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1. Introduction

Financial markets have evolved from manual, human-based, single-venue floor
trading to ultra-fast, low-latency, multi-venue, fully automated electronic trading.
Regulators have continuously updated rules to cope with the change. In the United
States, the Securities and Exchange Commission (SEC)’s regulatory objectives in-
clude maintaining fair, orderly, and efficient markets (O’Hara and Macey, 1999).
By examining the differences between publicly provided market data and data sold
directly from the exchanges we provide empirical evidence pertinent to assessing the
transparency and fairness of the U.S. equity markets.1 Our results characterize the
amount of latency, the frequency and magnitude of price differences due to latency,
and the potential costs to investors arising from latency. We study trading in Apple
for one day to illustrate the details of latency in the data. We then examine a set of 24
securities for 16 days in May 2012. We find that using public information imposes
small costs for investors trading infrequently and not trading at times when price
dislocations between the public/regulated and direct exchange data feeds are more
likely. In contrast, active traders are at a substantial disadvantage if they use the public
data.

Broadly speaking, there are two trading systems in the United States: reg-
istered exchanges and alternative trading systems. The registered exchanges are
required to provide the best bids and offers to be included in the consoli-
dated quotation system (CQS) and are also required to file any rule changes
with the SEC. The alternative trading systems include electronic communica-
tion networks and dark pools which do not provide best quotes to CQS, but
are required to match trades within a National Best Bid and Offer (NBBO).
In this study, we deal only with the quotation system based on registered
exchanges.

Trading occurs on 13 U.S. equity exchanges during our sample period (see
O’Hara and Ye, 2011, for evidence on trading across exchanges and batstrading.com
for more recent data). With many exchanges trading stocks simultaneously, how it can
be ensured that the submitted order is executed at the best bid and offer price across all
exchanges? This concern prompted the SEC to establish Regulation National Market
System (Reg NMS) in 2007 to protect fair access to the best price for investors,
particularly retail investors. Based on Reg NMS, exchanges are required to provide
the quotes to the primary exchanges such as NYSE and NASDAQ. The Security
Information Processors, known as SIPs for NYSE and NASDAQ, gather the data

1 We use public data to refer to market data provided under Section 11A of the Exchange Act. What we
refer to as proprietary data typically includes more detailed data, for example, limit orders not at the best
price, and is not consolidated before distribution. Both data feeds are available to any subscriber, but the
proprietary data are significantly more expensive.
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from all exchanges and publish their respective NBBO.2,3 Stock brokers are required
by Reg NMS to execute the retail customer trades at the NBBO or better.

Not all market participants have equal access to trade and quote information.
Both physical proximity to the exchange and the technology of the trading system
contribute to the latency. In addition, gathering and processing data takes time and
also causes delay. The NBBO from the NASDAQ SIP may not be the fastest NBBO
investors can obtain from the market. The delay is significant to the extent that
investors cannot get the optimal price if they have a large amount to be traded.
Also, there are delays in trade execution that cause the shown best price to be no
longer available at the moment an order reaches the market. Thus, there is uncertainty
whether NBBO prices can translate into trade prices. To mitigate problems such as
the NBBO requirement, the SEC allows trading via intermarket sweep orders (ISO)
and dark pools. ISO is a trade execution method in which an investor sends orders
to multiple exchanges for immediate execution, disregarding whether such a price is
the best nationwide.

The potential of deriving the NBBO more quickly opens opportunities for com-
panies to directly subscribe to different exchanges, allowing them to calculate a faster
NBBO compared to the SIP NBBO. This study provides possibly the first public ev-
idence that access to exchanges and fast calculation of the NBBO could generate
profitable opportunities.

Different market participants have different levels of interest in quantifying
latency costs. For traditional fund managers whose trading frequency is days or even
longer, it is debatable whether they should directly pay attention to latency costs.
For institutional investors who commonly adopt algorithmic trading strategies, such
as volume-weighted average price (VWAP) or time-weighted average price,4 their
reliance on third-party algorithmic trading software often makes them aware of the
latency cost but not to the extent that they monitor it closely. For these investors
latency is relevant to the execution of their trades, but not to their asset allocation
and portfolio choices. High-frequency traders (HFTs) decide which stocks to buy
and sell continuously in real time, so the latest and most accurate information is
crucial to them. To the extent that HFTs have an informational advantage over less

2 The August 22, 2013 failure of the NASDAQ SIP and subsequent halt of trading highlights the central
role the SIP plays. This failure stemmed from insufficient capacity at the SIP and raised awareness of the
SIP’s importance. For details, see http://www.nasdaq.com/press-release/nasdaq-omx-provides-updates-
on-events-of-august-22-2013-20130829-00686

3 For stocks listed on the NYSE, the SIP that provides the NBBO is the CQS and the equivalent NASDAQ
system for its listed securities is called the Unlisted Trading Privileges Quote Data Feed. In this study, we
obtain the data through the NASDAQ SIP, which provides the NBBO for all the NASDAQ listed stocks.
The cost of a co-located server using only SIP data is approximately $7,000 per month. A server also using
the direct exchange feed costs roughly three times that amount. The incremental costs are split close to
equally between the cost of the direct exchange data and higher network bandwidth requirements.

4 Hu (2009) provides an analysis of VWAP’s role in measuring transaction costs.
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well-informed investors, all traders and/or their brokers must be aware of latency
issues.

Having access to less up-to-date information complicates trading in a number
of ways. Price and execution become less certain because orders at particular prices
may change between the time of the last update and the time an order reaches the
market. The longer the latency, the larger the uncertainty. This uncertainty can be
compounded when trading is fragmented across many markets. Traders with access
to more recent prices can also devise various strategies to profit from slower investors.
These strategies can range from picking off stale orders in public markets to taking
advantage of any stale prices utilized by dark pools.

Latency in the public data reduces transparency to those investors viewing the
public data as opposed to the direct data feeds.5 This difference in transparency is a
source of unfairness across investors. Foucault, Roell and Sandas (2003) investigate
how investors with slower data are more likely to be picked off by investors con-
stantly monitoring market conditions.6 Ready (1999) and Stoll and Schenzler (2006)
empirically examine how slower traders’ orders provide a free trading option for
those traders with lower latency. Easley, Hendershott and Ramadorai (2014) study
an upgrade in the NYSE’s trading system which reduced the latency of off-floor
traders. They find that this reduction in off-floor traders’ latency as compared to that
of on-floor traders improves liquidity and raises stock prices.

The speed at which investors receive new information is a form of differential
information across investors. A number of theoretical models explore different aspects
of informational asymmetry related to the trading process. Slower market data are
a simple informational asymmetry. Hirshleifer, Subrahmanyam and Titman (1994)
and Foucault, Hombert and Rosu (2013) explicitly model the strategy of a trader
receiving information just ahead of other investors. Easley, O’Hara and Yang (2012)
show that when exchanges provide differential access to trade information liquidity
is reduced, volatility is increased, and prices are lowered. Cespa and Foucault (2014)
show that reductions in insiders’ access to post-trade information relative to outsiders
may also increase prices by reducing the risk to outsiders.

Empirically measuring informational differences across investors is difficult as
investors’ information set typically is not observable. O’Hara, Yao and Ye (2013)

5 Data processing and transmission lead to latency in market data regardless of whether trading is frag-
mented or centralized. Huang (2002), Barclay, Hendershott and McCormick (2003), and Goldstein, Shk-
ilko, Van Ness and Van Ness (2008) study competition among equity markets. Stoll (2001) posits that
investors and brokers can virtually integrate markets together through technology. Latency in market data
exists even when securities are traded on a single exchange; see “High-Speed Traders Exploit Loophole,”
Wall Street Journal, May 1, 2013, for a discussion of how this occurs on the Chicago Mercantile Exchange.
Data latency is one source of quoted prices on different exchanges being “locked” or “crossed” (Shkilko,
Van Ness and Van Ness, 2008).

6 Moallemi and Saglam (2013) model another cost of latency for investors trying to capture the bid–ask
spread by using limit orders. Gai, Yao and Ye (2013) examine how congestion due to order arrivals at
NASDAQ can increase the latency in market data.
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study the importance of trades smaller than 100 shares in the price discovery process.
These trades are not reported in the public data but are reported in markets’ proprietary
data feeds. Our results complement O’Hara, Yao and Ye (2013) by quantifying
another advantage for investors with access to proprietary data feeds: lower latency
in observing quotes.

2. Data collection

We collected data on a system provided by Redline Trading Solutions located at
BATS’ data center.7 The dedicated server used in this study was connected to various
exchanges directly (BATS, Direct Edge A/X, NASDAQ’s TotalView feed) as well as
to the NASDAQ SIP. We focus on NASDAQ listed stocks so we use the NASDAQ
component of the SIP. Ideally, the server should connect with all 13 exchanges to
obtain the lowest latency updates and consolidate quotes to generate its own NBBO.
If all data feeds exist, the system can generate an NBBO in the same way as the SIP
with lower latency. Data from the exchanges and the SIP are given time stamps at the
server used in this study so discrepancies in the clocks at the different exchanges and
the SIP do not affect our measurement of latency.

For this study, the server is directly connected with the following exchanges: two
BATS exchanges, BYX and BZX; two Direct Edge exchanges, EDGA and EDGX;
and NASDAQ. In order to construct an NBBO, including data from all exchanges,
we combine the direct exchange feeds with the other exchange components from the
SIP.

The synthetic NBBO is constructed with the following two rules:

- Use direct data feeds BATS, Direct Edge (EDGE), and NASDAQ and the SIP
top of book BBO for other exchanges to build our NBBO

- If BATS, EDGE, or NASDAQ has a new price better than current SIP price,
update our NBBO with the new price; if BATS, EDGE, or NASDAQ is alone
at the SIP NBBO and has a new price worse than current SIP price, update our
NBBO with the new price

The NBBO generated by this approach is not perfect. For exchanges in which
the information comes through the SIP, there is no benefit at all. Also, if some updates
arrive with short delay (direct feed) and other updates arrive with longer delay (SIP),
the amount of time each update stays on top of the book deviates from the real value.

7 The commercial product used to construct an NBBO is called the InRushTM Accelerator ticker plant.
Redline is a company specializing in providing low-latency market data and order-execution systems to
its customers. The system used an IBM server with 24 CPUs collocated at Savvis’ NJ2 center, where
BATS hosts its BZX and BYX exchanges. Savvis provides outsourced Internet infrastructure services and
low-latency connectivity to major financial exchanges. The server is co-located with the BATS exchange,
which results in the lowest possible latency for BATS. Additional details of the data collection are available
in an appendix available online: http://faculty.haas.berkeley.edu/hender/NBBO_Appendix.pdf
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Figure 1

AAPL bid/ask price from NASDAQ SIP NBBO on May 9, 2012

However, if more than 90% of the top of book updates are from exchanges with direct
feeds, this system generates a synthetic NBBO quite accurately with low latency.

3. Data latency

To illustrate the magnitude of the latency between the public (SIP NBBO) and
proprietary (synthetic NBBO) data we initially focus on Apple (AAPL), on a single
day, May 9, 2012. Later we expand our analysis to examine 24 securities in the
month of May 2012. Figure 1 shows the bid and ask prices for AAPL on May 9,
2012. AAPL’s price rose between 1% and 2% from the opening price of $563.70 to
the closing price of $569.18. The average bid–ask spread is $0.1621, which is roughly
three basis points of AAPL’s stock price, consistent with AAPL being highly liquid.

As is apparent from the difficulty in distinguishing the two lines in Figure 1,
examining how the bid and ask prices differ between the SIP NBBO and the synthetic
NBBO requires much higher time resolution than a daily graph can provide. To
illustrate this effect, Figure 2 plots the bid and ask prices for the SIP NBBO from
9:31 a.m. to 9:32 a.m. with dots marking when the synthetic bid and ask prices differ
from the SIP. Differences appear multiple times each second while clustering around
price changes. This suggests the natural intuition that a security’s volatility plays an
important role in the value of more up-to-date price information.
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Figure 2

AAPL NBBO from 9:31 to 9:32 a.m. on May 9, 2012

Dots are when the synthetic NBBO is updated before the SIP NBBO

Figure 2 demonstrates that dislocations between the SIP NBBO and the synthetic
NBBO occur frequently, possibly several times a second. Figure 2 does not provide
information about how long those price dislocations last. Quote changes occur when a
limit order improves the best price or the depth at the best price is cancelled or executed
against. The changes occur first in the synthetic NBBO and then subsequently in the
SIP NBBO. The latency between the two data sources can be quantified by calculating
the amount of time between the time stamps of the NBBOs:

Latency = TimestampSIP − TimestampSynthetic.

Figure 3 provides a histogram of the distribution of latency for AAPL on
May 9 by market centers. The average latency on BATS is larger than those on
EDGE and NASDAQ because the server is located just next to the BATS data cen-
ter. Thus, the updates directly from BATS arrive immediately on the direct data
feeds. The feeds from NASDAQ and EDGE arrive at the BATS data center with
some delay due to the distances between the data centers, reducing their latency
relative to the SIP. The amount of time it takes for information to be routed be-
tween market centers and the SIP determines latency in an absolute sense, but the
latency perceived by market participants depends on their perspective; that is, from
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Figure 3

Histogram of latency for AAPL on May 9, 2012, for BATS, NASDAQ and EDGE

which data center latency is measured. Measuring latency is challenging because
it depends on location (Wissner-Gross and Freer, 2010). Thus, our exact latency
numbers depend on our precise measurement approach and the location of our
server.

Averaged across all exchanges latency is about 1.5 milliseconds.8 As a com-
parison, the average time it takes to execute a market order is less than one-fifth
as large, roughly 300 microseconds. Therefore, brokers waiting for the NBBO in-
formation to decide what price and which exchange to route market orders to can
face disadvantages. The SEC’s 2010 concept release on equity market structure
wrote that latency at the SIPs themselves was about five milliseconds. Our latency
measure for BATS, which incorporates both latency at the SIP and between the
BATS and the SIP, is less than half that size, suggesting that latency has fallen over
time.

8 Figure 4 excludes EDGE observations with a latency less than 600 microseconds. Some of these were
due to an issue known at the time, and later corrected, in the EDGE feeds.
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Figure 4

Price dislocations for AAPL on May 9, 2012

4. Price dislocations

The latency in Figure 3 demonstrates the delays in price information that in-
vestors receive in the SIP NBBO. The magnitude of latency-generated price dislo-
cations is particularly meaningful to investors. Figure 4 shows the price dislocations
for AAPL throughout the trading day on May 9. Price dislocations occur at the bid
almost 25 thousand times in the day and at the ask nearly 30 thousand times. There
are 23,400 seconds during the 9:30 a.m. to 4:00 p.m. trading day, so price dislocations
occur more than twice per second on average.

Figure 4 reports the median price dislocation as being the tick size of $0.01.
However, many price dislocations are greater than $0.10, making the mean price
dislocation 3.4 cents, more than three times greater than the median. If an investor
routes orders based on the stale SIP NBBO then the investor can lose this amount
on each share. Figure 3 shows that these dislocations are short-lived at only several
milliseconds. Therefore, while dislocations are costly and frequent, their impact on
infrequently trading investors can be quite small as prices are dislocated less than 1%
of the time.

Figure 5 examines how price dislocations occur across exchanges at the ask
(the bid looks similar). Dislocations occur most often on NASDAQ and are slightly
smaller there. NASDAQ has the largest market share in APPL, so it is not surprising
that NASDAQ is where the differences appear most often.
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Figure 5

Price dislocations by exchange for AAPL on May 9, 2012

5. The cost of latency

Up to this point we have illustrated the frequency and magnitude of the price
dislocations between the SIP NBBO and the synthetic NBBO using direct data
feeds from the exchanges. These price dislocations can impact investors in a number
of ways depending on their trading strategies. The simplest example would be an
investor routing a market order to the exchange with the best price at the SIP NBBO.
In this case the frequency and durations of price dislocations provide an estimate
of how often the investor’s order could go to the wrong exchange. Figure 4 shows
that there are 54,734 price dislocations for AAPL on May 9 during the 6.5-hour
trading day. This corresponds to 2.34 dislocations per second on average. Estimating
that dislocations last as long as the latency shown in Figure 3 of approximately 1.5
milliseconds implies that for 3.51 milliseconds of each second the SIP NBBO and
synthetic NBBO differ. This could result in a buy or sell market order going to the
wrong market roughly half that often: 0.175% of the time. Figure 4 shows that the
average price dislocation is $0.034. Simply multiplying this times the percentage
of the time a dislocation occurs yields an expected price dislocation of $0.006 per
100 shares for a market order entered randomly throughout the day. Multiplying
this dollar amount by AAPL’s May 9 trading volume of 17,167,989 shares yields
$942, representing 0.001 of a basis point of dollar volume traded. This suggests that
investors randomly routing market orders are unlikely to face meaningful costs due
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to data latency. However, if investors are more likely to trade when dislocations are
occurring, then latency is more costly.

Although price dislocations have small effects on infrequently trading investors,
investors that are continuously in the market can be substantially disadvantaged. One
example involves dark pools that use the NBBO as a reference price at which orders
are matched. If the NBBO is based on the SIP and not the NBBO constructed from
exchanges, then the dislocations illustrated in Figure 4 are incorporated in the trading
prices in the dark pool. If an HFT monitors the proprietary and SIP NBBOs the trader
can enter a buy order when the synthetic NBBO is above the SIP NBBO. If the trader
initiating the trade in the dark pool at the SIP NBBO can exit the position at the
midpoint of the synthetic NBBO, a profit of half the price dislocation is realized.
That profit comes at the expense of the investor who had an order resting in the dark
pool.

To illustrate the above logic we provide a simple example. Assume BATS updates
AAPL’s bid price from $530 to $531, and the ask price remains at $532. This changes
the mid-price from $531 to $531.5. In the first 1.5 milliseconds, slower traders are
not aware of the price change. If some such traders have placed an order to trade at
mid-price in a dark pool, then faster traders can buy the stock at $531 in the dark pool
when the synthetic NBBO gets updated. After 1.5 milliseconds, traders can sell it for
$531.5 in the dark pool. In this case the trade gains 50% of the price dislocation. Dark
pools represent roughly 11% of trading volume, corresponding to 1,888,478 shares
of AAPL on May 9. If half of the average dislocation of 3.4 cents is captured on this
volume then fast traders would make a profit of $32,510 in a single stock on a single
day. The profit figure represents an upper bound on the profits of this type of strategy
because it assumes all dark pool trades occur during price dislocations on dark pools
using the SIP NBBO for prices. While AAPL is one of the highest-volume stocks,
the dollar figure illustrates the possible magnitude of profits and costs stemming
from latency for traders continuously in the market. How much of such hypothetical
profits could be captured in practice and whether data latency enables other types of
profitable strategies require further study.

The above calculations illustrate that latency costs can be very low for infre-
quently trading investors, but that latency in data can be quite costly for very active
investors. There are many other possible costs of latency. For example, we have fo-
cused solely on price dislocations for marketable orders. Adjusting limit orders with
slow data can result in worse queue position, which reduces the likelihood of the
order being filled. Having slower data also reduces the accuracy of information on
the quantities at the best prices, which complicates filling larger orders.

6. Price dislocations over time

May 9 is a single day so we next examine its representativeness by studying
AAPL on other days in May 2012. In addition to each day’s number of disloca-
tions, Figure 6 plots AAPL’s intraday volatility based on the percentage difference



324 S. Ding et al./The Financial Review 49 (2014) 313–332

0.00%

0.50%

1.00%

1.50%

2.00%

2.50%

3.00%

0.00

10,000.00

20,000.00

30,000.00

40,000.00

50,000.00

60,000.00

70,000.00

80,000.00

90,000.00

5/1 5/2 5/3 5/4 5/5 5/6 5/7 5/8 5/9 5/10 5/11 5/12 5/13 5/14 5/15 5/16 5/17 5/18 5/19 5/20 5/21 5/22 5/23 5/24 5/25

AAPL Intraday Vola
lity

AA
PL

  N
um

be
r o

f D
is

lo
ca

on
s

Date

AAPL number of price disloca on and intraday vola lity in May 2012

Number of Disloca ons

AAPL Intraday Vola lity

Figure 6

Price dislocations and intraday volatility for AAPL in May 2012

between each day’s high and low prices. The largest number of dislocations is 81,279
on May 18. That day AAPL had its second highest intraday volatility in the sam-
ple period of 2% and its highest daily trading volume of over 26 million shares (not
shown). The three lowest numbers of dislocations occur on May 2, 10, and 25, 40,486,
35,264, and 41,467, respectively, which have the lowest intraday volatilities, 0.73%,
0.65%, and 0.66%, and trading volumes, 15, 12, and 12 million shares, respectively.

The number of dislocations and volatility clearly move together in Figure 6 and
the correlation between the two series is 0.71. This relation is not surprising as higher
volatility implies more price changes and dislocations occur when the bid and ask
prices change. Trading activity also impacts the frequency of bid and ask changes.
Trading volume and stock price volatility generally are highly correlated and in the
AAPL sample the daily correlation is 0.86. Hence the correlation between the number
of dislocations and trading volume also is high.

Thus, the daily analysis for AAPL shows that dislocations are greater when
volatility and trading volume are higher. If these same relations hold within each
trading day, then the potential costs of latency calculated in this paper represent a
lower bound. For example, the costs calculated in Section 5 take daily averages of the
number of dislocations, the average size of the dislocations, and trading volume. If
these are positively correlated as in Figure 6, then by Jensen’s inequality the average
of the number of dislocations times the size of the dislocation times the trading
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volume is larger than the average of the number of dislocations times the average of
the size of the dislocation times the average of the trading volume.9

7. Price dislocations across securities

While AAPL is a very important stock for investors, its high price makes the
tick size of one cent small as a percentage of share price. Its finer pricing grid and
rapid trading activity both could lead to price discrepancies occurring quite often
in AAPL. To examine the differences across various types of securities we turn to
data for 24 securities. The securities were selected to represent a broad cross-section
of characteristics including share price, market capitalization, and trading volume.
Market capitalization, share price, volatility, trading volume, and number of trades
are taken from CRSP.10 Volatility is measured as the percentage difference between
the day’s highest and lowest price. The number of securities is limited to ensure that
the latency measures do not arise from any congestion on the server collecting the
data.11 The sample period is the 16 trading days from May 4 through May 25, 2012.
This sample period is a few days shorter than the sample for AAPL shown in Figure 6
because the first few days of May were used for testing and data were not collected
for all securities.

Table 1 provides information on how these securities vary in terms of charac-
teristics and trading activity. Each variable is measured daily and Table 1 reports
the average across days in the sample. Dislocations are measured by their number
in thousands, their total value (number times size) in thousands of dollars, and their
average size in percentage of share price.12 A Herfindahl index is calculated daily
using trading volume at each of the exchange codes in the NYSE’s Trade and Quote
database. While these are the best publicly available data, they underestimate the
true fragmentation of trading as the trade report facilities aggregate trading from a
number of different trading venues. This aggregation possibly causes the variation in
the Herfindahl to be relatively small.

9 Calculating a precise estimate of realized cost of latency is very difficult because synchronizing trades
and price dislocations across exchanges is possible only if the latency in the different data feeds is known.
In addition, some market centers, for example, dark pools, are only required to report their trades within
30 seconds.

10 Two exchange traded funds, PowerShares QQQ and ProShares Ultrapro Short QQQ, are included.
Market capitalization is reported in CRSP for these, but its meaning is less well defined for ETFs. The
results are not sensitive to removing these two securities.

11 Queuing models demonstrate that the server’s utilization increases latency in the server, as opposed to
latency in the data feeds themselves, nonlinearly. By keeping the number of securities small, the server’s
average utilization was kept very low to avoid congestion on the server contributing to the latency measures.

12 For May 10, 2012, data on Arena Pharmaceuticals (ARNA) are missing from CRSP. For EDS on May
15 and CLNT on May 16 there are zero price dislocations.
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AAPL is the largest, highest-price, and most actively traded security in our
sample. AAPL has three times more dislocations than the next highest security,
Amazon.com, but the average size of these dislocations is only one basis point. The
smallest firm is Cleantech Solutions, with a market capitalization of approximately
$10 million and about one million dollars per day in trading volume. Alexza is
the lowest price stock at $0.41. These small, low-priced securities have only 5 and
50 dislocations per day, but these dislocations are large at 21 and 57 basis points.
The differences between the minimum and maximum number of daily dislocations
demonstrate that the substantial time variation in the number of dislocations shown
for AAPL in Figure 6 is also present in other securities. The dislocations statistics
suggest that the illustrative numbers for the costs of latency for AAPL in Section 5 do
not directly generalize to other securities. Because AAPL is a very active high-priced
stock the percentage size of dislocations is much smaller, but dislocations occur much
more often than in other securities.

The descriptive statistics in Table 1 suggest a number of interesting possible
relations among security characteristics and dislocations. To examine these more
systematically, Table 2 provides pairwise correlations among the variables for the
384 security-day observations. The reciprocal (inverse) of price typically is used
because the tick size is fixed at one cent for securities priced above one dollar and
to mitigate the impact of high-priced securities. The correlations among the security
characteristics are not surprising: larger stocks are higher priced with lower volatility
and higher trading activity. Trading volume is negatively correlated with volatility
because of the negative cross-sectional relation between them. As suggested by
Table 1 the number and value of dislocations are highly correlated at 0.95. These two
variables are negatively correlated with the average percentage dislocations –0.28
and –0.24, respectively. Security characteristics that are positively correlated with
the number of dislocations generally are negatively correlated with the percentage
average size of these dislocations.

Table 2 calculates the correlations among the variables in Table 1, in which
observations across firms are pooled. This pooling mixes together cross-sectional
and time series correlations. The correlation between volatility and the number of
dislocations in Table 2 has the opposite sign as shown for AAPL in Figure 6. The
graphical correlation is purely time series whereas the pooled correlation is both
cross-sectional and time series.

To estimate the pairwise time series relations between the variables and the
dislocation measures, Table 3 estimates univariate regressions with securities fixed
effects for each of the three dislocation measures on the security characteristics.
Because trading volume and the number of trades have a 0.73 correlation we will
focus only on trading volume, as the results for number of trades are similar. In
addition, because there are no stock splits in our sample period and share price is
incorporated in inverse price, market capitalization is not included. Therefore, the
four security characteristics and three measures of dislocation lead to 12 separate
regressions. Each coefficient in Table 3 is from estimation of a regression of the
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Table 3

Univariate regressions with security fixed effects

The daily sample extends from May 4 to 25, 2012 for 24 securities. Regressions are conducted on
each measure of price dislocation for each independent variable, so the table reports coefficients for 12
regressions. Each regression includes security fixed effects. Volatility is the percentage difference between
the day’s highest and lowest prices. Trading volume is in shares. Dislocations are measured by their
number in thousands, their total value (average number times average size) in thousands of dollars, and
their average size in percent. Logarithms are taken of share price, share trading volume, and the number of
and value of dislocations. Statistical significance is calculated controlling for heteroskedasticity. Standard
errors are in parentheses.

Average
Log(no. of price Log(value of size of

dislocations) dislocations) dislocations

Log(price) 1.16** 1.22** −0.11**
(0.20) (0.20) (0.02)

Volatility 14.68** 16.97** 0.95*
(3.03) (3.12) (0.38)

Log(trading volume) 0.61** 0.66** 0.01
(0.08) (0.08) (0.01)

Herfindahl −3.67** −3.95** 0.21
(1.06) (1.13) (0.20)

*/** denote significance at 0.95/0.99 level.

column dislocation measure on the row security characteristic and security fixed
effects. Hence, Table 3 corresponds to time series only correlations between the
variables. Statistical significance is calculated controlling for heteroskedasticity. The
regressions are of the form:

dislocationi,t = αi + βxi,t + εi,t ,

where dislocationi,t is the dislocation measure for security i on day t, αi is the fixed
security effect, and xi,t is the characteristic for security i on day t. Logarithms are
taken of price, share trading volume, and the number of and value of dislocations
to account for the substantial cross-sectional heteroskedasticity in those variables.
Share trading volume is used to separate the effects of share price effects and trading
volume.

Table 3 shows that the time series correlations between the number of price
dislocations and volatility, trading volume, and higher price all are positive, as are the
correlations with the total value of those dislocations. The channels by which price
and volume could lead to more dislocations are straightforward as all of these lead
to more frequent limit order book updates. A higher trading concentration reducing
dislocations could arise from liquidity providers revising their quotes more frequently
as the number of markets increases. In the time series, volume and volatility are
positively correlated (Tauchen and Pitts, 1983) and in Table 3 higher volatility is
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Table 4

Panel regressions

The daily sample extends from May 4 to 25, 2012 for 24 securities. Regressions are conducted on
each measure of price dislocation. Regressions are performed with and without security fixed effects.
Volatility is the percentage difference between the day’s highest and lowest prices. Trading volume is in
shares. Dislocations are measured by their number in thousands, their total value (average number times
average size) in thousands of dollars, and their average size in percent. Statistical significance is calculated
controlling for heteroskedasticity. Standard errors are in parentheses.

Log(no. of price Log(value of Average size of
dislocations) dislocations) dislocations

Log(price) 1.15** 1.11** 1.46** 1.16** −0.09** −0.11**
(0.06) (0.21) (0.05) (0.21) (0.01) (0.02)

Volatility 37.11** 6.32* 39.78** 8.45** 0.80* 1.22*
(5.81) (2.88) (5.30) (2.97) (0.36) (0.51)

Log(trading volume) −0.16** 0.46** −0.20** 0.47** −0.02** −0.02
(0.04) (0.09) (0.04) (0.09) (0.00) (0.02)

Herfindahl 2.48 −1.37 4.58** −1.50 0.61** 0.09
(1.39) (1.06) (1.21) (1.07) (0.19) (0.18)

Constant −2.22** −7.54** 0.48**
(0.76) (0.71) (0.09)

Fixed effects N Y N Y N Y
Observations 381 381 381 381 381 381
R-squared 0.63 0.92 0.78 0.94 0.63 0.85

*/** denote significance at 0.95/0.99 level.

associated with more frequent and larger dislocations. This result does not hold in
the cross-section because volatility and trading volume are negatively correlated as
can be seen in Table 1. Finally, there is a significant common component to both
volatility and trading volume across assets (Wang, 2002), which leads to a common
component in dislocations across securities.

The correlations in Tables 2 and 3 are useful for assessing the relations between
dislocations due to latency and security characteristics. Table 2 shows nontrivial cor-
relations among the security characteristics which make understanding their marginal
impact more difficult as the collinearity makes statistical inference less precise. For
example, market capitalization and trading volume have a correlation of 0.90 in
Table 2.

Table 4 conducts panel regressions with and without security fixed effects of the
dislocation measures regressed on the security characteristics. The regressions are of
the form:

dislocationi,t = α + β ′Xi,t + εi,t ,

where dislocationi,t is the dislocation measure for security i on day t, α is the intercept,
and Xi,t is the vector of characteristics for security i on day t; in the regressions with
fixed effects α is replaced by αi. As in Table 3, logarithms are taken of price, share
trading volume, and the number of and value of dislocations.
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As in the univariate regressions in Table 3, the coefficients on volatility are
positive and statistically significant for all dislocation measures. The more prices
change, the more often dislocations occur and the larger those dislocations are.
Volatility can also lead to liquidity providers wanting to adjust their quotes more
often, which can be another source of dislocations.

Share price matters because the tick size is constant at one cent for all securities.
A larger share price means that the tick size is smaller as a percentage of share price.
Hence, smaller percentage price changes translate into discrete prices ticking up or
down more often in smaller percentage terms in higher priced securities. When prices
move, opportunities for dislocations occur. Therefore, higher prices lead to more, but
smaller, dislocations due to the tick size effect.

Trading volume could be associated with more or fewer dislocations. Trad-
ing volume leading to more changes in the quotes can lead to more dislocations.
For example, if all depth at the best bid price is taken out by a marketable or-
der, then a dislocation can occur. In addition, dislocations could lead to higher
trading volume as high-frequency trading firms attempt to capitalize on these op-
portunities. On the other hand, higher trading volume could be associated with
higher depth and liquidity and, therefore, more stable quotes. More stable quotes
would lead to fewer and smaller dislocations. The positive coefficient on trading
volume in the specifications with firm fixed effects is consistent with trading vol-
ume being positively associated with dislocations in the time series. The cross-
sectional association of trading volume with dislocations is negative as seen in the
specifications without fixed effects. After controlling for other security character-
istics, the Herfindahl trading concentration index is not robustly associated with
dislocations.

8. Conclusion

In this study we compare the NBBO from the public/regulated SIP and the
NBBO from proprietary data feeds from the exchanges. Price dislocations be-
tween the NBBOs occur several times a second in AAPL and typically last one
to two milliseconds. The brevity of dislocations mitigates costs for investors trad-
ing infrequently. However, the frequency of the dislocations makes them costly
for frequent traders. Examination of 24 securities over 16 trading days indi-
cates that higher security price, trading volume, and volatility are associated with
dislocations.

How well does current market data regulation meet its goals? The answer de-
pends on many factors including: (i) how much could further regulatory intervention
possibly reduce the small costs for infrequent traders? (ii) how much regulation is
needed to protect frequent traders from possible market power by exchanges in the
pricing of their proprietary data? (iii) how inefficient is it for all frequent traders to
purchase the data from exchanges and then consolidate it? (iv) how effective are the
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incentives for technological innovation by the more heavily regulated public data
providers?
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