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Abstract
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Bayesian’s changing beliefs over time, showing that these measures are equal in expectation,
and creating consequent statistical tests for Bayesianess. We then show connections between
these two core concepts and four common psychological biases, suggesting that the test might
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1 Introduction

Suppose we observe Abigail’s evolving beliefs about whether the Republicans will win the next

Presidential election: her beliefs start at 35%, jump to 54% and then 78% after two shocking

revelations, drop to 44% after the release of an economic forecast, and so on, until she finally

learns the actual outcome. Is Abigail changing her beliefs in a rational way? Does she have a

good model of how elections are won, based on reasonable priors? One way to judge Abigail’s

rationality would be to compare her assessment of announcements or of uneventfulness to expert

judgment of the normatively right meaning of these events. However, even if we feel ill-informed

about the “right”beliefs, we can still judge beliefs changes based solely on the intrinsic properties

of Bayesian updating. This paper proposes an approach to this “agnostic” investigation of the

rationality of beliefs built around a basic principle of rational information processing: changes in

beliefs should on average correspond to a reduction of uncertainty.

This principle can be brought to mathematical life with simple measures of belief movement and

uncertainty reduction whose equivalence on average follows directly from the martingale property

of Bayesian updating. We use this relationship to create statistical tests to judge the likely

rationality of belief changes. We then show why and how four categories of psychological biases

are likely to lead to excess or insuffi cient movement of beliefs relative to uncertainty reduction,

providing a novel way to categorize the biases. The connection between the biases and our core

concepts suggests our approach might be particularly powerful in identifying these deviations, a

conclusion we support by comparing in numerical simulations our approach to other potential

tests. Finally, we illustrate the empirical potential for our approach, finding (1) excess movement

on average in a panel of expert predictions, (2) evidence of small deviations from Bayesian beliefs

in an algorithm used to predict baseball games, and (3) equality on average between movement

and uncertainty reduction in large prediction markets for individuals sports events.

In Section 2 we present our framework and notation, formalize some universal basic properties

of Bayesian updating, and use those properties to create statistical tests. Our setting is simple:

a Bayesian uses signals in each period t to update her beliefs about the likelihood of a binary

state from πt to πt+1, leading to a stream of beliefs over time. We then define our main objects of

interest: (1) uncertainty at time t as πt(1−πt) and the uncertainty reduction between any periods
t1 and t2 as rt1,t2 ≡ πt1(1 − πt1) − πt2(1 − πt2); and (2) the movement across those periods as

mt1,t2 ≡
∑t2−1

τ=t1
(πτ+1 − πτ )2. Uncertainty reduction, which can be positive or negative, captures

the gain in certainty about the state given the net effect of information. Movement, which is always

positive, provides a simple measure of how much the person is changing her mind over time. We

employ these particular definitions of movement and uncertainty because they are simple and

familiar to economists, but we discuss how they could instead be captured using more-complex

forms, such as Kullback—Leibler Divergence and Shannon Entropy.1

1In each, the movement measure is a convex function, such that an immediate jump from one belief to another
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Our paper centers around a strong and simple equivalence relationship between the two mea-

sures: for any data-generating process (DGP) determining the distribution of signals across any

time periods, a Bayesian’s expected movement must equal her expected uncertainty reduction.

Intuitively, if a person’s change in beliefs is rational, it should be because she is– on average–

learning a corresponding amount about the state of the world. The relationship implies that we

should be skeptical of a person’s “Bayesianess”if we either consistently observe that she repeat-

edly changes her mind a relatively large amount without growing more confident, or, conversely,

consistently ends up very confident but with relatively little fluctuation in beliefs. Mathemat-

ically, the equivalence is an almost-immediate implication of the fact that Bayesian beliefs are

a martingale combined with the law of iterated expectations: the one-period excess movement

statistic Mt,t+1 − Rt,t+1 can be simplified as (2πt − 1)(πt − πt+1), which must have an expecta-

tion of equal zero because E[f(π0, π1, ..πt) · (πt − πt+1)] = 0 for any instrument f given that

E[πt − πt+1|π0, π1, ..πt] = 0 for a martingale. We return to this formulation below. While the

connection between movement and uncertainty is simple, it has not to our knowledge been used

as the basis to test the rationality of belief updating.

We start by presenting a set of simple tests that demonstrate the principles of the relationship.

First, a simple corollary shows that for resolving DGPs– where the person eventually ends up

certain about the state of the world– the expected movement of the belief stream over all periods

must equal the initial uncertainty π0(1 − π0). For example, consider someone who observes two

sequentially tossed fair coins and has beliefs about the likelihood of observing two heads. With

probability 1
4
, she observes a “HT”leading to a belief stream of 25% → 50% → 0%, which has

movement of 5
16
. She also might observe “TT”,“HH”or “TH,”each with probability 1

4
, leading

to movement statistics of 1
16
, 5
16
, and 1

16
, respectively. The expectation of these four movement

statistics is equal to the initial uncertainty of 3
16
. The corollary implies that all other DGPs with

the same prior 1
4
can have different likelihoods of different signal realizations (implying different

beliefs streams with different movement statistics), but the expectation of the movement statistic

must always equal 3
16
.

Given this equality and the fact that movement must be positive, it is straightforward to

statistically bound the movement in one belief stream. For example, DGPs with a prior of 1
2
(and

therefore initial uncertainty of 1
4
) cannot lead to a larger than 5% chance of a movement statistic

greater than 5, because this would generate expected movement greater than 1
4
. Consequently, one

can reject Bayesianess with 95% confidence after observing one stream with movement greater than

the cutoffof 5. While it is not surprising that some belief movements are rare for a Bayesian– after

all, a Bayesian can only move from 5% to 100% with 5% probability– our test allows rejection

given a combination of a set of smaller belief changes regardless of the person’s initial and ending

beliefs. We then bound the variance of the movement distribution, which allows for a reduction

has a larger measure than a gradual change between these beliefs in small monotonic steps.
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of these cutoffs (for example from 5 to 2.69 when the prior is 1
2
).2 We also demonstrate an

interesting asymmetry: it is not possible to statistically reject Bayesianess given a single stream of

very small movements. While we can provide upper and lower statistical cutoffs when observing

multiple resolving streams, the tests are very conservative because they are constructed using

layered worst-case scenarios.

The test can be significantly strengthened by relying on the central limit theorem (CLT)

approximation to construct test statistics. That is, given that the one-period belief movement

minus the uncertainty reduction must have an expectation of zero at any period for any DGP, it is

possible to perform a simple means test given any collection of belief movements from potentially

different DGPs. The CLT approximation can fail: we provide examples of arbitrarily large datasets

of very small belief movements that cause the approximation to be very inaccurate and lead to

the common false rejection of Bayesian behavior. This failure demonstrates an important point to

which we return below: because the likelihood of a belief movement under rationality is dependent

on its size, the scale of movements is an important feature of any test. To address this issue, we

introduce a simple rule of thumb, derived from numerical simulations, that this test should only

be employed with datasets where the total amount of belief movement is at least 3. We also

discuss the effect of measurement error and rounding: while reasonably small amounts of noise

and rounding have little effect on the statistic, very large levels of error can substantially bias the

statistic upward, although we discuss why this size of random error might better be considered a

deviation to be detected rather than a nuisance to remove.

We then relax the binary-state assumption, considering a person who holds beliefs over many

possible states. We first show that the expected sum of movement statistics for beliefs in all states

must equal the expected sum of uncertainty reduction statistics. We then turn to the presumably-

more-empirically-relevant situation in which the person has beliefs over possible values of some

variable– like the expected value of a new good or the expected inflation rate next quarter– but

only reports her changing expectation of that value over time rather than her full belief histogram.

A natural conjecture would be that, given that the movement of beliefs are statistically bounded,

there is some bound on the movement of expectations. In fact, a simple but strong negative result

shows this is clearly false: for any observed stream of expected value predictions, there is some

DGP in which that exact stream occurs with arbitrarily high probability. To understand this

simple result, consider an expectations stream in which the person moves from 0.01 to 0.99 and

back again many times. While this stream is clearly rare when the possible outcomes are 0 and

1 (as with beliefs), it can be extremely common for some DGP when outcomes range from -1,000

and 1,000.

This negative result reflects an important theme in the paper and crucial to understanding our

results with binary beliefs: if there is no way to judge the scale of movements, there is no way to

2These cutoffs are not tight: given a prior of 12 , a more-complicated proof technique shows a 95%-confidence
cutoff of 2.07, and given numerical simulations we believe that the actual cutoff is likely closer to 1.31.
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conclude that streams are rare. In our results on binary beliefs, we were implicitly exploiting the

fact that beliefs have a defined scale in the unit interval, which allowed us to determine when col-

lections of movements were “too large”or “too small.”The exact nature of the scaling is apparent

given our next positive result about expectation streams: the expected movement in expectations

must equal the expected reduction in variance about the value, suggesting that the second moment

encodes the necessary scaling information. Crucially, because binary beliefs are defined with two

outcomes, the variance is encoded in beliefs, allowing us to make statements without any further

information. This fact makes beliefs particularly amenable to tests of movement.

In Section 3, we explore the connection between our binary-belief test and four psychologi-

cal biases. The connections indicate why our approach may be particularly well-suited to detect

(and possibly differentiate among) common departures from Bayesian updating, a theme contin-

ued in Section 4, where we compare other tests of the martingale property and their statistical

performance in detecting the four biases. We start by developing a simple dynamic updating

model in which the person can misweight her prior or her signal. We focus on four simple biases

embedded in the model: underweighting the prior (“base-rate neglect”), overweighting the prior

(“confirmation bias”), underweighting the signal (“underreaction”), and overweighting the signal

(“overreaction”).3 We analyze the effect of these biases in two simple environments: (1), where

the person starts with the correct prior and observes a single symmetric signal; and (2), where the

person starts with the correct prior of 1
2
and observes an infinite sequence of symmetric identical

conditionally-independent signals.

We show how the psychological biases connect to the relationship between expected movement

EM and uncertainty reduction ER. In the one-shot situation, regardless of the prior or the level of
bias, both base-rate neglect and overreaction always lead to EM > ER, while confirmation bias and
underreaction always lead to EM < ER. While the sequential-signal environment is more complex
because agents update incorrectly using priors that have accumulated past errors, the results on

overreaction and underreaction hold, and the results on base-rate neglect and confirmation bias

hold as long as the biases are strong enough.

Results about the sign of the difference EM − ER obviously cannot categorize these or other
biases into more than two types. To further differentiate the biases, Section 3 also explores how

the biases affect movement and uncertainty reduction separately, by comparing EM and ER to

those of a Bayesian observing the same signals, which we label EMB and ERB. This analysis

requires the departure from our driving assumption– held throughout the rest of the paper– that

the normatively-correct beliefs are unobserved. The four biases have four different implications for

these comparisons in our simple dynamic environment. The most intuitive case is base-rate neglect

3We model confirmatory bias as the opposite of base-rate neglect, and (more obviously) under-reaction to signals
as the opposite of over-reaction. As we discuss in Section 3, however, we do not view the varied parameter values in
our setting as reflecting different assumptions about the underlying psychological biases any individual succumbs
to. Rather, they reflect different informational environments where each of the four biases will dominate a person’s
updating.
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where, as a result of “forgetting” information, the base-rate neglector shifts beliefs more than a

Bayesian but ends up being less certain: EM > EMB,ER < ERB. Conversely, confirmation

bias– when strong enough– leads the person to predictably move in the direction of her original

signal, leading to too little movement but over-confident beliefs in the long run: EM < EMB and

ER > ERB. Meanwhile, overreaction leads to EM > EMB and ER > ERB and underreaction

leads to EM < EMB and ER < ERB even in the short run: over-interpreting information leads

to both too much movement and causes the person to be too certain, while under-interpretation

leads to too little movement and not enough certainty.

In Section 4, we compare and contrast our binary-belief method with the most common tests of

Bayesian updating that also do not require knowledge of the signal DGP. To frame the discussion,

recall from above that the martingale property of Bayesian beliefs implies that E[f(π0, π1, ..πt) ·
(πt−πt+1)] = 0 for any instrument f . Different tests of the martingale property arise from different

instruments. Our test boils down to the simple instrument (2πt − 1), such that excess movement

can interpreted as a summary statistic of the combined propensity to revert to a belief of 1
2
, the

point of highest uncertainty.4 But, why use this particular instrument? We are not claiming

that our instrument is universally more powerful to detect all deviations from rationality: different

tests based on different instruments will be better at detecting different deviations.5 However, we

present evidence that it is particularly powerful to detect deviations associated with the common

psychological biases in Section 3, as well as having certain desirable characteristics, such as time-

invariance, interpretability, and scale-variance.

It is instructive to first compare our test with a simple one-period autocorrelation test, which

uses the instrument (πt−1− πt) to determine if the current belief movement is correlated with the
most recent belief movement. While negative autocorrelation implies that a person’s next-period

belief change will be downward in expectation if the previous belief change was upward, EM > ER
implies an expected downward belief change if the current belief is above 1

2
. Importantly, the

biases from Section 3 do not predict any autocorrelation except the mechanical autocorrelation

that comes from the fact that the relation of current beliefs to 1
2
will on average reflect recent

movement away from 1
2
rather than towards it. Therefore, we expect our test to have more power

to detect these biases, which we confirm with numerical simulations.6 That said, there are other

4If πt > 1
2 , then (2πt− 1) > 0, implying that (2πt− 1)(πt−E[πt+1|πt]) > 0 if and only if E[πt+1|πt] < πt, which

occurs if the expected direction of movement is toward 1
2 .

5As a simple example, given that our test detects reversion to 1
2 , EM = ER for all movements starting from a

belief of 12 . Therefore, for example, our test will not reject a dataset of movements from
1
2 to

3
4 , a clear violation

of the martingale property.
6There are also instruments, created from different definitions of movement and uncertainty, that similarly detect

reversion to 1
2 . For example, defining movement as the Kullback—Leibler divergence and uncertainty as Shannon

Entropy yields the instrument (− log[1 − πt] + log[πt]) = 2 tanh(2πt − 1). As with our instrument (2πt − 1), this
instrument tests reversion to 1

2 , but it is non-linear and places more weight on beliefs with more certainty. We do
not claim nor suspect that our choice is optimal for all deviations or DGPs, but this of course doesn’t invalidate our
test. Similarly, while we show it is easy to construct alternative variance-ratio tests given our family of movement
definitions, this does not invalidate the common form.
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potential biases– such as overreaction to a signal that is corrected in the following period– for

which autocorrelation is likely a more powerful test, just as there are other biases– such as drift

toward one particular state– for which completely different tests will be more powerful.

Beyond being suited to detect particular common biases, our test does have additional benefits.

First, note that autocorrelation tests require an additional stance on the definition of time-period

and the amount of time required before a reversion, while our test is time-invariant because it

detects reversion to a fixed point.7 Second, while the interpretation of the autocorrelation statistic

likely varies across situations and datasets with different timing, the (normalized) excess movement

has a consistent and portable interpretation: a statistic of 1.2 implies that the person’s movement

was 20% more than expected, regardless of the timing or dataset. That is, even though instrument

is simple, the statistic is endowed with meaning from our more complicated core concepts. Third,

autocorrelation tests share a characteristic (common in many tests) of being invariant to scale

transformations of the movement data, thereby ignoring important scale information. All forms

of our test intentionally vary with scale– either in the test-statistic formulas or in the sample-size

criteria– so that the probability of rejecting a set of beliefs increases when the belief differences

are scaled up.

In Section 5, we apply our tests in three empirical contexts with three main findings. We

start with a dataset borrowed from Mellers et al (2014) and Moore et al. (2017) where beliefs

about nearly 300 geopolitical events throughout 2011-2014 were elicited continuously from over

three thousand forecasters. Our first finding is that, on average, forecasters exhibit 20% more

movement than resolution. Furthermore, forecasters with a relatively high level of movement for

one event (compared to other forecasters) are likely to have a high level of movement on other

events, suggesting that the statistic is capturing a stable individual trait. We then apply our

test to the dynamic probabilistic assessments by algorithms. Specifically, we analyze the dynamic

predictions of all baseball games in 2006-2010 from Fangraphs, which uses play-by-play information

to estimate the probability of the home team winning as baseball games progress. Our second

finding is that the algorithm exhibits slight excess uncertainty reduction and we speculate on how

seemingly well-designed algorithms can lead to predictions that violate the movement-uncertainty

relationship. Finally, we go beyond the theoretical model of the belief movements of individuals

by studying sporting-event data from the large prediction market Betfair under the assumption

that market prices map directly to Bayesian “market beliefs.” This analysis leads to the third

finding that, after eliminating high-frequency changes suggestive of transaction noise, movement

and uncertainty reduction are close to equal on average.

We conclude in Section 6 with a broader discussion of our approach, suggesting multiple future

7It is easy to construct other time-invariant tests using the instrument (πt−π∗) that detect reversion to a fixed
point π∗ rather than 1

2 . This instrument likely has more power to detect certain deviations from rationality, such
as motivated beliefs toward a known π∗. However, this instrument requires knowledge of the normative meaning
of states and does not occur in the biases we highlight in Section 3.
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directions for research. We discuss past related research throughout the paper in the relevant

sections, with the exception of two papers that employ a similar theoretical result and multiple

papers on excess volatility in the finance literature, which we discuss now.

First, as our main result is simplistic and not diffi cult to prove, it is not surprising that re-

lated results have appeared in other papers. In a paper devoted to exploring the bounds of the

absolute deviations of a bounded martingale, Mertens and Zamir (1977) note the equality in our

Corollary 1 without comment in a footnote. Ely, Frankel, and Kamenica (2015) use the same

relationship in Corollary 1 to examine different functions (including the squared deviation) of be-

lief movements to capture preferences over different DGPs as a result of utility from “suspense”

and “surprise.”Finally, a continuous-time version of the movement and uncertainty relationship

for semimartingales also appears in various finance papers focused on estimating real-time volatil-

ity using high-frequency trading data, such Andersen, et al. (2010) and Barndorff-Nielsen and

Shephard (2001).

The closest work on excess volatility conducts empirical tests for excess movement in asset

prices (Shiller (1979, 1981), LeRoy and Porter (1981), De Bondt and Thaler (1985), Campbell

and Shiller (1987), and Stein (1989)). As a representative example, Shiller (1981) studies the

connection between the movement of prices and the movement of dividends, finding that the

variation in prices cannot be explained by the variation in dividends. Our method differs from

these by testing the internal consistency of Bayesian beliefs rather than relying on relationships

that must hold in a model of financial markets. Augenblick & Lazarus (2018), which applies our

methodology to changes in risk-neutral beliefs inferred from asset prices, is closer to the finance

literature and discusses the related work in much greater detail.

2 Bayesian Updating: Properties and Tests

In this section, we examine the properties of the beliefs of a Bayesian who observes information

about the state of the world over time. For simplicity and exposition, we focus the discussion on

belief movements in the simple binary-state case. We outline the theoretical setup in Section 2.1,

discuss a simple equivalence relationship involving belief movement in 2.2, and examine how the

equivalence can be leveraged to create statistical tests in Sections 2.3 and 2.4, with the former

mainly demonstrating important principles and the latter providing our primary empirical test.

Then, we generalize these results in two related ways. First, in Section 2.6, we allow for the

existence of many states. Second, in Section 2.7, we discuss the movement of a person’s expectation

of a variable given changes in her beliefs about its possible realizations. The latter analysis

highlights a crucial characteristic of beliefs– that they are scaled within the unit interval– which

implicitly drives the previous results. Finally, Section 2.8 concludes with a discussion of some

notable properties, interpretations, and caveats of the tests.
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2.1 Setup: Data Generating Processes and Belief Streams

Consider a person observing signals across periods indexed by t ∈ {0, 1, 2, ...T}. At the beginning
of each period t ≥ 0, the person observes a signal realization st ∈ S regarding two mutually

exclusive and exhaustive events, which we will call states x ∈ {0, 1}. We define a history of signal
realizations at period t as Ht, with typical element Ht = [s1, s2, ...st]. The signals each period

are drawn from a discrete signal distribution, DGP (st|x,Ht−1), that depends on the state, and

potentially the signal history. This function defines the data-generating process (DGP). Our setup

puts no restrictions on the DGP: signals can be non-informative, be informative at later periods,

provide information about the likelihood of future signals, or be complementary with other signals.

We define the probability of observing history Ht induced by the DGP as P (Ht).

We are interested in the beliefs about state 1 (vs. state 0) by a person observing these signals.

We denote the person’s initial beliefs that the state is 1 by π0, and her belief in state 1 given history

Ht as πt(Ht). Given a history Ht, we define the belief stream π(Ht) = [π0, π1(s1), π2({s1, s2}), ...]
the collection of a person’s beliefs at the end of each period given this history, which we will

commonly write as π or [π0, π1, π2, ..., πt] to simplify notation. We define the belief stream as

resolving if the person always achieves certainty about the state by the final period: for all

HT , πT (HT ) ∈ {0, 1}. Throughout we are mainly interested, of course, in the standard case
where the person is Bayesian with a prior π0 that matches the objective ex-ante probability of

state 1, such that πt(Ht) = π0P (Ht|x=1)
π0P (Ht|x=1)+(1−π0)P (Ht|x=0)

.

Our test focuses on a combination of two particular summary statistics about these beliefs,

designed to capture the amount of belief movement induced by pieces of information and the

overall effect of these signals on the person’s certainty about the state of the world. The first,

which we call the movement of belief stream π from period t1 to period t2 > t1, is defined as the

sum of squared-deviations of beliefs over these periods:

mt1,t2(π) ≡
∑t2−1

τ=t1
(πτ+1 − πτ )2.

Then, defining the uncertainty of belief stream π at period t as ut(π) ≡ (1 − πt)πt, the second
statistic is called the uncertainty reduction of belief stream π from period t1 to period t2 > t1, and

is defined as

rt1,t2(π) ≡
∑t2−1

τ=t1
(uτ (π)− uτ+1(π)) = ut1(π)− ut2(π).

As shorthand, we drop time subscripts to denote uncertainty reduction and movement over the full

stream: r(π) ≡ r0,T (π) and m(π) ≡ m0,T (π). For all of these variables, we define the concomitant

random variables in capital letters (such as Mt1,t2) with distribution determined by the likelihood

of different streams induced by the DGP. Finally, we sometimes suppress the expectations bracket

to simplify notation (such as EMt1,t2 rather than E[Mt1,t2 ]).

These are not the only measures that could be used to encapsulate movement and uncertainty.
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Below, we discuss a family of other formulations that could be used to similar effect, as well as

showing how other natural ways of measuring movement, such as the sum of Euclidean distances,

cannot provide similar results.

While nearly all of our results are agnostic to the form of the data-generating process, we

will commonly illustrate concepts and provide intuitions in reference to three examples. In each,

we label states 1 and 0 as “H”and “L,” respectively. The first example process is the familiar

symmetric binary noisy-signal process, in which a person observes an independent signal st ∈ {h, l}
in each period, with a conditional distribution Pr(h|H) = Pr(l|L) = θ, where we call θ precision.

The second process captures a politician Mr. H who has T days left in an election and has a

probability φ of making a gaffe each day, such that he wins (the state is H) if he lasts until

election without a gaffe, but loses (the state is L) if he commits any gaffes. In this case, the

observer’s beliefs with T days left are (1 − φ)T , which change to 0 given a gaffe on that day and

(1− φ)T−1 given no gaffe. Finally, the third double gaffe example builds on the second process by

adding another politician, Mrs. L, who takes turns with Mr. H. In this model, if Mr. H makes

a gaffe in a period, he loses the election, but if he does not make a gaffe, Mrs. L has a similar

chance of making a gaffe in the following period and losing the election, and so on. In this case,

if the horizon is long enough (T is very large), the observer’s beliefs are approximately 1−φ
2−φ if it is

Mr. H’s turn, which change to 0 given a gaffe and approximately 1
2−φ given no gaffe.

To clarify our notation and example DGPs, Table 1 notes the possible signal realizations and

belief streams given specific parameters of the three processes. The top panel of Table 1 considers

the symmetric noisy signal DGP with π0 = 1
2
and θ = Pr(h|H) = Pr(l|L) = 3

4
for 2 periods; the

middle panel the gaffe DGP with a gaffe probability φ of 1
4
and three periods; and the bottom

panel the long-horizon double-gaffe DGP with gaffe probability φ of 1
4
for the first three periods.

2.2 Relating Movement and Uncertainty Reduction

Our paper centers around the surprisingly strong relationship between movement and uncertainty

reduction in any DGP:

Proposition 1 (Implication of Martingale Property for Beliefs) For any DGP and for
any periods t1 and t2, the expected movement from period t1 to period t2 must equal the expected

uncertainty reduction from period t1 to period t2: EMt1,t2 = ERt1,t2.

The proof is straightforward and instructive (and, as with all proofs, is in the Appendix). First,

it is possible to rewrite the one-period difference as:

EMt,t+1 − ERt,t+1 = E[(2πt − 1) · (πt − πt+1)].
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Table 1: Example DGPs, Belief Streams, and Movement and Uncertainty Resolution Statistics
Signals Prob Bayesian Stream Movement / Uncertainty Reduction

[s1,s2, ...] P (Ht) π([s1, s2, ...]) m0,1 r0,1 m1,2 r1,2 m r m− r

(1) Symmetric noisy-signal DGP with θ = 3
4 for two periods

[l, l] 5/16 [1/2 1/4 1/10] 1/16 1/16 9/400 39/400 17/200 4/25 −3/40
[l, h] 3/16 [1/2 1/4 1/2] 1/16 1/16 1/16 −1/16 1/8 0 1/8
[h, l] 3/16 [1/2 3/4 1/2] 1/16 1/16 1/16 −1/16 1/8 0 1/8
[h, h] 5/16 [1/2 3/4 9/10] 1/16 1/16 9/400 39/400 17/200 4/25 −3/40
Average [1/2 1/2 1/2] 1/16 1/16 3/80 3/80 1/10 1/10 0

(2) Gaffe DGP with φ = 1
4 and T = 3 (resolving)

No gaffe 1/8 [1/8 1/4 1/2 1] 1/64 −5/64 1/16 −1/16 21/64 7/64 7/32
Week-1 gaffe 1/2 [1/8 0 0 0] 1/64 7/64 0 0 1/64 7/64 −3/32
Week-2 gaffe 1/4 [1/8 1/4 0 0] 1/64 −5/64 1/16 3/16 5/64 7/64 −1/32
Week-3 gaffe 1/8 [1/8 1/4 1/2 0] 1/64 −5/64 1/16 −1/16 21/64 7/64 7/32
Average [1/8 1/8 1/8 1/8] 1/64 1/64 1/32 1/32 7/64 7/64 0

(3) Double-Gaffe DGP with φ = 1
4 and large T for three periods

No gaffe 27/64 [3/7 4/7 3/7 4/7] 1/49 0 1/49 0 3/49 0 3/49
Week-1 gaffe 1/4 [3/7 0 0 0] 9/49 12/49 0 0 9/49 12/49 −3/49
Week-2 gaffe 3/16 [3/7 4/7 1 1] 1/49 0 9/49 12/49 10/49 12/49 −2/49
Week-3 gaffe 9/64 [3/7 4/7 3/7 0] 1/49 0 1/49 0 11/49 12/49 −1/49
Average [3/7 3/7 3/7 3/7] 3/49 3/49 9/196 9/196 111/784 111/784 0

Note: This table provides bayesian beliefs given different signal realizations for three DGPs discussed in the main
text, along with the corresponding movement and uncertainty reduction statistics defined in the main text. As
the third DGP has a large number of periods, this statistic represents m0,3 rather than m.

The only requirement on Bayesian beliefs is that they are bounded in the unit interval and

satisfy the martingale property: E[πt+1|π0, π1, ..πt] = πt. This property implies that, for any

instrument f :

E[f(π0, π1, ..πt) · (πt − πt+1)] = 0.

EMt,t+1 − ERt,t+1 is equivalent to the use of the instrument (2πt − 1) and therefore must

equal zero in expectation. Consequently, the sum must also equal zero: EMt1,t2 − ERt1,t2 =∑t2−1
τ=t1

(EMτ ,τ+1 − ERτ ,τ+1) = 0. In Section 4, we discuss the properties and advantages of this

type of instrument. This formulation implies that excess movement occurs when the expectation

of posteriors deviates from the prior in the direction of a belief of 1
2
. For example, the statistic will

be positive when πt = 3
4
and E[πt+1] < 3

4
, or if πt = 1

4
and E[πt+1] > 1

4
. Conversely, the statistic

is negative when the expectation of posteriors deviates from the prior away from 1
2
. Under this

interpretation, the statistic summarizes the tendency to revert to the point of highest uncertainty.8

8Note that the equation then also implies that the statistic is always zero if πt = 1
2 , regardless of the person’s

posterior beliefs πt+1, implying that our test will never detect errors in updating from a uniform prior.
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As an example of the equivalence, note that in the top example from Table 1 above, the un-

certainty reduction from period 1 to period 2 R1,2 takes the value of − 1
16
or 39

400
and movement

M1,2
1
16
or 9

400
with probabilities 3

8
and 5

8
, respectively. Therefore, the expected uncertainty re-

duction ER1,2 and expected movement EM1,2 between these periods are equal at 3
80
, as implied

by the Proposition. Similarly, EM0,1 = ER0,1 and EM = ER. The Proposition additionally
implies that E[Mt1,t2|Ht0 ] = E[Rt1,t2 |Ht0 ] for any history with t0 ≤ t1, because everything that

follows history Ht0 is equivalent to a new DGP with prior π(Ht0). Therefore, in the table,

E[M1,2|(s1 = l)] = E[R1,2|(s1 = l)] and E[M1,2|(s1 = h)] = E[R1,2|(s1 = h)]. Note that all of

the analogous relationships hold in the second and third examples in Table 1.

Aggregating these statistics for all time periods between period 0 and T for resolving streams

(in which the uncertainty at the final period must equal zero) leads to a simple corollary:

Corollary 1 (Resolving Streams): For any resolving DGP, the expected movement over the
entire stream must equal the expected uncertainty reduction: EM = u0 = π0(1− π0).

Given that the uncertainty at the end of a resolving stream is zero, the expected uncertainty

reduction over the entire stream must be equal to the initial uncertainty. Consequently, for

example, the Bayesian beliefs following any resolving DGP with π0 = 1
2
must have EM = 1

4
.

While every DGP with the same prior induces a potentially different distribution of movement

statistics from different belief streams associated with different signal realizations, the expected

value of these distributions must be the same for any DGP.

Analogous relationships are also true for other measurements of movement and uncertainty

reduction. Specifically, for any decreasing surprisal function γ(πt) with γ(1) = 0, there is a

corresponding definition of uncertainty ut(π) ≡ πtγ(πt) + (1− πt)γ(1− πt), uncertainty reduction
rt1,t2(π) ≡ ut1(π)−ut2(π), and movementmt1,t2(π) ≡

∑t2−1
τ=t1

πτ+1(γ(πτ )−γ(πτ+1))+(1−πτ+1)(γ(1−
πτ ) − γ(1 − πτ+1)). Following the same logic as above, EMt,t+1 − ERt,t+1 can be rewritten as

E[(γ(1 − πt) − γ(πt)) · (πt − πt+1)], which implies that EMt,t+1 − ERt,t+1 = 0 for a Bayesian and

therefore EMt1,t2 − ERt1,t2 . That is, each surprisal definition maps to a particular instrument

(γ(1−πt)−γ(πt)) and EMt,t+1−ERt,t+1 continues to capture the tendency toward 1
2
, albeit using

different weights which are a function of the surprisal function and the belief πt. In subsequent

work, Frankel and Kamenica (2019) show that some surprisal functions can lead to undesirable

properties like negative movement and consequently refine the set of possible functions to remove

this possibility. Our definitions of movement and uncertainty arise from the surprisal function

γ(πt) = (1− πt)2. An alternative natural surprisal function is γ(πt) = − logb(πt) for some base b,

such that the corresponding uncertainty measure is Shannon Entropy and the resulting movement

measure is the sum of the Kullback—Leibler divergences of beliefs from one period to the next.

We do not demonstrate nor suspect that our particular choice of surprisal functional form or

resultant instrument is statistically “optimal”in any general way. As with similar tests (such as

12



the variance-ratio test), we based our decision mainly due to its resultant transparent formulas

and familiarity to economists.

2.3 Tests of Total Movement of Resolving Streams

In the next section, we will use the equivalence relationship above, in combination with the Central

Limit Theorem (CLT), to create practical tests of too much or too little movement for streams

of any length from multiple DGPs. Before turning to those tests, we explore some results that

focus on resolving streams to illustrate the potential of the equivalence relationship and help lay

out some of the principles and intuitions. Despite their conceptual usefulness, these tests do not

employ the CLT and are consequently very conservative.

We start with another corollary to Proposition 1, which suggests the potential to construct a

test of too much movement. Recalling that u0 = π0(1− π0):

Corollary 2 (Bounding Likelihood of Large Movements over One Stream): For all δ ∈
(0, 1), Pr

(
M ≥ u0

δ

)
≤ δ for any DGP with prior π0 .

This is a simple application of Markov’s inequality. As an example, consider a resolving DGP

with an initial belief of 1
2
, which implies that u0 = 1

4
. Plugging in δ = .05, the corollary implies

that movement cannot be greater than 5 more than 5% of the time. Intuitively, because movement

is never negative, that movement distribution would imply that EM > .05 · 5 = .25 = u0, which

would violate Corollary 1. Therefore, if one observes a single empirical stream with movement

greater than 5, one can reject the null hypothesis that the probability stream arose from Bayesian

updating at the 95% confidence level.

We note that the possibility of rejecting a single stream of beliefs as being unlikely for a

Bayesian is quite unsurprising. If a Bayesian in our model believes an event is only 5% likely, a

shift to 100% should not happen more than 5% of the time. Consequently, if our only observation

from a person is a movement from 5% to 100%, we can reject that the person is a Bayesian at

the 95% confidence level. The crux of our tests is that the combination of more frequent yet less

violent changes in beliefs is not likely either.

Here, it is useful to note that other obvious functional forms for movement will not produce

similar results. For example, if movement is defined as the sum of Euclidean distances (
∑T

τ=1
|πτ−

πτ−1|), a statement similar to Corollary 2 is not possible. In fact, a known result is that there
exists a DGP in which the sum of the Euclidean distances in all streams is (almost) always greater

than any given critical value.9

9More formally, for all δ ∈ (0, 1) and critical value m∗ > 0, there is some DGP– one that induces beliefs to

follow a simple random walk with a very small step size– with prior π0 such that Pr
(∑T

t=1 |πτ − πτ−1| ≥ m∗
)
≥

δ.
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Next we improve on the bounds in Corollary 2, which only uses the fact that the movement

distribution has a weakly positive support and has a specific expected value. By bounding the

variance of this distribution in Proposition 2, we can state Corollary 3, which uses the one-sided

Chebyshev’s Inequality to further restrict the likelihood of observing a given level of movement:

Proposition 2 (Bound on Variance of Movement Distribution): For any resolving DGP
with prior π0, var(M) must be less than u0(3

2
− u0).

Corollary 3 (Reduction of Bound in Corollary 2): For all δ ∈ (0, 1),

Pr

(
M > u0 +

√
u0(3

2
− u0)

√
(1−δ)
√
δ

)
≤ δ for any DGP with prior π0.

This implies, for example, that we can bring down the 5% cutoff above for a resolving DGP

with π0 = 1
2
from 5 to 2.69 and one with π0 = 1

10
from 1.8 to 1.64. We do not expect that any

of these cutoffs are binding, and we can prove, via another proof technique, that the bound when

π0 = 1
2
and δ = .05 must be less than 2.065. We also believe, by numerically solving for all

recursive possibilities, that the bound is closer to 1.31.10 ,11

Conversely, it is diffi cult to reject single streams for having too little movement (i.e. too

much uncertainty reduction), because the movement can be very small with high probability for

some data-generating processes. For example, consider the gaffe DGP discussed above with many

periods and the likelihood of the gaffe chosen to be φ = 1 − 1
2

1
T , such that the politician makes

no gaffe over all periods with probability π0 = 1
2
. Whenever the politician wins, beliefs must have

shifted upward by a tiny amount each period, leading the sum of squared movements to be tiny

(and tending to zero as T increases). Therefore, without an assumption ruling out this type of

DGP, it is impossible to reject– with any reasonable level of confidence– that a person is Bayesian

when observing even tiny total movement in one stream:

10The logic behind the proof of the 2.065 cutoff can be seen in the less-complex proof of a 4 cutoff. For the
sake of contradiction, suppose there was a DGP where M was greater than 4 more than 5% of the time. Consider
some full history HT with m0,T (π(HT )) > 4. Given that movement can rise by at most 1 after one period, there
exists a subhistory Ht ∈ HT with 2 ≤ m0,t(π(Ht)) ≤ 3. By Corollary 1, for all streams that share history Ht, the
expected movement from time t to T , EMt,T |Ht, must equal π(Ht)(1 − π(Ht)), which must be 1

4 or lower. For
the original history HT with movement more than 4, mt,T (HT ) ≥ 1 because m0,T (HT ) ≥ 4 and m0,t(HT ) ≤ 3.
Therefore, for EMt,T |Ht <

1
4 , there must exist other streams —denoted π(H ′T ) —with mt,T (π(H ′T )) < 1. Given

these streams share history Ht, it must be that 2 ≤ m0,t(π(H ′T )) ≤ 3, but given that mt,T (π(H ′T )) < 1, it must be
that 2 ≤ m0,T (π(H ′T )) < 4. It is then possible to show that there must be so many of these streams that EM > 1

4 ,
which contradicts Corollary 1.
11Upper bounding of movement in this way was possible given modification of previous results in the statistics

literature, but with a much looser bound: Burkholder (1973) proved a general result for martingales which implies,
in our environment, Pr(M > λ2) ≤ 3

λ for any prior, leading a single-stream result that Pr(M > 3600) ≤ .05, which

was improved by Cox (1982) to show that Pr(M > λ2) ≤
√
e
λ , implying that Pr(M > 1087) ≤ .05. These results

do not employ the restriction that beliefs only exist on the unit interval, which is why we are able to improve on
the bound by nearly three orders of magnitude.
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Corollary 4 (Diffi culty Bounding Small Movements over One Stream): For any δ <
max(π0, 1 − π0) and critical value m∗ > 0, there is some DGP with prior π0 such that Pr(M <

m∗) ≥ δ.

While we cannot make a meaningful statement about lower bounds with one stream, we can

provide lower (and upper) bounds on the sum of the movement in multiple streams from potentially

different DGPs:

Corollary 5 (Bounding Likelihood of Movement over Multiple Streams): For all δ ∈

(0, 1), Pr

(
|
∑

M − n · u0| >
√
n·u0( 3

2
−u0)

√
δ

)
≤ δ, for any set of n independent streams from n

DGPs with prior π0.

Corollary 5 implies, for example, that the combined movement from 200 streams from any set

of DGPs with π0 = 1
2
has a mean of 50 and lies between 14.6 and 85.4 with 95% probability (for

20 streams, there is no lower bound, but the upper bound is 16.2).

It is possible to use the results in this section as statistical tests of Bayesianess given resolving

belief streams. However, we will largely not take this path in this paper, instead seeing these

results as expositionally useful for demonstrating that it is possible to statistically reject certain

belief streams based on movement even when the individual movements are not large. The two

main issues with the empirical applicability of the tests are that (1) the bounds are constructed

from layered worst-case scenarios and are therefore fairly conservative, and (2) creating similar

tests that allow the aggregation of non-resolving belief streams from different DGPs with different

priors is possible, but leads to even more conservative bounds.12 ,13 We therefore focus on another

test of the relationship in the next section.

2.4 Main Test with multiple streams and DGPs

We now move away from tests over entire streams and instead focus on more general tests of

belief movements across different DGPs with potentially different priors. Recall that Proposition

1 establishes that each one-period excess movement random variable, Mt,t+1 − Rt,t+1 for all t,

has an expectation of zero for any DGP. Therefore, given observations from various independent

12As an example of the conservative conclusions, consider the symmetric noisy signal process in the first example
above with a large number of periods and precision θ = 3

4 . Numeric simulations suggest that the correct 5% cutoff
is around 0.653, with only 0.2% of streams having movement of 1.31 or greater and less than 0.1% having movement
greater than 2.07.
13For a similar test of a combination of one-period movements within and across DGPs, note that the one-

period excess movement statistic Mt,t+1 − Rt,t+1 given πt > 1
2 is bounded above by (2πt − 1)πt (when πt+1 = 0)

and below by (2πt − 1)(πt − 1) (when πt+1 = 1), with these equations reversed when πt ≤ 1
2 , leading to an

absolute difference of bounds of |(2πt − 1)|. Therefore, the Hoeffding two-tailed concentration inequality implies
that P [|Mt,t+1 −Rt,t+1| ≥ m∗] ≤ 2 exp( −2n

2m∗2∑
(2πt−1)2 ) given n single-period observations.
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belief streams of potentially-different lengths from potentially-different DGPs, all of the one-period

excess movement variables have an expectation of zero. Furthermore, it is easy to show that these

variables must satisfy the conditions for a simple Martingale CLT, suggesting the possibility of

using a standard means test to determine if the average excess movement in each period is equal to

zero.14 Specifically, given n observations —indexed by i —of one-period movement mi
t,t+1 and one-

period uncertainty reduction rit,t+1 for any time period and for any DGP, we define the one-period

excess-movement statistic as:

X = mt,t+1 − rt,t+1,

where mt,t+1 ≡ 1
n

∑
im

i
t,t+1 and rt,t+1 ≡ 1

n

∑
i r
i
t,t+1. Under the null hypothesis that the streams

were generated by Bayesian updating, the test statistic:

Z ≡ (

√
n

st,t+1

)(mt,t+1 − rt,t+1)→ N(0, 1) as n→∞,

where st,t+1 ≡
√

1
n

∑
(mi

t,t+1 − rit,t+1 −mt,t+1 − rt,t+1)2.15

Using the test statistic in a finite sample requires the additional assumption that the CLT

limiting distribution is a reasonable approximation. The CLT approximation is used in almost

all empirical studies in economics, where authors either implicitly assume its appropriateness or

justify its use with some simple rule-of-thumb based on the number of observations. However, in

our setting, basing the rule solely on the number of observations is problematic, an issue highlighted

by again considering the gaffe example discussed above with φ = 1− 1
2

1
T . In this case, the Bayesian

belief stream after the politician wins contains an arbitrarily large number T − 1 of universally

negative (albeit small) one-period excess-movement statistics, leading a means test to wrongly

reject Bayesianess with arbitrarily high confidence. Therefore, we require a rule that additionally

takes the scale of movements into account. That is, as we discuss in more detail below, the fact

that belief movements are defined on the unit interval means that belief movements are not scale-

invariant: 100 movements from 0.01 to 0.99 should lead to a different evaluation of a person’s

Bayesianess than 100 movements from 0.499 to 0.501. Following this observation, we searched

for a rule-of-thumb combining the number of observations and scale, finding through numerical

simulations that the CLT appears appropriate when the total movement across all streams is at

14For example, given that the one-period excess movement statistics are bounded and have finite variance, the
sum of the statistics satisfies the Martingale CLT in Theorem 3.3 of Hall & Heyde (1980). The CLT requires one
additional assumption that we have not explicitly stated: the observations must come from changes in beliefs. That
is, the CLT obviously will not hold given an almost-surely constant belief over time.
15Under the null hypothesis, E[mt,t+1 − rt,t+1] = 0, such that st,t+1 could alternatively be defined as√
1
n

∑
(mi

t,t+1 − rit,t+1)2. We use the more standard formula in the text as it is more easily implementable us-
ing statistical software.
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least 3.16 ,17

While reliance on the CLT is a cost, it has great benefits. By no longer focusing on worst-case

scenario distributions and DGPs, the test has much greater power as we demonstrate in Section 5

of the paper. Furthermore, we show in Section 4 that this power, at least for our example DGPs

and using the rule-of-thumb above, does not come at the cost of high levels of false rejection of

Bayesianess.

Finally, we note that interpreting any given magnitude of the excess-movement statistic might

depend on the prior. Average excess movement of .01 may have a different meaning if the uncer-

tainty reduction is .25 instead of .01, because the former provides more potential for movement.

Without taking a firm position on this issue, we present the normalized excess-movement created

by dividing the excess movement by the average uncertainty reduction:

Xnorm ≡
mt,t+1

rt,t+1

=
X

rt,t+1

+ 1,

which has an asymptotic expectation of 1 under the null.18 A normalized statistic of 1.1 suggests

that there is 10% more movement than expected given uncertainty reduction. We propose that

researchers report both the standard and normalized statistic along with the test statistic Z

16The rule-of-thumb is naturally not based on a formal result or proof. Instead, as with other rules of thumb
—such as requiring 5

min(p,1−p) observations to use the normal approximation of the binomial distribution given a
success probability of p —it is designed to work “good enough”for most situations. To determine a reasonable total-
movement rule, we (1) choose over 300,000 mixtures of different one-period excess movement distributions possible
under the null hypothesis, (2) for each mixture, we simulated 1000 samples that contained enough observations to
satisfy different total-movement rules (3) for each rule-mixture-sample combination, we conducted a 95% confidence
means test using the normal approximation. If the normal approximation is appropriate for a given rule-mixture,
the rejection rates across samples should be “near”5%. For total-movement rules of .5, 1, 1.5, 2, 2.5, and 3, the
sample rejection rates were below 10% for 73%, 90%, 96%, 96%, 97%, and 97% of the mixtures and below 7.5% for
61%, 74%, 82%, 90%, 93%, 93% of the mixtures, respectively. That is, for that for the vast majority of mixtures,
the normal approximation works reasonably well even given samples with total movement over 1 or 1.5. However,
there are some “extreme”mixtures (particularly those with symmetric movements starting at .5 as well as large
asymmetric movements starting at the poles) that have high rejection probabilities even as total movement rises
past 5, suggesting that the normal approximation is inappropriate. We arbitrarily choose a rule of 3 to balance
these situations given that the rejection rates appear to level off at this point.
17Given that expected total movement equals initial uncertainty for resolving streams, an alternative when using

data of full resolving streams is to require
∑
s π

s
0(1− πs0) ≥ 3 where streams are indexed by s.

18Given that Rt,t+1 → E[Rt,t+1] > 0 and M t,t+1 → E[Mt,t+1] in probability (and therefore in distribution) as

n→∞, Slutsky’s Theorem (Lemma 2.8 in Van der Vaart(2000)) implies that Mt,t+1

Rt,t+1
→ E[Mt,t+1]

E[Rt,t+1]
= 1 in probability

as n → ∞. It is useful to clarify that Xnorm 6= 1
n

∑ mit,t+1
rit,t+1

, which does not have a constant expectation across

DGPs. For completeness, we note that given ns resolving streams indexed by s, it is possible to use a full-stream-
ratio test statistic 1

ns

∑
s
ms

rs . This statistic does have an expectation of 1 as r
s is constant within a stream. We

prefer Xnorm even given full streams because the variance of this alternative test statistic can be extremely high
for some DGPs.
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above.19 ,20

2.5 Effect of Measurement Error and Rounding

If beliefs are mismeasured either due to measurement error or rounding, the equivalence relation-

ship will no longer hold. In this section, we demonstrate that while measurement error always

leads to excess movement, the effect is relatively small for reasonable amounts of mismeasurement.

Then, we numerically show that the effect of rounding is also reasonably small with erratic sign

and size.

For a simple model of observational noise, we consider a person who holds a Bayesian belief,

but reports a belief distorted by an additive error: π̂t = πt + εt, where the error term is mean-zero

with variance σ2
εt and uncorrelated with recent belief and error realizations (E[εtπt] = E[εtπt−1] =

E[εtεt+1] = 0). Although we suppress the notation for readability, εt can be function of history

Ht: this is necessary to keep measured beliefs constrained to the unit interval. When beliefs

become more extreme, the error must become small to maintain zero mean: that is, σ2
εt → 0

as πt → {0, 1}. Given this model of noise, the expectation of the excess movement statistic is
not zero, but rather 2σ2

εt > 0.21 For intuition on the magnitude of this effect, we simulate a

simple DGP in which a person starts with a prior π0 = 1
2
and observes an independent, symmetric

signal st ∈ {h, l}, with a conditional distribution θ ≡ Pr(h|H) = Pr(l|L) = .75 for 20 periods

until realization. We then assume that measured beliefs are drawn from the Beta Distribution

centered at the Bayesian belief with parameters chosen such that at a Bayesian belief of 1
2
, 95% of

measured beliefs fall within an interval of length ∆. For distortion parameters ∆ of 0, 0.01, 0.05,

0.10, and 0.20, the normalized excess movement is 1, 1.001, 1.006, 1.022, 1.084, respectively. That

is, the statistic is relatively unaffected for reasonably small measurement distortions but does rise

steeply if the person’s beliefs move substantially due to noise. While this bias is concerning, it

might be also appropriate to conclude that the person is not Bayesian if large fluctuations actually

represent random changes in the person’s genuinely-held beliefs rather than simple measurement

19We propose partnering the statistic Xnorm with the test statistic Z while recognizing that Z does not take
into account the variance in rt,t+1 in the demoninator of Xnorm. We do this instead of constructing a different
test statistic Znorm for two reasons. First, the standard sample variance for rt,t+1 will be biased upwards in many
cases. For example, suppose that n one-period observations constitute different times in a set of resolving streams.
Then, for each stream,

∑
rt,t+1 is always equal to the constant π0(1− π0). and therefore rt,t+1 will be a constant

with no variance, while the sample variance will not be zero. Second, even if there was a more appropriate statistic
to measure variance, non-full-stream data will lead |Znorm| < |Z|. However, we are not fundamentally interested
in whether X = 0 or Xnorm = 1, but rather whether we can reject the null hypothesis of Bayesian updating, which
implies both of these equalities. Therefore, we choose to focus on the stronger test statistic Z.
20One nice feature is that the one-period normalized statistic is always equal to the natural full-stream normalized

statistic: that is, if the dataset consists only of ns resolving streams indexed by s, then mt,t+1
rt,t+1

= m
r where

m ≡ 1
ns

∑
sm

s and m ≡ 1
ns

∑
sm

s. In contrast, m − r 6= mt,t+1 − rt,t+1 for multi-period streams as the average
excess movement across an entire stream is larger than the average one-period excess movement.
21Recall that the one-period excess movement statistic Mt,t+1 − Rt,t+1 can be written as (2πt − 1)(πt − πt+1).

Simple algebra shows that E[(2π̂t−1)(π̂t− π̂t+1)] = E[(2πt−1)(πt−πt+1)] +E[4πtεt+ 2ε2t − εt−2εtπt−2πtεt+1−
2εtεt+1 + εt+1], which is equal to 2σ2εt given the zero-mean and zero-correlation assumptions on the error term.
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error. Crucially, as we discuss in the empirical results in Section 5, to produce the normalized

statistic of 1.2 from our individual-level dataset would require an error parameter ∆ calibrated to

be nearly .5, which seems far from reasonable measurement error.

Rounding is perhaps more concerning in individual-level data: it is likely that people report

65% rather than 66.2% and potentially 50% rather than 45%. Here, it more diffi cult to state

formal results because the effect depends on the exact coarseness of rounding and the specific

DGP. From numerical simulations, it appears the effect of rounding is commonly small, with both

the size and sign changing erratically. For example, for the DGP above, the normalized excess

movement for a person who rounds to the nearest 1%, 2%, 5%, and 10% is 0.998, 0.999, 1.001,

and 1.094, respectively. But, this effect is unstable across DGPs: given precision parameter θ of

0.65, 0.70, 0.75, 0.80, and 0.85, the average total movement given 5% rounding is 1.050, 1.046,

0.999, 1.022, and 0.986, respectively. Therefore, while it is very appropriate to be concerned about

rounding in individual-level data, the statistic does not appear to be dramatically affected and

the direction of the bias is unclear.

2.6 Many States

It is relatively straightforward to generalize the model to allow for many states, such that x ∈
{0, 1, 2...}. That is, a person has a histogram of beliefs about different possible levels of the

stock market in three months or the potential number of points that will be scored in a foot-

ball game. In this case, the belief in state x at time t is denoted πxt and a belief stream

π = (π0
0, π

1
0, π

2
0...), (π

0
1, π

1
1, π

2
1, ...), (π

0
2, π

1
2, π

2
2, ...).... The adjusted movement and uncertainty sta-

tistics are constructed by simply adding the binary statistics over all states: that is, the total

movement from period t1 to period t2 defined as mΣ
t1,t2

(π) ≡
∑
x∈X

t2∑
τ=t1+1

(πxτ − πxτ−1)2, the total

uncertainty at period t as uΣ
t ≡

∑
x∈X

(1− πxt )πxt and the total uncertainty reduction from period t1

to period t2 as rΣ
t1,t2

(π) ≡ uΣ
t1

(π)− uΣ
t2

(π), with the related capital-letter random variables defined

as above.22 Then:

Proposition 3 (Generalization of Proposition 1 with Many States) For any DGP and for
any periods t1 and t2, EMΣ

t1,t2
= ERΣ

t1,t2
.

The intuition of this Proposition is simple: beliefs about each state x can be interpreted as a

binary belief, and so Proposition 1 implies that the expected movement must equal the expected
22Note one slight irritating mismatch with the binary-state definition: the binary statistics do not add movement

and uncertainty reduction over both states, but rather only use one state (because the statistics are the same for
both states). We did this so that the binary results were simpler and more transparent. A more consistent definition

of the binary movement would have been mt1,t2 = 2 ·
t2∑

τ=t1+1

(πτ − πτ−1)2 and binary uncertainty as 2 · (1− πt)πt.
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uncertainty reduction for those beliefs. But then the relationship must also hold when summing

across all of the states. This implies, for example, that the combined movement of the full

histogram of beliefs over many states must equal the combined initial uncertainties on average for

resolving DGPs, as well as other results analogous to those discussed for the binary case.

2.7 Expectations and the Importance of Scale

The multi-state generalization requires the observation of the person’s full distribution of beliefs

in all periods. There are many empirical cases in which this information is not available, but it

is possible to observe the person’s expected value of some variable given these beliefs, such as the

expected level of the stock market in three months or the expected number of points that will be

scored in a football game.

To analyze this situation, we associate each state x ∈ {0, 1, 2, ...} with a bounded outcome
vx ∈ R and study the person’s expected value of the outcome at time t, vt =

∑
x∈X

πxt v
x, and

the consequent expectations stream v = [v0, v1, v2, ...]. We define the movement in expectations

from period t1 to period t2 as mv
t1,t2

(v) ≡
t2∑

τ=t1+1

(vτ − vτ−1)2 and the related capital-letter random

variables as above.

Given we can probabilistically bound the movement of beliefs, it is natural to suppose similar

bounds on the movement of the expectation formed from these beliefs. Note that the binary

results suggest that the supposition is true when the outcome value can be either 0 or 1, because

the person’s belief exactly corresponds with her expectation of the outcome. Our first result and

corollary regarding the movement in expectations shows that the supposition, at least without

additional information, is false:

Proposition 4 (Any Expectations Stream Arbitrarily Likely Without Additional As-
sumptions) For all δ ∈ (0, 1) and expectations stream v, there exists some DGP and set of state

values such that Pr(V = v) ≥ δ.

Corollary 6 (No Upper Bound on Movement of Expectations Without Additional As-
sumptions) For all δ ∈ (0, 1) and critical value m∗, there is some DGP with initial expectation

v0 such that Pr(M v ≥ m∗) ≥ δ.

We see this negative result as critical to understanding our main result with binary beliefs. The

proposition suggests that, not only is movement unbounded without further assumptions, but that

any single expectations stream– no matter how seemingly volatile– is arbitrarily likely in some

DGP. To understand the simple intuition, consider the expectations stream [0.01,0.99,0.01,0.99,...]

in which the person’s expectations bounce from 0.01 and 0.99 one hundred times. Given a binary
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state with values 0 and 1, these movements equal the person’s binary beliefs and this stream

would be extremely rare. However, if the state values are changed to 1010 and −1010, there is

a DGP– similar to the double-gaffe example above– in which a person always transitions from

0.99 to 0.01 with extremely high probability while moving to 1010 with extremely low probability

(and vice versa from 0.01 to 0.99). Therefore, without understanding the scale of the movements

relative to what is expected, arbitrarily large movements can be made arbitrarily common.23 This

insight implies that a sense of scale is crucial to any test focused on movement size. Implicitly,

our previous results with beliefs were dependent on the scaling of beliefs, which always exist in

the unit interval.

It is possible to make statements given information or assumptions about the scale of move-

ments. Specifically, defining the uncertainty (or perceived variance) at period t as uvt ≡
∑
x∈X

πxt (v
x−

vt)
2 and the uncertainty reduction from period t1 to period t2 as rvt1,t2(v) ≡ uvt1(v)− uvt2(v), allows

a result that mirrors our binary-beliefs result: as the person’s expectation shifts, there must be a

concomitant drop in uncertainty about the state value in expectation. Consequently, information

about uncertainty can limit the expected amount of movement:

Proposition 5 (Generalization of Proposition 1 with Expectations) For any DGP and
for any periods t1 and t2, EM v

t1,t2
= ERv

t1,t2
.

Intuitively, the person’s perceived variance reduction provides the necessary scaling information

to limit movement. Consequently, while the full distribution of beliefs is not necessary to prob-

abilistically bound the movement of expectations, some information or assumptions about the

second-moment is required. Crucially, when working with binary beliefs, the variance is implied

by the belief and therefore no addition information is needed.

Of course, it might also be diffi cult to gather second-moment information at every period.

Following Corollary 7, it is possible to only gather this information at the initial period and

compare it to movement in an entire resolving stream:

Corollary 7 (Resolving Streams with Expectations): For any resolving DGP, EM v = uv0.

And, without this information, Corollary 8 shows it is also possible to make weaker statements

by simply knowing the bounds on the possible outcomes, (defining v ≡ min(v1, v2, ...) and v ≡
max(v1, v2, ...)), as this implicitly limits the variance24:

23Conversely, movements of beliefs that are very rare can be very common when "compressed": while it is
extraordinarily unlikely to observe many belief vibrations between 0.01 and 0.99, a Bayesian observing a long-
horizon double-gaffe model with a probability of a gaffe φ of 1

1000 for one hundred periods will produce a belief
stream that repeatedly bounces between 999

1999 and
1000
1999 more than 90% of the time.

24The variance can be further bounded by additional plausible distributional assumptions on beliefs, such as
single-peakness or requiring the mean to equal to the mode.
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Corollary 8 (Expectations Given Bounds): For any DGP with bounded state values, EM v ≤
(v − v0)(v0 − v).

This Corollary again stresses the benefit of bounding outcomes to our statements. Bounds

imply that the initial variance is bounded, which in turn bounds the movement of a resolving

stream, which in turn bounds the movement of all streams.

2.8 Discussion and Properties of the Tests

In our simple framework, given a particular signal realization from a given DGP, the belief stream

is unique. Knowing this proper-belief stream– as in a laboratory study with complete control of

the DGP– would allow the rejection of the model whenever a person’s beliefs deviate from this

exact stream. We instead construct a test without knowledge of the proper stream (or even the

signal realizations), basing rejection on the statistical violation of the equivalence relationship

between movement and uncertainty reduction. As a result, our test does not reject all non-proper

belief streams.

Most starkly, if a person reports appropriate Bayesian beliefs given signals from a completely

different DGP than the one we believe she is watching, our test will not reject her Bayesianess

because these “wrong”beliefs are still consistent with Bayesian updating. We can reject many

of these streams if we observe the true final state of the world and append it to the end of the

belief stream. However, even with this constraint, we highlight two specific types of non-Bayesian

streams for which the relationship still holds. Interestingly, we argue that these non-rejections

can be considered a benefit of our test rather than a cost in some situations, because they allow

flexibility to not reject potentially reasonable belief streams.

First, in our abstract model, beliefs are observed at every time period after every signal.

However, in most empirical settings, belief changes are only observed at certain periods, such

as the points of belief elicitation or the times of voluntary disclosure. For example, by only

observing beliefs in odd periods, the person’s actual belief stream [.4, .6, .7, .4, .2, .3...] is perceived

as [.4, .4, .7, .7, .2, .2, ...]. Crucially, while the latter belief stream does not match the proper-belief

stream, it does match the beliefs of a different DGP with the same state resolution in which

the person receives no signal every even period, but receives the information from two signals

in the odd periods. Consequently, even though the streams arise from a different DGP with

different movement distributions, the expectation of the movement distribution is still equal to

the uncertainty reduction.25

Second, if a person ignores a specific signal (or does not observe it), her belief streams will

satisfy the tested relationship. Again, while this person’s belief streams will not match the model

25Even if the person is endogenously disclosing beliefs only at certain periods (based on signals or beliefs), the
whole-stream relationship EM = ER continues to hold as long as the final resolution of the state is known and
appended to the end of the stream.
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belief stream, they do match those from an alternative DGP with the same state resolution in

which the person doesn’t receive some signals. Depending on the circumstance, this disregard

may or may not be considered non-Bayesian: a Bayesian can miss a signal, but maybe not glaring

evidence.26

Finally, we note that it is also possible to incorrectly not reject non-Bayesian behavior due to

the need to aggregate data across situations to create a single test statistic when dealing with finite

data. That is, if the statistic is positive given some conditions and negative in other conditions —

suggesting non-Bayesian updating —the effects might balance in the aggregated statistic, such that

Bayesian updating is not rejected. In fact, Section 5.3 presents a situation in which movement and

uncertainty reduction are nearly balanced over the entire stream, but there is clear overreaction

during earlier periods and clear underreaction in later periods.

3 Sources of Bias in Movement and Uncertainty Reduc-

tion

In this section, we sketch how some well-known psychological biases might lead to systematic

distortions in our main statistic, EM−ER. In order to create sharp results, we focus on particular
types of biases and DGPs, but we provide some intuition about why the connection may be

more general. These results are suggestive that our statistics might be more likely to identify

common psychological biases than other approaches, which is a theme we return to in Section 4.

Additionally, we examine how these biases may affect the individual components, EM and ER,
and compare these with those of a Bayesian observing the same process, which we label EMB

and ERB. Because separately analyzing these components helps us distinguish more finely among

these biases, we are able to provide hints about the potential for (and limits to) using our test

to go beyond identifying whether people are departing from Bayesian updating to identifying how

they might be doing so.

3.1 Setup and Simple Model of Four Biases

We examine two variants of the simple environment discussed in the first example of the previous

section: given two states H and L, a person observes an independent, symmetric signal st ∈ {h, l},
with a conditional distribution Pr(h|H) = Pr(l|L) = θ, where we call θ the precision. In the first

environment, the person starts with the correct prior and only observes one signal. In the second,

the person starts with prior π0 = 1
2
, and observes many signals over time. As we discuss below,

26Similarly, the relationship will continue to hold if the person cannot distinguish between certain sets of signal
realizations such that she observes coarser information than in the model. For example, if a signal has three
realizations, l1, l2, and h, but the person cannot distinguish between l1 and l2 (observing them as the same signal
l), her belief streams will still satisfy our relationship (as long as she correctly interprets the coarse signal).
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we restrict to this relatively simple dynamic model because once we allow for multiple signals,

people’s priors at any time are potentially distorted by the collection of their biased updates in

previous periods.

We consider a very simple, portable framework for non-Bayesian updating that embeds variants

of commonly proposed biases. We start by recasting the usual formulation of Bayesian updating

in terms of likelihood ratios. To do so, we define a function LR[π] ≡ π
1−π that maps a belief

into its implied likelihood ratio. Likewise, we recast the signal into its likelihood ratio: In our

environment, LR[st] = θ
1−θ if st = h and LR[st] = 1−θ

θ
if st = l. Then given a prior πt and signal

st+1, a Bayesian’s posterior belief πt+1 satisfies:

LR[πt+1] = LR[πt] · LR[st+1].

For example, given a prior belief πt = 1
5
(LR[πt] = 1

4
) and precision θ = 4

5
, a signal st+1 of l

(LR[st+1] = 1
4
) leads to a posterior likelihood ratio of 1

16
, implying that πt+1 = 1

17
, while a signal

of h (LR[st+1] = 4) implies πt+1 = 1
2
.

In our formulation —which follows early work on representativeness by Grether (1980,1992)

and the model of dynamic base-rate neglect of Benjamin, Bodoh-Creed, and Rabin (2017) —the

person can under- or overweight the likelihood ratio of the prior or of the signal. The non-Bayesian

updating can be formulated in terms of exponent parameters α and β:

LR[πt+1] = LR[πt]
α · LR[st+1]β.

Always assuming that α > 0 and β > 0, and examining the separate implications of α and β by

varying only one parameter while fixing the other parameter at 1, we focus on four types of biases:

α < 1 (“base-rate neglect”), α > 1 (“confirmation bias”,) β > 1 (“overreaction”), and β < 1

(“underreaction”). To demonstrate the effect of these four biases, consider the above example.

When α = 1
2
, the person effectively discounts prior evidence by contracting LR[πt] toward 1,

leading to posteriors after signals l and h of (1
9
, 2

3
), while a person with α = 2 exaggerates the

prior, leading to ( 1
65
, 1

5
). In contrast, when β = 1

2
, the person discounts the signal, leading to

(1
9
, 1

3
), while a person with β = 2 exaggerates the signal and ends with ( 1

65
, 4

5
).

It bears emphasizing that we do not interpret our analysis of these four cases as applying

to different people with different psychological propensities, but rather in general to people who

may suffer from all the psychological biases discussed– but where the environment determines

what values of (α, β) apply.27 One major point of our analysis is that, even though it might

27We very briefly outline of the psychological underpinnings and environments in which we might expect different
values of α and β. As established by Kahneman and Tversky (1973) and others, and formally modeled in Rabin
(2002) and Rabin and Vayanos (2010), people have a tendency to infer too much from small samples of independent
variables, such that we expect β > 1 for people receiving information in small data sets. But as established by
Tversky and Kahneman (1973) and others, and formally modeled in Benjamin, Rabin, and Raymond (2016),
people have a tendency to infer (way) too little from large samples, such that we would expect β < 1 in these
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intuitively appear that overreaction is the same as base-rate neglect (both involve the signal being

overweighted relative to the prior) and underreaction the same as confirmation bias (both involve

the prior being overweighted relative to the signal), these biases are different and create different

signatures in terms of movement and uncertainty reduction.

3.2 Bias in EM-ER in Two Environments

We now state two propositions that suggest a close connection in our two environments between

the four biases and our main statistic EM − ER:

Proposition 6 Consider the single-signal model with correct priors.
Given any signal precision θ and any initial prior πt 6= 1

2
:

β > 1 (overreaction) ⇒ EMt,t+1 > ERt,t+1 with ∂(EMt,t+1−ERt,t+1)

∂β
> 0

β < 1 (underreaction) ⇒ EMt,t+1 < ERt,t+1

α > 1 (confirmation bias) ⇒ EMt,t+1 < ERt,t+1 with ∂(EMt,t+1−ERt,t+1)

∂α
< 0

α < 1 (base-rate neglect) ⇒ EMt,t+1 > ERt,t+1 with ∂(EMt,t+1−ERt,t+1)

∂α
< 0.

This proposition indicates that over-reactors and base-rate neglectors have positive expected

excess movement in the single-signal setting, while the opposite is true for under-reactors and

agents with confirmation bias. Furthermore, for all but under-reactors, there is a monotonic

connection between the level of bias and the statistic. The monotonicity fails for under-reactors

because as the bias becomes more extreme and the person perceives that the signal is nearly

complete noise, leading to very little belief movements and a low-magnitude statistic.

To help interpret our analysis, recall from Section 2.2 that the excess-movement statistic,

EMt,t+1 − ERt,t+1, can be rewritten as Eπt [(2πt − 1)(πt − πt+1)] and seen as summary statistic

of the tendency to revert to the point of highest uncertainty. For base-rate neglect, the person

“forgets” a portion of her prior, updating as if her prior were closer to 1
2
than in reality. This

error leads all of her posterior beliefs to be biased in the direction of 1
2
from her prior, causing

the expectation of her posterior to move in the direction of 1
2
, which leads to an excess-movement

statistic. Conversely, a person with confirmation bias overweights her prior, causing her beliefs to

be biased in the direction away from 1
2
, leading to a negative statistic. For overreaction, the case

is more subtle as the biased person’s posterior beliefs are higher than that of a Bayesian after a

positive signal, but lower after a negative signal. However, the expectation of posteriors still in

cases. Identifying the situations leading to specific a α parameter is more complicated. Base-rate neglect (α < 1)–
articulated by Kahneman and Tversky (1972, 1973), Bar Hillel (1980) and others, and modeled by many researchers
over the years including recently by Benjamin, Bodoh-Creed, and Rabin (2017)– is the tendency to under-use “base
rates” (which we are assuming correspond to priors) when updating their beliefs. The least familiar possibility
in this context is that α > 1. We see it as a form of confirmation bias, as modeled for instance by Rabin and
Schrag (1999), whereby people have a tendency to miscode evidence as favoring their current hypotheses, effectively
exaggerating their prior.
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the direction 1
2
because the effect is greater for signals that contradict the prior (shift beliefs back

toward 1
2
) than confirm the prior (shift beliefs toward certainty).28 The opposite is true in the

case of underreaction.

By assuming a correct prior, Proposition 6 isolates the effect of biased updating at period t

from the effect of biased updating from all previous periods, which is captured in an incorrect

prior. The multi-period environment allows for endogenously-incorrect priors for every history,

but comes at the cost of requiring a prior of 1
2
and some parametric restrictions to obtain analytic

proofs. While our main interest is about across-history expectations such as EM and ER, these
assumptions allow the results to hold at every possible history, which immediately implies the

across-history results. Our suspicion– based on simulations– is that it is in fact possible to make

the statements about EM and ER without the prior or parametric restrictions.29

Proposition 7 Consider the multi-period model with correct initial prior π0 = 1
2
.

Consider any signal precision θ, any t0 < t1 < t2, and any history Ht0:
β > 1 (overreaction) ⇒ EMt1,t2 > ERt1,t2 given Ht0

β < 1 (underreaction) ⇒ EMt1,t2 < ERt1,t2 given Ht0

α > 2 (strong confirmation bias) ⇒ EMt1,t2 < ERt1,t2 given Ht0

α < α∗(θ) 30 (strong base-rate neglect) ⇒ EMt1,t2 > ERt1,t2 given Ht0

In the case of over- and underreaction, the wrong priors induced by the error actually amplify

the effects in the previous proposition. For example, if a Bayesian observing a set of signals

believes one state is more likely, an overreactor given the same signals will believe that state

is even more likely. Given that the Bayesian has the appropriate assessment, the overreactor’s

expected posterior will move in the direction of the less-certain Bayesian prior (i.e. toward 1
2
),

increasing her already-positive excess-movement statistic. As before, the opposite is true for the

underreactor.31 Confirmation bias and base-rate neglect are more complicated, because there is
28For instance, in the example above, a Bayesian adjusts from 1

5 to
1
17 when observing a confirming signal and

from 1
5 to

1
2 when observing a disconfirming signal. An overreactor adjusts farther downward with a confirming

signal to 1
65 , but the magnitude of the change induced by the bias is far greater for the disconfirming signal, which

shifts beliefs to 4
5 .

29As an example of the issue, the proof strategy for Proposition 7 when α > 2 is to demonstrate that EMt,t+1 <
ERt,t+1 for any history Ht following Ht0 . An immediate consequence is that summing over time periods and taking
expectations over histories implies EMt1,t2 < ERt1,t2 given Ht0 . When a ∈ (1, 2), this proof strategy fails. In
particular, there is a rare signal history Ht in which EMt,t+1 > ERt,t+1. In this history, a particular set of signals
cause the Bayesian to be nearly certain about the correct state of the world, while the the biased individual’s still
hovers around the incorrect state. Given the rareness of this history, we still believe that summing over periods
and taking expectations over histories will yield EMt1,t2 > ERt1,t2 given Ht0 . However, proving this statement
requires a different strategy that quantifies the likelihood of different histories and the relative magnitudes of
EMt,t+1 − ERt,t+1 in those histories.
30α∗(θ) is the solution to the (unfortunately ugly) implicit equation: θ · p( 1−θθ

α∗ 1−2α
∗

1−α∗ +1) + (1 − θ) ·

p( 1−θθ
α∗ 1−2α

∗
1−α∗ −1) − p( 1−θθ

1−2α∗
1−α∗ ) = 0 where p(x) = x

1+x . For reference, α
∗(θ) = 0.40, 0.32, 0.25, and 0.18 when

θ = 0.6, 0.7, 0.8, and 0.9.
31More generally, consider a simple one-period environment with an agent that updates correctly (α = 1, β = 1)

but starts with a prior π not equal to the Bayesian prior π∗. The expectation of the agent’s posterior belief will
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no clear connection between the person’s beliefs and the Bayesian beliefs which holds at all signal

histories. However, if the bias is strong enough, the same relationships hold because the bias

overwhelms any difference in priors induced by the error. For example, for strong confirmation

bias (α > 2), the biased person will, in all periods, move in the direction implied by her initial

signal s1, regardless of the later signals.

Proposition 7 only provides directional results. To provide intuition about the mapping between

the psychological bias parameters and the level of the resultant excess movement, we numerically

simulate the DGP for θ = .75 with resolution after 20 periods. Given α equal to .75, .85, .95,

1.05, 1.15, and 1.25, the normalized excess movement statistic is 2.44, 1.66, 1.14, 0.92, 0.87, and

0.90, respectively. That is, even small amounts of base-rate neglect can produce large amounts of

movement and the mapping between the level of base-rate neglect and movement is highly convex,

while the effect of confirmation bias is not very large or monotonic. Note that, for base-rate

neglect, as the number of periods before resolution grows, the statistic will rise without bound as

beliefs are ergodic. Alternatively, given β equal to .75, .85, .95, 1.05, 1.15, and 1.25, the normalized

excess movement statistic is 0.73, 0.84, 0.95, 1.05, 1.16, and 1.27, respectively. That is, for this

simple DGP, the parameter β and the normalized statistic happen to be nearly equal.32

3.3 Bias in EM and ER Separately

We now explore how the biases affect movement and uncertainty reduction separately, by compar-

ing EM and ER to those of a Bayesian observing the same signals, which we label EMB and ERB.

This exercise is in sharp contrast to the rest of the paper where we assume that the Bayesian beliefs

are unknown, which is made possible by exploiting the fact that EMB = ERB universally. The

four biases have four different implications for these comparisons in our simple (and restrictive)

dynamic environment, as shown in our next Proposition and explained below:

Proposition 8 In the multi-period model, given any signal precision θ:

not equal her prior (as in a martingale), but will instead be biased in the direction of the Bayesian prior. Given the
interpretation of the statistic E[M − R] as 1

2 reversion, the sign of the agent’s statistic then depends on whether
the bias is in the direction of 12 .
32An alternative way to gauge the magnitude of these biases is welfare effects, which of course depend on

the situation. For a simple calibration, we again consider a model using the DGP with θ = .75 in which two
risk-neutral non-discounting people– one biased with beliefs π̂t and one Bayesian with beliefs πt– make simple
prediction-market-like bets with each other at each of the 20 time periods. Specifically, if πt > π̂t, the Bayesian
buys a security that pays 1 in state 1 for the midpoint price πt+π̂t

2 from the biased person, while if πt < π̂t, the
biased person instead buys from the Bayesian. In the case that πt > π̂t, the biased person receives a payment of
πt+π̂t
2 , but must pay 1 with probability πt, leading to an expected payoff of − 12 |πt − π̂t|. Using similar logic, it

is simple to show that the expected total payoff of the biased person is − 12E[
∑
t |πt − π̂t|]. That is, the loss is

proportional to the expected total absolute distance between biased and Bayesian beliefs. In this setup, α equal
to .75, .85, .95, 1.05, 1.15, and 1.25 yields to an expected monetary loss of 1.04, 0.56, 0.14, 0.11, 0.33, and 0.55,
respectively. Alternatively, given β equal to .75, .85, .95, 1.05, 1.15, and 1.25, the loss is 0.21, 0.11, 0.03, 0.03, 0.08,
and 0.13, respectively.
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For any t, a person with:

β > 1 (overreaction) ⇒ EM0,t > EMB
0,t, ER0,t > ERB

0,t

β < 1 (underreaction) ⇒ EM0,t < EMB
0,t, ER0,t < ERB

0,t

There exists a time period t∗ such that for all t > t∗, a person with:

α > 2 (strong confirmation bias) ⇒ EM0,t < EMB
0,t, ER0,t > ERB

0,t

α < 1 (base-rate neglect) ⇒ EM0,t > EMB
0,t, ER0,t < ERB

0,t

The most intuitive of these results concerns base-rate neglect, where, as a result of “forgetting”

information, the person shifts beliefs more than a Bayesian but ends up being less certain. We

show, following Benjamin, Bodoh-Creed, and Rabin (2017), that base-rate neglect implies that in

the long-run beliefs are ergodic (so that EM → ∞) but bounded away from certainty (so that

ER < π0(1 − π0)), whereas EMB and ERB both converge to π0(1 − π0), so that in the limit

necessarily EM > EMB and ER < ERB. Formally, as stated in the proposition, there exists some

period after which the two inequalities must hold.

Things are more complicated with confirmation bias. As stated in the proposition, if confir-

mation bias is strong enough, there exists some period where there is too little movement and

too much uncertainty reduction: EM < EMB and ER > ERB (Of course, in the limit, Bayesian

updating induces full resolution of uncertainty, so that both ER and ERB approach π0(1− π0)).

Confirmation bias can lead to EM > EMB in the short run if the signal is very weak relative to the

degree of confirmation bias. This occurs because the person in our model always “drifts”toward

the currently-percieved-as-likely outcome, leading her to move significantly even with a very weak

signal. Interestingly, the issue of drift given little information does not occur using the model

of confirmation bias in Rabin and Schrag (1999) in which a person’s signals are replaced with a

“confirming”signal with some probability. In both models, however, our result that EM < EMB

in the long run depends on the assumption that the truth is never observed. If instead the person

is assumed to learn the truth in a final revelation, strong confirmation bias leads to EM > EMB,

because this final revelation leads to a huge movement in the common case where the person

becomes very certain in the wrong state.

The results for over-reaction and under-reaction are far simpler. Overreaction leads to EM >

EMB and ER > ERB even in the short run, while underreaction leads to EM < EMB and

ER < ERB: over-interpreting information leads to both too much movement and causes the

person to be too certain, while under-interpretation leads to too little movement and not enough

certainty.

In the case of base-rate neglect, when EM > EMB and ER < ERB, then our previous

finding that EM > ER must hold given our main result that EMB = ERB. Similarly, the

confirmation-bias results EM < EMB and ER > ERB imply EM < ER. However, for over- and
underreaction, the results on the separate components do not imply the previous findings that
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EM > ER and EM < ER. Instead, the combination of the individual component and combination
results point to a sense in which the effect of overreaction on increasing belief movement is greater

than on increasing uncertainty reduction, and the effect of underreaction in mediating uncertainty

reduction is greater than in reducing belief movement.

4 Comparisons to Other Tests

Bayesian beliefs are bounded in the unit interval and satisfy the martingale property– the expec-

tation of future beliefs equal the current belief regardless of the previous history of beliefs. There

are many ways that the martingale property can be violated. For example, a non-Bayesian’s

beliefs might always trend in one direction, might exhibit positive or negative autocorrelation of

different degrees, or might trend differentially based on some complicated function of past beliefs.

For finite data sets, where it is unlikely that all fully defined situations appear often enough to

test each deviation, it is necessary to aggregate behavior across different streams and situations

to test for a specific type of deviation. To increase statistical power, a good test of non-Bayesian

updating consequently focuses on likely types of deviations, while– of course– remaining a valid

test by not falsely rejecting the null hypothesis more than specified. In Section 3, we argued that

there is a relatively tight connection between our test and the types of biases people are prone

to make, suggesting that our test might be effi cient at detecting these biases. In this section, we

support that conclusion by comparing its performance with that of other martingale tests using

numerical simulations of Bayesian and biased beliefs in the multi-period environment with signals

discussed in Section 3. The results suggest that some existing tests are not valid on belief data

and, among the valid tests, our test has greater power to detect the four biases.33 Additionally,

we point to three attractive characteristics of our test when using belief data: time-invariance,

interpretability, and scale-variance.

We start the comparison with calibration, perhaps the most intuitive and direct way of de-

termining the accuracy of probabilistic beliefs. A person is “well-calibrated”if, when she assigns

a given probability to an outcome, the proportion of outcomes that actually occur is equal to

this probability. For example, a weather forecaster’s statements that “there is an 80% chance

of rain tomorrow”is well-calibrated if it turns out that rain occurred 80% of the days following

these statements. To understand a fundamental difference between our test and calibration, it is

useful to consider a person with severe base-rate neglect (α = 0 in the model in Section 3) who

perpetually overlooks previous signals and reports beliefs based only on most recent signal. While

this person shifts beliefs continuously with no resolution of uncertainty and therefore strongly

violates our test, she is– in fact– well-calibrated for all forecast horizons, because she appropri-

ately updates given the most recent signal. This discrepancy occurs because calibration does not

33However, we once again stress that this does not imply that our test is universally better at detecting all
deviations from the martingale property or all types of bias in updating.
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test the relationship between internal beliefs in a belief stream, but rather between one internal

belief and the final outcome. Given that calibration effectively ignores all-but-one of the internal

beliefs, it requires many belief streams, such that calibration is simply infeasible in our numerical

simulations.34 Instead, we employ a simple and more feasible drift test —which we call a simple

martingale test —of whether the average difference in belief changes each period πt−πt+1 is equal

to zero.

The vast majority of martingale tests focus on the correlations between the current movement

and one or many movements in previous periods.35 To understand the difference between these

autocorrelation tests and our test, recall from Section 2.2 that E[f(π0, π1, ..πt) · (πt − πt+1)] = 0

for any instrument f and our test employs the instrument (2πt − 1), implying that the sign of

the excess-movement statistic EM − ER can be interpreted as the tendency to revert toward a

belief of 1
2
. In contrast, a simple one-period autocorrelation test on beliefs employs the instrument

(πt−1−πt). Therefore, for example, while negative one-period autocorrelation implies the expected
direction of current belief updating will be downward (rather than straight, as in a martingale)

if the previous belief movement was upward, positive excess movement suggests that it will be

downward if the current belief is above 1
2
.

The reversion to a fixed point rather than based on recent movements has two potential benefits.

First, the biases studied in Section 3 revert to the fixed point 1
2
, so our test will be more powerful in

rejecting these biases, which is useful to the extent that those biases accurately represent common

patterns in non-Bayesian beliefs. Auto-correlation tests will pick up these errors with a large

enough dataset because, on average, previous upward movements are correlated with prior beliefs

being above 1
2
. Second, reversion to a fixed point allows our test to be time-invariant in that it

does not depend on a specific dependence between reversion and time. In contrast, for example,

one-period autocorrelation is designed to identify reversion that occurs exactly after exactly one

“period” of time. But, it is hard to know a priori what a period is, and presumably both the

amount of time required for belief reversion and the amount of time between belief observations

are not consistent within or across datasets.

The simplest implementation of the one-period autocorrelation test is to calculate the sample

Pearson Correlation ρ̂1 between current movement and previous movement and test the hypothesis

that it is zero. Multi-period autocorrelation tests, such as the Ljung—Box test and Box—Pierce

test extend this logic to multiple lags of previous movement and test the joint hypothesis that all

34In practice, empiricists commonly aggregate statements with similar probability assignments, such as “there
is an 80% chance of rain”and “there is a 76% chance of rain,”into the same “bin”(statements with probabilities
of 70-80%), comparing the empirical proportion that actually occurred to the average predicted probability in the
bin. The size of the bins are generally chosen based on the size of the data set. The results across different bins are
presented jointly using a “calibration curve,”which compares the empirical proportion to the predicted probability
for each bin (see, for example, Wolfers and Zitzewitz (2004) for a review of calibration in prediction markets).
35A more comprehensive review of martingale tests can be found in Escanciano and Lobato (2009). Lichtenstein

et al (1982) reviews the early literature on calibration tests.
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correlations ρ1, ρ2, ... are zero.
36 Unfortunately, these correlation tests are not designed to account

for the existence of heteroskedastic errors, which is common in beliefs data, and therefore the tests

commonly incorrectly reject Bayesian updating in our simulations.37 This problem is alleviated by

regressing current change on a number of past changes and relying on the heteroskedastic-robust

F-statistic, which we use in the simulations below.

An issue with multi-period autocorrelation tests is that the intuitive interpretation of a rejection

given a joint null hypothesis is cloudy as the exact source of the violation of the joint of hypothesis

is unclear. It is possible to construct a lower-powered test that potentially identifies particular

lags that exhibit conspicuous non-zero autocorrelations or to assess the individual autocorrelations

informally, but the interpretation of magnitudes is still challenging and depends on the period lag

length in the particular environment. Therefore, an additional benefit of the (normalized) excess

movement test statistic is that it has a consistent and portable interpretation that arises from the

core theory: a statistic of 1.2 implies that the person’s movement was 20% more than expected,

regardless of the timing or dataset.

It is possible to create a more interpretable test statistic using a function of the correlations,

although the interpretation is still dependent on the frequency of data. Specifically, the Variance-

ratio (VR) test considered by Lo and MacKinlay (1988) (and reviewed in Charles and Darne

(2009)) is based on the observation that, when changes are uncorrelated over time, the variance of

the one-period changes is proportional to the variance of the change over an interval of k periods:

k · E[(πt−1 − πt)2] = E[(πt−k − πt)2].38 ,39

36The test statistics of the Ljung—Box and Box-Pierce tests for k lags are n(n + 2)
∑k
i=1

ρ̂2i
n−i and n

∑k
i=1 ρ̂

2
i ,

respectively, both of which are rejected at significance level α if the statistic is greater than χ21−α,k.
37Heterskedasticity of belief movement naturally depends on the DGP, but appears common because beliefs

are bounded. When beliefs are close to certainty, present and future belief movements are likely to be small.
Consequently, variation in belief movement is likely small when previous movements were small. The effect of
heteroskedasticity on the validity of the non-adjusted tests is large: given simulations of 100 belief streams arising
from Bayesian updating in the multi-period environment from Section 3 with θ = .75, the simple correlation test,
Ljung-Box and Box-Pierce with 95% confidence incorrectly reject the null of Bayesian updating 67%, 100%, 100%,
of the time, respectively.
38There is an intuitive connection between our test and the simple VR test, which is apparent when focusing on

resolving DGP with an even number of periods. Our test exploits that E[
∑T
τ=0mπτ ,πτ+1 ] = π0(1−π0). However, as

we discuss in Section 2.8, the same equality holds when focusing on a subset of time periods, such as even-period-only

beliefs: E[
∑T

2 −1
τ=0 mπ2τ ,π2τ+2 ] = π0(1− π0). These equalities imply that E[

∑T
τ=0mπτ ,πτ+1 ] = E[

∑T
2 −1
τ=0 mπ2τ ,π2τ+2 ],

which is the relationship exploited by the VR test. Our test is intuitively more powerful in beliefs because we
exploit the fact that, when dealing with beliefs, the variance of outcomes π0(1−π0) is a known quantity implied by
beliefs rather than something that needs to be estimated. The cost is that our test is not applicable for variables
in which the outcome variance is unknown. Finally, we note an issue with the more-powerful version of the VR
test that uses overlapping estimates of the k−interval variance estimate by, for example, also employing movement
in the odd periods E[

∑T
2 −1
τ=1 mπ2τ ,π2τ+2 ]. In belief data, this test is inappropriate as the expectation underlying

the “overlapping”version of the VR test does not hold. Intuitively, the movement in odd periods does not equal
π0(1− π0) but rather E[π1(1− π1)].
39Both our test and the VR test use squared deviations to construct the test statistic. As we discuss in Section

2, squared deviations arise from the use of a particular surprisal function and we could just as well used a different
definition to create a slightly different form of our test. The same logic holds for the VR test: for every surprisal
function, there is an associated valid test that is similar to the standard VR test.
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Consequently, a test statistic constructed by the ratio of the sample analogs of these variance

measures has an expectation equal to one for any k under the null hypothesis of zero autocorre-

lation. When k = 2, the test statistic (minus one) can be shown to be approximately equal to

ρ̂1 and, more generally, approximately equal to a linear combination of the first k − 1 correlation

coeffi cients ρ̂1, ρ̂2, ...ρ̂k−1 with linearly-declining weights. Whereas our (normalized) test statistic

being 1.2 means that the person’s movement was 20% more than expected, a VR test statistic of

1.2 with a lag of 2 suggests that the movement calculated using every other observation is 20%

more than the movement calculated using every observation. Although the VR test statistic has

a more intuitive interpretation than an F-statistic, the interpretation and portability still depends

on the timing in the dataset.

A final important difference between our test and other martingale test relates to a core theme

of the paper: appreciation of the inherent scale of beliefs. Standard tests of the martingale property

are invariant to scale changes in these differences, and therefore invariant to affi ne transformations

of the data. This scale-invariance is a desirable property in many cases because a test’s conclusion

should not be influenced by the unit of measurement: a change in the price of a stock of 900c/ holds

the same meaning as a change of $9. But, it is undesirable when studying beliefs: a movement of

0.99 holds inherently different information than a movement of 0.0099. The importance of this

observation to testing can be made more formal with a simple Proposition similar to Proposition

4 in Section 2.7:

Proposition 9 (Some Affi ne Transformation of any Belief Stream is Arbitrarily Likely)
For all δ ∈ (0, 1) and belief stream π, there exists some b0 and b1 such that the transformed belief

stream π′ = b0 + b1π occurs with probability greater than δ for some DGP.

That is, any belief stream can be subjected to an affi ne transformation that leads to another

belief stream that is arbitrarily likely given some DGP. Consequently, if a scale-invariant test rejects

any belief stream as non-Bayesian, it necessarily also rejects belief streams that are arbitrarily

likely for a Bayesian in some DGP. Given the same logic, if a scale-invariant test rejects any

dataset of belief movements, the test must also incorrectly reject a dataset that is arbitrarily likely

for a Bayesian given some DGPs. In contrast, our tests are not scale invariant. For example,

the simple implication of Corollary 2 that total movement in one stream cannot be greater than

5 obviously inherently depends on the scale of the movements. Alternatively, when we use the

seemingly scale-invariant mean test, the additional rule-of-thumb imposing the restriction that

total movement be greater than 3 builds in scale-dependence by preventing application of our test

to data with many small movements. While it might be possible to create a similar rule-of-thumb

that requires enough observations to employ another martingale test, any rule we can imagine

implicitly channels the core concept of movement from our approach.
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We now shift to a numerical evaluation of the power of our test in comparison to the above

autocorrelation tests. We simulate 100,000 draws of various sample sizes (10, 30, and 100) of belief-

streams following the multi-period symmetric noisy-signal DGP with a starting prior of 1
2
discussed

in the previous section.40 In the top panel of Table 2, we report the estimated type I error– the

likelihood that the test incorrectly rejects that the stream is a martingale– for streams generated

by a Bayesian for five different signal strengths (θ ∈ {.55, .65, .75, .85, .95}).41 We calculate the
critical value for each test using a 5% level of significance, implying that the expected level of

rejection should be close to 5%. For visual ease, we put in bold those cases where the estimated

chance that a data set will wrongly reject Bayesian updating is higher than 10%. We do not

include the non-heteroskedastic-robust autocorrelation tests, as the rejection rates are far higher

than 10% and therefore the tests all appear misspecified in this environment. All of the robust

autocorrelation tests (we report those with 1, 2 and 5 lagged periods) perform well given low signal

strengths, but allowing for more lags appears to invalidate the test when the signal strength is

high.

In the lower panel of Table 2, we report the estimated power– the likelihood that the test

correctly rejects non-Bayesian updating– for streams generated by various parameterizations of

non-Bayesian behavior discussed in the previous section, holding the signal strength constant at

.75. Here, because some parameters (such as α = .8 or β = 1.5) lead to rejection by nearly all of

the tests all of the time, we choose parameters for which there is variation across tests and sample

sizes.42 The simple martingale test appears to have very little power, typically rejecting non-

Bayesian beliefs less than 10% of the time. The excess-movement test has universally higher power

than the autocorrelation tests, rejecting at around twice the best autocorrelation test for rejection

rates that are less than 1. Finally, given that the person updates appropriately (α = 1, β = 1),

but starts with the wrong prior of π0 = .6, our test and the autocorrelation tests do not appear

well-suited to detect this error. This failure might be a positive feature insofar as researchers are

more interested in testing flawed reasoning rather than bad priors.

There are multiple imperfections in the above analysis. We have only focused on specific biases

in a specific environment and other tests might better detect other biases in other environments.

For example, the simple martingale test will presumably be more powerful than our test to detect

a bias of always moving in the direction of one specific state. However, better detection of this

bias would presumably require some additional knowledge about the normative meaning of the

state space that would drive a person to believe in one particular state. Similarly, if a person

only temporarily overreacts to signals and shortly recognizes the appropriate likelihood-ratio of

40In a noisy signal environment, beliefs never reach certainty. Therefore, we end each belief stream after 100
draws, by which a Bayesian is almost always nearly certain.
41Although Table 2 only shows the results for five symmetric signal strengths, the conclusions below are robust

to using different signal strengths and allowing for asymmetric signal strengths.
42The rejection rates change smoothly across these parameters and the signal strength, such that we do not

expect the conclusions to change given different parameter choices.
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Table 2: Type-I Error and Power of Various Martingale Tests
Type 1 Error

θ = .55 θ = .65 θ = .75 θ = .85 θ = .95
Bayesian Bayesian Bayesian Bayesian Bayesian

(α = 1, β = 1) (α = 1, β = 1) (α = 1, β = 1) (α = 1, β = 1) (α = 1, β = 1)
Number of Streams 10 30 100 10 30 100 10 30 100 10 30 100 10 30 100
Excess Movement .05 .05 .05 .05 .05 .05 .06 .05 .05 .08 .06 .05 .35 .15 .05
Autocorrelation-1 (R) .05 .05 .05 .05 .05 .05 .07 .05 .05 .12 .07 .06 .37 .13 .07
Autocorrelation-2 (R) .05 .05 .05 .05 .05 .05 .05 .05 .05 .05 .05 .05 .23 .04 .04
Autocorrelation-5 (R) .05 .05 .05 .05 .05 .05 .06 .05 .05 .06 .05 .05 .14 .13 .05
Simple Martingale .05 .05 .05 .06 .05 .05 .06 .05 .05 .05 .05 .05 .05 .05 .05

Power
θ = .75 θ = .75 θ = .75 θ = .75 θ = .75

Underreaction Overreaction B-R Neglect Conf. Bias Wrong Prior
(α = 1, β = .85) (α = 1, β = 1.2) (α = .95, β = 1) (α = 1.2, β = 1) (α, β = 1, π0= .6)

Number of Streams 10 30 100 10 30 100 10 30 100 10 30 100 10 30 100
Excess Movement .13 .25 .63 .10 .23 .62 .09 .25 .70 .38 .76 1 .05 .05 .06
Autocorrelation-1 (R) .08 .08 .14 .07 .08 .14 .07 .10 .24 .23 .43 .87 .07 .06 .06
Autocorrelation-2 (R) .06 .06 .08 .06 .07 .08 .07 .08 .14 .11 .19 .51 .06 .05 .05
Autocorrelation-5 (R) .06 .06 .06 .06 .06 .06 .06 .06 .07 .05 .04 .04 .06 .05 .05
Simple Martingale .09 .08 .08 .04 .03 .03 .03 .03 .03 .10 .10 .10 .11 .20 .52

Note: This table reports the results of numerical simulations of the performance of various martingale tests given
sample sizes of 10, 30, and 100 belief streams created using a simple multi-period symmetric-signal DGP. The
upper panel reports the type 1 error: the likelihood of (incorrect) rejection of the null of Bayesian updating given
belief streams created by Bayesian updating. The cutoff of each test is chosen to reject with 95% confidence, such
that this error should be 5%. The lower panel displays the power - the likelihood of (correct) rejection of the null
- given different types of non-Bayesian updating. In both panels, percentages over 10% are emphasized with bold
text. For the autocorrelation tests, the number after the dash is the number of lags, and "(R)" emphasizes that
the test is heteroskedastic-robust as the non-robust test appears misspecified.

the signal, an auto-correlation test might be more powerful.

5 Empirical Applications

As an exploration of the potential usefulness of the excess-movement statistics, we apply our

main test to data. We first apply our tests to a data set of beliefs by a panel of individual

volunteers about global events, and then to an algorithm used to map events in baseball games

to the likelihood of each team winning the game. There are very few domains where individuals’

probabilistic beliefs are elicited or can be directly inferred– and even fewer where the dynamics

of beliefs are observed. Consequently, we additionally extend the analysis to (binary) prediction

markets, with the caveat that there is a less clear mapping from our theory of individual beliefs to

inferred “market beliefs.”This issue is discussed in greater detail in Augenblick & Lazarus (2018),

who adapt the individual theory to market outcomes.
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Table 3: Excess movement in individual, algorithmic, and prediction markets

(1) (2) (3)

Individual FanGraphs Betfair
Excess Movement X 0.0137∗∗∗ -0.00022∗∗∗ 0.00036∗∗∗

Z (4.22) (9.40) (19.55)
Norm. Excess M. Xnorm 1.20 0.931 1.046

Belief Observations 593,218 926,083 7,422,530
Event Observations 291 11,753 286,257
Individuals 3,408 - -
Total Movement 33,178 2,724 61,382

Note: This table reports statistics for the three belief datasets. Excess movement is the average difference
between movement and uncertainty reduction for each belief change, which is equal in expectation to zero under
the null of Bayesian updating. Normalized excess movement is average movement divided by average uncertainty
reduction, which is equal to one under the null of Bayesian updating. The standard errors of the individual data
are clustered at both the individual and event-level. The other standard errors are heteroskedasticity robust.

5.1 Individual Belief Streams

We begin by applying the approach to a large dataset, provided by and explored previously in

Mellers et al. (2014) and Moore et al. (2017), that tracks individual probabilistic beliefs over

an extended period of time. For the study, the authors recruited thousands of forecasters from

email lists of scientific and professional societies, research centers, and alumni associations to

continuously report beliefs about geopolitical events throughout 2011-2014.43 For each question,

forecasters reported probability estimates for events of their choice and were actively encouraged

to update them over time. Forecasters were paid for participation, but not for accuracy. Because

most forecasters did not record their (presumably) certain belief after the resolved, we add a final

belief to each stream matching this ex-post realization.44 This leaves a final dataset with 593,218

probability assessments by 3,408 forecasters about 291 events, with each forecaster making an

average of 119 assessments on an average of 55 events.

We start with the analysis of excess movement in the data, shown in column (1) of Table 3.

Because common information will potentially make belief movements correlated across individuals

and potentially-related events, we cluster the standard errors at both the individual and event-

level . The mean aggregate excess-movement statistic is 0.0137, which is statistically different from

zero (Z=4.22, p<0.001), with 64% of forecasters having positive individual statistics. Normalizing

the aggregate statistic by the average aggregate level of uncertainty reduction in each movement

43Following Moore et al. (2017), we do not include an additional year (2015) of data in which the general public
was invited to participate. As might be expected, the additional year includes much more sporatic involvement by
many more individuals. This data contains higher levels of excess movement.
44Without resolution included, the excess movement statistic drops (0.0098 compared to 0.0137). However, as

the average reduction of uncertainty falls from 0.0683 to 0.0311, the normalized excess movement rises from 1.20
to 1.32.
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(0.0683) leads to a normalized aggregate excess-movement statistic of 1.20, implying there is

20% too much belief movement given the uncertainty reduction in the dataset. This provides

evidence that, as a group, these forecasters are not fully rational Bayesian updaters. To understand

if measurement error could drive our results, we calibrate a Beta Distribution by choosing the

first shape parameter to provide enough variance to match the excess-movement statistic in the

data while choosing a period-specific second shape parameter such that the expectation of the

distribution matches πt from the data at each period. The required parameters imply a standard

deviation of measurement error of .13 when πt = .5, such the error required to rationalize the data

appears implausibly high.45

Further analysis provides evidence of systematic non-Bayesian behavior at the individual level.

For a Bayesian, excess movement should be uncorrelated with excess movement in previous periods.

However, there appears to be a strong persistence in the tendency toward excess movement within

individuals across the dataset: an individual’s excess-movement statistic in the second half of the

year is positively (r = .230) and strongly significantly (p < 0.001) correlated with their excess-

movement statistic in the first half of the year. This correlation appears strongly deflated by a large

subset of individuals with very few assessments: the correlation rises to r = 0.549 (p < 0.001) when

weighing individuals by their number of assessments, and similarly rises to r = 0.709 (p < 0.001)

when focusing on individuals with an above-average number of assessments.

5.2 Algorithmic Evidence: Fangraphs

In some domains, such as sports and politics, algorithms have been developed to make dynamic

probabilistic predictions about certain events. In this section, we examine the predictions of a

popular baseball-statistics website called Fangraphs, which uses a variety of state variables– such

as inning number, number of outs, and pitch count– to estimate a play-by-play probability that a

team will win the game.46 For example, in the May 25, 2008 game of the Cincinnati Reds versus

the San Diego Padres, Kevin Kouzmanoffof the Padres tied the score at 6-6 by hitting a solo home

run in the eighth inning. According to Fangraph’s algorithm, this play changed the chance of the

Padres winning from 26.8% to 59.6%. The algorithm apparently works by simply predicting the

observed likelihood of winning in previous games with the same (or very similar) state variables.47

We collected 937,836 probability assessments from 11,753 games in the 2006-2010 baseball

seasons directly from the Fangraphs website. Column (3) of Table 3 displays the excess-movement

45Intuitively, measurement error at each period leads to excess movement of 2σ2ε, so to match the empirical
excess movement statistic of 0.0137, the required average error variance is 0.0069, which corresponds to a standard
deviation of around 0.08. The average error variance is a mix between necessarily-small variances near beliefs of
certainty and larger variances at points such as πt = .5, which is why we calibrate a larger standard deviation at
that point.
46We thank Devin Pope for suggesting that we look at Fangraphs.
47Fangraph’s algorithm is described as “identify[ing] all similar situations in the last ten years or so...and then

find[ing] the winning percentage of teams who found themselves in those situations.”
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statistic (−0.000219), which is highly statistically different from zero (Z = 9.4, p < 0.001) and

the normalized excess-movement statistic (.931). Therefore, without any information about the

algorithm or the data-generating process of each game, we can conclude that the algorithm is “too

tame”with high probability.

This result naturally raises the issue of how a seemingly-well designed algorithm could be

(even slightly) “non-Bayesian.”We point to three potential explanations. The first concerns the

stability of the DGP: as the algorithm works by averaging outcomes from similar games in the

past ten years, it will obviously produce poor predictions if the connection between situations

and outcomes has changed over that period. For example, if teams up 3-1 in the 9th inning

won 90% of games on average in the past, but win 100% of those games in today’s environment,

the algorithm will exhibit excess uncertainty reduction. However, even with a stable DGP, the

necessity of aggregating finite past data leads to two additional issues. If the state variable is

defined very precisely, there will be few “similar”previous games, leading to excessively-volatile

predictions due to simple estimation error. Conversely, however, a too-coarse state definition can

also be problematic. While the algorithm will pass our test if it consistently “ignores”information

(such as the identity of the home team), it will potentially fail if it takes advantage of information

that it later ignores. For example, if team A wins 100% of games when up 2-0 but only wins

75% of games when up by 2-1, the algorithm will shift from 100% to 75% if it partitions games

based solely on current score because it “forgets” the full history of scores. Interestingly, while

the algorithm is transparently non-Bayesian, it is– as with the example of the extreme base-rate

neglector in Section 4– still well-calibrated.

5.3 Market Evidence: Betfair

Our final data comes from Betfair, a large British prediction market that matches individuals who

wish to make opposing financial bets about a binary event. For example, if the current market

“fractional odds”that the Denver Broncos win the Super Bowl is 2:1 (50%), individuals can either

buy or sell a contract for $1 that pays $2 if Denver wins.48 Just as with a stock market, the

odds adjust depending on supply and demand. The data then consist of the time and odds of a

transaction (matched bet on January 12th 2014 at 1:53:19 pm MST with odds of 1.21:1 (82.6%))

from a binary contract (Denver wins the game) with a given selection (Denver Broncos) focused

on a particular event (Denver Broncos vs. San Diego Chargers in the 2014 Playoffs).

Of course, our theory is about an individual’s beliefs rather than a price constructed from

a complicated market interaction. We somewhat ignore this issue and follow the literature on

prediction markets by constructing the “market beliefs”implied by the market odds, noting that

our tests below can then be seen as the joint test that the market price can be interpreted as

48Sell!
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beliefs and that these beliefs are Bayesian.49

We restrict the data in a variety of ways. First, we focus on major sporting events (soccer,

American football, baseball, basketball, hockey) and only include transactions that occur when

the game is being played. Second, we focus on contracts about the final winner of the game,

dropping secondary (likely correlated) contracts such as the leader of the game at halftime.50 For

simplicity, if there are multiple selections in a contract (i.e. team A wins; team B wins; or, the

teams draw), we focus on the binary beliefs of the event with the first transaction odds closest to

.5.51 Finally, as is common in trading data (see the discussion in Ait-Sahalia and Yu (2009)) we

drop all but the first transaction for each one-minute increment to remove high-frequency trading

noise, recalling that our theoretical results hold regardless of sampling time. These restrictions

leave a raw dataset of over 7 million transactions from nearly three-hundred thousand events from

2006-2014.

The normalized excess movement, shown in column (3) of Table 3 is 1.046, which is highly

statistically significantly positive, although reasonably close to 1. It appears that extremely-small

trades are adding volatility to the odds: when we remove trades with volume less than 1% of

the average trading volume, the statistic drops to 1.012. In this case, the normalized statistics

for the five individual sports are 1.01, 1.16, 1.02, 0.99, and 1.04 for soccer, American football,

baseball, basketball, hockey, respectively.52 We conclude that markets prices imply beliefs that

are reasonably close to satisfying the relationship between movement and uncertainty reduction,

at least on average.

6 Conclusion

Our paper introduces a simple relationship between movement of beliefs and the reduction of

uncertainty for a Bayesian updater, examines its implications, uses it to create statistical tests

of rationality, studies the connection between the tests and four common psychological biases,

49See Manski (2005) and Wolfers and Zitzewitz (2006) for a debate about the validity of this assumption. Augen-
blick & Lazarus (2018) discuss conditions under which this type of market price can be perceived as a probability.
Very loosely, the transformation requires standard assumptions in the finance literature, such as no arbitrage, and
an additional assumption that, in equilibrium, participants’marginal value of an additional dollar in one state
(Denver wins) is the same as the marginal value in another state (Denver doesn’t win). We find these assumptions
reasonably plausible in our domain.
50We ignore the possibility that belief movement for contracts across events are correlated (one unexpected storm

might lead to multiple particularly volatile sporting events in close locations), but note that our results are robust
to focusing on one contract per day.
51The criteria must be observable ex-ante: for example, it is not appropriate to focus on the selection with the

most ex-post volume as volume might be correlated with movement. We have tried a variety of other criteria,
such as choosing the selection with the highest volume of very early transactions or the selection with the earliest
transactions (excluding these early transactions from the analysis). The results are robust to these choices.
52When we further remove trades with volume less than 5% and 10% of the average trading volume, the nor-

malized statistic drops further to 1.007 and 1.004, respectively, with the individual sports statistics changing to
(1.01,1.10,1.00,0.98,1.04) and (1.01,1.07,1.00,0.98,1.05), respectively.
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compares the principles and performance of the main test with other tests of the martingale

property, and then employs this test on datasets of beliefs.

We believe that our method can be expanded and improved in a variety of ways. First, while

we have listed many theoretical results in Section 2, we guess that there are methods to tighten

some of the bounds, either by improving the general results we present or by imposing some

minimal restrictions on DGPs. Second, our analysis in Section 3 suggests that the theoretical

concepts of movement and uncertainty reduction might help differentiate and categorize different

biases. We believe that this intuitive method of categorization is promising, but there is much

work to be done to expand the results to different biases and to different environments. Third,

our empirical results from betting data hint that the market-aggregated “beliefs”might dampen

the excess movement of individuals. Fourth, our emphasis on belief data makes salient the general

lack of data about people’s beliefs over time. As others have recognized, this is perhaps surprising

given the core role of belief change from information in both economic and psychological theory,

and efforts are underway to remedy this deficit. But along the lines we briefly developed in Section

2, we also see possibilities to apply our results to non-belief data, such as changes in asset prices

or willingness-to-pay over time, which can be used to infer bounds on changes in beliefs.

Finally, and perhaps most importantly, the simple version of the test determines whether there

is a violation of Bayesian updating and provides an intuitive magnitude of the deviation, but it

does not determine how the violation occurred. While our results in Section 3 of differentiating

among psychological biases by their effects separately on EM and ER departed from the theme of
the rest of the paper by requiring us to know the correct Bayesian updating process, we suspect

that it is possible to differentiate the biases (and even identify bias-model parameters) without

much knowledge of the true information they are receiving by exploiting the fact that different

biases may lead to different average belief-movement patterns across different time periods or

situations.
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8 Appendix

8.1 Proofs

Proof of Proposition 1:
There are many ways to prove the statement. One could also use the proof strategy in the Proof of

Proposition 5 (Proposition 1 is, in fact, a Corollary of that Proposition). We therefore mainly present
this proof for intuition.

We will first prove the statement that E[Mt,t+1] = E[Rt,t+1] for any t:
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E[Mt,t+1]− E[Rt,t+1] = E[(πt+1 − πt)2]− E[((1− πt)πt − (1− πt+1)πt+1)]

= E[(πt+1 − πt)2 − (1− πt)πt + (1− πt+1)πt+1]

= E[(2πt − 1)(πt − πt+1)]

= E[(2πt − 1)(πt − E[πt+1|πt])]
= 0,

where the first line is by the definition of E[Mt,t+1] and E[Rt,t+1], the second line uses the fact that
expectation is a linear operator, the third line is simple algebraic simplification, the fourth line uses the
law of iterated expectations, and the fifth line exploits that beliefs being a martingale: E[πt+1|πt] = πt.

Now, note that then:

E[Mt1,t2 ]− E[Rt1,t2 ] =
∑t2−1

τ=t1
E[Mτ ,τ+1]−

∑t2−1

τ=t1
E[Rτ ,τ+1]

=
∑t2−1

τ=t1
(E[Mτ ,τ+1]− E[Rτ ,τ+1])

= 0,

where the first line is by definition, the second line uses the the fact that expectation is a linear operator,
the third line is from the previous proof.

Proof of Corollary 1:
Note that:

E[M ] ≡ E[M0,T ]

= E[R0,T ]

=
∑T−1

τ=0
E[(1− πt)πt − (1− πt+1)πt+1]

=
∑T−1

τ=0
E[(1− πt)πt]− E[(1− πt+1)πt+1]

= E[(1− π0)π0]− E[(1− πT )πT ]

where the first line is by definition, the second line is by the results above, the third line is by definition, the
fourth line uses the the fact that expectation is a linear operator, and the fifth line cancels similar terms.
But, for resolving DGPs, πT (HT ) ∈ {0, 1} and therefore E[(1 − πT )πT ] = 0 so E[M ] = E[(1 − π0)π0] =
(1− π0)π0 ≡ u0.

Proof of Corollary 2:
For the sake of contradiction, assume that Pr(M > u0

δ ) > δ. Then:

E[M ] = Pr(M >
u0

δ
) · E[M |M >

u0

δ
] + Pr(M ≤ u0

δ
) · E[M |M ≤ u0

δ
]

> δ · E[M |M >
u0

δ
] + (1− δ) · E[M |M ≤ u0

δ
]

> δ · u0

δ
+ (1− δ) · E[M |M ≤ u0

δ
]

> δ · u0

δ
> u0,
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where the first line is a simple conditional expectations, the second line comes from our maintained
assumption that Pr(M > u0

δ ) > δ, the third line comes from the fact that E[M |M > u0
δ ] > u0

δ , the fourth
line from the fact that E[M |M ≤ u0

δ ] > 0 as movement is always positive, and the final line is a simple
simplification.

Proof of Statement about Euclidean Distance:
First, we will construct a simple DGP that produces a beliefs that follow a simple symmetric binary

random walk with step size ε. Consider the following DGP with two signals h and l periods and for
notational ease, define the state as x = {L,H}. Let Pr(st+1 = h|x = H,πt) = 1

2 + ε
2πt

and Pr(st+1 =

l|x = L, πt) = 1
2 + ε

2(1−πt) . Given this DGP, a Bayesian with beliefs πt will have beliefs of πt+1 equal to
πt − ε or πt + ε with equal probability.

But, then standard results of symmetric random walks imply that, for any prior π0 and for any length
of pathm∗, there is some T and ε such that paths will exceed that length with arbitrarily high probability,
which proves the statement.

Proof of Proposition 2:
Recall that the random variable M is defined as

∑T−1
τ=0 (πτ+1 − πτ )2. For notational ease, define

(πτ+1 − πτ )2 = ∆2
τ so M =

∑T−1
τ=0 ∆2

τ . We are trying to solve for the variance of M :

σ2[M ] = E[M2]− E[M ]2 (1)

The previous result implies that E[M ] = π0(1 − π0) = u0, so E[M ]2 = u0
2. Now, consider the term

E[M2] = E[
(∑T−1

τ=0 ∆2
τ

)2
] and break it into two parts:

E[M2] = E[
∑T−1

τ=0 (∆2
τ )2] + 2 · E[

∑T−1
τ=0

(
∆2
τ ·
∑T−1

υ=τ+1 ∆2
υ

)
] (2)

Consider the first part of (2). As∆2
τ < 1 for any history, it must be that

∑T−1
τ=0 (∆2

τ )2 <
∑T−1

τ=0 ∆2
τ = u0.

Consider the second part of (2). The law of iterated expectations implies that:

2 · E[
∑T−1

τ=0

(
∆2
τ ·
∑T−1

υ=τ+1 ∆2
υ

)
] = 2 · E[E[

∑T−1
τ=0

(
∆2
τ ·
∑T−1

υ=τ+1 ∆2
υ

)
|Ht+1]]

= 2 · E[
∑T−1

τ=0 ∆2
τ · E[

∑T−1
υ=τ+1 ∆2

υ|Ht+1]]

≤ 2 · 1

4
· E[
∑T−1

τ=0 ∆2
τ ]

=
1

2
· u0

Where the inequality arises from the fact that E[
∑T−1

υ=τ+1 ∆2
υ|Ht+1] ≤ 1

4 because uncertainty is at
most 1

4 . Therefore,

E[M2] <
3

2
u0

And therefore:

σ2[M ] <
3

2
u0 − u0

2 = u0(
3

2
− u0)

Proof of Corollary 3:
Consider Chebyshev’s One-Sided Inequality (also called Cantelli’s inequality): Let M be a random

variable with finite expected value µ0 and finite non-zero variance σ
2. Then for any real number a > 0,
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P (M ≥ µ0 +a) ≤ σ2

σ2+a2
. Rewritten to match the style of the theorem, this implies that, for any δ ∈ (0, 1),

P (M ≥ µ0 + σ

√
(1−δ)√
δ

) ≤ δ where σ ≡ +
√
σ2.

For our situation, the above statements imply that µ0[M ] = u0 = π0(1−π0) and σ2[M ] < u0(3
2 −u0).

Therefore: P (M > u0 +
√
u0(3

2 − u0)

√
(1−δ)√
δ

) ≤ δ

Proof of Corollary 4:

First, consider any prior π0 ≥ 1
2 . Consider the gaffe DGP discussed in the paper with φ = 1 − π

1
T
0 ,

which has this prior. State 1 (the politician wins the election) occurs with probability π0, and in this case,

the beliefs of the person at time t are: (π
1
T
0 )T−t, and therefore the movement in the DGP with T periods is

M(T ) =
∑T−1

τ=0 ((π
1
T
0 )T−τ+1−(π

1
T
0 )T−τ )2 =

∑T−1
τ=0 ((π

1
T
0 )T−τ (π

1
T
0 −1))2. As T →∞,M(T )→ 0. Therefore,

for any M∗, there exists some T such that M(T ) < M∗. Therefore, given this T, Pr(M < M∗) = π0.
This proves the statement for π0 ≥ 1

2 . For priors π0 <
1
2 , consider a gaffe DGP, but in which the person

has beliefs over the likelihood of state 0 rather than 1. In this case, the same proof shows that, for and
M∗ > 0, there is some T such that Pr(M < M∗) = 1− π0. This proves the statement for π0 <

1
2 .

Proof of Corollary 5:
Consider Chebyshev’s Inequality: LetM be a random variable with finite expected value µ0 and finite

non-zero variance σ2. Then for any real number a > 0, P (M ≥ µ0 + a · σ) ≤ 1
a2
. Rewritten to match the

style of the theorem, this implies that, for any δ ∈ (0, 1), P (M ≥ µ0 + σ√
δ
) ≤ δ where σ ≡ +

√
σ2.

For our situation with n streams, denote the random variable representing the movement statistic
from independent stream i as M(i) and define M =

∑N
i=nM(i). As the mean of M(i) = u0 for all i,

the variances are bounded by u0(3
2 − u0), and the variables are assumed independent: E[M] = n · u0 and

σ2[M] < n · u0(3
2 − u0).Therefore: Pr(|M− n · u0| >

√
n·u0( 3

2
−u0)

√
δ

) ≤ δ

Proof of Proposition 3:
The statement is nearly a corollary of Proposition 1. Consider the beliefs πxt . This is the binary

belief that state x occurs or does not occur. Define mx
t1,t2(π) ≡

∑t2−1
τ=t1

(πxτ −πxτ−1)2, uxt = (1−πxt )πxt , and
rxt1,t2(π) ≡ uxt1(π)−uxt2(π), with the related capital-letter random variables defined as normal. Proposition
1 implies: EMx

t1,t2 = ERxt1,t2 . But then:

∑
x∈X

EMx
t1,t2 =

∑
x∈X

ERxt1,t2∑
x∈X

∑t2−1

τ=t1
E[(πxτ − πxτ−1)2] =

∑
x∈X

(uxt1 − u
x
t2)]

E[
∑

x∈X

∑t2−1

τ=t1
(πxτ − πxτ−1)2] = E[

∑
x∈X

(uxt1 − u
x
t2)]

EMΣ
t1,t2 = ERΣ

t1,t2 ,

where the first and third lines follows from the fact the expectation is a linear operator, ad the second
and fourth lines are by definition.

Proof of Proposition 4:
Consider some expectations stream v = [v0, v1, v2, ...vT ] and δ ∈ (0, 1).
Intuitive Note: The basic idea will be to construct a simple binary DGP that moves from each vt

to vt+1 in the stream v with arbitrarily high probability. The simple idea is to keep the expectations
stream a martingale by making the movement in the opposite direction very large, so that even though
this movement occurs with small probability, E[vt+1] = vt.
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Formally, consider a situation with two states (which for notation ease) we call x ∈ {L,H} with some
state values vH > max(v) and vL < min(v) and two signals h and l. Consider the following DGP at time
t that is determined by the assumed stream v.

If vt+1 > vt, define: Pr(st+1 = h|x = H, vt) = 1,Pr(st+1 = l|x = L, vt) = (vt+1−vt)(vH−vL)
(vt+1−vL)(vH−vt) . Given this

signal distribution, a Bayesian will update expectations from vt to vt+1 in the case of a signal h and will
update from vt to vL in the case of signal l, where the likelihood of observing a signal h is:

Pr(st+1 = h|vt)
= Pr(x = H|vt) · Pr(st+1 = h|x = H, vt) + Pr(x = L|vt) · Pr(st+1 = h|x = L, vt)

= Pr(x = H|vt) · 1 + Pr(x = L|vt) · (1−
(vt+1 − vt)(vH − vL)

(vt+1 − vL)(vH − vt)
)

=
vt − vL
vH − vL · 1 + (1− vt − vL

vH − vL ) · (1− (vt+1 − vt)(vH − vL)

(vt+1 − vL)(vH − vt)
)

=
vt − vL
vt+1 − vL

.

Importantly, this probability of transition from vt to vt+1 can be made arbitrarily high by reducing
vL.

Similarly, if vt+1 < vt, one can define a signal distribution such that a Bayesian will update expec-
tations to vt+1 in the case of a signal l and will update to vH in the case of signal h, with the signal l
occuring with probability vH−vt

vH−vt+1 , which can be made arbitrarily high by increasing v
H .

Finally, if vt+1 = vt, then set Pr(st+1 = h|x = H, vt) = 1
2 ,Pr(st+1 = l|x = L, vt) = 1

2 , such that the
person always updates to vt+1.

Now, as each of the probabilities of transitioning from vt to vt+1 can be made arbitrarily high in this
DGP, we can make the likelihood of the entire stream v arbitrarily high. That is, for any δ ∈ (0, 1), there
exists vH and vL such that the above DGP produces expectations stream v with probability above δ.

Proof of Corollary 6:
This is a straightforward corollary. For a given value m∗ and initial expectation v∗0 there is obviously

some stream v=[v∗0, v1, v2, ...vT ] with mv(v) > m∗. Occuring to the previous Proposition, there exists a
DGP such that this stream is arbitrarily likely, and therefore Pr(Mv ≥ m∗) can be made arbitrarily high.

Proof of Proposition 5 and Corollary 7:
(The proof of the Proposition includes a proof of the Corollary.)
Bayesian updating implies that expected value streams are a martingale and therefore the martingale

difference sequence ∆t = Vt+1− Vt is a serially uncorrelated random variable with a mean of zero. Given
that the expectation is bounded between min(v1, v2, ..., ) and max(v1, v2, ..., ), V ar(∆τ ) is bounded.

We first consider resolving DGPs (those in which uvT = 0 for all histories). We proceed in three steps:
1) We start by proving that E[Mv

0,T ] = E[Rv0,T ] = uv0 (Corollary 7). Consider the following transfor-
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mations: ∑T−1

τ=0
V ar(∆τ ) = V ar(

∑T−1

τ=0
∆τ )∑T−1

τ=0
V ar(Vt+1 − Vt) = V ar(

∑T−1

τ=0
(Vt+1 − Vt))∑T−1

τ=0
V ar(Vt+1 − Vt) = V ar(VT − V0)∑T−1

τ=0
E[Vt+1 − Vt]2 = E[VT − V0]2

E[
∑T−1

τ=0
(Vt+1 − Vt)2] = E[VT − V0]2

E[
∑T−1

τ=0
(Vt+1 − Vt)2] =

∑
x∈X

πx0(vx − v0)2

EMv
0,T = uv0,

where the first equality arises because the difference variables are uncorrelated, implying that the variance
of the sum of the variables equals the sum of the variances of the variables, the second line is by definition,
the third line uses the simple fact that

∑T−1
τ=0 (Vt+1 − Vt) = VT − V0, the four line uses (i) the definition

of variance V ar(Z) = E[Z2]−E[Z]2 and (ii) that fact that (because Vt is a martingale), E[Vt+1− Vt] = 0
for any t and E[VT − V0] = 0, the fifth line uses the fact that expectation is a linear operator, the sixth
line uses the fact that (i) the stream is resolving and (ii) the person has correct priors, such that with
probability πx0 , VT = vx, and the seventh line is by definition.

2) Next, we show that E[Mv
t1,T

] = E[Rvt1,T ] = E[uvt1 ]. To see this, note that– making the dependency
on history explicit– it must be that E[Mv

t1,T
|Ht1 ] = uvt1 |Ht1 for any history Ht1 because the signals after

Ht1 can be seen as a new DGP with T + 1− t1 periods starting with prior v(Ht1) such that the expected
movement following Ht1 must equal the initial uncertainty following Ht1 . Therefore EHt1 [E[Mv

t1,T
|Ht1 ]] =

EHt1 [uvt1 |Ht1 ], which, (suppressing the dependencies again) is E[Mv
t1,T

] = E[uvt1 ] = E[Rvt1,T ].
3) Finally, showing E[Mv

t1,t2 ] = E[Rvt1,t2 ] from the previous results is transparent:

E[Mv
t1,t2 ] = E[Mv

t1,T ]− E[Mv
t2,T ]

= E[Rvt1,T ]− E[Rvt2,T ]

= E[Rvt1,t2 ]

where the first line is a simple transformation of E[Mv
t1,T

] = E[Mv
t1,t2 ] + E[Mv

t2,T
], which uses the fact

that expectation is a linear operator, the second line uses the previous result, and the third is uses
E[Rvt1,T ] = E[Rvt1,t2 ] + E[Rvt2,T ].

Finally, showing the same result for non-resolving DGPs is fairly straightforward. Consider some
DGP with T periods that is non-resolving. There exists a DGP’with T − 1 periods with the same prior
and signal distributions as the original DGP for the first T periods with an added resolving signal (a signal
that reveals the state) in period T + 1. For DGP’, the previous results suggest that E[Mv

t1,t2 ] = E[Rvt1,t2 ],
but then this also must be true for the original DGP, which must share the same Bayesian expected
values up to period T .

Proof of Corollary 8:
The proof is a result of the previous corollary and the fact that, for a random variable with expectation

v0, a low bound v and an upper bound v, the largest variance is (v − v0)(v0 − v). Therefore, uv0 <
(v − v0)(v0 − v).

For a resolving stream, the previous corollary suggests that then: EMv = uv0 < (v − v0)(v0 − v).
For a non-resolving stream, the logic follows that at the end of the previous proof: given a non-

resolving DGP with T periods, there exists a similar resolving DGP’ with T − 1 periods. For this
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resolving DGP’, EMv
0,T < EMv

0,T+1 = uv0 < (v − v0)(v0 − v), but the expected movement for the original
DGP is equal to EMv

0,T , so the result holds.

___
For the next set of results, we will use the following two Lemmas:
Lemma A:
Given that E[Mt,t+1]− E[Rt,t+1] = E[(1− 2πt)(E[πt+1|πt]− πt)] :
If πt > 1

2 and E[πt+1]− πt R 0, then E[Mt,t+1]− E[Rt,t+1] Q 0.
If πt < 1

2 and E[πt+1]− πt R 0, then E[Mt,t+1]− E[Rt,t+1] R 0.
If πt = 1

2 and E[πt+1]− πt Q 0, then E[Mt,t+1]− E[Rt,t+1] = 0.

Proof of Lemma A:
Following the proof of Proposition 1, E[Mt,t+1] − E[Rt,t+1] = E[(2πt − 1)(πt − E[πt+1|πt])] = E[(1 −

2πt)(E[πt+1|πt] − πt)]. Note that, if πt > 1
2 , then 1 − 2πt < 0, and so E[Mt,t+1] − E[Rt,t+1] has the

opposite sign as E[πt+1]− πt. If πt < 1
2 , then 1− 2πt > 0, and so E[Mt,t+1]− E[Rt,t+1] has the same sign

of E[πt+1]− πt. If πt = 1
2 , the excess-movement statistic is zero regardless of E[πt+1]− πt.

Setup for Propositions 6-8:
We now discuss the four biases. We start with some setup used in the next few proofs. For notational

simplicity, define p(l) ≡ l
1+l (as a function that maps likelihood ratios to probabilities) and define l(p) ≡

p
1−p (a function that maps a probability into a likelihood ratio). The likelihood ratio associated with a

signal h is l(θ) and a signal l is 1
l(θ) . We sometimes abuse notation by using l(st) to denote l(θ) or

1
l(θ)

depending on the signal realization.
Consider a Bayesian observer with beliefs π∗t . She will transition into either π

∗h
t+1 = p(l(π∗t ) · l(θ)) if

st+1 = h or π∗lt+1 = p(l(π∗t ) · 1
l(θ)) if st+1 = l. As the person is Bayesian, the martingale property must

hold, implying that (given algebraic simplification):

Pr(st+1 = h|Ht) =
π∗t − π∗lt+1

π∗ht+1 − π∗lt+1

= 1− θ + π∗t (2θ − 1). (3)

Next, consider a biased person with beliefs πt who transitions into either πht+1 = p(l(πt)
α · l(θ)β) or

πlt+1 = p(l(πt)
α · ( 1

l(θ))β). We will focus on the true expectation of the biased person’s period t+ 1 belief
minus the belief at period t:

E[πt+1|Ht]− πt = Pr(st+1 = h|Ht)π
h
t+1 + (1− Pr(st+1 = h|Ht))π

l
t+1 − πt (4)

Note that (4) and (2πt − 1), maps to E[Mt,t+1 −Rt,t+1] by Lemma A.

Proof of Proposition 6:
We now consider the one-period adjustment to πt+1 when the biased prior is the same as the Bayesian

prior (πt = π∗t ).

Intuitive discussion of next section: We now consider the case in which the person has the correct
prior and either has base-rate neglect or confirmation bias. To understand the basic idea of the proof,
consider a prior greater 1

2 . In this case, given the ideas above about .5 reversion, if the expectation of the
posterior beliefs following the signal is greater than the prior, we have reversion away from .5 and too little
movement, while if the expectation is lower, we have .5 reversion and too much movement. First, consider
confirmation bias. Because the person overweights her higher-than-.5-prior, she will have posterior beliefs
that are higher than a Bayesian’s beliefs for every signal. As the expectation of the Bayesian’s posterior
beliefs must be equal to her prior, the expectation of the biased beliefs must be higher than the prior
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(which is also the biased person’s prior), leading to too little movement. Furthermore, as confirmation
bias increases, this effect increases, increasing the deviation of posterior expectation from prior, thereby
increasing the absolute magnitude of the excess-movement statistic. Conversely, for base-rate neglect, the
person underweights her prior, leading to biased beliefs that are always lower than the Bayesian beliefs
for every signal, leading to too much movement.

Formally, we first consider the case in which α 6= 1 and β = 1 and πt = π∗t . Given that, by definition,
Pr(st+1 = h|Ht)π

∗l
t+1 + (1− Pr(st+1 = h|Ht))π

∗l
t+1 = π∗t and that πt = π∗t , (4) can be rewritten as:

E[πt+1|Ht]− πt = p(st+1 = h|Ht)(π
h
t+1 − π∗ht+1) + (1− p(st+1 = h|Ht))(π

l
t+1 − π∗lt+1) (5)

Focus on the case of π∗t > .5 and α < 1. In this case, πht+1 = p(l(πt)
α · l(θ)) < p(l(πt) · l(θ)) = πh∗t+1 as

l(πt)
α < l(πt) and p(l) is monotonically increasing in l. Similarly, πlt+1 = p(l(πt)

α · 1
l(θ)) < p(l(πt) · 1

l(θ)) =

πl∗t+1. Therefore, E[πt+1|Ht]− πt < 0. Using very similar logic, one can show if α < 1 and πt = π∗t < .5,
then E[πt+1|Ht+1] − πt > 0. Given Lemma A, note that, when α < 1, then either (E[πt+1] < πt and
πt > .5) or (E[πt+1] > πt and πt < .5). In both of these cases, the expected excess-movement statistic
must be positive.

Similarly logic can show that (i) if α > 1 and πt = π∗t > .5, then E[πt+1|Ht+1] − πt > 0, and (ii) if
α > 1 and πt = π∗t < .5, then E[πt+1|Ht+1] − πt < 0. Therefore, the similar logic to above, Lemma A
shows that the excess-movement statistic must be negative.

We now show that the effect on the excess-movement statistic is monotonic in α. Again, start
by focusing on the case in which π∗t > .5. Recalling that πht+1 = p(l(πt)

α · l(θ)), then this case,
∂πht+1
∂α > 0 as ∂(l(πt)α)

∂α > 0 and p(l) is monotonically increasing in l. Similarly,
∂πlt+1
∂α > 0. But, then

∂(E[πt+1|Ht]−πt)
∂α = p(st+1 = h|Ht)

∂πht+1
∂α + (1 − p(st+1 = h|Ht))

∂πlt+1
∂α > 0 as p(st+1 = h|Ht) > 0 and

(1 − p(st+1 = h|Ht)) > 0. Given that (1 − 2πt) < 0, this implies that ∂(E[πt+1|Ht]−πt)(1−2πt)
∂α < 0 which

is equivalent to ∂(E[Mt,t+1]−E[Rt,t+1])
∂α < 0. Similar logic shows that, when π∗t < .5, ∂(E[πt+1|Ht]−πt)

∂α < 0

such that ∂(E[πt+1|Ht]−πt)(1−2πt)
∂α < 0, and therefore ∂(E[Mt,t+1]−E[Rt,t+1])

∂α < 0. Consequently, when π∗t 6= .5,
∂(E[Mt,t+1]−E[Rt,t+1])

∂α < 0.

Intuitive discussion of next section: We now consider the case in which the person has the correct prior
and either has overreaction or underreaction. To understand the basic idea of the proof, consider a prior
greater 1

2 . In this case, given the ideas above about .5 reversion, if the expectation of the posterior beliefs
following the signal is greater than the prior, we have reversion away from .5 and too little movement,
while if the expectation is lower, we have .5 reversion and too much movement. First, consider over-
reaction. We cannot use the same proof strategy as with base-rate neglect and confirmation bias, because
the biased posteriors will be higher than the Bayesian posteriors when the signal is h, but lower when
the signal is l. Therefore, the essence of the proof is that, because the prior is above 1

2 , the biased belief
after the h signal does not deviate as much from the Bayesian’s belief as the biased belief from a l signal
deviates from the Bayesian’s belief. As the expectation of the Bayesian’s posterior beliefs must be equal
to her prior, the expectation of the biased beliefs must be lower than the Bayesian prior (which is also the
biased person’s prior), leading to too much movement. Furthermore, as overreaction increases, this effect
increases, increasing the deviation of posterior expectation from prior, thereby increasing the absolute
magnitude of the excess-movement statistic. Conversely, for underreaction, the person underweights her
signal, leading to the opposite effect. However, the absolute magnitude of the effect is not monotonic in
β when β < 1 because as β → 0, the biased posteriors become very close to the prior and therefore the
absolute deviation of the posterior expectation from the prior becomes very small.

Formally, we now consider the case in which α = 1 and β 6= 1 and πt = π∗t .
We define:
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p =
πt − πlt+1

πht+1 − πlt+1

= 1− θ̂ + πt(2θ̂ − 1), where θ̂ ≡ 1

1 + (1
θ − 1)β

, (6)

which is the probability of a high signal required for the biased person beliefs to be a martingale (that
is, pπ̂ht+1 + (1− p)πlt+1 = πt). Intuitively, θ̂ represents perceived precision of the biased person. Subbing
πt = pπ̂ht+1 + (1− p)πlt+1 into (4) yields:

E[πt+1|Ht]− πt = (p(st+1 = h|Ht)− p)(πht+1 − πlt+1). (7)

Given our assumption of the correct prior, πt = π∗t , so p = 1 − θ̂ + π∗t (2θ̂ − 1). Subbing this and
p(st+1 = h|Ht) from (3) into (7) and simplifying yields:

E[πt+1|Ht]− πt = (2π∗t − 1)(θ − θ̂)(πht+1 − πlt+1). (8)

Focus on the case of π∗t > .5 and β > 1. The other cases have the symmetric proofs. We show that
E[πt+1|Ht] − π∗t < 0. First, θ̂ = 1

1+( 1
θ
−1)β

> θ because θ > 1
2 by assumption. Then E[πt+1|Ht] − πt > 0

as πht+1 > πlt+1, θ̂ > θ, and 2π∗t − 1 > 0 because π∗t > .5 by assumption. Using very similar logic, one

can show that, if π∗t < .5, then E[πt+1|Ht+1] − πt > 0. Given Lemma A, note that, when β > 1, then
either (E[πt+1] < πt and πt > .5) or (E[πt+1] > πt and πt < .5). In both of these cases, the expected
excess-movement statistic must be positive.

Similar proofs show that when β < 1 (i) if πt = π∗t > .5, then E[πt+1|Ht+1] − πt > 0 and (ii)
if πt = π∗t < .5, then E[πt+1|Ht+1] − πt < 0. Then, similar application of Lemma A shows that the
excess-movement statistic must be negative.

We now show monotonicity of the statistic when β > 1. Again, we first focus on the situa-

tion in which π∗t > 1
2 . Consider ∂(E[πt+1|Ht]−πt)

∂β =
∂(θ−θ̂)(πht+1−πlt+1)(2π∗t−1)

∂β = (2π∗t − 1)∂(θ−θ̂)
∂β (πht+1 −

πlt+1) + (2π∗t − 1)
∂(πht+1−πlt+1)

∂β (θ − θ̂). It is easy to show that
∂πht+1
∂β > 0 and

∂πlt+1
∂β < 0 and therefore

∂(πht+1−πlt+1)

∂β > 0. Similarly, ∂θ̂∂β > 0 and therefore ∂(θ−θ̂)
∂β < 0. Given that θ − θ̂ < 0 and πht+1 − πlt+1 > 0

and (2π∗t − 1) > 0, this implies that ∂(E[Mt,t+1]−E[Rt,t+1])
∂β < 0. This implies that ∂(E[πt+1|Ht]−πt)(1−2πt)

∂β > 0

which is ∂(E[Mt,t+1]−E[Rt,t+1])
∂β > 0. Using very similar logic, one can show that if instead πt = π∗t < .5,

∂(E[Mt,t+1]−E[Rt,t+1])
∂β > 0, which implies

Proof of Proposition 7:
We now consider the case in which π0 = 1

2 and updating occurs over multiple periods.

Intuitive discussion of next section: If confirmation bias is strong enough– the person will update in
the direction suggested by their prior (i.e. towards 1 if the πt > 1

2) regardless of the signal once they see
the first signal. This implies that the expected posterior moves away from .5 relative to the prior, which
implies negative excess movement.

Formally, consider the case of “strong”confirmation bias (α ≥ 2). (here, we prove the result for the
weak inequality. The statement in the paper uses α > 2 for consistency with later statements that require
the strict inequality). The setup follows that of the previous proof.

Claim: given an initial signal of s1 = h, at every period t ≥ 1, (i) πt ≥ θ. In the process we prove
that (ii) πht+1 > πt and (iii) πlt+1 ≥ πt.

The proof is by induction.
First, consider t = 1. As s1 = h, π1 = θ so (i) is satisfied. Next, πh2 = p(l(πt)

α · l(θ)) = p(l(θ)α · l(θ)) =
p(l(θ)α+1) = 1 − 1

1+( θ
1−θ )α+1

> θ = π1, so (ii) is satisfied. Finally, πl2 = p(l(πt)
α · 1

l(θ)) = p(l(θ)α · 1
l(θ)) =

p(l(θ)α−1) = 1− 1
1+( θ

1−θ )α+1
≥ θ = π1 as α ≥ 2, so (iii) is satisfied. (ii) and (iii) imply that π2 ≥ θ.
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Now, consider some t. By induction πt ≥ θ. Then, similar logic shows: πht+1 = p(l(πt)
α · l(θ)) ≥

p(l(θ)α · l(θ)) = p(l(θ)α+1) = 1 − 1
1+( θ

1−θ )α+1
> θ = πt where the weak inequality follows from the fact

that p(·) and l(·) are monotonically increasing in its argument and α ≥ 2, therefore l(πt) ≥ l(θ),so
l(πt)

α ≥ l(πt)α, and so p(l(πt)α · l(θ)) ≥ p(l(θ)α · l(θ)) because l(θ) ≥ 0. Similarly, πlt+1 = p(l(πt)
α · 1

l(θ)) ≥
p(l(θ)α · 1

l(θ)) = p(l(θ)α−1) = 1− 1
1+( θ

1−θ )α+1
≥ θ = πt.

Therefore, the claim is true. Furthermore, as πht+1 > πt and πlt+1 ≥ πt, then the expectation of
the posterior must be greater than the prior ((4) is positive) as (3) implies that Pr(st+1 = h|Ht) =
1− θ + π∗t (2θ − 1) ∈ (0, 1) regardless of π∗t .

Similar logic shows that given an initial signal of s1 = l, (i) at every period t ≥ 1, πt ≤ 1 − θ, (ii)
πlt+1 < πt and (iii) πht+1 ≤ πt, and therefore the expectation of the posterior must be less than the prior.

Using the same logic as the proofs above, this shows– for any history in which πt 6= 1
2– reversion

away from .5, which combined with Lemma A shows that the excess-movement statistic is negative.

Intuitive discussion of next section: Base-rate neglect causes the person to downweight her prior.
Given this, even with an infinite amount of signals in one direction, her beliefs are bounded away from
certainty. Given this and strong enough base-rate neglect (α < 1

2), the signal that is opposite the direction
of the person’s current prior (i.e. st+1 = l given πt > 1

2) will cause the person to update to the other
side of .5 (πt+1 <

1
2). This can obviously leads to strong .5 reversion. However, it does not lead to .5

reversion if, for example, πt > 1
2 but is close to

1
2 , while π

∗
t (the Bayesian’s belief given the signals) is

close to 1. In this case, there is a relatively high likelihood (' θ) of observing signal h, which causes the
person to update away from .5. The key to removing this situation is to bound beliefs away from .5, just
as they are bounded away from 1.

Formally, next, consider the case of “strong” base-rate neglect. We maintain the assumption that
α < 1

2 throughout. The setup follows that of the previous proof.
Consider πt > 1

2 .

Claim 1: πt ≤ p(l(θ)
1

1−α ).
Proof of Claim 1: Note that the person’s belief at period 1 is p(l(π0)α · l(s1)), at period 2 is p((l(π0)α ·

l(s1))α · l(s2)) = p(l(π0)α
2 · l(s1)α · l(s2)) and therefore at period t is

πt(Ht) = p(l(π0)α
t · l(s1)α

t−1 · l(s2)α
t−2 · ... · l(st)). Given that π0 = 1

2 , it must be that l(π0) = 1 and
l(π0)α = 1, so:

πt(Ht) = p(l(s1)α
t−1 · l(s2)α

t−2 · ... · l(st)).

Now, consider grouping likelihood ratios of similar signals:

πt(Ht) = p(l(θ)

∑
τ |sτ=h

αt−τ · 1

l(θ)

∑
τ |sτ=l

αt−τ

)

Or:

πt(Ht) = p(l(θ)
(
∑

τ |sτ=h
αt−τ−

∑
τ |sτ=l

αt−τ )
)

p is monotonic in its arguments and l(θ) > 1, so this is maximized when st = h for all t. So, the
highest belief is a sequence of only high signals,

πt(Ht) = p(l(θ)1+...+αt−2+αt−1)

≤ p(l(θ)
1

1−α ).

This proves Claim 1.
Claim 2: πt ≥ p(l(θ)

1−2α
1−α ).
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Proof of Claim 2; First, note that given that α < 1
2 , st = h implies that

∑
τ |sτ=h α

t−τ−
∑

τ |sτ=l α
t−τ >

0, such that l(θ)(
∑

τ |sτ=h
αt−τ−

∑
τ |sτ=l

αt−τ )
> 1, such that πt(Ht) = p(l(θ)

(
∑

τ |sτ=h
αt−τ−

∑
τ |sτ=l

αt−τ )
) >

1
2 . Similarly, st = l implies that

∑
τ |sτ=h α

t−τ −
∑

τ |sτ=l α
t−τ < 0 and so πt(Ht) <

1
2 . Given that we

assumed πt > 1
2 , it must be that st = h. To minimize the belief given this constraint, we set all other

signals to l, such that:

πt(Ht) = p(θ1−
∑t−1

τ=1
αt−τ )

≥ p(l(θ)(1− α
1−α )).

This proves Claim 2.
Now, we will find a condition under which (4) is negative regardless of the signal history. To do so, we

will bound (4) above and show the bound is negative. First, note that as πht+1 > πlt+1, (4) is maximized
when Pr(st+1 = h|Ht) is maximized. (3) notes that Pr(st+1 = h|Ht) = 1 − θ + π∗t (2θ − 1), which given
π∗t ∈ [0, 1], is maximized at θ. Therefore:

E[πt+1|Ht]− πt ≤ θπht+1 + (1− θ)πlt+1 − πt
= θ(πht+1 − πt) + (1− θ)(πlt+1 − πt).

Given πt > 1
2 , π

h
t+1 − πt is maximized when πt is minimized and πlt+1 − πt is minimized when πt is

minimized. Therefore, θπht+1 + (1− θ)πlt+1 − πt is maximized when πt is minimized, but then given that
πt ≥ p(l(θ)

1−2α
1−α ),

θπht+1 + (1− θ)πlt+1 − πt ≤ θp(l(θ)
α 1−2α
1−α +1) + (1− θ)p(l(θ)α

1−2α
1−α −1)− p(l(θ)

1−2α
1−α ).

Given p(·) is monotonically increasing in its arguments, l(θ) > 1 and α < 1
2 , then the right side is

monotonically decreasing in α. Therefore, given the solution α∗(θ) of the implicit equation:

θp(l(θ)α
∗ 1−2α∗
1−α∗ +1) + (1− θ)p(l(θ)α

∗ 1−2α∗
1−α∗ −1)− p(l(θ)

1−2α∗
1−α∗ ) = 0,

α < α∗(θ) must lead to a negative ride side, and therefore E[πt+1|Ht]−πt must be negative. For reference,
α∗(θ) = [0.45, 0.40, 0.36, 0.32, 0.28, 0.25, 0.22, 0.18.0.15] given θ = [0.55, 0.60, 0.65, 0.70, 0.75, 0.80, 0.85, 0.90, 0.95].
Similar arguments show that if πt < 1

2 , α < α∗(θ) implies that E[πt+1|Ht] − πt must be positive. Then,
using the same logic as the proofs above, this shows reversion toward .5, which combined with Lemma A
shows that– for any history in which πt 6= 1

2– the excess-movement statistic is positive.

Intuitive discussion of next section: We showed above that overreaction with the correct prior leads
to reversion to .5 and excess movement. With multiple periods, the same proof cannot be used because
the biased person’s prior does not match the Bayesian prior at every signal history. However, it is
straightforward to show that– given any signal history– the biased person’s prior is always on the same
side of .5, but closer to certainty, than the Bayesian’s agents prior. For example, if π∗t > 1

2 , then
πt > π∗t >

1
2 . Given that the correct prior is in the direction of .5, she is likely to revert back to .5,

providing an additional force of .5 reversion. Given that both forces (overreaction and the wrong prior)
lead her to .5 reversion, the combination leads to .5 reversion. For underreaction, the opposite is true.

Consider the previous proof for the one-period excess-movement statistic given the correct prior. In
this proof, we used the fact that πt = π∗t to create equation (8). In this proof, we do not assume the
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correct prior at every history. Therefore, the equivalent equation adds an additional term:

E[πt+1|Ht]− πt = (2π∗t − 1)(θ − θ̂)(πht+1 − πlt+1) + (π∗t − πt)(2θ̂ − 1)(πht+1 − πlt+1). (9)

Focus on the case of πt > .5 and β > 1. The other cases have the symmetric proofs.
Claim: πt > .5⇒ π∗t > .5 and πt > π∗t .
Proof of claim: Note that the person’s belief at period 1 is p(l(π0) · l(s1)β), at period 2 is p((l(π0) ·

l(s1))β · l(s2)β) and therefore at period t is πt(Ht) = p(l(π0) · l(s1)β · l(s2)β · ... · l(st)β), which, given
that π0 = 1

2 and therefore l(π0) = 1, is equal to: πt(Ht) = p((l(s1) · l(s2) · ... · l(st))β). This is in
contrast to the Bayesian belief: π∗t (Ht) = p((l(s1) · l(s2) · ... · l(st))). We assumed that πt > 1

2 , so
p((l(s1) · l(s2) · ... · l(st))β) = πt >

1
2 , which requires (l(s1) · l(s2) · ... · l(st))β > 1. As β > 1, this implies

that (l(s1)·l(s2)·...·l(st)) > 1 and therefore that π∗t >
1
2 . Finally, as β > 1 and (l(s1)·l(s2)·...·l(st)) > 1, it

must be that (l(s1)·l(s2)·...·l(st))β > (l(s1)·l(s2)·...·l(st)), which implies that p((l(s1)·l(s2)·...·l(st))β) >
p(l(s1) · l(s2) · ... · l(st)) because p(·) is monotonically increasing. This implies that πt > π∗t . The claim is
proved.

In the previous proof, we showed that (2π∗t − 1)(θ − θ̂)(πht+1 − πlt+1) < 0 given that π∗t >
1
2 , which

must be true given the assumption of πt > 1
2 and the claim that was just proved. Now, we also show that

(π∗t − πt)(2θ̂ − 1)(πht+1 − πlt+1) < 0: (i) (2θ̂ − 1) > 0 because θ̂ = 1
1+( 1

θ
−1)β

> θ > 1
2 , (ii) π

h
t+1 − πlt+1 > 0,

and (iii) the claim just proved (π∗t − πt) < 0 given the assumption of πt > 1
2 .

Following the same logic, we can similarly show that (i) E[πt+1|Ht]− πt > 0 when πt < 1
2 and β > 1,

(ii) E[πt+1|Ht]− πt > 0 when πt > 1
2 and β < 1, and (iii) E[πt+1|Ht]− πt < 0 when πt < 1

2 and β < 1.
Then, using the same logic as the proofs above, this shows– for any history in which πt 6= 1

2 —there
is reversion toward .5 when β > 1, which combined with Lemma A shows that the excess-movement
statistic is positive, with the opposite statements when β < 1.

Proof of Proposition 8:
We now consider E[R]− E[RB] and E[M ]− E[MB] in the case above in which π0 = 1

2 and updating
occurs over multiple periods.

Intuitive discussion of next section: We showed above that overreaction always leads to positive excess
movement at any history. We also showed that it leads the overreactor to always be more certain that a
Bayesian. As a result, the expected uncertainty reduction from period 0 (where the Bayesian and biased
person agree on the uncertainty) to period t (where the biased person is more certain) must be greater
than that of the Bayesian. But, if the biased person has more uncertainty reduction than a Bayesian and
the Bayesian’s uncertainty reduction is equal to her movement, then the biased person must have more
uncertainty reduction than the Bayesian’s movement. But, as the biased person also has more movement
than uncertainty reduction, her movement must be greater than the Bayesians movement.

We discuss the case in which β > 1 and α = 1.
In the previous proof, we showed that E[Mt,t+1−Rt,t+1|Ht] > 0 for any historyHt in which πt(Ht) 6= 1

2 .
Therefore, by Lemma B, E[M0,t − R0,t] > 0 for any t > 1 as π1(Ht) 6= 1

2 . Now, consider E[R0,t − RB0,t].
In the previous proof, we showed that πt(Ht) > .5 ⇒ π∗t (Ht) > .5 and πt(Ht) > π∗t (Ht) and a similar
proof shows πt(Ht) < .5 ⇒ π∗t (Ht) < .5 and πt(Ht) < π∗t (Ht). But, then πt(1 − πt) < π∗t (1 − π∗t ) for
any history if πt(Ht) 6= 1

2 . But as π0(1 − π0) = π∗0(1 − π∗0) as by assumption π0 = π∗0 = 1
2 , then it

must be that π0(1 − π0) − πt(1 − πt) > π∗0(1 − π∗0) − π∗t (1 − π∗t ) for any history πt(Ht) 6= 1
2 . But then,

E[π0(1 − π0) − πt(1 − πt)] = E[R0,t] > E[RB0,t] = E[π∗0(1 − π∗0) − π∗t (1 − π∗t )] for t > 0 because for every
t > 0, there is at least one history with πt(Ht) > 0 that occurs with positive probability (for example,
the history with all high signals).

But, (i) by our main proposition E[RB0,t] = E[MB
0,t], and (ii) we previously found that E[M0,t]−E[R0,t] >

0 for t > 1, and (iii) we just determined E[R0,t] > E[RB0,t]. Combining these: E[M0,t] − E[R0,t] > 0 ⇒
E[M0,t]− E[RB0,t] > 0⇒ E[M0,t]− E[MB

0,t] > 0 for any t > 1.
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Collecting our conclusions: for any t > 1, (i) E[M0,t] > E[R0,t] , (ii) E[R0,t] > E[RB0,t], and (iii)
E[M0,t] > E[MB

0,t]

Similar logic shows that for β < 1 and α = 1: for any t > 1, (i) E[M0,t] < E[R0,t] , (ii) E[R0,t] < E[RB0,t],

and (iii) E[M0,t] < E[MB
0,t]

Intuitive discussion of next section: We showed that a person with base-rate must have beliefs that
are bounded away from certainty. Therefore, as the Bayesian tends to certainty over time, there must
be some time T in which the Bayesian has reduced more uncertainty from the (shared) prior than the
biased person. For movement, Benjamin, Bodoh-Creed, and Rabin (2017) show that the movement must
be ergodic and therefore is unbounded in expectation, while a Bayesian’s expected movement must be
bounded (at the initial uncertainty).

We discuss the case in which α < 1 and β = 1.
Recall that above, we showed that if α < 1, πt ≤ p(l(θ)

1
1−α ) < 1. Therefore, E[R0,t] < π0(1 −

π0) − p(l(θ)
1

1−α )(1 − p(l(θ)
1

1−α )) < π0(1 − π0). But, as a Bayesian must approach certainty as t → ∞,
E[RB0,t] → π∗0(1 − π∗0) = π0(1 − π0) as t → ∞. But, then, there must be some point t∗ at which
E[R0,t∗ ] < E[R∗0,t∗ ]. To address movement, we rely on a result in Benjamin, Bodoh-Creed, and Rabin,
who show that the biased person’s movement is ergodic and therefore unbounded in expectation as t→∞.
Given that E[MB

0,t∗ ] → π∗0(1 − π∗0) = π0(1 − π0) as t → ∞, it must be that there must be some t∗ such
that E[M0,t∗ ] > E[MB

0,t∗ ].

Intuitive discussion of next section: A person with strong enough confirmation bias must always move
in the direction of the state suggested by her initial signal. For strong confirmation bias, the effect of the
initial signal will become more powerful and all possible signals observed by a Bayesian. Therefore, her
uncertainty will always be lower than a Bayesian’s uncertainty at some point, leading her to have more
uncertainty reduction from that point onward. For movement, as a biased person always moves in the
same direction, the sum of her squared deviations (which are all less than 1) will always be less then the
square of the total deviation. But, the Bayesian’s expected movement approaches the square of the total
deviation (as it is equal to the initial uncertainty). Therefore, the biased person’s movement is lower than
the Bayesian’s movement at some point.

We discuss the case of “strong”confirmation bias (α > 2) and β = 1.
Note that in the proof, we relabel t∗ in the statement to t as ∗ is associated with the Bayesian belief

in the proof.
First, we focus on uncertainty reduction. We show that there exists some time period t such that

ut(Ht) = πt(Ht)(1 − πt(Ht)) < u∗t (Ht) = π∗t (Ht)(1 − π∗t (Ht)) for all Ht with t ≥ t, which implies that
E[R0,t] = u0 − E[ut] > u∗0 − E[u∗t ] = E[RB0,t] for all t ≥ t as u0 = u∗0.

To show this, first consider the biased beliefs following history Ht in which s1 = h. As shown in the
proof to Proposition 7: given an initial signal of s1 = h, at every period t ≥ 1, (i) πt ≥ θ > 1

2 . Therefore,
the history(s) at time t with the highest uncertainty (with a belief closest to 1

2) has the lowest belief
possible. This is clearly the history with all l signals (except the assumed first signal) which (following
the logic in the proof of base-rate neglect in Proposition 7) is:

πt({s1 = h, s2 = l, s3 = l...}) = p(l(θ)α
t−1−

∑t
τ=2 α

t−τ
).

Alternatively, the history(s) at time t with the highest uncertainty for the Bayesian is one with all
confirming signals, leading to a belief of:

π∗t ({s1 = h, s2 = h, s3 = h...}) = p(l(θ)t)

But, as α > 2, the sequence αt−1 −
∑t

τ=2 α
t−τ → ∞ as t → ∞ at an exponential rate, and

therefore there must be some t such that αt−1 −
∑t

τ=2 α
t−τ > t for all t ≥ t. But, then, for t ≥ t,
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l(θ)α
t−1−

∑t
τ=2 α

t−τ
> l(θ)t as l(θ) > 1 and therefore p(l(θ)α

t−1−
∑t
τ=2 α

t−τ
) > p(l(θ)t) for t ≥ t as p(·) is

monotonically increasing. But, then ut({s1 = h, s2 = l, s3 = l...}) < u∗t ({s1 = h, s2 = h, s3 = h...}) for
t ≥ t . But, as ut(Ht) ≤ ut({s1 = h, s2 = l, s3 = l...}) for all Ht and u∗t ({s1 = h, s2 = h, s3 = h...}) ≤
u∗t (Ht) for all Ht, so ut(Ht) < u∗t (Ht) for all Ht when t ≥ t, and the statement is proved when s1 = h. A
symmetric proof shows the same for s1 = l, and therefore as outlined above E[R0,t] > E[RB0,t].

For movement, note that, for a Bayesian, a standard result is that E[u∗t ] → 0 as t → ∞. Therefore,
as E[RB0,t] → u∗0 as t → ∞, and therefore, as E[MB

0,t] = E[RB0,t], E[MB
0,t] → u∗0 as t → ∞. The proof to

Proposition 7 shows that the biased-person’s beliefs are monotonically increasing if s1 = h (and conversely
monotonically decreasing if s1 = l). Therefore, the sum of squared deviations m0,t(Ht) must be strictly
bounded away from u0 = u∗0 for every history Ht at every period t. But, then E[M0,t] is bounded away
from u∗0 and therefore, there is some tM such that E[M0,t] < E[MB

0,t] for t > tM .
Combining the statements, taking there is some combined critical period greater than both of the

critical periods above (labeled t and tM ) such that for all periods after the combined critical period,
E[M0,t] < E[MB

0,t] and E[R0,t] > E[RB0,t].

Proof of Proposition 9:
Consider some belief stream π = [π0, π1, π2, ...πT ] and δ ∈ (0, 1).
Intuitive Note: The basic idea will be to shrink the stream while starting at π0 to create π′ =

[π′0, π
′
1, π
′
2, ...π

′
T ]. Then, following the idea in the proof of Proposition 4, we will construct a DGP that

can make that stream very likely: the DGP either moves the belief from πt to πt+1 or moves in the
opposite direction to 0 or 1. Given that beliefs are a martingale, the probability of moving from πt to
πt+1 can be made arbitrarily high as the distance between πt to πt+1 shrinks. Consequently, the likelihood
of observing all movements in the stream can be made arbitrarily likely.

Formally, consider the affi ne transformation of stream π to π′ = b0 + b1π = [π0, π0 + b1(π1−π0), π0 +
b1(π2 − π0), ..., π0 + b1(πT − π0)] where b0 = π0 − π0b1 and b1 < 1. Note that because πt ∈ [0, 1], it must
be that (πt− π0) ∈ [−π0, 1− π0] and therefore that π′t = π0 + b1(πt− π0) ∈ [0, 1], so π′ is an appropriate
belief stream. Now consider the following DGP at time t that is determined by this stream π′. This
DGP follows that in the Proof 4. Label the states 0 and 1, H and L respectively for notational ease, and
consider a DGP with two signals h and l.

If π′t+1 > π′t, define: Pr(st+1 = h|x = H,π′t) = 1,Pr(st+1 = l|x = L, π′t) =
(π′t+1−π′t)

(π′t+1)(1−π′t)
. Given this

signal distribution, a Bayesian will update expectations from π′t to π
′
t+1 in the case of a signal h and will

update from π′t to 0 in the case of signal l, where the likelihood of observing a signal h is (following the
Proof 4) π′t

π′t+1
. Importantly, this probability of transition from π′t to π

′
t+1 can be made arbitrarily high as

π′t+1− π′t tends to zero, or as, π′t+1− π′t = (π0 + b1(πt+1− π0))− (π0 + b1(πt− π0)) = b1(πt+1− πt) tends
to zero, which occurs as b1 tends to zero. Similarly, if π′t+1 < π′t, one can define a signal distribution such
that a Bayesian will update expectations to π′t+1 in the case of a signal l and will update to 1 in the case of

signal h, with the signal l occuring with probability 1−π′t
1−π′t+1

, which can again be made arbitrarily high by

reducing b1 to zero. Finally, if π′t+1 = π′t, then set Pr(st+1 = h|x = H,π′t) = 1
2 ,Pr(st+1 = l|x = L, π′t) = 1

2 ,
such that the person always updates to π′t+1.

Now, as each of the probabilities of transitioning from π′t to π
′
t+1 can be made arbitrarily high in

this DGP by reducing b1, we can make the likelihood of the entire stream π′ arbitrarily high by reducing
b1. That is, for any δ ∈ (0, 1), there exists b1 such that the above DGP produces belief stream π′ with
probability above δ.

54


