Interpretation of β in log-linear models

Christopher Palmer

April 28, 2011

1 Model

Our econometric specification for the relationship between x and y is

$$\log(y) = x\beta + \varepsilon$$

We are interested in the interpretation of β, specifically, when does β mean that a one unit change in x is associated with a 100\% change in y?

2 Approximate $\% \Delta y$

As $x_0 \to x_1$, what happens to y in percentage terms? In other words, what can we say about

$$\% \Delta y \equiv \frac{y_1 - y_0}{y_0}$$

in relation to

$$\Delta x \equiv x_1 - x_0$$

(where conventionally we think about $\Delta x = 1$)

Well, let’s start with what we know about $\log y$. We know that for a change Δx, the corresponding change in $\log y$ is

$$\Delta \log y = \Delta x\beta$$

$$= \log y_1 - \log y_0$$

$$= \log \left(\frac{y_1}{y_0} \right)$$

$$= \log \left(\frac{\Delta y + y_0}{y_0} \right)$$

$$= \log \left(\frac{\Delta y}{y_0} + 1 \right)$$

$$\approx \frac{\Delta y}{y_0} \equiv \% \Delta y$$

Where the approximation (from a Taylor Series expansion around $z = 0$) that $\log(1 + z) \approx z$ for small z was used in the last step.

Thus, a change Δx is associated with approximately a 100\% $\Delta x \beta$ percent change in y.

3 Exact $\% \Delta y$

First, let’s write down the exact quantity that we want to examine for a given change in x
\[\% \Delta y = \frac{y_1 - y_0}{y_0} \]
\[= \frac{y_1}{y_0} - 1 \]
\[= \exp(\log(\frac{y_1}{y_0})) - 1 \]
\[= \exp(x_1\beta + \varepsilon_1 - x_0\beta - \varepsilon_0) - 1 \]
\[= \exp(\Delta x\beta + \Delta \varepsilon) - 1 \]

So, if we are interested in the percentage change in \(y \) for a \(\Delta x \) change (e.g., \(\Delta x = 1 \)) in \(x \) (ceteris paribus, holding \(\Delta \varepsilon = 0 \)), then the exact percentage change in \(y \) implied by our log-linear model is

\[\% \Delta y = \exp(\Delta x\beta) - 1 \]

4 Comparison of log points and percentage points

The approximation in Section 2 used the fact that \(\Delta y/y_0 \) was small, which is likely to be the case for a small quantity \(\Delta x\beta \). However, using the log point change in \(y \) implied by \(\beta \) as the approximation to the percentage point change in \(y \) always gives a biased downward estimate of the exact percentage change in \(y \) associated with \(\Delta x \).

For example, if \(\hat{\beta} = .3 \), then, while the approximation is that a one-unit change in \(x \) is associated with a 30% increase in \(y \), if we actually convert 30 log points to percentage points, the percent change in \(y \)

\[\% \Delta y = \exp(\hat{\beta}) - 1 = .35 \]

So instead of a 30% increase as suggested by our approximation, the exact percentage increase implied by our estimate is 35%. The approximation is a lower bound.

If \(\hat{\beta} = -.3 \), then a one-unit change in \(x \) is associated with a \(\exp(-.3) - 1 \approx .26 \) or 26% decrease. Again, the approximation was biased downward relative to the exact implied percentage change in \(y \).