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Regulators and some large investors have recently raised concerns about

temporary or transitory volatility in highly automated financial markets.1 It is

far from clear that high-frequency trading, fragmentation, and automation are

contributing to transitory volatility, but some institutions complain that their

execution costs are increasing. In this chapter, we introduce a methodology for

decomposing the price process of a financial instrument into its permanent and

transitory components, and we explore the insights from applying this method-

ology to execution cost measurement. Among other things, our methodology

allows an institutional investor to accurately measure the contributions of tran-

sitory price movements to its overall trading costs. The methodology is partic-

ularly applicable to an investor that splits a large order into small pieces and

executes it gradually over time.

The importance of transitory price impact has been well-known in the aca-

demic literature since early work on block trading (e.g., Kraus and Stoll (1972)).2

While it is fairly straightforward to measure the transitory price impact of a

block trade, it is a much greater challenge to measure the transitory price im-

pact when a large institutional parent order is executed in perhaps hundreds

of smaller child order executions. The key innovation of our approach is that

we estimate the temporary component at each point in time, and in particular

whenever a child order executes. By summing over all child orders, we can thus

measure the effect of the temporary component on overall trading costs.

To be more precise, we extend the classic Perold (1988) “implementation

1See for example the US Securities and Exchange Commission’s 2010 concept release on
equity market structure (Release No. 34-61358).

2See Duffie (2010) for an extensive discussion of temporary price impacts from large infor-
mationless demands for liquidity.
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shortfall” approach to decompose ex-post transaction costs into various com-

ponents, one of which accounts for the trading costs associated with transitory

pricing errors. Because trading cost analysis is often performed on an insti-

tution’s daily trading, we first illustrate our transaction cost measurement ap-

proach at a daily frequency. However, our methods are much more precise when

more disaggregated trading data are available. Using detailed information on

the intraday child order executions from a larger institutional parent order, we

show how the transitory price component evolves with trading on a minute-by-

minute basis, and we show how this transitory price component contributes to

overall implementation shortfall.

In some ways, our work is most closely related to Almgren et al. (2005), who

assume a particular functional form for both permanent and transitory price

impacts, with limited persistence in the latter. They then apply their model

to a large set of institutional orders to characterize permanent and transitory

components of transaction costs as a function of various stock and order char-

acteristics.3 In contrast, we allow the data to determine the persistence of the

temporary component.

1 Implementation Shortfall

Even for those who are intimately familiar with trading cost analysis, Perold

(1988) is worth a re-read. For example, he frames the discussion on p.4:

After selecting which stocks to buy and which to sell, “all” you

have to do is implement your decisions. If you had the luxury of

transacting on paper, your job would already be done. On paper,

transactions occur by mere stroke of the pen. You can transact at

all times in unlimited quantities with no price impact and free of all

commissions. There are no doubts as to whether and at what price

your order will be filled. If you could transact on paper, you would

always be invested in your ideal portfolio.

There are crucial differences between transacting on paper and trans-

acting in real markets. You do not know the prices at which you will

be able to execute, when you will be able to execute, or even whether

you will ever be able to execute. You do not know whether you will

3Engle and Ferstenberg (2007) also estimate implementation shortfall costs on a sample of
institutional orders, focusing on the variance of the execution costs as well as their mean.
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be front-run by others. And you do not know whether having your

limit order filled is a blessing or a curse - a blessing if you have just

extracted a premium for supplying liquidity, a curse if you have just

been bagged by someone who knows more than you do. Because you

are so much in the dark, you proceed carefully, and strategically.

These comments are just as apt in 2013 as they were in 1988, except that

in 2013 the concern about front-running is mainly a worry about being sniffed

out by algorithmic traders. Some algorithms use sophisticated forecasting and

pattern recognition techniques to predict future order flow and thus future price

changes. To the extent that the slicing and dicing of large institutional orders

into many smaller trades leaves a footprint in the data, algorithms may attempt

to identify and trade ahead of these large institutional orders. Any such order

anticipation could increase the transitory impact of a large order and thereby

increase its overall cost.

With a few notational changes we follow Perold (1988, Appendix B)’s method-

ology for measurement and analysis of implementation shortfall. At the begin-

ning of a measurement period, the paper portfolio is assumed to be worth the

same amount as the real portfolio. At the end of the period, any differences

in value capture the implementation shortfall. In general the length of the

measurement period is not important. For many institutions, one day is the

preferred period length, but it can be longer or shorter. The key constraint is

that if implementation shortfall is to be measured for an order that is executed

gradually over time, the measurement period must span the time over which

the order is executed.

Assume there areN securities with one being cash. Let ni denote the number

of shares of security i in the paper portfolio, ωb
i be the number of shares of

security i in the real portfolio at the beginning of the period, and ωe
i be the

number of shares held at the end of the period. ωe
i differs from ωb

i by the shares

traded in security i.

Denote the time of trades by j = 1, . . . ,K. Denote the number of shares

traded in security i at time j by tij ; tij is positive for buys, negative for sales,

and zero when there is no trade. Therefore, the ending shareholding in security

i is

ωe
i = ωb

i +

K∑
j=1

tij . (1)

3



Denote the prices at which transactions take place by pij ; pij are net of

incremental costs such as commissions and transfer taxes. Let the price of

security i be pbi at the beginning of the period and pei at the end. While the pij

must be transaction prices, the two benchmark prices can be either trade prices

or quote midpoints.

Assuming there are no net cash flows into or out of the real portfolio, all

transactions are financed with proceeds of other transactions. That is, at each

time j,
∑
tijpij is zero when summed over i = 1 to N .

Let the value of the paper and real portfolios at the beginning of the period

be Vb:

Vb =
∑

nip
b
i . (2)

Let the end-of-period values of the real and paper portfolios be Vp and Vr,

respectively:

Vp =
∑

nip
e
i and Vr =

∑
ωe
i p

e
i . (3)

The performance of the paper portfolio is Vp−Vb, and the performance of the

real portfolio is Vr −Vb. The implementation shortfall is the difference between

the two.

The performance of the real portfolio can be expanded as∑
(ωe

i p
e
i − ωb

i p
b
i ) =

∑
ωe
i (pei − pbi )−

∑
pbi (ω

e
i − ωb

i )

=
∑

ωe
i (pei − pbi )−

∑∑
(pij − pbi )tij . (4)

The performance of the paper portfolio can be expanded as∑
ni(p

e
i − pbi ). (5)

Subtracting the real portfolio performance from paper portfolio performance

completes the calculation:

Impl. Shortfall =
∑∑

(pij − pbi )tij︸ ︷︷ ︸
Execution Cost

+
∑∑

(pei − pbi )(ni − ωe
i )︸ ︷︷ ︸

Opportunity Cost

. (6)

The term (pij − pbi ) is the per-share cost of transacting at pij instead of at

pbi , and this cost is applied to tij traded shares. The weighted sum is the total

execution cost relative to the pre-trade benchmark. The term (pei − pbi ) is the

paper return on security i over the period. The opportunity cost is the sum of
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these returns weighted by the size of the unexecuted orders. While opportunity

costs are a real concern for institutional investors, our methodology does not

offer much insight into them, and in the rest of the chapter we focus only on

the execution cost component.

2 Observed prices, efficient prices, and pricing

errors

The implementation shortfall incorporates the total price impact of a large order.

However, to better understand the sources of the shortfall, it may be useful to

decompose the price impact into its permanent and transitory components. To

do this one must define and measure the efficient price and any deviations from

it at each moment in time. We take the standard approach of assuming the

efficient price is unpredictable, i.e., it follows a random walk.

Absent trading frictions, the efficient price at the daily or intraday frequency

can be characterized as a martingale process. Let mj be this latent price:

mj = mj−1 + wt. (7)

Sometimes the quote midpoint is assumed to represent this latent price.

However, quote midpoints are not generally martingales with respect to all

available order flow, in which case Hasbrouck (1995, p.1179) proposes to view

the random-walk component of a Stock and Watson (1988) decomposition as the

“implicit efficient price.” Hasbrouck (2007, Ch.4 and Ch.8) constructs an effi-

cient price more generally as the projection of mt onto all available conditioning

variables, i.e., the so-called filtered state estimate:

m̃ij = E∗ [mj |pij , pi,j−1, . . .] , (8)

where E∗ [.] is the linear projection of mij on a set of lagged prices.4 A standard

approach to implementing such a projection is through ARIMA time series

econometrics (Hasbrouck (2007, Ch.4)). The filtered estimate can be enriched

by expanding the set of conditioning variables with trade-based variables (e.g.,

signed order flow), news-based variables (e.g., the Reuters sentiment score of

4The observed pij in this section can be either trade prices or quote midpoints. In this
chapter we always use midquotes.
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press releases), etc.5

A more general approach constructs the “efficient price” based on a state-

space model. This nests the ARIMA approach but has the following advantages.

First, it allows for not only using past information to estimate the efficient

state, but also future information. This is particularly relevant in decomposing

a price change into a permanent price change (i.e., the efficient price change)

and a (transitory) pricing error. For a particular in-sample price change, one

does in fact want to ‘peek into the future’ to establish whether it was largely

permanent or transitory. A state-space model produces, in addition to a filtered

price estimate, a so-called smoothed price estimate that also takes future price

information into account, i.e.,

m̂ij = E∗ [mj | . . . , pi,j+1, pij , pi,j−1, . . .] . (9)

Second, the state-space approach extends naturally to multi-market trading

where there are potentially multiple price quotes for the same security at any

instant of time. It also accounts optimally for missing observations that arise,

for example, when various markets do not perfectly overlap. Third, structural

models often generate a system of equations in state-space form. This system

can then be taken to the data without further (potentially imperfect) transfor-

mations. Further discussion of the approach and implementation details are in

Menkveld, Koopman, and Lucas (2007).

The efficient price estimate enables one to decompose an observed price into

a (smoothed) efficient price and a pricing error:

pij = m̂ij + sij . (10)

Hereafter, the focus is mainly on the smoothed price estimate (as opposed to

the filtered estimate), as implementation shortfall is about ex-post evaluation

and therefore ‘future’ price information is available and relevant.6

Let us reconsider part of the quote of Perold (1988):

And you do not know whether having your limit order filled is a

5Non-public information can also be incorporated into the estimation. See Hendershott
and Menkveld (2011) for an application using NYSE market-maker inventory data, Menkveld
(2011) using data from a high-frequency trading firm’s inventory positions, and Brogaard,
Hendershott, and Riordan (2012) using data on the aggregate trading of 26 high-frequency
trading firms.

6Filtered price estimates are more natural in case of real-time trade decisions that neces-
sarily only have historical information available.
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blessing or a curse - a blessing if you have just extracted a pre-

mium for supplying liquidity, a curse if you have just been bagged

by someone who knows more than you do.

The efficient price estimate enables one to further refine the standard imple-

mentation shortfall calculation of equation (6) by recognizing the size of these

two components. The execution cost component of the implementation shortfall

can be rewritten as:

Execution Cost =
∑∑

(pij − m̂ij)tij︸ ︷︷ ︸
Liquidity Cost

+
∑∑

(m̂ij − m̂b
i )tij︸ ︷︷ ︸

Informational Cost

+

∑∑
(m̂b

i − pbi )tij︸ ︷︷ ︸
Timing Cost

(11)

The first component captures liquidity cost relative to the efficient price. If

one buys at a price above the efficient price, one effectively pays a liquidity

premium, and if one buys at a lower price one earns the premium. The liquidity

costs incorporate both the bid-ask spread and any transitory price effects. For

example, if a sequence of trades causes the current quoted price to differ from

the efficient price, this temporary price impact is captured in the liquidity cost

component.

This differs from the standard approach to measuring temporary price im-

pact, which compares the price immediately after execution to a price some

time later. In the standard approach, the temporary impact reflects the cor-

relation between the direction of the order and subsequent price movements.

For example, there is temporary impact if prices fall after the completion of

a large buy order. The state-space approach captures this general idea, as it

incorporates future price movements to estimate the permanent and temporary

price decomposition. However, the main advantage of the state-space approach

is that it calculates efficient prices throughout the execution period. The tem-

porary component can be measured and incorporated into the liquidity cost

component for each of the N executions. In contrast, the standard approach

can only measure the temporary price impact at the end of the execution period

based on its dissipation thereafter.

The second component of the implementation shortfall captures the infor-

mational cost, as it measures the covariation between executed signed order flow

and the efficient price change. This is sometimes referred to as the permanent
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price impact of the trades. If for some reason signed flow does not correlate

with efficient price changes, then the informational cost is zero. In most finan-

cial markets, however, the order flow is potentially informationally motivated,

so this component is positive on average. For example, in a classic market-

making model a liquidity supplier cannot distinguish informed from uninformed

flow and therefore charges all incoming flow the same price impact (see, e.g.,

Glosten and Milgrom (1985)). In reality, a small informational cost component

could reflect the skill of a trader or algorithm in camouflaging the order and

having it perceived as uninformed. This component can also reflect variation in

the information environment over time. For example, informational costs may

be greater just before scheduled earnings announcements.

The third component measures whether the timing of the trade is correlated

with the temporary component. If the parent order is a buy, for example, then

starting it when the quote midpoint is above the efficient price increases the

overall cost of the trade, all else equal. Conversely, starting a buy order when

the price is below the efficient price should improve its overall execution. We

capture this by assigning a negative timing cost when a trade begins in these

favorable conditions.

3 Illustration of Approach

Decomposing the price process into its permanent and transitory components

is fundamental to our approach. Hasbrouck (2007, Ch.8) provides a detailed

discussion of the challenges in identifying the two components. Here we follow

an approach developed for analyzing cyclical macroeconomic time series. This

approach puts enough structure on the persistence of the transitory price com-

ponent to identify the two components. Morley, Nelson, and Zivot (2003, p.240)

show that the most parsimonious allowable specification for the temporary com-

ponent is an AR(2):

“. . . the order condition for identification of the unrestricted UC-

ARMA(p,q) model, in the sense of having at least as many moment

equations as parameters, is p > 0, p > q + 2, and it is just satisfied

with p = 2, q = 0.”
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In the state space representation, the observation equation is:

pt =
[

1 1 0
] mt

st

st−1

 . (12)

The state equation is: mt

st

st−1

 =

 1 0 0

0 ϕ1 ϕ2

0 1 0


 mt−1

st−1

st−2

+

 1 0

0 1

0 0

[ wt

εt

]
, (13)

where the variance-covariance matrix of state innovations is:

Ω =

 σ2
w ρσwσε 0

ρσwσε σ2
ε 0

0 0 0

 . (14)

The unknown parameters in the state space model are (σw, σε, ρ, ϕ1, ϕ2). The

observed price can be net of any market or industry sector movements. This is

appropriate and efficient if trading occurs only in individual securities. Control-

ling for market and other factor movements is more complicated if the trading

is part of a larger portfolio transaction which could possibly impact market or

factor prices.

As discussed above, additional information can be utilized in decomposing

the price process into its permanent and transitory components. The most com-

mon approach is to add additional state variables reflecting publicly available

order flow information, such as buy and sell liquidity demand or the imbal-

ance between the two. Brogaard, Hendershott, and Riordan (2012) extend this

approach in the state-space context by using nonpublic information from NAS-

DAQ on whether or not the liquidity demander in each trade is a high-frequency

proprietary trading firm. Hendershott and Menkveld (2011) use NYSE market-

maker inventory data, and Menkveld (2011) uses data from a high-frequency

trading firm’s inventory positions. The amount of data that can be potentially

incorporated into the estimation is enormous. For example, all orders, trades,

and news in every related market and security could be utilized. For parsimony

in our examples we only use past prices, in one case adjusted for an industry

factor.
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3.1 Implementation shortfall calculations

To illustrate our approach, we use two different examples with trading data

observed at different frequencies: one example with daily trading data, and one

example of a parent order where we observe the size, time, and price of the

individual child order executions during the trading day. In the daily example,

we have two months’ worth of trades by the same fund in the same stock, ag-

gregated at the daily level, and we estimate the efficient and transitory price

components at a daily frequency. This approach is most relevant to investors

that make each day’s trading decisions overnight while the market is closed,

because in that trading environment implementation shortfall is naturally cal-

culated relative to the previous closing price.

It is worth noting that the decomposition in (11) requires the efficient price

estimate at the time of each transaction, m̂ij . In the daily example, however,

we only calculate end-of-day efficient price estimates because we do not know

when the trades actually take place during the day. This timing mismatch re-

duces the precision of the implementation shortfall decomposition and may also

introduce bias. The main issue is the allocation of the shortfall between the first

two terms of (11), the liquidity and information costs. These two components

can be thought of as corresponding to temporary and permanent price impacts,

respectively. If there is positive correlation between the direction of trading and

the movement in the efficient price, then using an estimate of the efficient price

prior to transaction j will overestimate the liquidity cost and underestimate the

information cost. Conversely, using an estimate of the efficient price after trans-

action j will underestimate the liquidity cost and overestimate the information

cost. If only coarse execution data are available and temporary components are

sufficiently persistent, however, the decomposition may still prove useful.

For the intraday example, we obtain an efficient price estimate for each

minute of the trading day. We use these efficient price estimates to evaluate the

execution of a single parent order that is gradually executed over the course of

about 30 minutes. The intraday horizon allows for an evaluation of the high-

frequency price dynamics during order execution.

To calculate our implementation shortfall decomposition we use equation (11)

with the prices at time j modified as follows:

1. the subscript i is dropped as there is only one security;

2. pj is the average price at which the institution’s trades execute at time j;
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3. pb is the quote midpoint prior to beginning execution;

4. m̂j is the estimate of the efficient price at time j;

5. m̂b is the estimate of the efficient price prior to beginning execution.

Using these prices the per-share execution costs can be represented as:(∑
(pj − m̂j)sign(tj)︸ ︷︷ ︸

Liquidity Cost j

|tj |+
∑

(m̂j − m̂b)sign(tj)︸ ︷︷ ︸
Informational Cost j

|tj |+

∑
(m̂b − pb)sign(tj)︸ ︷︷ ︸

Timing Cost j

|tj |
)

/
(∑

|tj |
) (15)

3.2 Daily estimation

For our first example, the execution data are from a long-short equity hedge fund

with approximately $150 million in assets under management and an average

holding period of about one month. For each stock traded by this fund, we

know the total number of shares bought and sold each day along with the

weighted average execution price. In this case, we do not have information

on individual intraday trade executions. This is the standard granularity for

institutional trading cost analysis, because this information along with a pre-

trade benchmark price (such as the previous closing price, the opening price on

the day of execution, or the price at the time the order is released) is sufficient

to measure implementation shortfall.

The chosen example is for AEC, which is the ticker symbol for Associated

Estates Realty Corporation, a real estate investment trust (REIT) listed on the

New York Stock Exchange with a market cap of around $650 million during the

sample period. We examine the fund’s trading in AEC during November and

December of 2010. The fund traded a total of 559,356 shares of AEC during

this time period on 20 separate trading days. The stock has an average daily

volume of roughly 460,000 shares over these two months, so the analyzed trades

constitute about 2.8 percent of the total trading volume in AEC during this

interval.

The implementation shortfall decomposition is illustrated based on daily

data and one investor’s trades in a single security. The index j runs over days

and the price snapshot is taken at the end-of-day (closing) price, i.e., the bid-ask

midpoint at the end of the trading day.
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The state space model characterized in (12)-(14) is estimated on daily data

from Jan 4, 2010 through Sep 28, 2012. We use daily closing stock prices to

calculate excess returns over the MSCI US REIT index, which is commonly

referred to by its ticker symbol RMZ. To be precise, the observed pt is the log

closing price of AEC adjusted for dividends less the log RMZ index level. The

parameter estimates are:

parameter estimate description

σw 91 basis points stdev efficient price innovation

σε 44 basis points stdev pricing error residual

ρ 0.38 corr(w, ε)

ϕ1 0.65 AR1 coefficient pricing error

ϕ2 -0.05 AR2 coefficient pricing error

Figure 1 illustrates the estimates by plotting the observed end-of-day (clos-

ing) midquote, the efficient price estimate, and the investor’s trades each day for

the trading period November 2, 2010 through December 31, 2010. Because the

pricing error follows a somewhat persistent AR(2) process, the daily pricing er-

ror innovation of 44 basis points scales up to a 71 basis point standard deviation

for the pricing error itself. This means that the typical temporary component

is estimated to account for 11 cents on this $15 stock. This is roughly five times

the typical bid-ask spread for this stock over our sample period. The temporary

component is of the same order of magnitude as the standard deviation of daily

innovations on the efficient price (91 basis points).

Figure 1 here.

Based on the resulting estimates of efficient prices, the total implementation

shortfall of 51.6 basis points can be decomposed as follows:

Avg Liquidity Cost 7.0 basis points

Avg Information Cost 65.1 basis points

Avg Timing Cost -20.5 basis points

Avg Total Cost 51.6 basis points

The negative timing cost component of -20.5 basis points measures the con-

tribution to fund performance from following a mean-reversion trading strategy

that takes advantage of temporary pricing errors. The other notable quantity

is the liquidity cost component, which is a modest 7.0 basis points. Recall
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that when the model is implemented at the daily horizon, the liquidity cost

component measures the average difference between execution prices and the

post-trade efficient price at the close. The gap between trade time and mea-

surement of the efficient price argues against making direct use of the numbers

as estimates of the cost of temporary price moves when the price decomposition

is performed at the daily horizon. Instead, we advocate using this component

on a relative basis to compare executions across brokers, across stocks, and over

time.

To illustrate the breakdown of execution costs across days, Figure 2 plots

the size of the total costs and each of its components for each day’s trading. As

in Figure 1, the size of the dot is proportional to the amount traded (|tj |).7

Figure 2 here.

As is often the case with execution cost measurement, there is substantial

variation in the costs. Daily implementation shortfalls in this case are between

-2.5 and 3.3%. The total costs are highest in the beginning of the sample,

especially for the first few large orders, suggesting that the fund quickly became

aware of its price impact and subsequently traded in smaller sizes. For these

first few large orders, the timing costs are negative, indicating that these orders

began when prices were relatively attractive, but the large informational costs

quickly swamped the timing benefit. Because we are using an end-of-day post-

trade efficient price estimate to split the price impact into liquidity (temporary)

and informational (temporary) components, we do not want to overinterpret

this part of the decomposition. However, because it is a post-trade price, our

liquidity component bears a strong resemblance to the traditional measure of the

temporary component discussed earlier. In fact, some traders regularly measure

trading costs against a post-trade price. Our innovation is to gain additional

insight by using a post-trade efficient price from the state space model rather

than use a closing quote or closing auction price.

3.2.1 Re-calculation based on filtered estimates

It is also possible to decompose the implementation shortfall using filtered es-

timates of the efficient price instead of smoothed estimates by substituting m̃j

7On most days the fund traded in only one direction. However, on three days the fund
bought and sold shares. On those days, only the net trade enters the analysis along with the
average price across all trades that day. For example, if the fund bought 35,000 shares at $15
and sold 5,000 shares at $16, then the net trade that day was a buy of 30,000 shares at a price
of (35,000*$15-5,000*$16)/30,000 = $14.83.
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for m̂j in equation (15). The filtered estimates yield:

Avg Liquidity Cost 10.4 basis points

Avg Information Cost 69.4 basis points

Avg Timing Cost -28.2 basis points

Avg Total Cost 51.6 basis points

Of course, the total implementation shortfall is calculated using observed

prices, so it remains unchanged. The timing cost component using filtered

estimates is of particular interest, because it has a natural interpretation as

the gross short-term alpha conditional on the subset of information included

in the model available at the designated pre-trade time (the previous close in

this case). Using filtered estimates, the timing cost component for this example

is more negative at -28.2 basis points, indicating that an important source of

overall return for this investor (or equivalently, an important source of trading

cost minimization) is trading against temporary pricing errors.

3.3 Intraday estimation

Our second example uses data from a well-known firm that provides equity

transactions cost analysis to institutional clients. We know the size and release

time of the parent order, and the size, price, and time of each child order

execution. To illustrate the method, we choose one such parent order arbitrarily

from a set of recent large orders in less active mid-cap stocks. We also require

the order to be executed in one day. The chosen example is a December 13, 2012

sell order in HMST, which is the symbol for Homestreet, Inc., a Nasdaq-listed

community bank on the west coast of the U.S. with a market cap of around

$360 million. The sell order is for 6,365 shares, and the stock has an average

daily volume of 119,000 shares during December 2012.

The order is released right around 11:00am, and it is fully completed in 50

child order executions over the space of about 30 minutes. During the half

hour from 11:00am to 11:30am, total trading volume in this symbol was 34,192

shares, so this client ended up trading 18.6% of the total volume during this

interval.8

We estimate the state space model using NBBO midpoints at each minute

during regular trading hours for 15 trading days from December 1, 2012 through

8There was no news released on HMST that day, and during the 11am-11:30am period,
the S&P500 fell by 0.2%, compared to a share price drop of about 2% over the same interval
in HMST. Thus, it appears that most of the price moves documented here are idiosyncratic.
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December 21, 2012.9 We discard quote midpoints for the first five minutes from

9:30am to 9:35am, as we find that prices right around the open exhibit a different

pattern of persistence and are much more volatile. Thus, the state space model

is designed to model share price behavior after the beginning of the trading day

and, at least in this case, the resulting implementation shortfall decomposition

is best applied to trading that avoids the opening 5-minute period.

The parameter estimates from the 1-minute state space model are as follows:

parameter estimate description

σw 11 basis points stdev efficient price innovation

σε 6 basis points stdev pricing error residual

ρ 0.15 corr(w, ε)

ϕ1 0.76 AR1 coefficient pricing error

ϕ2 0.19 AR2 coefficient pricing error

As noted in the earlier example, the average size of the temporary compo-

nent is much bigger than the standard deviation of the innovation due to the

substantial persistence implied by the AR(2) specification. In this case, the

standard deviation of the temporary component innovation is 5.9 basis points,

and the temporary component itself has a standard deviation of 51 basis points,

or about 12.5 cents on this $25 stock. The AR coefficients imply a slow decay

of the temporary component, with an estimated half-life of 14 minutes. As in

the earlier example, the correlation between innovations to the two unobserved

components continues to be positive, though it is somewhat smaller here. The

standard deviation of the random walk component is 11 basis points over the

1-minute interval, which scales up as the square root of t to 216 basis points per

trading day.

Combining the smoothed estimates of the efficient price with the child or-

der executions, we obtain the following decomposition of the implementation

shortfall:

9We also experimented with estimating the state-space model trade by trade rather than
in calendar time. We find relatively little persistence in the temporary component when the
model is estimated in trade time, most likely because the specification imposes an exponential
decay on the temporary component that does not seem to fit the trade-by-trade time series.
In addition, the results are very sensitive to how one aggregates trades that are within a few
milliseconds of each other but are not exactly simultaneous.
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Avg Liquidity Cost 48 basis points

Avg Information Cost 219 basis points

Avg Timing Cost -5 basis points

Avg Total Cost 262 basis points

The overall implementation shortfall is 262 basis points, and the large infor-

mation cost component reflects the fact that this order is selling as the estimated

efficient price is falling. The negative timing cost component of -5 basis points

simply reflects the fact that the sell parent order was released at a time when

the observed midpoint was slightly above the estimated efficient price.

Perhaps the most interesting component of our decomposition is the liquidity

cost, and it is particularly useful to compare our implementation shortfall de-

composition to a more traditional one. Recall that the liquidity cost component

measures the average difference between execution prices and the estimated ef-

ficient price in effect at the time. While the child orders here execute an average

of 48 basis points below the estimated efficient price, the liquidity cost would

only be 9 bps if we compare trades to quote midpoints in effect at the time of

the child order execution. This is a substantial difference and highlights that

the temporary component in prices clearly contributes to the overall trading

costs for this order.

Figure 3 illustrates the estimates by plotting the observed end-of-minute

NBBO midquote, the efficient price estimate, and the investor’s trades each

minute. An initial burst of selling coincides with a sharp price decline. We can-

not make causal statements, but it is certainly possible that the selling pressure

from this parent order caused the price decline. Much of the decline appears to

be temporary. The share price bounces back by noon once this order is com-

pleted and the selling pressure abates. This armchair empiricism is confirmed

by the efficient price estimate, which never moves down as far as the observed

quote midpoint and is as much as 14 cents above the midquote during this order

execution. The deviation between the observed midquote and efficient price be-

gins to appear as child orders begin to execute. After selling 4,365 shares in the

space of five minutes from 11:05 to 11:09 (or 23% of the 19,096 HMST shares

that trade in this interval), the transitory component reaches its maximum de-

viation. Thereafter, execution slows and the transitory component gradually

shrinks.

Figure 3 here.
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To illustrate the minute-by-minute breakdown of execution costs Figure 4

plots the size of the total costs and each of its components for trades in each

minute. As in Figure 3, the size of the dot is proportional to the number of

shares filled in each minute. As noted earlier, the efficient price moves down

sharply as the first few minutes of selling unfold. This is reflected in the initial

upward trend in the informational cost component. The liquidity component

increases rapidly from 39 basis points for executions at 11:05am to 64 basis

points for the 11:11am fills. Thereafter, the liquidity component generally de-

clines, although the scaling of the graph makes this difficult to see. The timing

component is constant at -5 basis points, as this illustration is for a single par-

ent order. Because the informational costs are by far the largest component

of the implementation shortfall, the pattern for total costs closely tracks the

informational cost component.

Figure 4 here.

4 Conclusion

In this chapter, we decompose a sequence of observed asset prices into a per-

manent and temporary component. We use this price process decomposition

to provide a novel and useful decomposition of the standard implementation

shortfall transaction cost measure.

Investors often think in terms of earning the spread, evaluating individual

executions vs. the prevailing quote midpoint. Our methodology provides an

alternative benchmark. Individual executions should be evaluated against the

estimated efficient price, which can be far from the current quote midpoint (a

root-mean-squared average of 51 basis points in the case of HMST, our intraday

example).

Our methodology also captures the fact that a sequence of trades in the

same direction can generate or contribute to a temporary component, and it

allows an institutional investor to measure how much its own trading has done

so. This seems particularly important in the current automated equity market

structure, where transitory price impact may be due to some traders following

order anticipation strategies. An institutional investor or algorithm provider

can use these empirical techniques to discern whether its algorithms or trad-

ing practices minimize these temporary price moves. The empirical examples

indicate that the temporary component could be an important contributor to
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overall trading costs: 48 basis points out of a total of 262 basis points for the

intraday example that we study.

We have provided two simple applications of the methodology here. While

we only use past prices, we want to reiterate that additional variables can and

probably should be added to the filtration. Signed order flow, information on

short sales, and position data can all be valuable in determining the latent

efficient price.

Finally, our decomposition may be useful in implementing the optimal trad-

ing strategy in Gârleanu and Pedersen (2012). They derive an elegant and

insightful closed form solution for optimal dynamic execution in the presence

of quadratic costs and decaying sources of alpha. Their model draws a dis-

tinction between temporary and permanent price impact, and our estimates of

the permanent and temporary components of transaction costs can be used to

operationalize their results.

Appendix: Implementation details

A useful general reference on state space models (SSM) is Durbin and Koopman

(2001). One standard way to the estimate parameters of a state space model is

maximum likelihood. The Kalman filter is used to calculate the likelihood given

a particular set of parameters.

One standard approach to implement maximum likelihood is to use the

Expectation-Maximization (EM) algorithm (see Dempster, Laird, and Rubin,

1977 for EM and Shumway and Stoffer, 1982 for EM and SSM). Its appeal rel-

ative to Newton-Raphson type approaches is (i) that it avoids a numerically

expensive calculation of the inverse of the matrix of second order partials and

(ii) with each step the likelihood is guaranteed to increase. Its relative disadvan-

tage is that convergence is relatively slow in the latter stages. Both approaches,

however, could converge to a local maximum. One way to avoid local maxima

is to search over a parameter grid.

We use two different estimation methods for the two examples presented in

Section 3. The intraday example employs the state space estimation commands

in Stata. To investigate robustness, we experimented with different hill-climbing

algorithms, starting values, and convergence tolerances. In every case, we end up

with the same estimates, suggesting that the likelihood function is well-behaved.

The likelihood optimization for the daily example is implemented in python
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and uses the pykalman package10. The EM algorithm is combined with a param-

eter grid search for the AR parameters of the pricing error process: ϕ1 and ϕ2.

The choice for a grid on this subset of model parameters is informed by studying

convergence based on random sets of starting values. It turns out that the pa-

rameters at the optimum are particularly sensitive to starting values of ϕ1 and

ϕ2. Grid search involved a grid over [−0.8,−0.6,−0.4,−0.2, 0, 0.2, 0.4, 0.6, 0.8]2

and finer grids with step sizes down to 0.05 around the optimum.

References

Almgren, Robert, Chee Thum, Emmanuel Hauptmann, and Hong Li. 2005.

“Equity market impact.” Journal of Risk July:57–62.

Brogaard, Jonathan, Terrence Hendershott, and Ryan Riordan. 2012. “High

Frequency Trading and Price Discovery.” Manuscript, University of Califor-

nia, Berkeley.

Dempster, Arthur P., Nan M. Laird, and Donald B. Rubin. 1977. “Maximum

Likelihood from Incomplete Data via the EM Algorithm.” Journal of the

Royal Statistical Society 39:1–38.

Duffie, Darrell. 2010. “Presidential Address: Asset Price Dynamics with Slow-

Moving Capital.” Journal of Finance 65:1237–1267.

Durbin, Jim and Siem Jan Koopman. 2001. Time Series Analysis by State Space

Models. Oxford: Oxford University Press.

Engle, Robert F. and Robert Ferstenberg. 2007. “Execution Risk.” Journal of

Portfolio Management :34–44.
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Figure 1: This graph depicts the end-of-day midquote, the efficient price esti-
mate, and the average execution price of the investor’s (parent) orders for each
day in the sample. The efficient price estimate is based on a state-space model
that was estimated for the entire sample: January 4, 2010 through September
28, 2012. The price estimate is based on the entire sample to obtain maximum
efficiency.
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Figure 2: This plot graphs the various components of the implementation short-
fall on investor trades each day. They are based on efficient price estimates
obtained from a state-space model and based on the entire sample: Jan 4, 2010
through Sep 28, 2012. The components are defined in equation (15).
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Figure 3: This graph depicts the end-of-minute midquote, the efficient price
estimate, and the average execution price of the investor’s trades for each minute
in the sample. The efficient price estimate is obtained from a state-space model
using NBBO midpoints at each minute during regular trading hours for 15
trading days from December 1, 2012 through December 21, 2012, discarding
quote midpoints for the first five minutes of trading (9:30am to 9:35am).
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Figure 4: This plot graphs the various components of the implementation short-
fall for trades aggregated within each minute. They are based on efficient price
estimates obtained from a state-space model using NBBO midpoints at each
minute during regular trading hours for 15 trading days from December 1, 2012
through December 21, 2012, discarding quote midpoints for the first five minutes
of trading (9:30am to 9:35am). The components are defined in equation (15).
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