td>
<td>0.862</td>
<td>0.878</td>
<td>0.896</td>
<td></td>
</tr>
<tr>
<td>Pimco or BlackRock holdings (log)</td>
<td>-0.000</td>
<td>0.004***</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pimco or BlackRock net trade, next 4 quarters</td>
<td>0.046</td>
<td>0.561**</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Insurance holdings, log</td>
<td>0.009***</td>
<td>0.022***</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Becker Opp (BO) (Stockholm, UC) Regulatory reform and risk-taking 2015 22 / 24
Discussion

NAIC: “Capital requirements limit the amount of risk a company can take. It requires a company with a higher amount of risk to hold higher amounts of capital. Capital provides a cushion to a company against insolvency.”
Discussion

NAIC: “Capital requirements limit the amount of risk a company can take. It requires a company with a higher amount of risk to hold higher amounts of capital. Capital provides a cushion to a company against insolvency.”

Reform introduces

1. Capital relief for insurers and eliminates cushion
Discussion

NAIC: “Capital requirements limit the amount of risk a company can take. It requires a company with a higher amount of risk to hold higher amounts of capital. Capital provides a cushion to a company against insolvency.”

Reform introduces

1. Capital relief for insurers and eliminates cushion
2. Cross-sectional asset allocation distortions
Discussion

NAIC: “Capital requirements limit the amount of risk a company can take. It requires a company with a higher amount of risk to hold higher amounts of capital. Capital provides a cushion to a company against insolvency.”

Reform introduces

1. Capital relief for insurers and eliminates cushion
2. Cross-sectional asset allocation distortions
Discussion

NAIC: “Capital requirements limit the amount of risk a company can take. It requires a company with a higher amount of risk to hold higher amounts of capital. Capital provides a cushion to a company against insolvency.”

Reform introduces

1. Capital relief for insurers and eliminates cushion
2. Cross-sectional asset allocation distortions

Is reform more consistent with industry interests or macroprudential view?
Discussion

NAIC: “Capital requirements limit the amount of risk a company can take. It requires a company with a higher amount of risk to hold higher amounts of capital. Capital provides a cushion to a company against insolvency.”

Reform introduces

1. Capital relief for insurers and eliminates cushion
2. Cross-sectional asset allocation distortions

Is reform more consistent with industry interests or macroprudential view?

- Permanent “elimination” of capital requirements for MBS not officially communicated
Discussion

NAIC: “Capital requirements limit the amount of risk a company can take. It requires a company with a higher amount of risk to hold higher amounts of capital. Capital provides a cushion to a company against insolvency.”

Reform introduces

1. Capital relief for insurers and eliminates cushion
2. Cross-sectional asset allocation distortions

Is reform more consistent with industry interests or macroprudential view?

- Permanent “elimination” of capital requirements for MBS not officially communicated
 - New system is made artificially complex
Discussion

NAIC: “Capital requirements limit the amount of risk a company can take. It requires a company with a higher amount of risk to hold higher amounts of capital. Capital provides a cushion to a company against insolvency.”

Reform introduces

1. Capital relief for insurers and eliminates cushion
2. Cross-sectional asset allocation distortions

Is reform more consistent with industry interests or macroprudential view?

- Permanent “elimination” of capital requirements for MBS not officially communicated
 - New system is made artificially complex
 - Why replace “ratings” if goal is to “eliminate” capital requirements?
Discussion

NAIC: “Capital requirements limit the amount of risk a company can take. It requires a company with a higher amount of risk to hold higher amounts of capital. Capital provides a cushion to a company against insolvency.”

Reform introduces

1. Capital relief for insurers and eliminates cushion
2. Cross-sectional asset allocation distortions

Is reform more consistent with industry interests or macroprudential view?

- Permanent “elimination” of capital requirements for MBS not officially communicated
 - New system is made artificially complex
 - Why replace “ratings” if goal is to “eliminate” capital requirements?
- Macroprudential benefits of capital relief are temporary
Conclusion

- Regulatory change caused large reduction in capital requirements
 - new input: Pimco and BlackRock provide proxies of the market price
 - new system: no protection against aggregate risks

⇒ Replacing ratings is a "side-show"
New system applies to existing stock as well as to new acquisitions
- Strong incentive to take risk preferentially in MBS
- Reflected in a historic shift in risk taking in MBS
→ have to be traded off against benefits
Ultimate normative question: "Do we need capital requirements?"
Follow-up research: Does regulatory reform have pricing implications?
Conclusion

- Regulatory change caused large reduction in capital requirements
 - new input: Pimco and BlackRock provide proxies of the market price
 - new system: no protection against aggregate risks

⇒ Replacing ratings is a “side-show”
Conclusion

- Regulatory change caused large reduction in capital requirements
 - new input: Pimco and BlackRock provide proxies of the market price
 - new system: no protection against aggregate risks

⇒ Replacing ratings is a “side-show”

- New system applies to existing stock as well as to new acquisitions
 - Strong incentive to take risk preferentially in MBS
 - Reflected in a historic shift in risk taking in MBS
Conclusion

- Regulatory change caused large reduction in capital requirements
 - new input: Pimco and BlackRock provide proxies of the market price
 - new system: no protection against aggregate risks

⇒ Replacing ratings is a “side-show”

- New system applies to existing stock as well as to new acquisitions
 - Strong incentive to take risk preferentially in MBS
 - Reflected in a historic shift in risk taking in MBS

- Significant initial responses to reform: long-run effects likely larger

→ have to be traded off against benefits
Conclusion

- Regulatory change caused large reduction in capital requirements
 - new input: Pimco and BlackRock provide proxies of the market price
 - new system: no protection against aggregate risks
 ⇒ Replacing ratings is a “side-show”

- New system applies to existing stock as well as to new acquisitions
 - Strong incentive to take risk preferentially in MBS
 - Reflected in a historic shift in risk taking in MBS

- Significant initial responses to reform: long-run effects likely larger
 → have to be traded off against benefits

- Ultimate normative question: “Do we need capital requirements?”
Conclusion

- Regulatory change caused large reduction in capital requirements
 - new input: Pimco and BlackRock provide proxies of the market price
 - new system: no protection against aggregate risks

⇒ Replacing ratings is a “side-show”

- New system applies to existing stock as well as to new acquisitions
 - Strong incentive to take risk preferentially in MBS
 - Reflected in a historic shift in risk taking in MBS

- Significant initial responses to reform: long-run effects likely larger
 → have to be traded off against benefits

- Ultimate normative question: “Do we need capital requirements?”

- Follow-up research: Does regulatory reform have pricing implications?