
B Online Appendix

B.1 Value Estimation

For each good, Swoopo publishes a visible "worth up to" price, which is essentially the

manufacturer’s recommended price for the item. This price is one potential measure of value,

but it appears to be only useful as an upper bound. In the most extreme example, Swoopo

has held nearly 3,000 auctions involving 132 types of "luxury" watches with "worth up to"

prices of more than $500. However, the vast majority of these watches sell on Internet sites

at heavy discounts (20-40%) from the "worth up to" price. It is diffi cult, therefore, to justify

the use of this amount as a measure of value if the auctioneer or participant can simply order

the item from a reputable company at a far cheaper cost. That said, it is also unreasonable

to search all producers for the lowest possible cost and use the result as a measure of value,

as these producers could be disreputable or costly for either party to locate.

In order to strike a balance between these extremes, I estimate the value of items by using

the average price found at Amazon.com and Amazon.de for the exact same item and using

the "worth up to" price if Amazon does not sell the item.45 As prices might have changed

significantly over time, I only use Amazon prices for auctions later than December 2007 and

scale the value in proportion to any observable changes in the "worth up to" price over time.

Amazon sells only 29% of the unique consumer goods sold on Swoopo, but this accounts for

60% of all auctions involving consumer goods (goods that are sold on Amazon are likely to

occur more in repeated auctions). For the goods that are sold at Amazon, the adjusted value

is 79% of the "worth up to" price without shipping costs and 75% when shipping costs are

added to each price (Amazon often has free shipping, while Swoopo charges for shipping).

As the adjusted value is equal to the "worth up to" price for the 40% of the auctions for

consumer goods that are not sold on Amazon, it still presumably overestimates the true

value.46

B.2 Definition of Experience

There are multiple potential measures of "experience." For my analysis, I define the

experience of a player at a point in time as the number of bids made by that player in

45This is a somewhat similar idea to that in Ariely and Simonson (2003) who document that 98.8% of
eBay prices for CDs, books, and movies are higher than the lowest online price found with a 10-minute
search. My search is much more simplistic (and perhaps, realistic). I only search on Amazon and only
place the exact title of the Swoopo object in Amazon’s search engine for a result.

46The main results of the paper are unchanged when run only on the subset of goods sold at Amazon.
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all auctions before that point in time. The qualitative results below are robust to using

different experience measures, such as the number of auctions previously played or the total

time previously spent on the site. However, the number of bids, rather than these other

measures, is a stronger predictor of behavior and profits. Intuitively, unlike a static war-of-

attrition, feedback occurs instantly after each bid rather than only at the end of the auction.

Note that players potentially enter my bid-level dataset with prior experience. While I

do not know the number of individual bids made by each player prior to the start of the bid-

level dataset, the auction-level dataset does contain the number of top-10 appearances of each

player in most of the auctions prior to the bid-level data. Using an estimated relationship

between the number of appearances in the top-10 lists and the number of bids made by a

player in the bid-level data, I (roughly) estimate the number of bids made by players prior

to the start of the bid-level dataset using the top-10 lists prior to the start of the bid-level

dataset.

B.3 Experience and User Profits

In this section, I examine whether more experienced players make higher expected prof-

its. First, I use a non-parametric regression to show a clear positive relationship between

experience and the expected profit from each bid. Then, I parameterize the regression to

demonstrate that this relationship is highly statistically significant. Finally, in order to

control for potential selection effects, I add user fixed effects, demonstrating that within-

individual change (learning) plays a role in the relationship between experience and profits.

I define the concept of auctioneer instantaneous profits at time t given leader lt π(t, lt)

in the theoretical setup. Now, consider an analogous definition of the user’s instantaneous

profits. Clearly, when a user does not have a bid accepted and is not the leader, this user’s

profits are zero. However, when a user is the leader, if the auctioneer is making $0.15 on

average, the leader must be losing $0.15 on average: that is, πUit(t, lt) = − π(t, lt).

With this interpretation in mind, I rearrange the individual dataset into an (incomplete)

panel dataset in which users are indexed by i and the order of the bids that an individual

places is indexed by t, letting πUit be the payoff of user i’s tth bid.
47 Figure B.1 displays a

non-parametric regression of user profits on the level of experience of the user at the time

of the bid, as well as a histogram of the number of bids made at each experience level for

both types of auctions. Clearly, there is a positive concave relationship between the profit

47Note that, in an abuse of notation, t represents the bid number of a player, not the auction bid stage,
as in the theoretical section.
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Figure B.1: Profit and Experience

Notes: Soild line shows a local polynomial regression of instantaneous user profits (the profit from one
bid) on user experience (the number of bids placed by a bidder at the time of the bid) The histogram
shows the distribution of player experience at the time of each bid.

of a bid and the level of experience of the bidder. In an auction, a player with no experience

can expect to lose $0.60 per each $0.75 bid, while those with very high experience levels

have slightly positive expected payoffs per each bid. However, note that this positive effect

requires a relatively large amount of experience: raising the expected value of a bid to near

zero requires an experience level of nearly 10,000 bids.

Recall that Swoopo runs multiple types of auctions. For example, some auctions allow

the use of the automated bidding system (BidButler auctions), while others do not allow

this option (Nailbiter auctions). As these auctions are inherently different, I run the re-

gression analysis separately for these different auction types.48 Following the shape of the

non-parametric regression, I first regress profits on the log of experience, with the results

shown in column (1) and (3) of Table B.1 for Nailbiter and BidButler Auctions, respectively.

These estimates show that, on average, there is an economically and statistically significant

(p<0.0001) relationship between experience and profits. Specifically, for both Nailbiter and

BidButler auctions, there is an increase in the expected return from each $0.75 bid by $0.05

as the experience of the bidder doubles.

However, it is not clear that this result is due to individual learning. It is possible that

individuals with larger coeffi cients continue in the game for longer, leading t to be positively

correlated with the error term. To help mitigate this selection problem, I estimate the model

48Interestingly, experience in BidButler auctions has a highly significant negative effect on profits in
Nailbiter auctions, and vice versa.
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with fixed effects for users, with the results shown in columns (2) and (4) of Table B.1.

This specification suggests that, to the extent that the heterogeneity in learning functions is

captured by an added constant, there is a selection effect, but that learning alone does play

a role in the positive association between experience and profits. The coeffi cients for both

types of auctions are highly significant, with the coeffi cient on Nailbiter auctions remaining

nearly unchanged. This suggests that profits are increasing as players gain experience by

placing more bids.

B.4 Details: Comparing Auctions With Different Values

As noted in Section 2.5, it is possible to visually compare auctions with different values

of v by using the concept of normalized time t̂ = t
v
. The basic intuition is that, given a

constant bidding increment k, an auction with a good of value v is approximately as likely

to survive past time t as an auction with a good of value 2v surviving past time 2t. This

relationship is only approximate when the auction occurs in discrete time. In this section, I

note that, as the length of a time period shrinks to zero and the game approaches continuous

time, these survival rates converge.

Specifically, let∆t denote a small length of a time and modify the model by characterizing

time as t ∈ {0,∆t, 2∆t, 3∆t...} and changing the cost of placing a bid to c∆t. With this
change in mind, define the non-negative random variable T as the time that an auction ends.

I define the continuous survival function Scont(t, lt; k, v, c), hazard function hcont(t, lt; k, v, c)

for auctions with parameters k, v, c in the normal fashion (as ∆t → 0 and suppressing

dependence on k, v, c):

Scont(t, lt) = lim
∆t→0

Pr(T > t) (1)

hcont(t, lt) = lim
∆t→0

S(t)− S(t+ ∆t)

∆t · S(t)
(2)

Solving for these functions leads to the following proposition:

Proposition 5 In the equilibrium noted in Proposition 2 (under the simplifying assumption
of equally distributed sunk costs), when t < F

hcont(t, lt) = c
v+t 1

n
θ−tk and Scont(t, lt) = (1− t

v
(k − 1

n
θ))

c

k− 1
nθ .

Note that, Scont(t, lt; v) = Scont(αt, lt;αv).
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While Proposition 5 is useful to determine the hazard and survival rates for a specific

auction, it is more useful to compare hazard and survival rates across auctions for goods

with different values. To that end, define t̂ = t
v
as the normalized time period, define

random variable T̂ as the (normalized) time that an auction ends, define the normalized

Survival and Hazard rates in a similar way to above:

Ŝ(t̂, lt) = lim
∆t̂→0

Pr(T̂ > t̂) (3)

ĥ(t̂, lt) = lim
∆t̂→0

Ŝ(t̂)− Ŝ(t̂+ ∆t̂)

∆t̂ · Ŝ(t̂)
(4)

With this setup, it is easy to show that:

Proposition 6 In the equilibrium noted in Proposition 2 (under the simplifying assumption
of equally distributed sunk costs), when t < F

ĥcont(t̂, lt) = c
1+t̂ 1

n
θ−t̂k and Ŝcont(t̂, lt) = (1− t̂(k − 1

n
θ))

c

k− 1
nθ .

Note that these functions are not dependant on v. Given this result, it is possible to

combine auctions with goods of different values in the same visual representation of the

empirical and theoretical hazard rates by using the normalized time measure, rather than

the standard time measure.

B.5 Naive Equilibrium

In the paper, I discuss a naive sunk cost Markov-Perfect equilibrium. First, note that

an equilibrium of the standard game given value v is a collection of vectors of probabilities

p1, p2, .... Define pti as player i’s bidding probability at time period t, the vector of other

players’ bidding probabilities at time t as pt−i, and the player i
′s payoff at period t as

πti(p
t
i,p

t
−i; vi). Then, for pi,p−i, an Markov-Perfect Equilibrium must, for all i, satisfy:

pi ∈ arg maxE[
∑∞

τ=t
π(pi,p−i, v)]

Define this set of equilibria as Θ(v).

In the modified game, player i’s payoff from receiving the good at time t is v+θstic, where

stic represents the sunk costs of the player. Furthermore, the player mistakenly believes that

at time t, (1) all other players’perceived value will remain constant at v + θstic. and (2)
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her future perceived value will remain constant at v + θstic. I define a naive Markov-Perfect

Equilibrium as any collection of bidding probabilities pi(stic) for each player given the sunk

cost expenditures at time t, such that:

pi(s
t
ic) ∈ arg maxE[

∑∞

τ=t
π(pi(s

t
ic), p̃−i(s

t
ic), v + θstic)]

p̃−i(s
t
ic) ∈ Θ(v + θstic)

where p̃−i(stic) is defined as player i’s perception of all other player’s strategies given sunk

costs stic, π̃(pi, p̃−i).

B.6 Structural Model: Alternative

The primary theoretical predictions of hazard rates given the standard risk-neutral model

of behavior do not describe the empirical hazard rates well. There are a variety of potential

explanations for this deviation. One explanation is the sunk costs fallacy, which I outline in

the main section of the paper, leading players to perceive the value of the good as v + θsic,

where si represents the number of (sunk) bids made by the player at the time of bidding.

Under the assumption that sunk costs are distributed equally across players yields a hazard

of c
v+ 1

n
θsic−tk

. A second explanation is that players receive an additional joy-of-winning that

is either constant across auctions or is relative to the value of a good (that is, a player

receives a additional payoff of ψc or vψr from winning) or , leading players to perceive the

value of the good as c
v+vψr+ψc−tk

. Finally, Platt et al. (2013) have suggested that risk-

preferences might explain the results, leading to a hazard of : 1−e−α(v−tk−c)

e−α(−c)−e−α(v−tk−c) given a

utility function over final wealth of 1−e−αw
α

Combining the hypothesis leads to a hazard rate

of 1−e−α(v+θsic+vψr+ψc−t·k−c)

e−α(−c)−e−α(v+θsic+vψr+ψc−t·k−c) .

Using the aggregate bid-level dataset constructed from the auction-level dataset (as in

Section 4.2), it is possible to estimate each parameter using a maximum likelihood routine.

Note that 1
n
θ, rather than the individual sunk cost parameter θ, is identified. The routine

identifies the structural parameters that maximize the log likelihood of observing the realized

outcome that the auction ends at each point in time given the auction characteristics. The

results are reported in Table B.2:

Controlling for risk-seeking and joy-of-winning, the sunk cost parameter remains robust

and intuitively matches the reduced form regressions in the paper. The risk-preference model

provides explanatory power, with α (the measure of risk seeking) estimated at -.00026 and
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Table B.1: Instantaneous User Profit and User Experience

Nailbiter Non-Nailbiter
(1) OLS (2) FE (3) OLS (4) FE

Ln[Experience] 0.076*** 0.073*** 0.070*** 0.025***
(0.0047) (0.015) (0.0024) (0.0054)

Constant -0.65*** - -0.87*** -
(0.020) - (0.011) -

User FE - X - X
Observations 1,248,482 1,248,482 11,985,502 11,985,502
Notes: Standard errors in parentheses (clustered on users in all regressions). Linear regressions of
instantaneous user profits (the profit from one bid) on log user experience (the log of the number of bids
placed by a bidder at the time of the bid) for different auction types (nailbiter and non-nailibiter).
Columns (2) and (4) include user fixed effects. Constant not reported for regressions with fixed effects. *
p<0.05, ** p<0.01, *** p<0.001.

Table B.2: Structural Estimation

(1) (2) (3) (4)
Aggregate sunk cost parameter: 1

n
θ .232*** .191*** .079*** .079***

(.002) (.002) (.003) (.003)
Risk parameter: α - -.00026*** - -.000014*

- (.000) - (.000)
Joy-of-winning (constant): ψc - - -5.31*** -5.23***

- - (.200) (.221)
Joy-of-winning (relative): ψr - - 0.35*** 0.35***

- - (.005) (.006)
Number of auctions 147,578 147,578 147,578 147,578
Implied number of bids 94,081,054 94,081,054 94,081,054 94,081,054
Log psuedo-likelihood -988,915 -988,416 -986,128 -986,127
Notes: T-statistics in parentheses. Structural Estimates of aggregate sunk cost parameter, risk-parameter
from an exponential utility function, and an additive and multiplicative joy-of-winning parameter.
Standard errors are clustered on auctions in all estimations. * p<0.05, ** p<0.01, *** p<0.001.
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-.000014, depending on the specification. For reference, a person with these risk preferences

would pay $112.54 or $100.63 for a 1
10
chance at $1000.

B.7 Robustness of the theoretical model

B.7.1 mod(y-k,c)6= 0

The results in the analytic section relied heavily on the assumption that mod(v-k,c)= 0.

If this assumption does not hold, there is no equilibrium in which the game continues past

period 1. However, as the following proposition shows, strategies that lead to the hazard

rates in Proposition 2 form an ε equilibrium with ε very small and limiting to 0 as the size

of time periods shrinks to 0:

Proposition 7 If mod(v − c, k) 6= 0, there is no equilibrium in which the game continues

past period 1. Define F ∗ = max(t|t < v−c
k
− 1). There is an ε-perfect equilibrium which

yields the same (discrete) hazard rates as those in Proposition 2 with ε = 1
n
(1− c

v−F ∗k )(v −

(F ∗+ 1)k− c)[
F ∗−1∏
t=1

(1− c
v−tk )]. There is an contemporaneous εc-perfect equilibrium (Mailath

(2003)) which yields the same (discrete) hazard rates as those in Proposition 2 with εc =
1

n−1
(1− c

v−F ∗k )(v − (F ∗ + 1)k − c).

To give an idea of the magnitude of the mistake of playing this equilibrium in auc-

tions in my dataset, consider an stylized auction constructed to make ε as high as possible,

with v =$14.95, c =$.75, k =$.15, and n = 20. In this case, ε = $0.0000000000224 and

εc =$0.00060. That is, even in the most extreme case and using the stronger concept of con-

temporaneous εc-perfect equilibrium, players lose extremely little by following the proposed

strategies. This is because their only point of profitable deviation is at the end of the game,

where their equilibrium strategy is to bet with low probability, there is a small chance that

their bet will be accepted, and the cost of the bet being accepted is small (and, ex ante,

there is an extremely small chance of ever reaching this point of the game).

B.7.2 Independent Values

In the model in the main paper, I assume that players have a common value for the

item. The equilibrium is complicated if players (1) have values vi drawn independently

from some distribution G of finite support before the game begins or (2) vi(t) is drawn

independently from G at each time t, even when the values are common knowledge. In
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these equilibria, players’behavior is dependent largely on the exact form of G, with very

few clear results about bidding in each individual period (which is confirmed by numerical

simulation). However, if these independent values tend to a common value, the distribution

of hazard rates approaches the bidding hazard rates in the following way:

Proposition 8 Assume that (1) vi is drawn independently from G before the game begins

or (2) vi(t) is drawn independently from G at each time t. For any distribution G, there

is a unique set of hazard rates {hG(1), hG(2), ...hG(t)} that occur in equilibrium. Let the
the support of Gi be [v − ∆i, v + ∆i]. For any sequence of distributions {G1, G2, ...} in
which ∆i → 0 and the game continues past period 1 in equilibrium, hG(t, lt) → h(t, lt) from

Proposition 2 for t > 0. For any sequence of distributions G with ∆i → 0 and ∆t → 0,

there exists a sequence of corresponding contemporaneous εc-perfect equilibria with hazard

and survival rates equal to those in Proposition 2 in which εc → 0.

B.7.3 Leader can bid

Throughout the paper, I assume that the leader cannot bid in an auction. This assump-

tion has no effect on the equilibrium noted in Proposition 2 as the leader will not bid in

equilibrium even when given the option.

Specifically, consider a modified game in which the leader can bid. Now, a (Markov)

strategy for player i at period t is the probability of betting both if a non-leader (pi,NL∗t )

and, for t > 0, when a leader (pi,L∗t ) (there is no leader in period 0).

Proposition 9 In the modified game, Proposition 2 still holds.

However, the assumption that the leader cannot bid does dramatically simplify the exact

form of other potential equilibria. Specifically, without this assumption, there exist equilibria

in which play continues (slightly) past period 1 without following the equilibrium hazard rate

in Proposition 2. That is, the logic of Proposition 3 fails. This occurs because the ability of

a leader to bid in period t distorts the incentives of non-leaders in previous periods. To see

this, consider the situation in which h(t + 1, lt) = 1 and h(t, lt) = 0. When leaders cannot

bid, there is no benefit from a non-leader bidding in period t − 1 as she will not win the

object in period t (because the game will continue with certainty) or period t + 1 (because

she will be the leader in period t (who cannot bid in period t) and therefore cannot be a

leader at t + 1), at which point the game will end. However, when leaders can bid, it is

possible to construct situations in which non-leaders in period t − 1 benefit from bidding.
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Although there is still no chance that the non-leader in period t − 1 will win the object in

period t by bidding, she will be able to bid (as a leader) in period t, leading to the possibility

that she will win the object in period t+1. Therefore, non-leaders will potentially bid in this

situation in equilibrium not to win the object in the following period, but simply to keep

the game going for a (potential) win in the future.

B.7.4 Allowing Multiple Bids to Be Accepted

Allowing multiple bids to be accepted significantly complicates the model, especially in a

declining-value auction. Consider a player facing other players who are using strictly mixed

strategies. If the player bids in period t, there is a probability that anywhere from 0 to n−2

other non-leading players will place bids, leading the game to immediately move to anywhere

from period t + 1 to period t + n. In each of these periods, the net value of the object is

different, as is the probability that no player will bid in that period and the auction will be

won (which is dependent on the equilibrium strategies in each of the periods).

It is possible to solve the model numerically, leading to a few qualitative statements about

the hazard rates. Figure B.2 shows the equilibrium hazard rates (with k = .1, c = .5, n = 10)

given small changes in the value of the good (v = 10, 10.25, 10.5, 10.75), as well as the

analytical hazard rates from Proposition 2. These graphs demonstrate three main qualitative

statements about the relationship between the equilibria in the modified model and the

original model:

1. The hazard rates of the modified model are more unstable locally (from period-to-

period) than those from Proposition 2, especially in later periods. As n increases, this

instability decreases (I do not present graphs for lack of space).

2. The hazard rates of the modified model closely match those from Proposition 2 when

smoothed locally.

3. The hazard rates of the modified model are more stable globally to small changes in

parameters in the model. Recall that the hazard rates in Proposition 2 were taken

from an equilibrium when mod(v−c, k) = 0.When mod(v−c, k) 6= 0, the hazard rates

oscillated radically (although they were smooth in an ε-equilibrium with very small ε).

The modified model is much more globally robust to these changes.
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Figure B.2: Robustness to Multiple Bids Being Accepted

Notes: Numerical Analysis of the hazard rate of auctions for different values (solid lines) when the
multiple bids are accepted at each time period vs. the predicted hazard rate (dotted line) when only one
bid is accepted. The hazard rates with mutliple bids are much more locally unstable, but follow the path of
the predicted hazard rate with only one accepted bid
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B.7.5 Timer

In the model in the paper, unlike that in the real world implementation of the model,

there is no timer within each period. Consider a game in which, in each discrete period t,

players can choose to place a bid at one sub-time τ ∈ [0, T ] or not bid for that period. As in

the original game, if no players bid, the game ends. If any players bid, one bid is randomly

chosen from the set of bids placed at the smallest τ of all bids (the first bids in a period).

Now, a player’s (Markov) strategy set is a function for each period χit(τ) : [0, T ]→ [0, 1], with∫ T

0

χit(τ)dτ equaling the probability of bidding at some point in that period. This following

proposition demonstrates that, while the timer adds complexity to the player’s strategy sets,

it does not change any of the payoff-relevant outcomes.

Proposition 10 For any equilibrium of the modified game, there exists an equilibrium of

the original game in which the distribution of the payoffs of each of the players is the same.

B.8 Proofs of Statements in Online Appendix

Propositions 5 and 6

Proof:

As all functions mentioned do not vary with the leader, lt, I suppress the dependence

on lt. Let Scont(t) = p. Consider the discrete hazard rate at time t for any leader lt :

hcont(t) = c∆t
v+t( 1

n
θ−k)

for t ≤ F . Then the likelihood of the auction surviving to time period

t + ∆t is: Scont(t + ∆t) = (1 − c∆t
v+(t+∆t)( 1

n
θ−k)

)p. Therefore, the continuous hazard rate

at time t : hcont(t) = lim
∆t→0

Scont(t)−Scont(t+∆t)
∆t·Scont(t) = lim

∆t→0

p( c∆t

v+(t+∆t)( 1
nθ−k)

)

∆t·p = lim
∆t→0

c
v+(t+∆t)( 1

n
θ−k)

=
c

v+t( 1
n
θ−k)

. Define the continuous cumulative hazard function in the standard way: Hcont(t) =∫ t
0
hcont(t̃)dt̃. As Hcont(t) =

∫ t
0

c
v+t̃( 1

n
θ−k)

dt̃, Hcont(t) =
c(ln(v)−ln(v+t( 1

n
θ−k)))

1
n
θ−k t if t ≤ F.Note that

Hcont(t) =
∫ t

0
lim

∆t→0

Scont(t̃)−Scont(t̃+∆t)

∆t·Scont(t̃)
dt̃ = −

∫ t
0

1
Scont(t̃)

( d
dt̃
Scont(t̃))dt̃ = − lnScont(t).Therefore

Scont(t) = e−Hcont(t).That is, Scont(t) = (1− t
v
(k− 1

n
θ))

c

k− 1
nθ if t ≤ F. To see that the survival

rate of a good with value v at time t is equal to the survival rate of a good with value αv at

time αt, note that Scont(t; v) = (1− t
v
(k− 1

n
θ))

c

k− 1
nθ = (1− αt

αv
(k− 1

n
θ))

c

k− 1
nθ = Scont(αt;αv).

Now, consider the normalized time survival rate Ŝcont(t̂). For a good with value v, the odds

of surviving to period t is (1 − t
v
(k − 1

n
θ))

c

k− 1
nθ . Therefore, for any value v and time t, the

odds of surviving to normalized period t̂ is Ŝ(t̂) = (1− t̂(k − 1
n
θ))

c

k− 1
nθ . Similar logic shows:
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ĥ(t̂) = c
1+t̂( 1

n
θ−k)

.

Proposition 7

Proof: Consider the strategies noted in the proof of Proposition 2 with F = F ∗. For

the standard ε-perfect equilibrium, we consider the ex ante benefit of deviating to the most

profitable strategy, given that the other players continue to follow this strategy. Following

the proof of Proposition 2, it is easy to show that there is no profitable deviation in periods

t > F ∗ and t < F ∗. Therefore, the only profitable deviation is to not bet in t = F ∗. This

will yield a continuation payoff of 0 from period F ∗. The ex ante continuation payoff from

betting is ε = 1
n
(1 − c

v−F ∗k )(v − (F ∗ + 1)k − c)[

F ∗−1∏
t=1

(1 − c
v−tk )]. (To see this, note that

there is a
F ∗−1∏
t=1

(1 − c
v−tk ) change that the game reaches period F ∗. In period F ∗, there is

a (1 − c
v−F ∗k ) probability that at least one player bets. As strategies are symmetric, this

means that, ex ante, a player has a 1
n
(1− c

v−F ∗k ) probability of her bet being accepted in this

period, given that the game reaches this period. If the bet is accepted, the player will receive

(v − (F ∗ + 1)k − c)). Therefore, the ex ante benefit from deviating to the most profitable

strategy is ε. For the contemporaneous εc-perfect equilibrium, we consider the benefit of

deviating to the most profitable strategy once period F ∗ is reached, given that the other

players continue to follow this strategy. This is εc = 1
n−1

(1− c
v−F ∗k )(v − (F ∗ + 1)k − c) (To

see this, note that in period F ∗, there is a (1 − c
v−F ∗k ) probability that at least one player

bets. As strategies are symmetric, this means that, ex ante, a non-leader has a 1
n−1

(1− c
v−F ∗k )

probability of her bet being accepted in this period (as there are only n− 1 non-leaders). If

the bet is accepted, the player will receive (v − (F ∗ + 1)k − c)).

Proposition 8

Proof: In referring to the hazard function h(t, lt), I refer to h(t) as all results are true

regardless of the leader. In case 1, I will refer to vi(t) = vi. The proof is simple (backward)

induction on the statement that there is a unique hazard rate that can occur in each period in

equilibrium. By the same logic in the proof to Proposition 1, h(t) = 1 for all t > v+∆i−c
k
− 1.

Consider periods t ≤ F ∗ = max{t|t ≤ v+∆i−c
k
− 1} where h(t + 1) is unique in equilibrium

by induction. If h(t + 1) = 0, then h(t) = 1 as any player with finite vi(t) strictly prefers

to not bid. If h(t + 1) > 0, a player with cutoff type v∗(t) = c
h(t+1)

+ (t + 1)k is indifferent

to betting at time t given h(t + 1). Therefore, h(t) = G(max(min(v∗, v + ∆), v − ∆)) and

the statement is true. Suppose Gi is such that the game continues past period 1. Claim 1: If

∆ < k,then (1) h(t) = 0 for t ≤ F ⇒ h(t−1) = 1 and (2) h(t) = 1 for t ≤ F ⇒ h(t−1) = 0.

Statement (1) is true as a bidding leads to −c, a lower payoff than not bidding. Statement

13



(2) is true as if h(t) = 1, then the payoff of bidding for a player with value ṽ at period t− 1

is Pr[Bid Accepted](ṽ− tk − c). Note that Pr[Bid Accepted] > 0 if a player bids. Note that

t ≤ F ⇒ t ≤ v−c
k
− 1 ⇒ 0 ≤ v − c − (t + 1)k ⇒ 0 < v − δ − c − tk as δ < v. Therefore,

0 < Pr[Bid Accepted](ṽ− (t + 1)k − c) for every ṽ ∈ [v − δ, v + δ] and therefore h(t) = 0

and the claim is proved. Claim 2: If δ < k, h(t) ∈ (0, 1) for every 0 < t ≤ F. Suppose

that h(t) = {0, 1} for some 0 < t ≤ F. If h(1) = 1, then game ends at period 1, leading

to a contradiction. If h(1) = 0, then h(0) = 1, and game ends at period 0, leading to a

contradiction. If h(t) = 1 (alt: 0) for 0 < t ≤ F, then h(t− 1) = 0 (alt: 1), h(t− 2) = 1 (alt:

0) by claim 1. But, then h(1) = {0, 1}, which is leads to a contradiction as above. Claim 3:

By the same logic in the proof to Proposition 1, h(t) = 1 for all t > v+δi−c
k
− 1. Therefore,

hG(t) = 1 for t > v−c
k
− 1 = F as δi → 0. For 0 < t ≤ F, note that for some i∗, δi < k for all

i > i∗ and therefore claim 1 holds for all i > i∗. If claim 1 holds, h(t− 1) ∈ (0, 1) implies a

cutoff value v∗(t) ∈ (v − δ, v + δ) from above, which by the definition of v∗(t) implies that

h(t) ∈ ( c
v−δ−(t+1)k

, c
v+δ−(t+1)k

), and therefore hGi(t)→ c
v−tk for periods 0 < t ≤ F as δi → 0.

Therefore, hG(t)→ h(t) from Proposition 2 for t > 0.

Proposition 9

Proof: Set pi,NL∗t = pi∗t from the Proposition 2 and set pi,L∗t = 0 for all i and all t. Note

that, as in the proof of Proposition 2. these strategies yield the hazard rates listed in the

Proposition 2. The same proof for Proposition 2 shows that, if strategies are followed, the

continuation payoff from entering period t as a non-leader is 0 and there is no profitable

deviation for a non-leader. Now, consider if there is a profitable deviation for a leader. For

the subgames starting in periods t > F, refer to the proof of Proposition 1 for a proof that

there is no profitable deviation for a leader in these periods. For the subgames starting in

period 0 < t ≤ F, the proof continues using (backward) induction with the lack of profitable

deviation already proved for all periods t > F . In period t, by not bidding, the leading

player will receive v with probability c
v−tk (with the game ending) and 0 as a continuation

probability as a non-leader in period t + 1 with probability 1 − c
v−tk , yielding an expected

payoffof v ( c
v−tk ) > 0. By bidding, the game will continue to period t+1 with certainty, with

some positive probability that her bid is accepted. If her bid is accepted, she receives −c in
period t and receives v − (t + 1)k in t + 1 with probability c

v−(t+1)k
and 0 as a continuation

probability as a non-leader in period t+2 with probability 1− c
v−tk , leading to a continuation

payoffof−c+ (v−(t+1)k)( c
v−tk ) = 0. If her bid is not accepted, she will receive a continuation

probability of 0 as a non-leader in period t + 1. Therefore, the payoff from not bidding in

period t is strictly higher than the payoff from bidding.

Proposition 10
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Proof: Consider a vector of bidding probabilities x = [x1, x2, ...xn] ∈ [0, 1]n = X in some

period. Let Ψ : X → ∆n be a function that maps xt into a vector of probabilities of each

player’s bid being accepted, which I will denote a = [a1, a2, ...an]. Claim: For any a∗ ∈ ∆n,

∃ x ∈ X such that Ψ(x) = a∗.

Consider the following sequence of betting probabilities, indexed by j = {1, 2, 3...}. Let
xi(1) = 0. Define a(j) = Ψ(x(j)) = Ψ([x1(j), x2(j), ...xn(j)]). Define ãi(j) = Ψ([x1(j −
1), x2(j− 1), ...xi(j), ..., xn(j− 1)]) and let xi(j) be chosen such that ãii(j) = ai∗. Claim: x(j)

exists, is unique, x(j − 1) ≤ x(j) and ai(j) ≤ a∗ for all j. This is a proof by induction,

starting with t = 2. As x(1) = 0, x(2) = a∗ by the definition of ãi(j). Therefore, x(2) exists,

is unique, x(1) ≤ x(2) and ai(2) ≤ a∗ as ∂Ψi
∂xk

< 0 for k 6= i. Now, consider xi(j). Note (1)

xi(j) = 0 ⇒ ãii(j) = 0, (2) xi(j) = 1 ⇒ ãii(j) ≥ 1 −
∑

k 6=i a
k(j − 1) ≥ 1 −

∑
k 6=i a

k∗ ≥ ai∗

where 1−
∑

k 6=i a
k(j−1) ≥ 1−

∑
k 6=i a

k∗ follows by ai(j−1) ≤ a∗, which follows by induction

(3) ãi(j) is continuous in xi(j) and ∂Ψi
∂xi

> 0. Therefore, there is a unique solution xi(j) such

that ãii(j) = ai∗. As ai(j−1) ≤ a∗ by induction, it must be that xi(j) ≥ xi(j−1) as ∂Ψi
∂xi

> 0.

Finally, note that if ãii(j) = ai∗,then as aii(j) ≤ ai∗ as ∂Ψi
∂xk

< 0 for k 6= i and xk(j) ≥ xk(j−1)

for k 6= i.

Set x∗ = limj→∞ x(j). Claim: x∗ exists and Ψ(x∗) = a∗. First, limj→∞ x(j) must exist

as xi(j) is bounded above by 1 and weakly increasing. Next, note that
∑

i x
i∗ must also

exist with
∑

i x
i∗ ≤ n. Now, suppose that Ψ(x∗) 6= a∗. Then, as Ψ(x(j)) = a(j) ≤ a∗ for

all j, Ψ(x∗) ≤ a∗ and there must be some i such that Ψi(x∗) − ai∗ = z > 0. Choose L

such |
∑

i x
i∗ −

∑
i x

i(j)| < z
2
for all j > L. By the definition of xi(j + 1), it must be that

xi(j+ 1) ≥ xi(j)+ z. But, as x(j+ 1) ≥ x(j), then
∑

i x
i(j+ 1) ≥

∑
i x

i(j) + z ≥
∑

i x
i∗+ z

2
,

which is a contradiction of L. Therefore, the claim is proved.
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