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Abstract

I theoretically and empirically analyze consumer and producer behavior in a rel-
atively new auction format, in which each bid costs a small amount and must be a
small increment above the current high bid. I describe the set of equilibrium hazard
functions over winning bids and identify a unique function with desirable conditions.
Then, I examine bidder behavior using two datasets of 166,000 auctions and 13 million
individual bids, captured with a real-time collection algorithm from a company called
Swoopo. I �nd that players overbid signi�cantly in aggregate, yielding average rev-
enues of 150% of the good�s value and generating pro�ts of e18 million over four years.
While the empirical hazard rate is close to the predicted hazard rate at the beginning
of the auction, it deviates as the auction progresses, matching the predictions of my
model when agents exhibit a sunk cost fallacy. I show that players�expected losses
are mitigated by experience. Finally, I estimate both the current and optimal supply
rules for Swoopo using high frequency data, demonstrating that the company achieves
98.6% of potential pro�t. The analysis suggests that over-supplying auctions in order
to attract a larger userbase is costly in the short run, creating a large structural barrier
to entrants. I support this conclusion using auction-level data from �ve competitors,
which establishes that entrants collect relatively small or negative daily pro�ts.
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1 Introduction

This paper theoretically and empirically explores consumer and producer behavior in
the relatively new market for penny auctions, using two datasets collected from the largest
auctioneer, Swoopo.1 This auction provides an ideal �eld laboratory to study individual
behavior as it is a reasonably transparent game (the rules are discussed below) played by
many people (there are over 20,000 unique participants per week in my dataset) for relatively
high stakes (the value of auctioned goods averages over e200) over a long period of time (the
auctions have been run since 2005). Additionally, as the auctioneer must make important
supply choices and many companies have recently begun to run the auctions, the analysis
yields insights into producer optimization and market dynamics in a nascent auction market.

My analysis leads to three main contributions to the auction, market design, and be-
havioral economics literature. My �rst main result is that the auctioneer collects average
revenues that exceed 150% of the value of the auctioned good, providing an unequivocal ex-
ample of consistent overbidding in auctions. In order to better understand this behavior, I
model the penny auction in a game-theoretic framework and solve for the equilibrium hazard
rates of winning bids. My second main result is that, relative to equilibrium predictions,
bidders overbid more and more as the auction continues. I establish that this behavior is
consistent with the predictions of my model when agents exhibit a naive sunk cost fallacy. I
show that higher levels of experience in the auction mitigate these losses. For my third main
result, I use high-frequency data to separately estimate both the actual and optimal supply
rules for Swoopo, demonstrating that the company captures nearly 99% of potential short
term pro�ts. The analysis suggests that over-supplying auctions for a given number of users
leads the auctions to end prematurely, which can produce negative pro�ts for the auctioneer.
This e¤ect implies a structural barrier to entrants, who must over-supply auctions in order
to attract a larger userbase. This conclusion is consistent with �ndings from data on �ve
major competitors, which establishes that entrants are not making signi�cant daily pro�ts
in the medium term.

Before detailing my main results, it is useful to brie�y describe the rules of the penny
auction. First, players are restricted to bid a �xed bid increment above the current bid for
the object, which is zero at the beginning of the auction. For example, if the current bid
is e10.00 and the bid increment is e.01, then the next bidder must bid e10.01, the next
e10.02, and so on. The auction is commonly referred to as a "penny auction" as a result of
the common use of a one penny bid increment. Second, players must pay a non-refundable
�xed bid cost (e.50 in my dataset) to place a bid. The majority of the auctioneer�s �nal
revenue is derived from the bid costs collected throughout the auction. Finally, the end
of the auction is determined by a countdown timer, which increases with every bid (by
approximately ten seconds in my dataset). Therefore, a player wins the object when her bid
is not followed by another bid in a short period of time. Of traditionally studied auctions,
the penny auction is most closely related to the War-of-Attrition (WOA).2

1As of June 2009, Swoopo appeared to be the largest company running penny auctions by all important
measures, such as revenue, number of daily auctions, and number of daily users.

2In both the WOA and penny auctions, players must pay a cost for the game to continue and a player
wins when other players decide not to pay this cost. However, there are two main di¤erences. First, in the
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Using a theoretical analysis, I �nd that this auction format induces a mixed-strategy
equilibrium in which the winning bid amount is stochastic. Moreover, by characterizing all
equilibrium hazard rates, I show that any equilibrium in which play continues past the second
period must be characterized by a unique global hazard function from that point onward.
I demonstrate that this prediction is robust to a variety of changes and extensions to the
game. I then test these predictions using auction-level data on 166,000 unique auctions and
bid-level data on 13 million bids. The bid-level data was captured from Swoopo�s website
using a multi-server real-time collection algorithm that recorded nearly every bid from every
person on every auction over a hundred day period.

My �rst main empirical result is that the average revenue from these auctions signi�cantly
exceeds the easily-obtainable value of the goods. Although Swoopo makes negative pro�t on
more than half of the auctions in the dataset, the average pro�t margin is 52%, which has
generated e18M in pro�ts over a four year period. In an illustrative example, my dataset
contains over 2,000 auctions for direct cash payments, in which the average pro�t margin is
104% of the face value of the prize. This �nding contributes an unambiguous �eld example
of overbidding in auctions to a large literature on the subject, which includes experimental
work3 and a number of recent �eld studies.4 Perhaps the most convincing of the �eld studies
is Lee and Malmendier (2008), who show that bidders pay 2% above an easily accessible "buy
it now" in a second-price eBay auction on average, a much smaller e¤ect than exhibited in
this paper.

I then investigate players�strategies more closely by comparing the empirical and theoret-
ically predicted survival and hazard functions. My second main �nding is that the empirical
hazard rate of these auctions starts at the rate predicted by equilibrium analysis, but de-
viates further and further below this rate as the auction continues. This decline implies
that the expected return from bidding (and paying e.50) drops as the auction continues,
from nearly e.50 in the beginning of the auction to only e.12-e.16 at later stages in the
auction. Using a modi�ed version of my theoretical model, I show that this behavior is
consistent with that of agents who exhibit a naive sunk cost fallacy: as agents continue to
play the game, they spend more money on bids, leading them to experience a higher psycho-
logical cost from leaving the auction (the modi�cation follows Eyster (2002)). This �nding
provides suggestive empirical evidence of the existence and e¤ects of sunk costs, which has
been demonstrated in experiments (Arkes and Blumer (1985), Dick and Lord (1998)), but
has been more di¢ cult to observe empirically.5

penny auction, only one player potentially pays the bid cost in each period, unlike in a WOA, in which all
players who continue to play must pay a cost in each period. Second, unlike in a WOA, the winning player
must pay an additional cost of the winning bid, leading to a drop in the net value of the object as the game
progresses.

3Overbidding has been documented in �rst-price common value auctions (see Kagel and Levin (2002)),
second-price auctions (Kagel and Levin (1993), Heyman et al (2004), Cooper and Fang (2006)), and all-pay-
like auctions (Millner and Pratt (1989), Murnighan(2002), Gneezy and Smorodinsky (2007)).

4These studies have suggested overbidding in a variety of contexts, ranging from real estate auctions
(Ashenfelter and Genesove, 1992) to the British spectrum auctions (Klemperer, 2002). This literature often
struggles with di¢ culties of proving the true value of the auctioned items, leading more recent studies to
focus on online auction markets (see, for example, Ariely and Simonson (2003)).

5As noted in Eyster (2002), "Empirically testing for the sunk-cost fallacy is complicated by the fact that
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The individual bid-level data, which contains approximately 96% of all bids made on the
site for a three month period (13 million bids for over 129,000 users) allows me to describe
the behavior of the market well. Participation in the auction is highly skewed: although
half of the users stop playing after fewer than 20 bids, the top 10% of bidders in my dataset
place an average of nearly 800 bids. Pro�ts are gained largely from the most active users:
the top 25% of users generate 75% of the pro�t. Interestingly, experience is associated
with a signi�cantly higher expected return from bidding. Users with little or no experience
receive an expected return of only e.18 on each e.50 bid, while those with a large amount of
experience (over 5000 bids) receive slightly over e.50. By controlling for user �xed e¤ects
and allowing learning rates to vary across users, I show that this e¤ect is partially due to
learning, as opposed to selection bias. Finally, I determine the speci�c bidding strategies
that drive the relationship between experience and pro�t by controlling for each strategy
in the regression. This analysis suggests that two-thirds of the gain in expected pro�ts
associated with additional experience is due to the increased use of "aggressive bidding"
strategies, in which the player bids immediately and continuously following other players�
bids.

For my third main �nding, I examine the supply side of the market. Using user and
auction data at each point in time, I separately estimate Swoopo�s actual and optimal sup-
ply rule: the number of auctions supplied for a given number of users on the site. For
coordination purposes, Swoopo releases auction with very high initial timers, which gives
them little ability to adjust to real-time changes in the number of users or auctions on the
site. This process allows me to match the number of expected auctions at a point in the
future with the number of expected users on the site at that time, which is Swoopo�s actual
supply curve. Then, I use natural deviations in the number of actual active users and ac-
tive auctions from this expectation to estimate the optimal supply rule. These curves are
extremely similar; Swoopo�s supply curve obtains 98.6% of estimated potential pro�ts given
the empirical distribution of the number of users on the site. Both curves show that there
are signi�cant diminishing returns to the supply of auctions for a given number of users,
because auctions are more likely to end prematurely when there are fewer users bidding on
each auction. This �nding suggests that there are high short-term costs for an entrant at-
tempting to over-supply auctions in order to develop a userbase, creating a barrier to entry
even though the initial startup cost of an Internet auction site is very cheap. Auction-level
data that I collected from the top �ve competitors supports this conclusion: only one of
Swoopo�s �ve main competitors is making large daily pro�ts, which still amount to only
6.6% of Swoopo�s daily pro�ts.

information-based explanations for behavior are often di¢ cult to rule out." Eyster suggests that the most
valid empirical paper on sunk costs Camerer and Weber (1999), which shows that NBA players are given
more playing time than predicted if their team used a higher draft pick to aquire them. I partially surmount
these di¢ culties by focusing on global, rather than individual, hazard rates.
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There are only a small number of empirical6 and experimental7 papers on the WOA, as
it is di¢ cult to observe a real-life game in which the setup is the same as a WOA and there
is a known bid cost and good value. Therefore, even though the games are di¤erent, this
insights from penny auctions are potentially useful in understanding the way that people
act in a WOA (and the closely related All-Pay Auction), which has been used to model
a variety of important economic interactions.8 The results also contribute to the broader
understanding of behavioral industrial organization, which studies behavior biases in the
marketplace (see Dellavigna (2008) for a survey). Additionally, the paper relates to a set of
recent papers that study other "innovative" auction formats, such as the lowest and highest
unique price auction (Eichberger and Vinogradov (2008), Houba et al (2008), Östling et al.
(2007), Rapoport et al. (2007)).9 Finally, the paper complements two other recent working
papers on penny auctions. Using a subset of the Swoopo�s American auction-level data,
Platt et al. (2009) demonstrate that allowing �exibility in both risk-loving parameters and
the perceived value of each good can explain the majority of bidding behavior. Hinnosaar
(2009) studies the theoretical e¤ect of imposing complementary assumptions to those in this
paper, producing bounds on equilibrium behavior.

The paper is organized as follows: The second section presents the theoretic model of the
auction and solves for the equilibrium hazard rates. The third section discusses the data
and provides summary statistics. The fourth section compares the empirical survival and
hazard rates with the equilibrium rates found in the second section. The �fth section outlines
a theoretical model of sunk costs in this auction. The sixth section analyzes the e¤ect of
experience on performance of the bidders and discusses potentially pro�table strategies. The
seventh section focuses on the market for these auctions by providing an analysis of Swoopo�s
supply curve and its �ve top competitors. Finally, the eighth section concludes.

6Examples include Card and Olsen (1995) and Kennan and Wilson (1989), which only test basic stylized
facts or comparative statics of the game. Hendricks and Porter (1996)�s paper on the delay of exploratory
drilling in a public-goods environment (exploration provides important information to other players) is an
exception, comparing the empirical shape of the hazard rate function of exploration to the predictions of a
WOA-like model.

7See Horisch and Kirchkamp (2008), who �nd systematic underbidding in controlled experimental wars
of attrition.

8For example: competition between animals (Bishop, Canning, and Smith, 1978), competition between
�rms (Fudenberg and Tirole, 1986), public good games (Bliss and Nalebu¤, 1984), and political stabilizations
(Alesina and Drazen, 1991). Papers with important theoretical variations of the WOA include Riley (1980),
Bulow and Klemperer (1999), and Krishna and Morgan (1997).

9The paper also contributes to a growing literature that uses games and auctions to study behavior.
There have been a large number of papers to study online auctions, which are surveyed by Bajari and
Hortacsu (2004). More recently, Hartley, Lanot, and Walker (2005) and Post et al (2006) study such
popular TV shows as "Who Wants to be a Millionaire?" and "Deal or No Deal?"
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2 Auction Description and Theoretical Analysis

2.1 Auction Description

In this section, I brie�y discuss the rules of the auction. There are many companies
that run these auctions in the real-world and, while there are some small di¤erences in the
format, the rules are relatively consistent.

In a penny auction, there are multiple players bidding for one item. The bidding for the
item starts at zero and rises with each bid. If a player chooses to bid, the bid must be equal
to the current high bid plus the bidding increment, a small �xed monetary amount known
to all players. For example, if the bidding increment is e.01 and the high bid is currently
e1.50, the next bid in the auction must be e1.51. Players must pay a small non-refundable
bid cost every time that they make a bid. The auction ends when a commonly-observable
timer runs of out time. However, each bid automatically increases the timer by a small
amount, allowing the auction to continue as long as players continue to place bids. When
the auction ends, the player who placed the highest bid (which is also the �nal bid) receives
the object and pays the �nal bid amount for the item to the auctioneer.

The most similar commonly-studied auction format to the penny auction is the discrete-
time war-of-attrition (WOA).10 In both auctions, players must pay a cost for the game
to continue and a player wins the auction when other players decide not to pay this cost.
However, there are two main di¤erences. First, in a WOA, each player must pay the bid
cost at each bidding stage in order to continue in the game. In the penny auction, only
one player pays the bid cost in each bidding stage, allowing players to use more complex
strategies because they can continue in the game without bidding. This di¤erence also
causes the game to continue longer on average in equilibrium, as agents spend collectively
less in each period. Second, if the bidding increment is strictly positive, the net value of
the good falls as bidding continues (and players�bids rise) in the penny auction, whereas
the value of the good in the WOA stays constant.11 This addition destroys the stationarity
of the WOA model, as the agent�s bene�t from winning the auction changes throughout the
auction.

The following section presents a theoretical model of the penny auction and provides an
equilibrium analysis. In order to make the model concise and analytically tractable, I will
make simplifying assumptions, which I will note as I proceed.

2.2 Setup

There are n+1 players, indexed by i 2 f0; 1; :::; ng: a non-participating auctioneer (player
0) and n bidders. There is a single item for auction. Bidders have a common value v for the

10In a WOA, each active player chooses to bid or not bid at each point in time. All player that bid must
pay a bid cost. All players that do not bid must exit the game. The last player in the game wins the
auction.

11If the bidding increment is e0.00 (as it is in 10% of the consumer auctions in my dataset), the price of
the object stays at e0.00 throughout the bidding.
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item.12 There is a set of potentially unbounded periods, indexed by t 2 f0; 1; 2; 3:::g.13 The
current high bid for the good starts at 0 and weakly rises by the bidding increment k 2 R+
in each period, so that the high bid for the good at time t is tk (note that the high bid and
time are deterministically linked).14 Each period is characterized by a publicly-observable
current leader lt 2 f0; 1; 2; 3; :::ng, with l0 = 0. To simplify the discussion, I often refer to
the net value of the good in period t as v � tk.

In each period t, bidders simultaneously choose to bid or not bid. If any of the bidders
bid, one of these bids is randomly accepted. In this case, the corresponding bidder becomes
the leader for the next period and pays a non-refundable cost c. If none of the players bids,
the game ends and the current leader receives the object and pays the �nal bid (tk). At
the end of the game, the auctioneer�s payo¤ consists of the �nal bid (tk) along with the total
collected bid costs (tc).

I assume that players are risk neutral and do not discount future consumption. I assume
that c < v � k, so that there is the potential for bidding in equilibrium. I assume that
mod(v� c; k) = 0, for reasons that will become apparent (the alternative is discussed in the
appendix). To match the empirical game, I assume that the current leader of the auction
cannot place a bid.15 I refer to auctions with k > 0 as a (k) declining-value auctions and
auctions with k = 0 as constant-value auctions.

The majority of the analysis focuses on the discrete hazard rate at each period, eh(t);
which is the expected probability that the game ends at period t given that the game reaches
period t. I use subgame perfection as my solution concept unless otherwise noted. For
exposition purposes, I sometimes discuss a players� symmetric Markov strategy to avoid
players conditioning their strategies on the past actions of other players in situations of
indi¤erence, although all of the results hold for non-symmetric and non-Markov strategies.
Player i0s Markov strategy set consists of a bidding probability for every period given that
they are a non-leader fxi0; xi1; xi2; :::; xit; :::g with xit 2 [0; 1]: Note that, in the case of Markov
strategies, eh(t) =Yn

i=1
(1� xit):

It is important to brie�y discuss two subtle simpli�cations of the model. First, unlike
in the real-life implementations of this auction, there is no "timer" that counts down to the
end of each bidding round in this model. The addition of timer complicates the model
without producing any substaintial insights; any equilibrium in a model with a timer can
be converted into an equilibrium without a timer that has the same expected outcomes and
payo¤s for each player. Second, when two agents make simultaneous bids, only one of the

12I assume that the item is worth v < v to the auctioneer. The case in which bidders have independent
private values vi � G for the item is discussed in the appendix. As might be expected, as the distribution
of private values approaches the degenerate case of one common value, the empirical predictions converge to
that of the common values case.

13It is important to note that t does not represent a countdown timer or clock time. Rather, it represents
a "bidding stage," which advances when any player makes a bid.

14The model takes place in discrete time so that each price point is discrete, allowing players to bid or
not bid at each individual price. This matches the setup of the real-life implementation of the game.

15This assumption has no e¤ect on the preferred bidding equilibrium below, as the leader will not bid
in equilibrium even when given the option. However, the assumption does dramatically simplify the exact
form of other potential equilibria, as I discuss in the appendix.
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bids is counted. In current real-life implementations of this auction, both bids would be
counted in (essentially) random order. Modeling this extension is di¢ cult, especially with a
large number of players, as it allows the time period to potentially "jump" from each period
to many di¤erent future periods.16 However, the predictions of the models are qualitatively
similar (numerical analysis suggests that the hazard rate of the equilibrium of the extended
game is much more locally unstable, but globally extremely similar). These considerations
are discussed in depth in the Appendix.

2.3 Equilibrium Analysis

In this section, I describe the equilibrium hazard rates for the penny auction, including a
set of bidding hazard rates, which I use to make empirical predictions. The proofs for each
proposition are in the Appendix.

I begin with the relatively obvious fact that no player will bid in equilibrium once the
cost of a bid is greater than the net value of the good in the following period, leading the
game to end with certainty if this period is reached.

Proposition 1 De�ne F = v�c
k
� 1 if k > 0:

If k > 0; then in any equilibrium eh(t) = 1 for all t > F

I refer to the set of periods that satisfy this condition as the �nal stage of the game. Note
that there is no �nal stage of a constant-value auction, as the net value of the object does
not fall and therefore this condition is never satis�ed. However, as there is a �nal stage for
all declining-value auctions, strategies in these periods are set, allowing us to use backward
induction to determine potential equilibria. To begin, I identify the bidding hazard rates of
the game:

Proposition 2 There is an equilibrium in which eh(t) =
8<:
0 t = 0
c

v�tk for 0 < t � F

1 for t > F

9=;.
In this equilibrium, some players use strictly mixed strategies for all periods after time 0

and up to (and including) period F . In these periods, players are indi¤erent between bidding
and not bidding as their chance of winning the item in the following period (.given that they
bid) is c

v�(t+1)k , which is the cost of the bid divided by the bene�t from winning the auction
(the net value in the following period). Crucially, in a declining-value auction players in
period F are indi¤erent given that players in period F + 1 bid with zero probability, which
they must do by Proposition 1. This indi¤erence allows players in period F to bid such that

16Hinnosaar (2009) models this extension, although with slightly di¤erent assumptions on the game and
the possible parameters. He is able to provide bounds on some types of equilibrium behavior, which are
consistent with the exact numerical results in the Appendix.
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the hazard rate is c
v�Fk :

17 Note that in a declining-value auction the hazard rate rises over
time, with no bids placed after time period F . To understand this result intuitively, note
that in order to keep players indi¤erent between bidding and not bidding, the probability of
winning (which is equal to the hazard rate) must rise as the net value of the good is declining.
In a constant-value auction, the net value and hazard rate stay constant throughout time as
in the standard equilibrium of a WOA model.

Not surprisingly, there are continuum of other equilibria in this model that lead to hazard
rates that are described completely in the following proposition:

Proposition 3 Consider any p� 2 [0; 1] and t� 2 N with t� � F: Let  =
�
0 if p� � c

v�tk
1 if p� > c

v�tk

�
:

Then, there is an equilibrium in which

eh(t) =
8>>>><>>>>:
0 for t < t� and mod(t+  +mod(t�; 2); 2)= 0
1 for t < t� and mod(t+  +mod(t�; 2); 2)= 1
p� for t = t�
c

v�tk for t� < t � F

1 for t > F

9>>>>=>>>>;
Furthermore, eh(t) in all equilibrium can be characterized by this form.

This proposition demonstrates that all equilibrium hazard rates can be described by two
parameters, p� 2 [0; 1] and t� 2 N. Tho understand the intuition behind this result, recall
that in any equilibrium that leads to the hazard rates in Proposition 2, players are indi¤erent
at every period t < F because of the strategies of players in the following period. Consider
a situation in which players follow strategies that lead to the hazard rates in Proposition
2 for periods after t�. If this is the case, players in period t� are indi¤erent to bidding.
Imagine that these players bid such that the hazard rate at t� is some p� > c

v�t�k (the rate
for period t in Proposition 2). Given this strategy, players in period t��1 will strictly prefer
to bid in that period (as they now have a higher chance of winning in the following period),
leading to a hazard rate of 0. As a result, players in period t� � 2 will strictly prefer to not
bid (as they have no chance of winning in the following period), leading to a hazard rate of
1. Consequently, players in period t� � 3 will strictly prefer to bid, and so on, leading to
alternating periods of bidding and not bidding (the argument is similar if players bid such
that p� < c

v�t�k ): All potential hazard rates are formed in this manner.

Note that these backward alternating periods of bidding and not bidding must occur in
any equilibrium in which the hazard rate at some period t deviates from c

v�tk , which must

lead to either eh(0) = 1 or eh(1) = 1, causing the game to end in either period 0 or period 1.
17For declining-value auctions, this requires the use of the assumption that mod(v � c; y) = 0: If this

is not true, the players in the period directly before the �nal stage are not indi¤erent and must bid with
certainty. As a result, the players in previous period must bid with zero probability (they have no chance
of winning the object with a bid), causing players in the period previous to that to bid with certainty, and
so on. This leads to a unique equilibrium in which the game never continues past period 1. However, as
is discussed in the Appendix, there is an "-equilibrium for an extremely small " in which the hazard rates
match those in Proposition 2.
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Corollary 1, which is one of my main theoretical results, formalizes this intuition and notes
that if we ever observe bidding after period 1 in equilibrium, we must observe the hazard
rates in Proposition 2 for all periods following period 1. Corollary 2 notes that Proposition
2 lists the unique set of equilibrium hazard rates for which the auctioneer�s expected revenue
is v; which might be considered a natural outcome of a common value auction with many
players.

Corollary 1 In any equilibrium in which the game continues past period 1, eh(t) must match
those in Proposition 1 for t > 1:

Corollary 2 For any � 2 [ c
v
; 1], there exists a symmetric equilibrium in which the auction-

eer�s expected payo¤ is �v: The equilibrium in Proposition 2 is the unique equilibrium of the
game in which the auctioneer�s expected revenue is equal to v:

In the following empirical sections of this paper, I restrict attention to the bidding equi-
librium hazard rates in Proposition 2 for the reasons outlined in Corollaries 1 and 2. In
addition to satisfying desirable theoretical characteristics, these hazard rates form the basis
for clear and testable empirical predictions, which are una¤ected by parameters such as the
number of players in the game.

2.4 The Bidding Equilibrium - Equilibrium Predictions

As previously noted, I model the game in discrete time in order to capture important
qualitative characteristics that cannot be modeled in continuous time (such as the ability to
bid and not bid in each period). However, in order to make smooth empirical predictions
about the hazard rates, I will now focus on the limiting equilibrium strategies when the
size of the time periods shrinks to zero. While this does not signi�cantly change any of the
qualitative features of the discrete hazard rates, it creates smoother predictions, which allows
the survival and hazard rates to be compared across auctions with di¤erent parameters.

Speci�cally, let�t denote a small length of a time and modify the model by characterizing
time as t 2 f0;�t; 2�t; 3�t:::g and changing the cost of placing a bid to c�t: With this
change in mind, de�ne the non-negative random variable T as the time that an auction ends.
I de�ne the survival function S(t; y; v; c), hazard function h(t; y; v; c), and cumulative hazard
function H(t; y; v; c) for auctions with parameters y; v; c in the normal fashion (as �t ! 0
and suppressing dependence on y; v; c):

S(t) = lim
�t!0

Pr(T > t) (1)

h(t) = lim
�t!0

S(t)� S(t+�t)

�t � S(t) (2)

H(t) =

Z t

0

h(et)det (3)
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Solving for these functions leads to the following proposition:

Proposition 4 In the preferred equilibrium, h(t) = c
v�tk for t <

v
k
:

When k = 0; H(t) = c
v
t and S(t) = e�(

c
v
)t:

When k > 0; H(t) = c(ln(v)�ln(v�tk))
k

t and S(t) = (1� tk
v
)
c
y for t < v

k
:

For the situation in which k > 0; note that each function approaches the corresponding
function when k = 0 as k ! 0; which is reassuring:

lim
k!0

c(ln(v)� ln(v � tk))

y
t =

ct

v
(4)

lim
k!0
(1� tk

v
)
c
k = e�(

c
v
)t (5)

While Proposition 4 is useful to determine the hazard and survival rates for a speci�c
auction, it is more useful to compare hazard and survival rates across auctions for goods with
di¤erent values. To that end, de�ne bt = t

v
as the normalized time period, de�ne random

variable bT as the (normalized) time that an auction ends, de�ne the normalized Survival
and Hazard rates in a similar way to above:

bS(bt) = lim
�bt!0Pr(bT > bt) (6)

bh(bt) = lim
�bt!0

bS(bt)� bS(bt+�bt)
�bt � bS(bt) (7)

With this setup, it is easy to show that:

Proposition 5 In the bidding equilibrium,bh(bt) = c
1�btk for bt < 1

k

When k = 0; S(t) = e�cbt
When k > 0; bS(bt) = (1� btk) ck
Proposition 5 forms the basis for my empirical analysis, as it establishes a way for to

directly compare the survival and hazard rates of auctions for goods with di¤erent values.
For example, the proposition indicates that an auction for a good with a value 50 will have
the same probability of surviving to period 50 as an auction for a good with a value 100
surviving to period 100. Note that the proposition does not provide a way to compare the
rates of auctions with di¤erent bidding increments.
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3 Description of Data

3.1 Description of Swoopo

Swoopo is the largest and longest-running company that runs penny auctions (�ve of
Swoopo�s competitors are discussed later in the paper). Swoopo was founded in Germany
in 2005, and currently provides local versions of their website for other countries, such as
the United Kingdom (started in December 2007), Spain (started in May 2008), the United
States (started in August 2008). Nearly every auction is displayed simultaneously across
all of these websites, with the current highest bid converted into local currency.18 Swoopo
auctions consumer goods, such as televisions or appliances, as well as packages of bids for
future auctions and cash payments. As of May 2009, Swoopo was running approximately
1,500 auctions with nearly 20,000 unique bidders each week.

The general format of auctions at Swoopo follows the description in Section 2.1: (1)
players must bid the current high bid of the object plus a set bidding increment, (2) each
bid costs a non-refundable �xed bid cost, and (3) each bid increases the duration of the
auction by a small amount. While most companies that run penny auctions solely use a
bidding increment of e.01, Swoopo runs auctions with bidding increments of e.10 (76% of
the auctions), e.01 (6%), and e.00 (18%).19 The cost of a bid in Europe has stayed constant
at e.50 (the cost of a bid for most of my dataset was usually £ .50 and $.75 in the United
Kingdom and the United States, respectively).20

In most auctions, Swoopo allows the use of the BidButler, an automated bidding system
available to all users. Users can program the BidButler to bid within a speci�c range of
values and the BidButler will automatically place bids for the user when the timer nears
zero.21 Certain auctions, called Nailbiter Auctions (9.5% of auctions), do not allow the use
of the BidButler. As of November 2008, Swoopo also runs Beginner Auctions (10.8% of
recent auctions), which are restricted to players that have never won an auction.

3.2 Description of Data

My data on Swoopo consists of two distinct datasets, both of which were captured using
a multi-server website collection algorithm.

(1) Auction-Level Data

The auction-level data contains approximately 166,000 auctions for approximately 9,000
unique goods spanning from September 2005 to June 2009. The data was retrieved sepa-
rately from Swoopo�s American, German, Spanish, and English websites. For each auction,

18For this paper, I will always refer to costs and prices in Euro.
19In July 2009, Swoopo changed the possible bidding increments to e.01, e.02, e.05, and e.20. My

dataset ends before this change.
20The cost of a bid in the United States was $1.00 from September 2008 to December 2008. Note that

incorporation of this change would only increase Swoopo�s estimated pro�t.
21If two players program a BidButler to run at the same time for the same auction, all the consecutive

BidButler bids are placed immediately.
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the dataset contains the item for auction, the item�s value (see Section 3.3), the type of
auction, the bidding increment, the �nal (highest) bid, the winning bidder, and the end
time. From October 2007 on, the data also contains the �nal (highest) ten bidders for each
auction. The summary statistics for this dataset are listed in the top portion of Table 1.

(2) Individual Bid-Level Data

The bid-level data contains approximately 13.3 million bids placed by 129,000 unique
users on 18,000 auctions, and was captured in real-time from Swoopo�s American website
from late February 2009 to early June 2009.22 The algorithm has the ability to record
new information every 2-3 seconds, depending on the Internet connection and the website�s
response time. As the Swoopo website posts a live feed of the last ten bids in each auction,
the algorithm can capture the vast majority of bids even when bids are made very rapidly.
The one exception is the situation in which multiple people use a BidButler at the same
time in one auction. In this case, each players�automated bids are made instantaneously,
causing the current high bid to jump immediately to the lowest of the high bounds of the two
BidButlers. Fortunately, it is relatively simple to spot this issue in the data and infer the
bids that are not listed. Using Nailbiter Auctions (in which BidButler use is forbidden), I
estimate that the algorithm captures 96% of the bids in the periods when it is running. Each
observation in this dataset contains the (unique) username of the bidder, the bid amount,
the time of the bid, the timer level, and if the bid was placed by the BidButler.23 Note that
the auctions in this dataset are a subset of the auctions in the auction-level dataset. The
summary statistics for this dataset are listed in bottom portion of Table 1:

In addition to data about Swoopo, I captured similar auction-level datasets for �ve of
Swoopo�s competitors: BidStick, RockyBid, GoBid, Zoozle, and BidRay. I will refer to this
data brie�y when I analyze the market for these auctions.

3.3 Value Estimation

Analyzing the auctions requires an accurate estimate of the value of the good. For each
good, Swoopo publishes a visible "worth up to" price, which is essentially the manufacturer�s
recommended price for the item. This price is one potential measure of value, but it appears
to be only useful as an upper bound. For example, Swoopo has held nearly 4,000 auctions
involving 154 types of watches with "worth up to" prices of more than e500. However, the
vast majority of these watches sell on Internet sites at heavy discounts from the "worth up
to" price (20-40%). It is di¢ cult, therefore, to justify the use of this amount as a measure
of value if the auctioneer or participant can simply order the item from a reputable company
at a far cheaper cost. That said, it is also unreasonable to search all producers for the
lowest possible cost and use the result as a measure of value, as these producers could be
disreputable or costly for either party to locate.

22Due to various issues (including a change in the way that the website releases information), the capturing
algorithm did not work from March 6th-March 8th and April 8th-April 11th. Furthermore, the e¢ ciency
of the algorithm improved with a change on March 18th.

23The algorithm captures the time and timer level when the website was accessed, not at the time of the
bid. The time and timer level can be imperfectly inferred from this information.
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In order to strike a balance between these extremes, I estimate the value of items by
using the price found at Amazon.com and Amazon.de for the exact same item and using the
"worth up to" price if Amazon does not sell the item. I refer to this new value estimate
as the adjusted value of the good.24 As prices might have changed signi�cantly over time,
I only use Amazon prices for auctions later than December 2007 and scale the value in
proportion to any observable changes in the "worth up to" price over time. Amazon sells
only 20% of the unique consumer goods sold on Swoopo, but this accounts for 49% of all
auctions involving consumer goods (goods that are sold in Amazon are likely to occur more
in repeated auctions). For the goods that are sold at Amazon, the adjusted value is 74%
of the "worth up to" price without shipping costs and 71% when shipping costs are added
to each price (Amazon often has free shipping, while Swoopo charges for shipping). As the
adjusted value is equal to the "worth up to" price for the 51% of the auctions for consumer
goods that are not sold on Amazon, it still presumably overestimates the true value.25

To test the validity of the measure of value, note that the equilibrium analysis (and
general intuition) suggest that the winning bid of an auction should be positively correlated
with the value of the object for auction. Therefore, a more accurate measure of value should
show a higher correlation with the distribution of winning bids for the good. The correla-
tion between the winning bids and the "worth up to" price is 0.521 (with a 95% con�dence
interval of (0.515,0.526)) for auctions with a e.10 increment for the items I found on Ama-
zon.26 The correlation between the winning bids and the adjusted value is 0.708 (with a
95% con�dence interval of (0.704,0.712)) for these auctions. A Fisher test of correlation
equality con�rms that the adjusted value is (dramatically) signi�cantly more correlated with
the winning bid, suggesting that it is a more accurate measure of value.

3.4 Pro�t Analysis

According to the equilibrium analysis above, one would not expect the auction format
used by Swoopo to consistently produce more revenue than the market value of the auctioned
good. One of the main empirical �ndings of this paper is that this auction format consistently
produces this level of revenue. Averaging across goods, bidders collectively pay 52% over the
adjusted value of the good, producing an average pro�t of e112. For the 166,000 auctions
over four years in the data set, the auctioneer�s pro�t for running the auction is e18M.27 The
distribution of monetary pro�t and percentage pro�t across all auctions is shown in Figure 1
(with the top and bottom 1% of auctions trimmed). Perhaps surprisingly, the auctioneer�s
pro�t is below the value of the good for a slight majority (51%) of the items. Table 2

24This is a somewhat similar idea to that in Ariely and Simonson (2003), who document that 98.8 percent
of eBay prices for CDs, books, and movies are higher than the lowest online price found with a 10 minute
search. My search is much more simplistic (and perhaps, realistic). I only search on Amazon and only
place the exact title of the Swoopo object in Amazon�s search engine for a result.

25The main results of the paper are unchanged when run only on the subset of goods sold at Amazon.
26Note that I cannot compare aggregate data across auctions with di¤erent bid increments for these

coorelations, as the distribution of �nal bids of auctions for the same item will be di¤erent. The results are
robust to using the (less common) bid increments of e0.00 and e0.01.

27This pro�t measure does not include the tendancy for people to buy multi-bid packages but not use all
of the bids ("breakage"). The bid-level data suggests that this is a signi�cant source of revenue for Swoopo.
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breaks down the pro�ts and pro�t percentage by the type of good and the increment level of
the auction. Notice that auctions involving cash and bid packages (items with the clearest
value) produce pro�t margins of over 104% and 214%, respectively. Consumer goods, which
are potentially overvalued by the adjusted value measure, still lead to an estimated average
pro�t margin of 33%.

­1000 0 1000 2000 3000
Profit (Euros)

­100 0 100 200 300 400 500 1000
Percentage Profit

Figure 1: Left Graph: Distribution of Auction Profits.
Right Graph: Distribution of Auction Profits as Percentage of Good's Value.

Notes: The top and bottom 1% of auctions have been trimmed.

4 Empirical Tests of Model

4.1 Research Question and Empirical Strategy

The theoretical analysis above yields multiple empirical predictions about the survival
and hazard functions of penny auctions. I am able to identify the empirical survival and
hazard rates of the auctions as the �nal auction outcomes (the �nal and highest bid in
auction) are stochastic. Recall from Section 2.4 that normalizing the time measure of the
auctions by the value of the goods allows the comparison of these rates across auctions for
goods with di¤erent values (given that they have equal bid increments).

4.2 Consumer Goods

Figure 2 displays the Kaplan-Meier Survival Estimates (and con�dence intervals, which
are extremely tight) of the normalized time measure of consumer goods auctions for the three
increment levels, along with the survival rates predicted by the equilibrium hazard rates
derived in Section 2. The survival functions are consistently higher than the equilibrium
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Figure 2: Empirical vs. Theoretical (Dashed) Survival Rates

survival functions for each normalized time measure, which is expected given the pro�t
statistics above and the fact that the auctioneer receives more pro�t from auctions that
last longer. For auctions with bidding increments of e.10 and e.00 (which represent 94%
of the auctions in the dataset), it appears that the survival rates follow the equilibrium
survival rates closely for early normalized time measures before rising consistently above the
predicted survival rates.

Survival rates are di¢ cult to interpret because they represent the cumulative e¤ect of
auction terminations up to each normalized time period. The empirical hazard functions are
more illustrative of players�behavior at each point. Figure 3 displays the smoothed hazard
rates with con�dence intervals along with the hazard functions predicted by equilibrium
strategies for each increment level.28 Notice that the equilibrium hazard functions for the
di¤erent increments are the same at the beginning of the auction (as the bids always start at
zero), stay constant if the increment is e.00 (as the current bid amount is always constant),
and rise more steeply through time with higher increments (as the current bid rises faster
with a higher increment). Most interesting, for auctions with bid increments of e.00 or
e.10, the hazard function is very close to that predicted by equilibrium analysis in beginning
periods of the auction. However, for all auctions, the deviation of the empirical hazard
function below the equilibrium hazard function increases signi�cantly over time.

While the hazard functions are suggestive of the global strategies of the players, it is
di¢ cult to interpret the economic magnitude of the deviations from the predicted actions.
In order to determine this magnitude, note that the bidder at period t � 1 is paying the
auctioneer a bid cost c in trade for a probability of h(t) of winning the net value of the good
(v� tk) at time t. In other words (assuming risk-neutrality of both parties), the auctioneer
is selling the bidder a stochastic good with an expected value of h(t)(v � tk) for a price c
at time t: Therefore, I de�ne percent instantaneous markup as the percentage of the cost of
this good above its value at the point it is sold:

De�nition 3 Percent Instantaneous Markup (at time t)=( c
h(t)(v�tk) � 1) � 100

28For this estimation, I used an Epanechnikov kernal and a 10 unit bandwidth, using the method described
by Breslow and Day (1986) and Klein and Moeschberger (2003). The graphs are robust to di¤erent kernal
choices and change as expected with di¤erent bandwidths.
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Figure 3: Empirical vs. Theoretical (Dashed) Hazard Rates
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Figure 4: Empirical vs. Theoretical (Dashed) Instantaneous Profit Rates

Figure 4 displays the percent instantaneous markup and con�dence intervals along with
the predicted percent markup for each increment level at each (normalized) time period.
Note that the predicted markup is always zero because the expected equilibrium payo¤ from
a bid is equal to the cost of the bid at each period. For auctions with bidding increments
of e.10 and e.00, the empirical instantaneous markup starts near this level, but rises over
the course of the auction to 200-300%. This estimate suggests that, if an auction survives
su¢ ciently long, players are willing to pay e.50 (the bid cost) for a good with an expected
value of e.12-e.16. Therefore, rather than making uniform pro�t throughout the auction,
the auctioneer is making a large amount of instantaneous pro�t at the end of the auction.

4.3 Cash and Bid Vouchers

One concern about the results for the consumer good auctions is that the measure of the
true value of the good is noisy and values presumably di¤er across users. Furthermore, for
the auctions with positive bid increments, the net value of the good changes over time (as
the current high bid rises through the game). To address these issues, this section focuses
on the 18,790 auctions for cash payments and vouchers for bids. In these auctions, the value
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of the item is arguably common across participants (bid vouchers are immediately available
on Swoopo for a common �xed price) and, focusing on auction with a bid increment of e.00
(73% of the auctions), the net value is constant throughout the auction.

As suggested earlier in Table 2, the pro�ts for these auctions are signi�cantly higher
than those for consumer goods. The reasons for this result are unclear, although it might
be that the measure of value is more accurate in these auctions, more people are attracted
to these auctions, or a speci�c subset of players bid on these auctions. The hazard rates
and percent instantaneous pro�ts for these auctions are shown in Figure 5. As would
be expected from the pro�t estimations for these auctions, the empirical hazard functions
are dramatically lower than the equilibrium hazard functions, even at the beginning of the
auction. However, consistent with the important qualitative features of the consumer good
auctions results, there is still a upward trend in the empirical instantaneous pro�ts for both
types of auctions. In the cash auctions, the instantaneous pro�t is 50-100% during the �rst
stages of the auction, but rises to around 150-300% in the later stages. In the bid voucher
auctions, the instantaneous pro�t is between 100-150% during the �rst stages of the auction
(minus a very short initial period) but steadily rises to over 300% in the later stages.
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5 Modeling Sunk Costs

The previous section demonstrated that the deviation of the empirical hazard rates from
the predicted hazard rates changes dramatically over the course of an auction. Therefore,
any explanation for this behavior must include a factor that changes as an auction progresses.
For example, a simple misunderstanding of the rules of the game or an consistent underpre-
diction of the number of participants cannot explain these results alone as they would predict
constant deviations from the predicted hazard rate. Futhermore, any potential explanation
must account for behavior in auctions with di¤erent bidding increments. For example, if
players do not account for the current bid over time, they will overbid in decreasing-value
auctions, but this reasoning cannot account for the empirical decreasing hazard observed in
constant-value auctions. Even with these constraints, there are still a variety of explana-
tions that cannot be separately identi�ed with my data. For example, the behavior could
be explained by a tendency for players to make worse predictions about others�behavior as
the auction continues, possibly because there are fewer learning opportunities at later stages
in the auction (these stages are less likely to occur). In this section, rather than discussing
all of the possibilities, I focus on the naive sunk cost fallacy as a potential explanation and
demonstrate that modifying the model to include this e¤ect leads to qualitatively similar
hazard rates to those observed in the data.

Following Ashraf et al (2008), I use the framework proposed by Eyster (2002) to model
sunk costs.29 The reader is referred to that paper for technical details of the utility function.
Applying Eyster�s model and terminology, agents in the modi�ed model desire "consistency"
in their decisions and pay a psychological cost, which I call "regret", if they spend money
on bids and do not win the auction, weighted by the parameter � 2 [0;1) in the utility
function. As a result, agents receive less utility from exiting the auction as they pay for
more bids, even though these costs are sunk. Note that this modi�cation alone will cause
agents to underbid as they will require a premium (in the form of a higher probability of
winning) to continue at any stage to o¤set their (correctly predicted) future psychological
losses from the sunk costs. Therefore, I follow Eyster in assuming that agents consider the
e¤ect of their current decisions on their future utility, but they naively believe that their
weight on future regret will be �(1� �) with � 2 [0; 1].30

In the interest of simplicity, I deviate from the Eyster�s multiple period model in one
substantial way. Rather than assuming that an agent feels regret for all decisions in the
game, I assume that an agent simply feels regret from his initial decision (to play or not
play in the game). To elucidate this di¤erence, consider an agent who leaves the game after
bidding 10 times, with bids costing 1 unit. In Eyster�s model, the agent experiences regret
from each past decision to stay in the auction for a total of 55� units (he would have saved
10 units had he exited instead of placing the �rst bid, 9 units if he had exited instead of
placing the second bid, 8 units...). In my model, the agent simply experiences 10� units
of regret as he would have saved 10 units from not playing the game. As one could just

29In fact, Eyster considers a standard discrete war of attrition model as an example in his paper, producing
similar results.

30A note on terminology: I choose to use � instead of � (Eyster�s parameter of naivety) to avoid confusion
with the value of the object v:
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rescale � to account for this di¤erence, the substantial di¤erence between the models lies in
the growth of regret as the game continues. In Eyster�s model, regret grows "triangularly"
over time, from 1 to 3 to 6 to 10, etc. In my model, regret grows linearly over time, from 1
to 2 to 3 to 4, etc. I do not believe that there is a good reason to choose either model over
the other in this application, so I proceed with the linear model in the interest of simplicity.

Speci�cally, consider an agent who has placed b bids up until time period t. The total
utility of the agent from never bidding again becomes:

�bc� �bc (8)

That is, the agent experiences the monetary loss (�bc) of the bids as well as regret (��bc)
from deciding to play the game in the �rst place.

Similarly, if an agent bids in period t, does not win in the next period, and never bids
again, he will receive utility of:

�(b+ 1)c� �(b+ 1)c (9)

However, due to naivety, he (mistakenly) perceives that his feeling of regret will be lower
than it really is:

�(b+ 1)c� (1� �)�(b+ 1)c (10)

The case in which an agent bids and wins the auction in the next period is slightly more
complicated. The level of regret depends on the situation. If the net value of the item is
weakly higher than the total cost the agent, the agent does not regret his decision to enter
the auction. In this case, he simply receives the utility of:

v � ty � (b+ 1)c (11)

Notice that bc (the monetary bid cost up to period t) occurs in equations 8, 10, and 11,
which is consistent with bc as a sunk cost. However, the regret term only occurs if the
person exits the auction, which is consistent with the notion of the sunk cost fallacy. If the
person is naive, he believes that the weight on the regret will be lower in the future than
today.

Alternatively, if the net value of the auction is higher than the value of the object, the
agent does regret his decision to enter the auction. In this case, he receives utility:

v � ty � (b+ 1)c� �(b+ 1)c

Note that, in this situation, the regret term appears in the utility term in all situations,
so the agent fully recognizes the sunk cost (as before, if the agent is naive, he perceives this
term to be v � ty � (b+ 1)c� (1� �)�(b+ 1)c ).

20



In order for this modi�cation to a¤ect equilibrium behavior, agents must be able to
condition their strategies on the number of bids each player has made (because this now
a¤ects agents�payo¤s). Following the general path of Eyster�s solution (in which naive
players correctly perceive other�s true strategies, although they misperceive their own) yields
the following outcome of the preferred equilibrium and the hazard rate, which is summarized
in Proposition 6

Proposition 6 There is an equilibrium of the modi�ed game in which:

h(t) =

8<: maxf0; c+c��c��( t
2
+1)

v�ty+(1��)c�( t
2
+1)
g for t � 2(v�c)

c+2y

maxf0; c+c��c��(
t
2
+1)

v�ty g for t > 2(v�c)
c+2y

9=;
The e¤ect of the regret over spending �xed costs is slightly complicated. At the beginning

of the auction, agents with regret are less likely to bid than agents without regret because they
have no current mistakes to regret and they realize (to the extent that they are sophisticated)
that they will have to pay regret costs in the future if they bet and lose. As the auction
proceeds, this di¤erence diminishes as agents amass larger sunk costs through bidding. At
some point, if agents are naive, the game continues with higher probability than with normal
agents because agents (incorrectly) believe that their amassed �xed costs will be lessened if
they bid and then drop out in the following period. If agents are particularly naive, they
can reach a point in which no one drops out, with bidders staying in the game only because
they (incorrectly) believe that bidding and dropping out tomorrow will reduce the regret
from their large �xed costs.

Figure 6 displays the equilibrium hazard rates for � = :3, c =e.50, for an increment
of e.00 as � rises. Note that the curves with higher levels of naivety display the same
qualitative features as those in the empirical data.

6 Experience, Strategies, and Pro�ts

6.1 E¤ect of Experience on Pro�ts

Research Question and Empirical Strategy

The empirical results above demonstrate that, regardless of the reason(s), players in
aggregate are bidding in a way that consistently leads them to make (reasonably large)
negative expected payo¤s. This section addresses the e¤ect of experience on the expected
payo¤s of the players.

Broadly, there are two strategic ways in which a player could improve their pro�ts. The
�rst is simply to stop bidding. If the empirical hazard rates seen in previous sections were
consistent across all auctions, the best response of a monetary-maximixing player would be to
never bid, as bidding leads to a negative expected value throughout the auction. However,
to the extent that there is heterogeneity in auction hazard rates (in di¤erent items or at
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Figure 6: Predicted Hazard Rates of Sunk Cost Model:
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di¤erent times of day) and one�s strategy can a¤ect other player�s actions (such as increasing
the future hazard rate by playing very aggressively), there might exist bidding strategies
that increase pro�ts. I discuss the e¤ect of experience on these two broad strategies.

There are multiple potential measures of "experience." For my analysis, I de�ne the
experience of a player at a point in time as the number of bids made by that player in all
auctions before that point in time31 On potential concern with this measure is that, as
the coverage of the bid-level data starts long after Swoopo began running auctions, some
players enter this dataset with previous experience from past auctions. Fortunately, the
auction-level data contains a list of the �nal ten bidders for the auctions before the start of
the bid-level data, which I use to estimate the number of bids placed by each player before
entering the bid-level dataset. To accomplish this, I �rst perform an OLS regression to
estimate the relationship between the number of appearances in the top ten lists and the
number of bids made by a player using the bid-level data.32 Second, given the number
appearances in the top ten before the individual dataset, I use this estimate to predict the
number of bids each player made in this time period. While this measure is imperfect (it
does not capture players that bid before the bid-level dataset without �nishing in the top ten
and assumes that the relationship between bids and appearances in the top ten is consistent
across time), it does provide a rough measure of the number of previous bids for players that
enter with large amounts of experience.

Using this measure, the bid level data provides the necessary variation to identify the
relationship between pro�ts and experience. Speci�cally, the data contains natural variation
in the pro�t from each bid (winning is dependant on other players�choices in the following
period, which is not deterministic) as well as experience across users (some users enter with

31The qualitative results below are robust to using di¤erent experience measures, such as the number of
auctions previously played or the total time previously spent on the site.

32According to the regression estimates, an appearance in a top ten list is associated with 59.6 bids.
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more experience and some users stay longer than others) and within users (the heaviest 10%
of users place and average of nearly 800 bids in my dataset).

(Indirect) Evidence that Bidders Learn to Stop Bidding

Figure 7 displays the cumulative density of users against the users�experience at the end
of the dataset (in log scale). The �gure demonstrates that many players stop bidding after
placing relative few bids. For example, 75% of users stop bidding before placing 50 bids and
86% stop bidding before placing 100 bids. While there are many reasons that users might
leave the site, this statistic is indirect evidence that players learn that, on average, bidding
is not a pro�table strategy.

For reference, Figure 7 also displays the a "cumulative pro�t curve," which plots the
percentage of the auctioneer�s total pro�t produced by players at or below each level of
experience. For example, while 75% of users make less than 50 bids, the cumulative pro�t
curve shows that these users only generate 25% of the total pro�t. Conversely, the top 11%
of bidders in terms of experience create more than 50% of the total pro�t.

Experienced Players Learn Strategies to Increase Pro�ts

In the previous section, I demonstrated that players that make many bids account for
a large percentage of Swoopo�s pro�t. In this section, I examine the relationship between
experience and expected bid pro�ts for these players. First, I use a non-parametric regression
to show a clear positive relationship between experience and the expected pro�t from each
bid. Then, I parametrize the regression to demonstrate that this relationship is highly
statistically signi�cant. Finally, in order to control for potential selection e¤ects, I add
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user �xed e¤ects and allow learning rates to vary across users, demonstrating that learning
partially drives the relationship between experience and pro�ts.

As discussed in Section 4.2, each bid can be interpreted as an independent "bet" in which
the bidder pays the bid cost in exchange for a chance to win the net value of the good in
the following round. Note that the expected pro�t from this bet lies between losing the bid
cost (-e.50) and the net value of the object (v � (t+ 1)k). There are two potential reasons
that higher levels of experience might be associated with an increase in the expected pro�t
of this bet. First, users might learn better bidding strategies (such as bidding on certain
items or bidding "aggressively") through playing the game. Second, users that naturally
use better strategies might be more likely to continue playing the game, thus leading to a
correlation between experience and high expected value through selection.

Rearranging the dataset into an (incomplete) panel dataset in which users are indexed
by i and the order of the bids that an individual places is indexed by t; let yUit be the payo¤
of user i�s tth bid.33 Then, a general model of the e¤ect of experience on pro�t is

yUit = Li(t) + "it (12)

where Li(t) is individual i0s learning function and "it is the error that arises from the sto-
chastic nature of the auction. As a �rst step towards understanding the learning functions,
Figure 8 displays a non-parametric regression constraining Li(t) = L(t) as well as a his-
togram of the number of bids made at each experience level. Clearly, there appears to be a
positive relationship between the pro�t of a bid and the level of experience of the bidder. A
player with no experience can expect to lose e.40 per each e.50 bid, while those with very
high experience levels have slightly positive expected payo¤s per each bid. However, note
that this positive e¤ect requires a relatively large amount of experience: raising the expected
value of a bid to near zero requires an experience level of nearly 10,000 bids.

Following the quadratic shape of the non-parametric regression and still constraining
Li(t) = L(t), I �rst parameterize the model as:

yUit = �0 + �1t+ �2t
2 + "it (13)

with the results shown in the �rst column of Table 3 (with standard errors clustered on
users). These estimates show that, on average, there is an economically and statistically
signi�cant concave relationship between experience and pro�ts, which demonstrates that
there are strategies which consistently yield higher pro�ts. Speci�cally, for each 1000 bids,
players initially increase the expected return from each e.50 bid by e.03 from a baseline of
e.17.

However, as discussed above, it is not clear that this result is due to individual learning.
It is possible that individuals with larger coe¢ cients continue in the game for longer, leading
t to be positively correlated with the error term. To help mitigate this selection problem, I

33Note that, confusingly, this is a di¤erent t than in the theoretical section. In that section, t represented
a change in the bid level, while t here represents a level of experience for a user.
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estimate the model with �xed e¤ects for users:

yUit = �1t+ �2t
2 + �i + "it (14)

with the results shown in the second column of Table 3. This speci�cation suggests that,
to the extend that the heterogeneity in learning functions is captured by an added constant,
there is a selection e¤ect, but learning alone does plays a role in the positive association
between experience and pro�ts. However, this speci�cation does not account for the possi-
bility that learning rates di¤er across individuals. If these learning rates are correlated with
high levels of experience, there will still be selection bias. To capture this e¤ect, I de�ne Ti
as the highest level of experience achieved by a player and allow the learning rate to vary
linearly with Ti :

yUit = (�0 + �1Ti)t+ �2t
2 + �i + "it (15)

with the results shown in the third column of Table 3. Interestingly, the coe¢ cient estimateb�1 is negative, suggesting that there is a negative selection e¤ect with respect to learning
rates.34 For example, the estimated linear e¤ect on pro�ts of each additional 1000 bids for
a player that leaves the game with very little experience is nearly e.035; while that for a
player that leaves after making 10,000 bids is only e.009: This relationship is consistent
with the previous �ndings that more experienced players have high natural expected pro�ts
(on average) and that there are decreasing returns to experience as expected pro�ts rise.
Crucially, both speci�cations 15 and 14 maintain an economically and statistically signi�cant
positive estimate on the experience coe¢ cient even when controlling for selection e¤ects,

34The coe¢ cient estimate b�2 on a quadratic interaction e¤ect T 2i t is insigni�cant and does not change
the results.
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suggesting that players do learn strategies that increase their expected pro�t (especially at
low levels of experience).

6.2 Strategies Used by Experienced Players to Increase Pro�ts

This section determines the speci�c strategies that allow players with higher levels of
experience to produce higher expected pro�ts. My basic empirical strategy (discussed in
detail below) is to estimate the e¤ect of experience on pro�t (as in speci�cation 13), while
controlling for the e¤ect of using speci�c strategies. To the extent that the relationship
between higher experience levels and pro�t is driven by the use of each strategy, the coe¢ cient
on experience will be reduced accordingly. I �nd experienced players are not making higher
expected pro�ts as a result of time-based strategies (bidding at certain times of the day or
days of the week) or item-based strategies (bidding on certain items), but that "aggressive
bidding" strategies (bidding immediately whenever possible) account for the majority of the
pro�t associated with higher levels of experience.

Formally, note that any change the expected pro�ts from a bid must be driven by the
use of di¤erent bidding strategies. Speci�cally, letting variables s1; s2; :::denote the level of
use of each strategy (and allowing strategies to represent any level of interaction of multiple
strategies), it must be that

yU = S1(s1) + S2(s2) + :::+ " (16)

for some functions S1(�); S2(�); :::; with " again representing the natural stochastic nature of
winning the auction. Therefore, any estimate of experience on expected pro�ts (like those in
Section 6.1) must be indirectly capturing the e¤ect of experience on the use of these di¤erent
strategies, so that

yUit = Li(t) + "it = S1(L
1
i (t)) + S2(L

2
i (t)) + :::+ "it (17)

for some learning functions L1i (�); L2i (�); :::To parameterize this model, I follow the �rst
(quadratic, user-consistent) parametrization of the e¤ect of experience above for each learn-
ing function, so that

sl = Lli(t) = �l0 + �l1t+ �l2t
2 (18)

for each strategy l = 1; 2; 3; :::Finally, I linearly parametrize the Sl(�) functions, so that:

yUit = 
0 + 
1(�
1
0 + �11t+ �12t

2) + 
2(�
2
0 + �21t+ �22t

2) + :::+ "it (19)

Using this interpretation, the estimated coe¢ cient b�1 in speci�cation 13 is a consistent
estimate of 
1�

1
1+
2�

2
1+ :::, the total e¤ect of t on the use of each strategy (�

l
1) multiplied by

the e¤ect of that strategy on pro�ts (
l). Crucially, note that if s1it (the use of strategy 1
by person i at time t) is observable and included in the regression, the estimated coe¢ cient
on t becomes a consistent estimate of 
2�

2
2+ 
3�

3
3+ :::, the total e¤ect on pro�t of the use of
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all strategies except strategy 1. Note that it is possible to produce a consistent estimate of

1�

1
1 (the e¤ect of pro�ts of the linear change in the use of strategy 1 through experience)

by di¤erencing these estimates.

In order to focus on strategies in the simplest version of the game, I report results for
Nailbiter Auctions, in which the BidButler is not allowed. The �rst column of Table 4
presents the results of a regression of experience on pro�ts for Nailbiter Auctions. Following
the logic above, the rest of the table presents the same regression, controlling for a variety of
strategies. For example, the second column displays the regression while controlling for item
�xed e¤ects. While there are signi�cant and positive coe¢ cients on certain items (suggesting
that bidding on these items leads to signi�cantly higher pro�ts), the coe¢ cients on experience
remain virtually unchanged, suggesting that the strategy of bidding on certain items is not
driving the relationship between experience and pro�ts. Similarly, the third column, which
displays the regression controlling for time-of-day and day-of-week �xed e¤ects, suggests that
time-based strategies are also not driving this relationship.

There are strategies that have signi�cant e¤ects on the estimates of the experience coe¢ -
cient. Broadly, the most important appears to be "bidding aggressively," in which a player
bids extremely quickly following another player�s bids (rather than wait until the timer runs
to a few seconds) and bids repeatedly for a large number of bids. Column four of Table
4 presents the results of the regression controlling for these strategies, with the "seconds"
categorical variables representing the number of seconds from the previous bid (zero seconds
representing the most aggressive bid) and the "streak" categorical variables representing the
number of bids made in the auction previous to this bid (with higher numbers representing
more aggressive bids). First, note that "aggressive bidding" strategies have a very signi�cant
e¤ect on pro�tability of each bid. Bidding extremely quickly after the previous bid (within
one second) raises the expected pro�t by e.58 over waiting over 20 seconds to bid. Having
previously bid more than 20 times raises the expected pro�t by e.25 over bidding for the �rst
time in the auction. Second, note that the coe¢ cient on experience has been reduced dra-
matically, suggesting that increased use of aggressive bidding by experienced players drives
the majority of the increase in pro�ts from experience. In fact, e.02 of the e.03 gain in
expected pro�ts associated with an additional 1000 bids arises from the increased use of
aggressive bid strategies.

7 Supplier Behavior

In the previous sections, I examine the behavior of participants in penny auctions. In this
section, I analyze the behavior of suppliers.35 First, I calculate the optimality of Swoopo�s
behavior by separately estimating Swoopo�s actual and optimal supply rule (the number of
auctions to provide for a given number of participants). This analysis suggests that high

35Some observers have commented on the potential for Swoopo to make shill (fake) bids in order to keep
the auction running. Based on my analysis of patterns in the bid-level data, I do not �nd any evidence of
the most obvious shill bidding techniques (creating fake bidders and using them nearly exclusively for shill
bids). I cannot rule out the possibility that Swoopo is using more sophisticated techniques that are more
di¢ cult to identify.
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supplier pro�ts require a consistent and large group of users participating in the auction and
that over-supplying auctions can be costly to the �rm.36 Interestingly, this �nding suggests
a potential barrier to new entrants to the market. While there is very little cost to creating a
similar auction site, entrants must over-supply auctions in order to attract a larger userbase,
but the attraction process takes time and consequently this leads to signi�cant short-term
losses. I then show that evidence from �ve of Swoopo�s top competitors is consistent with
this conclusion, as none of the �rms are making relatively large pro�ts and three are making
negative pro�ts.

7.1 Supply Rules: Empirical Strategy

In the following sections, I study the optimal provision of auctions for a given number
of users at Swoopo. First, I identify Swoopo�s actual supply rule, which is the number of
auctions it attempts to supply for a given number of users on the site. Swoopo releases
auctions with very high initial timers, so it must predict the number of users on the site
in the future when the auction�s timer will become very low and players will start to bid
(note that, as Swoopo is an automated website and faces no time-based constraints, the
changes in the number of expected users across the day are independant of supply capacity).
Therefore, it is possible to determine Swoopo�s supply rule by matching the expected number
of auctions (given the release times) with the expected number of users on the site (given
past user data). However, as Swoopo does not adjust the number of auctions in real-time,
there is signi�cant natural variation in the number of auctions and users once a point in time
is actually reached, due to the natural stochastic nature of the ending times of auctions and
the natural randomness in the number of users on the site. I use this variation to determine
the pro�t curves from supplying a given number of auctions for a given number of users,
which can be used to determine the optimal short-term supply curve.

Note that, unlike Swoopo, I cannot determine the precise number of users looking at
the auctions at any instant in time. As a proxy for this measure, I calculate the number
of bidders that placed a bid within 15 minutes of that time, which I call active users.37

I de�ne an active auction as one in which the timer of the auction shows less than one
minute. To create the dataset for determining Swoopo�s optimal supply curve, I determine
the average number of active users and auctions in each ten-second interval in my dataset.38

As I mention in Section 3.2, the data capturing algorithm was improved on March 18th. In
order to keep the measure of number of users consistent over di¤erent days, I only use data
after that point.

36Note that the theoretical analysis does not make this prediction. In a theoretical model, players adjust
correctly to the number of players (or expected players) and the hazard rates remain consistent with the
theoretical predictions given changes in the number of users.

37The qualitative results are robust to changes in the intervals of time.
38The qualitative results are robust to time windows from ten seconds to one hour (at which point there

is not enough data to accurately estimate the coe¢ cient).
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7.2 Swoopo�s Actual Supply Rule

The goal of this section is to determine Swoopo�s chosen number of auctions for a given
number of active users (the supply curve) at each point in time (each observation represents
a ten second interval, as discussed above). Importantly, note that Swoopo releases auctions
with many hours on the timer (12-24 hours) and that Swoopo is an automated website and
therefore faces no time-constraints on supply.

In order to determine Swoopo�s expected number of auctions for a given point in time,
one can use the initial timer, the value of the object, and the empirical survival rates in
Section 4 to estimate a expected survival function S(t; v) for each auction. S(t; v) maps each
time period t into the probability that the auction of an item with value v is active at that
point.39 Using this survival function, I estimate Swoopo�s desired supply at time t, eQSt, as

eQSt = X
Auctions

S(v; t) (20)

When Swoopo releases this auctions, it must estimate the number of users that will be on
the site when the auction becomes active (the timer shows less than one minute). Luckily,
the number of users QDt varies predictably depending on the time of the day and the day of
the week, as demonstrated by the fact that the regression of users on time:

QDt = �0 + �1TimeDummies+ "t (21)

yields an R2 of .716.40 The predicted values bQDt from this regression are shown with the
bold line in Figure 9.

The relationship between the expected supply and the expected demand is Swoopo�s
actual supply rule (note that there is no concern of endogeneity in this regresssion as there is
no way for the expected supply to impact the expected demand when an auction is released):

eQSt = �0 + �1 bQDt + "t (22)

with the results shown in the �rst column of Table 5. The results are highly signi�cant and
suggest that Swoopo attempts to supply a new auction for every 42 new active users. Given
the nature of the data, there is a concern that the error term is serially correlated. Rather
than attempt to correct for this correlation, which is potentially complicated in nature41,
I run the same regression using only every 360th observation (each hour), with the results

39Note that this is not the same as the survival function in the theoretical section. In that section, t
represented a change in the bid level, while t here represents ten second intervals of clock time. As each rise
in the bid level is associated with an average 9 second rise in the timer, these measures are related, but not
the same.

40My chosen speci�cation uses dummies for time of day (broken into 10 minute sections) and individual
day. A variety of speci�cations with di¤erent time-dummies yield nearly identical results.

41Given the shape of the survival function, it is not possible to perfectly match the expected supply at
each point in time with an arbitrary desired supply, which leads to error, captured with "t. Modelling the
e¤ect of this constraint on "t is di¢ cult.
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Figure 9: Number of Active Users over 48 Hours (Actual vs. Smoothed)

shown in the second column of table 5.42 The results remain largely unchanged. In order
to check the potential for a non-linear supply, I run a regression with a quadratic term, with
the results shown in the third column of Table 5. As I show in Section 7.4, the estimated
supply curve is largely unchanged for the normal range of active users.

7.3 Swoopo�s Optimal (Short Term) Supply Rule

Even though Swoopo attempts to match the number of active auctions with the number
of active users, there is signi�cant variation in the actual number of active auctions for a
given number of active users (and vice versa). Speci�cally, for a given number of users,
the number of active auctions is nearly normally distributed around the desired number of
auctions with a standard deviation of 2.83. This variation arises from the natural stochastic
nature of the ending times of auctions and the number of users on the site. I use this
variation to compare the (instantaneous) pro�t from supplying di¤erent number of auctions
given a number of users to determine the optimal short-term supply curve. Note that as I
have no exogenous variation in the long-term supply, I cannot identify the e¤ect of changes
in supply on long-term pro�t (presumably, a higher supply will attract more users to the site
in the long-term, a¤ecting pro�ts). Therefore, my estimation of the optimal supply curve
does not take into account any potential e¤ects of supply on demand in the long-term.

Formally, let yAjt be the auctioneer�s payo¤ at time t from auction j; which must lie
between the bid cost (e.50) and the net value of the object. Then, a general model of

42The results are consistent regardless of the chosen interval. I report results for one hour as this is the
largest interval with enough observations to produce reasonably signi�cant results.
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the e¤ect of the number of users QDt, the number of auctions QSt; and a vector of auction
characteristics �!xj on pro�t is

yAjt = P (QDt; QSt;
�!xj ) + "jt (23)

As a �rst step towards understanding the pro�t function P (�), Figure 10 displays non-
parametric regressions of the number of active users on instantaneous pro�t for multiple equal
sized groupings of the number of active auctions. First, note that an increase in the number
of active users consistently increases the predicted instantaneous pro�t for each number of
active auctions. Second, note that an increase in the number of active auctions consistently
reduces the predicted instantaneous pro�t for each number of active users. Finally, note
that these e¤ects appear to be largely linear and independent of each other.

With these results in mind, I parametrize the model as

yAjt = �0 + �1QDt + �2QSt + "jt (24)

with the results shown in the �rst column of Table 6. This regression estimates that
instantaneous pro�t rises by e.088 for each additional hundred active users on the site, but
falls by e.034 for each additional auction. The results of a quadratic regression are shown
in the second column of Table 6. The results of a regression with item �xed e¤ects (to
control for the heterogeneous e¤ects of the item for auction) are shown in the third column
of Table 6. As I show in Section 7.4, the estimated e¤ects are largely unchanged across
these regressions for the normal range of active users.

From these results, it is straightforward to determine the optimal number of active auc-
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tions for a given number of active users. For example, using the �rst speci�cation, the
predicted instantaneous pro�t b�A to the auctioneer from running QS auctions given QD
users is

b�A(QS; QD) = QS(b�0 + b�1QD + b�2QS) (25)

Consider a situation in which there are 200 active users. Using the estimates from the
�rst speci�cation, the predicted pro�t from running one auction is e.368, from running two
auctions is 2*(e.368-e.034)=e.669, from running three auctions is 3*(e.368-e.068)=e.903,
and so on. It is easy to show that, given the estimates from the �rst speci�cation, b�A(QS; QD)
is a strictly concave in QS with a unique maximum Q�S(QD) =

b�0+b�1QD
�2�b�2 = :225+0:000883QD

2�:0335 .

Solving this equation when QD = 200 leads to an estimated optimal supply of Q�S(QD) � 6
auctions.

Using the same logic for the other speci�cations, it is easy to calculate the optimal (short-
term) supply curve for each speci�cation. These curves are compared with the actual supply
functions in the following section.

7.4 Comparison between Actual and Optimal Supply Rules

In the previous two sections, I estimated the actual and optimal short-term supply curve
of auctions. Figure 11 displays these curves for each speci�cation along with a kernel density
estimation of the number of active users on the site. Clearly, the di¤erent speci�cations for
both curves produce extremely similar qualitative results.
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It is possible to compare the supply curves quantitatively by comparing the estimated
pro�ts from each curve. Speci�cally, given the estimated empirical distribution of users
f(QD) and the estimated pro�t function b�A(QS; QD); the estimated pro�t from following
supply curve QS(QD) is

b� = Z f(QD)b�A(QS(QD); QD)dQD
Using estimates from the �rst speci�cations of both models, the optimal supply curve

yields expected instantaneous pro�ts of e1.48, while the estimated supply curve yields e1.46,
suggesting that Swoopo captures 98.6% of potential pro�ts in its supply curve.

This section has produced a variety of results, with a three important points. First,
it appears that Swoopo is e¢ cient at pro�t-maximization with respect to its supply curve.
Second, all else equal, the auctioneer�s pro�t is increased by additional users and reduced by
additional auctions. Therefore, for a given number of users, supplying the optimal number
of auctions is important. Third, the auctions require a reasonable number of consistent
active users (over 40, based on my measure) to run successfully.

7.5 Competitor Pro�ts

As Swoopo makes a large amount of pro�t for running penny auctions, why would other
companies not begin to o¤er these auctions? Swoopo holds no intellectual property and the
cost of creating a nearly identical product is extremely cheap.43 Furthermore, as bidders
would presumably prefer to compete with fewer other bidders (there is a negative network
externality), entrants could be potentially favored over an established �rm. Consistent with
this logic, there has been a large in�ux of competitor �rms in this market.44

However, the above results concerning the supply rules suggest a potentially important
structural barrier to entrants in this market. As there are signi�cant diminishing returns
to the supply of auctions, over-supply of auctions for a given number of users can be costly.
However, entrants must over-supply auctions in order to attract a larger userbase, leading
to large costs until the userbase grows to match the supply.45 This conclusion is bolstered
by auction-level data compiled from competitor sites. Table 7 displays the (recent) use
and pro�t statistics of Swoopo and �ve other major entrants to this market.46 Only one of
the �ve major competitors is making large daily pro�ts, which are still an extremely small
percentage (6.6%) of Swoopo�s daily pro�ts. The other four competitors are making small

43In fact, companies that sell pre-designed website templates for these auctions allow a potential com-
petitor to start a similar site in a few hours.

44Simply searching google for "penny auction" or "swoopo" will reveal a variety of paid advertisements
for other companies running penny auctions.

45Another potential reason is switching costs. Although it would appear that switching costs are low,
users appear to switch between companies very rarely. Only 24 (of over 129,000) Swoopo usernames in the
bid-level dataset appear in the top ten lists of the �ve largest competitors.

46Based on cursory research, these �ve companies were the top �ve competitors to Swoopo as of June
2009.
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or negative daily pro�ts. This analysis suggests that entrants will not immediately reduce
the rents in this market, at least in the medium term.

8 Discussion and Conclusion

This paper presents a variety of theoretical and empirical results concerning the market
for penny auctions, a relatively new auction format. My �rst result is that, in aggregate,
players signi�cantly overbid in these auctions, leading to large expected pro�ts for the auc-
tioneer. Comparing the empirical hazard function with theoretically predicted function
yields my second result: players overbid more and more as the auction continues. I show
that this behavior matches the predictions of a model with agents that exhibit a naive sunk
cost fallacy. Interestingly, players with higher levels of experience have higher empirical
returns from bidding, most notably through the increased use of a set of "aggressive bid-
ding" strategies. For my third main result, I demonstrate that Swoopo nearly optimally
matches the expected number of active auctions to the expected number of users on the site
at each point in time. The supply rules suggest that an entrant that attempts to over-supply
auctions in order to attract a large userbase will incur large short term losses, creating a
structural barrier to entry. I show that this conclusion is consistent with �ndings from data
from �ve competitors, which shows that competitors lag signi�cantly behind the sole market
leader in terms of daily pro�t.

From a policy perspective, the conclusions of the paper raise the question of regulation
for this type of auction. On one hand, the auction appears to resemble a lottery, with
large numbers of participants losing relatively little, one participant winning a signi�cant
prize, and the auctioneer making large pro�ts. This suggests that, to the extent that
governments choose to regulate lotteries (which they often do, for moral, paternalistic, or
revenue-generating reasons (Clotfelter and Cook(1990)), there is a role for regulation of these
auctions. However, there are also some key di¤erences which make the role of government
regulation less clear: this auction possesses no exogenous source of randomness (all ran-
domness arises from the strategies of other players); skill does play a role in the expected
outcome; and there is no obvious deception or manipulation of the players of the game.

There are multiple avenues for further research in the market for penny auctions. For
example, while my results are suggestive that players exhibit a sunk cost fallacy, the format
of Swoopo�s auction makes it di¢ cult to fully di¤erentiate between this and a small set of
other potential explanations. Laboratory study would allow for the controlled variation
needed to more precisely identify the appropriate model of players�behavior. Alternatively,
it might be possible to achieve this goal empirically by using variation in the rules of the
auctions run by new and future entrants. Finally, as the market for penny auctions is still
relatively young, time will allow a more comprehensive study of the evolution of individual
producer behavior and market dynamics as the market matures.
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A Appendix

A.1 Robustness of the model

A.1.1 mod(y-k,c)6= 0

The results in the analytic section relied heavily on the assumption that mod(v-k,c)= 0:
If this assumption does not hold, there is no equilibrium in which the game continues past
period 1. However, as the following proposition shows, strategies that lead to the hazard
rates in Proposition 2 form an � equilibrium with � very small and limiting to 0 as the size
of time periods shrinks to 0:

Proposition 7 If mod(v � c; k) 6= 0; there is no equilibrium in which the game continues
past period 1. De�ne F � = max(tjt < v�c

k
� 1): There is an �-perfect equilibrium which

yields the same (discrete) hazard rates as those in Proposition 2 with � = 1
n
(1� c

v�F �k )(v �

(F �+1)k� c)[
F ��1Y
t=1

(1� c
v�tk )]: There is an contemporaneous �

c-perfect equilibrium (Mailath

(2003)) which yields the same (discrete) hazard rates as those in Proposition 2 with �c =
1
n�1(1�

c
v�F �k )(v� (F

�+1)k� c): There is a contemporaneous �c-perfect equilibrium which
yields the same hazard and survival rates as those in Proposition 4 with �c ! 0 as �t! 0:

To give an idea of the magnitude of the mistake of playing this equilibrium in auc-
tions in my dataset, consider an stylized auction constructed to make � as high as possible,
with v =e9:95; c =e:50; k =e:10; and n = 20: In this case, � = e:0000000000224 and
�c =e:00060: That is, even in the most extreme case and using the stronger concept of con-
temporaneous �c-perfect equilibrium, players lose extremely little by following the proposed
strategies. This is because their only point of pro�table deviation is at the end of the game,
where their equilibrium strategy is to bet with low probability, there is a small chance that
their bet be accepted, and the cost of the bet being accepted is small (and, ex ante, there is
an extremely small chance of ever reaching this point of the game).
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A.1.2 Independent Values

In the model in the main paper, I assume that players have a common value for the
item. The equilibrium is complicated if players have values vi is drawn independently from
some distribution G of �nite support before the game begins or vi(t) is drawn independently
from G at each time t: In these equilibria, players�behavior is dependant largely on the
exact form of G; with very few clear results about bidding in each individual period (which
is con�rmed by numerical simulation). However, if players have independent values which
tend to a common value, the distribution of hazard rates approaches the bidding hazard
rates in the following way:

Proposition 8 Consider if (1) vi is drawn independently from G before the game begins or
(2) vi(t) is drawn independently from G at each time t: For any distribution G; there is
a unique set of hazard rates fehG(1);ehG(2); :::ehG(t)g that occur in equilibrium. Let the the
support of Gi be [v � �i; v + �i]. For any sequence of distributions fG1; G2; :::g in which
�i ! 0 and the game continues past period 1 in equilibrium; ehG(t) ! eh(t) from Proposition
2 for t > 0. For any sequence of distributions G with � ! v and �t ! 0, there exist
a sequence of corresponding contemporaneous �c-perfect equilibria with hazard and survival
rates equal to those in Proposition 4 in which �c ! 0.

A.1.3 Leader can bid

Throughout the paper, I assume that the leader cannot bid in an auction. This assump-
tion has no e¤ect on the preferred equilibrium below, as the leader not bid in equilibrium
even when given the option. However, the assumption does dramatically simplify the exact
form of other potential equilibria, as shown below.

Consider a modi�ed game in which the leader can bid. Now, a (Markov) strategy for
player i at period t is the probability of betting both if a non-leader (xi;NL�t ) and, for t > 0,
when a leader (xi;L�t ) (there is no leader in period 0).

Proposition 9 In the modi�ed game, Proposition 2 still holds.

The equilibria in the situation in which non-leaders bid becomes signi�cantly more com-
plicated and �nding a closed form solution becomes extremely di¢ cult. For example, con-
sider the equilibrium in which no player bids at period F (this is the equilibrium characterized
by t = F and p = 0 in Proposition 3). The (numerically) solved equilibrium hazard rates
are shown for v = 10; c = :5; k = :1 and n = 3 in Figure 1 Notice the obvious irregularities
in the equilibrium hazard rates in the modi�ed game. This occurs because the ability of a
leader to bid in period t distorts the incentives of non-leaders in previous periods. To see
this, consider the situation in which eh(t + 1) = 1 and eh(t) = 0. When leaders cannot bid,
there is no bene�t from a non-leader bidding in period t� 1 as he will not win the object in
period t (because the game will continue with certainty) or period t+ 1 (because he cannot
bid in period t and therefore will never be a leader at t + 1), at which point the game will
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Figure 1: Change in non-bidding equilibria when the leader is allowed to bid.

end. However, when leaders can bid, non-leaders in period t � 1 can potentially bene�t
from bidding. Although there is still no chance that the non-leader in period t� 1 will win
the object in period t by bidding, she will be able to bid (as a leader) in period t, leading
to the possibility that she will win the object in period t + 1: Therefore, non-leaders will
potentially bid in this situation in equilibrium not to win the object in the following period,
but simply to keep the game going for a (potential) win in the future.

A.1.4 Allowing Multiple Bids to Be Accepted

Allowing multiple bids to be accepted signi�cantly complicates the model, especially in a
declining-value auction. Consider a player facing other players that are using strictly mixed
strategies. If the player bids in period t, there is a probability that anywhere from 0 to
n � 2 other non-leading players will place bids, leading the game to immediately move to
anywhere from period t + 1 to period t + n: In each of these periods, the net value of the
object is di¤erent, as is the probability that no player will bid in that period and the auction
will be won (which is dependant on the equilibrium strategies in each of the periods).

It is possible to solve the model numerically, leading to a few qualitative statements about
the hazard rates. Figure 2 shows the equilibrium hazard rates (with k = :1; c = :5; n = 10)
given small changes in the value of the good (v = 10; 10:25; 10:5; 10:75), as well as the
analytical hazard rates from Proposition 2. These graphs demonstrate three main qualitative
statements about the relationship between the equilibria in the modi�ed model and the
original model:

1. The hazard rates of the modi�ed model are more unstable locally (from period-to-
period) than those from Proposition 2, especially in later periods. As n increases, this
instability decreases (I do not present graphs for lack of space).

2. The hazard rates of the modi�ed model closely match those from Proposition 2 when
smoothed locally.
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Figure 2: Numerical Analysis of the hazard rate of auctions for di¤erent values (solid lines)
when the multiple bids are accepted at each time period vs. the predicted hazard rate (dotted
red line) when only one bid is accepted.

3. The hazard rates of the modi�ed model are more stable globally to small changes in
parameters in the model. Recall that the hazard rates in Proposition 2 were taken
from an equilibrium when mod(y � c; k) = 0: When mod(y � c; k) 6= 0; the hazard
rates oscillated radically (although they were smooth in an "-equilibrium with very
small "). The modi�ed model is much more globally robust to these changes.

A.1.5 Timer

In the model in the paper, unlike that in the real world implementation of the model,
there is no timer within each period. Consider a game in which, in each discrete period t;
players can choose to place a bid at one sub-time � 2 [0; T ] or not bid for that period. As in
the original game, if no players bid, the game ends. If any players bid, one bid is randomly
chosen from the set of bids placed at the smallest � of all bids (the �rst bids in a period).
Now, a player�s (Markov) strategy set is a function for each period �it(�) : [0; T ] ! [0; 1];

with
Z T

0

�it(�)d� equaling the probability of bidding at some point in that period.

Proposition 10 For any equilibrium of the modi�ed game, there exists an equilibrium of
the original game in which the distribution of the payo¤s of each of the players is the same.

This proposition demonstrates that, while the timer adds complexity to the player�s
strategy sets, it does not change any of the payo¤-relevant outcomes.
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A.2 Proofs

Proposition 1

Proof: Assume that an equilibrium exists in which eh(t�) < 1 for some t� > v�c
k
� 1:

There must be some player i with xit� > 0: Consider any proper subgame starting at
period t�. For each period in this game, there is some probability ait 2 [0; 1] that player
i has a bid accepted in that period and some probability qt that the game ends at that
period. As xit� > 0; ait� > 0 and qt� < 1: Player i0s continuation payo¤ starting at
time t� is

X1

t=t�
ait(�c + qt+1(v � (t + 1)k)) <

X1

t=t�
ait(�c + qt+1(v � (v�ck + 1)k)) <X1

t=t�
ait(�c+ qt+1(c� k)) < 0: But, player i could deviate to never bidding and receive a

payo¤ of 0. Therefore, this can not be an equilibrium.

Proposition 2

Proof: Consider the following symmetric strategies: xi�t =

8<:
1 for t = 0
1� n�1

p
c

v�tk for 0 < t � F

0 for t > F

9=;.
Note that: for t = 0, eh(t) = 0; for 0 < t � F; eh(t) = (1� (1� n�1

p
c

v�tk ))
n�1 = c

v�tk ; for

t > F; eh(t) = 1:
Claim: this is a subgame perfect equilibrium.

First, consider if k>0. I will show that, for each period t; the following statement (referred
to as statement 1) is true: there is no strictly pro�t deviation in period t and the continuation
payo¤ from entering period t as a non-leader is 0. For the subgames starting in periods
t > F; refer to the proof of Proposition 1 for a proof of the statement. For the subgames
starting in period t � F; the proof continues using (backward) induction with the statement
already proved for all periods t > F . In period t; player i will receive a continuation payo¤
of 0 from not betting at time t (she will receive 0 in period t and will enter period t + 1
as a non-leader, which has a continuation payo¤ of 0 by induction). By betting, there is
positive probability her bid is accepted. If this is the case, she receives �c in period t and
receives v� (t+1)k in t+1 with probability c

v�(t+1)k and 0 as a continuation payo¤ in period
t+2 with probability 1� c

v�tk . If she does not win the object, the continuation payo¤ from
entering period t+2 must be 0 by induction. This leads to a total continuation payo¤ from
her bid being accepted of �c + c

v�(t+1)k (v � (t + 1)k) = 0: If the bid is not accepted, she
enters period t+1 as a non-leader and must receive a continuation payo¤ of 0 by induction.
Therefore, the continuation payo¤ from betting must be 0. Therefore, the statement 1 is
true for all periods and this is a subgame perfect equilibrium.

Proposition 3

Proof: The proof is two steps.

(1) Each of the proposed set of hazard rates can occur in equilibrium. This closely
follows the proof of Proposition 2.

Consider the following symmetric strategies:
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xi�t =

8>>>><>>>>:
1 for t < t� with mod(t+GT +mod(t�; 2); 2)= 0
0 for t < t� with mod(t+GT +mod(t�; 2); 2)= 1
1� n�1

p
p for t = t�

1� n�1
p

c
v�tk for t� < t � F

0 for t > F

9>>>>=>>>>;.
Note that, as in the proof of Proposition 2. these strategies yield the hazard rates listed

in the proposition.

Claim: This is a subgame perfect equilibrium.

First, consider if k>0. The proof of Proposition 2 demonstrates that there is no
strictly positive deviation from the strategies for any subgame starting in any period t > t�:
Consider period t�: From the proof of Proposition 2, the continuation payo¤ from betting
and not betting at t� are the same (0) for all subgames and therefore there is no strictly
pro�table deviation from playing 1� n�1

p
p in period t� in any subgame. Now, consider period

t� � 1: Following the same logic as Proposition 2, the continuation payo¤ from betting and
having a bid accepted is �A = �c + p(v � (t�)k); and the continuation payo¤ from betting
and not having the bid accepted is �NA = 0. The continuation payo¤ from betting is a
� = ��A + (1 � �)�NA; with the probability of having a bid accepted � 2 (0; 1]: Simple
algebra shows that p S c

v�tk , � S 0. If � > 0 (� < 0); then players must strictly prefer
to bid (not bid) in period t� � 1, leaving no pro�table deviation (note that if � = 0, players
also do not strictly prefer to deviate). Similar logic shows that players must strictly prefer
to not bid (bid) in period t� � 2; bid (not bid) in period t� � 3; and so on. This leaves no
pro�table deviation in any period and therefore the above strategies are a subgame perfect
equilibrium.

(2) No other set of hazard rates can occur in an equilibrium.

Suppose there exists a di¤erent set of hazard rates bh(t) that occur in some equilibrium
which can not be characterized this set of hazard rates for some p and t�. Proposition 1
shows that the hazard rates in this supposed equilibrium must be follow this characterization
in periods t > F: Note that the hazard rates in Proposition 2 with any hazard rate p in
period 0 can be characterized by p and t� = 0: Therefore, there must be some 0 < t � F
such that bh(t) 6= c

v�tk : De�ne t
� = max(tjbh(t) 6= c

v�tk ; t � F ) and p = bh(t�): There must be
some t < t�; in which bh(t) di¤ers from the listed set of hazard rates. However, by the proof
above, players in periods t < t� strictly prefer to play the strategies de�ned above, leading
to the a member of the listed set hazard rates, which is a contradiction.

Corollary 1

Proof: By Proposition 3, the hazard rates in this equilibrium must be a member of the
listed set of hazard rates and characterized by some p and t�. If t� > 1; then the hazard rate
in this equilibrium must be 1 in either period 1 or 0. Therefore, if an equilibrium continues
past period 1, it must be that t� 2 f0; 1g: For all of these equilibria, the hazard rates match
those in Proposition 2 for all t > 1:

Corollary 2

Proof:
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(1) Claim: the auctioneer�s expected revenue is equal to v in the equilibrium in Propo-
sition 2: Note the item must be sold to some bidder as eh(0) = 0: Therefore, the combined
expected pro�t of the bidders must be v: Next, note that by the proof of Proposition 2,
each player must have a continuation payo¤ of 0 at the start of the auction. Therefore, the
auctioneer must have an expected continuation payo¤ of v:

(2) Claim: For any � 2 [ c
v
; 1], there exists an equilibrium in which the auctioneer�s

expected payo¤ is �v: Consider the equilibrium hazard rates characterized by t� = 1 and
p 2 [ c

v�k ; 1]: Given these hazard rates,
eh(0) = 0:

Proposition 4

Proof: Let S(t) = p: As eh(t) = c�t
v�(t)k for t � F , S(t + �t) = (1 � c�t

v�(t+�t)k )p:

Therefore, S(t) = lim
�t!0

S(t)�S(t+�t)
�t�S(t) = lim

�t!0

p( c�t
v�(t+�t)k )

�t�p = lim
�t!0

c
v�(t+�t)k =

c
v�tk : As H(t) =R t

0
c

v�etkdet, H(t) = c(ln(v)�ln(v�tk))
k

t if k > 0 and t � F , while H(t) = c
v
t if k = 0: Note that

H(t) =
R t
0
lim
�t!0

S(et)�S(et+�t)
�t�S(et) det = � R t

0
1
S(et)( ddetS(et))det = � lnS(t): Therefore S(t) = e�H(t) and

S(t) = (1� tk
v
)
c
k if k > 0 and t � F , while S(t) = e�(

c
v
)t if k = 0:

Note that, as eh(F +�t) = 1; lim
�t!0

Pr(T > F ) = 0 and therefore S(F ) = 0:

Proposition 5

Proof: S(tv1; v1) = (1� tv1y
v1
)
c
y = (1� ty)

c
y = (1� tv2y

v2
)
c
y = S(tv2; v2) if k > 0 and t � F:

S(tv1; v1) = 0 = S(tv2; v2) if k > 0 and t > F: S(tv1; v1) = e
�( c

v1
)tv1 = e�ct = e

�( c
v2
)tv2 =

S(tv2; v2) if k = 0: S(tv1c1 ; v1; c1) = e
�( c1

v1
)t
v1
c1 = e�t = e

�( c2
v2
)t
v2
c2 = S(tv2

c2
; v2; c2) if k = 0:

Proposition 7

Proof: Consider the strategies noted in the proof of Proposition 2 with F = F �: For
the standard �-perfect equilibrium, we consider the ex ante bene�t of deviating to the most
pro�table strategy, given that the other players continue to follow this strategy. Following
the proof of Proposition 2, it is easy to show that there is no pro�table deviation in periods
t > F � and t < F �: Therefore, the only pro�table deviation is to not bet in t = F �: This
will yield a continuation payo¤ of 0 from period F �. The ex ante continuation payo¤ from

betting is � = 1
n
(1 � c

v�F �k )(v � (F
� + 1)k � c)[

F ��1Y
t=1

(1 � c
v�tk )]: (To see this, note that

there is a
F ��1Y
t=1

(1 � c
v�tk ) change that the game reaches period F

�: In period F �; there is

a (1 � c
v�F �k ) probability that at least one player bets. As strategies are symmetric, this

means that, ex ante, a player has a 1
n
(1 � c

v�F �k ) probability of her bet being accepted in
this period, given that the game reaches this period. If the bet is accepted, the player will
receive (v � (F � + 1)k � c)): Therefore, the ex ante bene�t from deviating to the most
pro�table strategy is �: For the contemporaneous �c-perfect equilibrium, we consider the
bene�t of deviating to the most pro�table strategy once period F � is reached, given that the
other players continue to follow this strategy. This is �c = 1

n�1(1�
c

v�F �k )(v� (F
�+1)k� c)

(To see this, note that in period F �; there is a (1 � c
v�F �k ) probability that at least one
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player bets. As strategies are symmetric, this means that, ex ante, a non-leader has a
1
n�1(1�

c
v�F �k ) probability of her bet being accepted in this period (as there are only n� 1

non-leaders). If the bet is accepted, the player will receive (v � (F � + 1)k � c)):

Proposition 8

Proof: In case 1, I will refer to vi(t) = vi. The proof is simple (backward) induction on
the statement that there is a unique hazard rate that can occur in each period in equilibrium.
By the same logic in the proof to Proposition 1, eh(t) = 1 for all t > v+�i�c

k
� 1: Consider

periods t � F � = maxftjt � v+�i�c
k

�1g where eh(t+1) is unique in equilibrium by induction.
If eh(t + 1) = 0; then eh(t) = 1 as any player with �nite vi(t) strictly prefers to not bid. Ifeh(t + 1) > 0, a player with cuto¤ type v�(t) = ceh(t+1) + (t + 1)k is indi¤erent to betting at
time t given eh(t+ 1).
Therefore, eh(t) = G(max(min(v�; v + �); v � �)) and the statement is true.

Suppose Gi is such that the game continues past period 1:

Claim 1: If � < k;then (1) eh(t) = 0 for t � F ) eh(t� 1) = 1 and (2) eh(t) = 1 for t � F

) eh(t� 1) = 0:
>(1) This is true as a bidding leads to �c; a lower payo¤ than not bidding.
>(2) If eh(t) = 1; then the payo¤ of bidding for a player with value ev at period t � 1 is

Pr[Bid Accepted](ev� tk � c): Note that Pr[Bid Accepted] > 0 if a player bids. Note that
t � F ) t � v�c

k
� 1 ) 0 � v � c � (t + 1)k ) 0 < v � � � c � tk as � < v: Therefore,

0 < Pr[Bid Accepted](ev� (t+1)k� c) for every ev 2 [v� �; v+ �] and therefore eh(t) = 0 and
the claim is proved.

Claim 2: If � < k;eh(t) 2 (0; 1) for every 0 < t � F: Suppose that eh(t) = f0; 1g for some
0 < t � F: If eh(1) = 1; then game ends at period 1, leading to a contradiction. If eh(1) = 0;
then eh(0) = 1; and game ends at period 0, leading to a contradiction. If eh(t) = 1 (alt: 0)
for 0 < t � F; then eh(t � 1) = 0 (alt: 1), eh(t � 2) = 1 (alt: 0) by claim 1. But, theneh(1) = f0; 1g; which is leads to a contradiction as above.
Claim 3: By the same logic in the proof to Proposition 1, eh(t) = 1 for all t > v+�i�c

k
� 1:

Therefore, ehG(t) = 1 for t > v�c
k
� 1 = F as �i ! 0: For 0 < t � F; note that for some i�;

�i < k for all i > i� and therefore claim 1 holds for all i > i�: If claim 1 holds, eh(t�1) 2 (0; 1)
implies a cuto¤value v�(t) 2 (v��; v+�) from above, which by the de�nition of v�(t) implies
that eh(t) 2 ( c

v���(t+1)k ;
c

v+��(t+1)k ); and therefore
ehGi(t) ! c

v�tk for periods 0 < t � F as

�i ! 0: Therefore, ehG(t)! eh(t) from Proposition 2 for t > 0.

Proposition 9

Proof: Set xi;NL�t = xi�t from the proof of Proposition 2 and set xi;L�t = 0 for all i and
all t. Note that, as in the proof of Proposition 2. these strategies yield the hazard rates
listed in the Proposition 2. The same proof for Proposition 2 shows that, if strategies are
followed, the continuation payo¤ from entering period t as a non-leader is 0 and there is no
pro�table deviation for a non-leader. Now, consider if there is a pro�table deviation for a
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leader. For the subgames starting in periods t > F; refer to the proof of Proposition 1 for
a proof that there is no pro�table deviation for a leader in these periods. For the subgames
starting in period 0 < t � F; the proof continues using (backward) induction with the lack
of pro�table deviation already proved for all periods t > F . In period t; by not bidding,
the leading player will receive v with probability c

v�tk (with the game ending) and 0 as a
continuation probability as a non-leader in period t + 1 with probability 1 � c

v�tk ; yielding
an expected payo¤ of v ( c

v�tk ) > 0. By bidding, the game will continue to period t+1 with
certainty, with some positive probability that her bid is accepted. If her bid is accepted, she
receives �c in period t and receives v � (t + 1)k in t + 1 with probability c

v�(t+1)k and 0 as
a continuation probability as a non-leader in period t+ 2 with probability 1� c

v�tk , leading
to a continuation payo¤ of �c+ (v� (t+1)k)( c

v�tk ) = 0: If her bid is not accepted, she will
receive a continuation probability of 0 as a non-leader in period t+1: Therefore, the payo¤
from not bidding in period t is strictly higher than the payo¤ from bidding.

Proposition 10

Proof: Consider a vector of bidding probabilities x = [x1; x2; :::xn] 2 [0; 1]n = X in
some period. Let 	 : X ! �n be a function that maps xt into a vector of probabilities
of each player�s bid being accepted; which I will denote a = [a1; a2; :::an]: Claim: For any
a� 2 �n, 9 x 2 X such that 	(x) = a�:

Consider the following sequence of betting probabilities, indexed by j = f1; 2; 3:::g: Let
xi(1) = 0. De�ne a(j) = 	(x(j)) = 	([x1(j); x2(j); :::xn(j)]): De�ne eai(j) = 	([x1(j �
1); x2(j � 1); :::xi(j); :::; xn(j � 1)]) and let xi(j) be chosen such that eaii(j) = ai�: Claim:
x(j) exists, is unique, x(j � 1) � x(j) and ai(j) � a� for all j: This is a proof by induction,
starting with t = 2: As x(1) = 0; x(2) = a� by the de�nition of eai(j). Therefore, x(2)
exists, is unique, x(1) � x(2) and ai(2) � a� as @	i

@xk
< 0 for k 6= i: Now, consider xi(j): Note

(1) xi(j) = 0) eaii(j) = 0, (2) xi(j) = 1) eaii(j) � 1�Pk 6=i a
k(j � 1) � 1�

P
k 6=i a

k� � ai�

where 1�
P

k 6=i a
k(j�1) � 1�

P
k 6=i a

k� follows by ai(j�1) � a�; which follows by induction
(3) eai(j) is continuous in xi(j) and @	i

@xi
> 0. Therefore, there is a unique solution xi(j)

such that eaii(j) = ai�. As ai(j � 1) � a� by induction, it must be that xi(j) � xi(j � 1)
as @	i

@xi
> 0: Finally, note that if eaii(j) = ai�;then as aii(j) � ai� as @	i

@xk
< 0 for k 6= i and

xk(j) � xk(j � 1) for k 6= i:

Set x� = limj!1 x(j): Claim: x� exists and 	(x�) = a�: First, limj!1 x(j) must exist
as xi(j) is bounded above by 1 and weakly increasing. Next, note that

P
i x

i� must also
exist with

P
i x

i� � n: Now, suppose that 	(x�) 6= a�: Then, as 	(x(j)) = a(j) � a� for
all j; 	(x�) � a� and there must be some i such that 	i(x�) � ai� = z > 0: Choose L
such j

P
i x

i� �
P

i x
i(j)j < z

2
for all j > L: By the de�nition of xi(j + 1), it must be that

xi(j+1) � xi(j)+ z: But, as x(j+1) � x(j); then
P

i x
i(j+1) �

P
i x

i(j)+z �
P

i x
i�+ z

2
;

which is a contradiction of L: Therefore, the claim is proved.

45



Table 1: Descriptive Statistics of the Auction-Level and Bid-Level Datasets
Auction-Level Data Number of Mean Standard Fifth Ninety-Fifth

Observations Deviation Percentile Percentile
Auction Characteristics
Worth Up To Value 166,379 287.62 380.90 25.00 1099.00
Adjusted Value (Sec. 3.3) 166,379 252.29 353.58 18.95 999.00
Nailbiter Auction 166,379 .039 - - -
Beginner Auction 166,379 .095 - - -

Bidding Increment
e.00 166,379 .176 - - -
e.01 166,379 .064 - - -
e.10 166,379 .759 - - -
Types of Good
Consumer Goods 166,379 .883 - - -
Bid Vouchers 166,379 .100 - - -
Cash 166,379 .013 - - -

Bid-Level Data Number of Mean Standard Fifth Ninety-Fifth
(on subset of Auctions above) Observations Deviation Percentile Percentile
Auction Characteristics
Worth Up To Value 17,951 244.50 310.03 25.35 978.07
Adjusted Value (Sec. 3.3) 17,951 225.20 292.92 19.32 963.77
Nailbiter Auction 17,951 .292 - - -
Beginner Auction 17,951 .001 - - -
Number Unique Bidders 17,951 53.81 90.01 5 218
Bid Characteristics
Used BidButler 13,315,570 .625 - - -
Timer < 20 seconds 13,315,570 .634 - - -
User Characteristics
Number of Bids 129,329 102.96 592.35 1 285
Number of Auctions 129,329 7.47 16.37 1 23
Number of Wins 129,329 .138 1.05 0 0
Note: Categories represented by dummy variables.
For example, mean(nailbiter auction)=.039 implies 3.9% of all auctions are nailbiter auctions
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Table 2: Descriptive Statistics of Pro�t
Number of Average Average
Observations Pro�t Pro�t Margin

All 166,379 e112.68 52.20%
Website
Post-Web 119,617 e129.56 66.20%
Pre-Web (Phone) 46,762 e69.50 16.40%

Bidding Increment
e.10 123,693 e38.64 28.41%
e.01 7,861 e729.38 102.92%
e.00 15,528 e224.38 35.65%

Types of Prizes
Consumer 147,589 e95.18 33.21%
Bid Vouchers 16,603 e250.18 214.16%
Cash Voucher 2,187 e431.90 104.06%

Table 3: Regressions of pro�t on experience
(1) OLS (2) FE (3) FE + slope FE

Instant. Pro�t Instant. Pro�t Instant. Pro�t
Experience (1000) 0:0300��� 0:0107��� 0:0355���

(14.07) (3.27) (8.52)

Experience (sq) �0:000474 ��� �0:0000421 0:00146 ���

(7.51) (.55) (8.78)

User FE NO YES YES

Max Exp * Exp �0:00264 ���

(9.59)
Constant �:328��� �:291��� 2:215���

(75.37) (27.88) (119.02)
Observations 13,315,570 13,315,570 13,315,570
t statistics in parentheses �p < 0:05; ��p < 0:01; ���p < 0:001
(Errors clustered on users when no user FEs)
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Table 4: Regressions of pro�t on experience, controlling for strategies
(1) No strategy (2) Bid on (3) Bid at (4) Bid

controls certain items certain times "aggressively"
Instant Pro�t Instant Pro�t Instant Pro�t Instant Pro�t

Experience (1000) 0:0296��� 0:0261��� 0:0298��� 0:0105���

(6.99) (6.03) (7.02) (2.86)

Experience (sq) �:000546��� �:000444��� �:000551��� �:000222���
(4.55) (3.82) (4.63) (2.80)

Item FE NO YES NO NO

Time FE NO NO YES NO

Streak (1-5) 0:057���

(3.50)
Streak (5-20) 0:122���

(5.54)
Streak (>20) 0:254���

(3.43)
Seconds (0-1) 0:581���

(17.41)
Seconds (1-5) 0:203���

(6.69)
Seconds (5-20) 0:097���

(3.43)
Observations 1,265,108 1,265,108 1,265,108 1,265,108
Note: t statistics in parentheses �p < 0:05; ��p < 0:01; ���p < 0:001

Table 5: (Second stage) IV Regressions of desired supply on (predicted) demand
(1) [10 seconds] (2) [one hour] (3) [quadratic]
Auctions Auctions Auctions

Predicted Num Users 0:0238��� 0:0246��� 0:00982���

(776.68) (40.03) (62.90)

Predicted Num Users (sq) 0:000029���

(91.06)

Constant :638��� :659��� 2:215���

(90.14) (4.63) (119.02)
Observations 595718 1655 595718
Note: t statistics in parentheses �p < 0:05; ��p < 0:01; ���p < 0:001
Statistics calculated using robust standard errors
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Table 6: Regressions of instantaneous pro�t on number of users and auctions
(1) OLS (2) Quadratic (3) OLS with FE
Instpro�t Instpro�t Instpro�t

Auctions �0:0335��� �0:0335��� �0:0359���
(-20.13) (-20.08) (-20.72)

Users 0:000883��� 0:000782�� 0:00101���

(15.68) (3.07) (16.74)

Users (sq) 1.74�10�7
(0.41)

Item Fixed E¤ects NO NO YES

Constant 0:225��� 0:238��� 0:206���

(17.42) (6.77) (15.03)
Observations 10,157,214 10,157,214 10,157,214
Note: t statistics in parentheses �p < 0:05; ��p < 0:01; ���p < 0:001
Statistics calculated using robust standard errors

Table 7: Descriptive Pro�t Statistics of competition (from October 2008)
Company Active Auctions Pro�t Average

Since Per Day Per Day Pro�t Margin
Swoopo 10/2005 271.77 e42,215.98 62.74%
BidStick 10/2008 38.22 e2,812.60 51.76%
RockyBid 03/2009 9.98 e-483.63 -11.9%
GoBid 02/2009 9.53 e-146.79 -0.13%
Zoozle 02/2009 6.64 e126.36 3.31%
BidRay 04/2009 1.75 e55.82 62.31%
Note: Statistics from Oct 2008-June 2009
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