Some Notes on Durable Goods Monopoly with Fixed Types

John Morgan
Haas School of Business and Department of Economics
University of California, Berkeley
February 2006

1 Introduction

The usual treatment of the durable goods monopoly problem has the monopolist selling to a continuum of agents on an anonymous basis. The monopolist’s problem is the usual one—imperfect commitment. In this set of notes, we study the durable goods monopoly problem from a mechanism design perspective with non-anonymous buyers having fixed types over both periods.

2 Preliminaries

This time, we’ll think about the situation from the perspective of a monopoly seller of a durable good. As usual, there are two types of agent θ_l and θ_h where $Pr(\theta = \theta_l) = \lambda$. A buyer’s type should be thought of as his or her flow utility from a single unit of the product in each period. The discount rate is δ. The agent should be thought of as the buyer of a good supplied by a monopoly principal at zero cost.

Full Commitment Solution

Define T_i to be the NPV of the payment made by a buyer identified as type i. Let $Q_i = q_{i1} + \delta q_{i2}$ denote the expected “quantity” of the good consumed over the two periods. The quantity is actually the probability of consumption in a given period. Then P’s problem is

$$\max_{Q_i, T_i} \lambda T_i + (1 - \lambda) T_h$$

subject to

$$\theta_i Q_i - T_i \geq 0 \quad (IR)$$

$$\theta_i Q_i - T_i \geq \theta_j Q_j - T_j \quad (IC)$$
and

\[0 \leq Q_i \leq 1 + \delta \quad \text{(FEAS)}\]

As usual, one can show that the binding constraints are

\[\theta_t Q_t - T_t = 0\]
\[\theta_h Q_h - T_h = \theta_h Q_l - T_l\]

Substituting

\[\max_{Q_i} \lambda \theta_t Q_t + (1 - \lambda) (\theta_h (Q_h - Q_l) + \theta_l Q_l)\]

subject to the feasibility constraint.

This yields

\[\lambda \theta_t - (1 - \lambda) (\theta_h - \theta_l) - \mu_t \leq 0\]
\[(1 - \lambda) \theta_h - \mu_h \leq 0\]

The point is that there are no \(Q_i\)'s in either solution, hence we must have corner solutions. First, notice that \(Q_h > 0\) hence in any solution

\[Q_h = 1 + \delta\]

In contrast, \(Q_l\) depends on how large is \(\lambda\). When \(\lambda\) is large,

\[Q_l = 1 + \delta\]

while if \(\lambda\) is small

\[Q_l = 0\]

What is the critical value of \(\lambda\)?

Indifference between excluding and including low types

\[\theta_t (1 + \delta) = (1 - \lambda) \theta_h (1 + \delta)\]

or

\[\lambda < \lambda^* = 1 - \frac{\theta_l}{\theta_h}\]

We'll now assume that \(\lambda < \lambda^*\).

Sales Contracts

Now suppose that \(P\) is restricted to sales contracts and cannot commit not to sell in period 2. Suppose that if a buyer does not buy in period 1, the beliefs of \(P\) are that the buyer is low with probability \(\lambda (P_1)\). If that number is sufficiently high, then \(P\) will not exclude the low type otherwise he will. In either case, low types earn zero surplus in period 2.

Thus, a low type buyer buys in period 1 iff

\[P_1 \leq (1 + \delta) \theta_t\]
A high type buyer’s decision depends on the exclusion of the low types or not. If an \(h \) expects \(l \) types to be excluded in period, he will buy in period 1 iff

\[
P_1 \leq (1 + \delta) \theta_l
\]

If not, he’ll buy iff

\[
\theta_h (1 + \delta) - P_1 \geq \delta (\theta_h - \theta_l)
\]

or

\[
P_1 \leq \theta_h + \delta \theta_l
\]

Thus, \(P \) has three potential strategies at his disposal: (1) Sell to both types in period 1; (2) Sell to \(l \) in period 2; or (3) Exclude \(l \).

Revenues under (1)

\[
P_1 = \theta_l (1 + \delta)
\]

Hence

\[
\pi (1) = \theta_l (1 + \delta)
\]

Revenues under (2)

\[
P_1 = \theta_h + \delta \theta_l
\]

\[
P_2 = \theta_l
\]

Hence

\[
\pi (2) = (1 - \lambda) (\theta_h + \delta \theta_l) + \delta \lambda \theta_l
\]

We claim that \(\pi (2) > \pi (1) \). To see this, notice that

\[
\pi (2) - \pi (1) = (1 - \lambda) \theta_h + \delta \theta_l - \theta_l (1 + \delta) = (1 - \lambda) \theta_h - \theta_l
\]

\[
> 0
\]

since \(\lambda < \lambda^* \).

Finally, suppose that \(P_1 > \theta_h + \delta \theta_l \) and \(P_1 \leq \theta_h (1 + \delta) \). If \(P_2 = \theta_l \), then the \(h \) type buyer will not buy in the first period. If \(P_2 = \theta_h \) then the second period price is inconsistent with \(h \) types buying in the first period. Therefore, it must be that \(h \) types are mixing in the first period. The expected price in period 2 must leave an \(h \) type indifferent in period 1.

\[
\theta_h (1 + \delta) - P_1 = \delta \sigma (\theta_h - \theta_l)
\]

where \(\sigma \) is the probability that price \(P_2 = \theta_l \) will be charged. Hence

\[
\sigma = \frac{\theta_h (1 + \delta) - P_1}{\delta (\theta_h - \theta_l)}
\]
Furthermore, to induce P to undertake such a strategy, it must be that the remaining fraction of H types must leave P indifferent

\[\lambda' = \frac{\lambda}{\lambda + (1 - \lambda)(1 - \gamma)} = 1 - \frac{\theta_l}{\theta_h} \]

where \(\gamma \) is the probability of accepting a first-period offer by a high type. Hence

\[\gamma = 1 - \frac{\lambda}{1 - \lambda \theta_h - \theta_l} \]

P’s profit is then

\[(1 - \lambda) \gamma P_1 + ((1 - \lambda)(1 - \gamma) + \lambda) \delta \theta_l \]

which is increasing in \(P_1 \); hence

\[P_1 = \theta_h (1 + \delta) \]

and

\[\pi (3) = (1 - \lambda) \gamma \theta_h (1 + \delta) + ((1 - \lambda)(1 - \gamma) + \lambda) \delta \theta_l \]

Notice that when \(\gamma \to 0 \), \(\pi (3) < \pi (2) \) whereas for \(\gamma \to 1 \), the reverse is true.

Ratchet Effects

Now consider the case where \(P \) can “rent” the item. This is equivalent to being able to commit to any long-term contract whatsoever. Notice that the decision in period 2 simply depends on the inference \(P \) makes following the decision in period 1. Again, there are three possibilities:

1. **Pool in period 1**: Rent at \(R_1 = \theta_l \) in period 1, then choose the optimal 1 period scheme in period 2. This earns profits equal to

\[\pi (1) = \theta_l + \delta (1 - \lambda) \theta_h \]

2. **Separate in period 1**: In that case, no agent obtains rents in period 2. Thus, a high type agent can pretend to be low in period 1 and thereby earn rents in period 2 of \(\theta_h - \theta_l \). Hence

\[\theta_h - R_1 \geq \delta (\theta_h - \theta_l) \]

And profits for \(P \) are then

\[\pi (2) = (1 - \lambda) (\theta_h + \delta \theta_l) + \lambda \delta \theta_l \]

\[= (1 - \lambda) \theta_h + \delta \theta_l \]

and this is exactly the same as a sale.

3. **Semi-separate in period 1**: In that case, one can show that things are again identical to a sale.

However, the equality is only true in two periods. With three or more periods, the sale starts to revenue dominate the rental with non-anonymous buyers (Hart and Tirole, 1988).