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1 Introduction

The idea that an employee’s compensation should, at least to some extent,

be based on his or her performance relative to that of others is a familiar

one. It is almost an axiom that by spurring competition among workers

such compensation schemes have beneficial incentive effects. Companies offer

bonuses to the “sales-person of the year,” law firms reward “rain-makers”

and universities reward researchers for writing the “best paper.” The

compensation of professional athletes, of course, offers the clearest example

of such schemes.

In a provocative paper, Lazear and Rosen (1981) analyzed compensation

schemes based solely on how a worker was ranked in terms of output, calling

these rank-order tournaments. In a simple two worker moral hazard model,

they delineated circumstances under which the optimal labor contract was

a rank-order tournament. Their analysis has since been generalized and

extended in many directions by Holmstrom (1982), Green and Stokey (1983),

Nalebuff and Stiglitz (1983), Mookherjee (1984) and Bhattacharya and

Guasch (1988). This later work suggests that while relative performance is

an important component of optimal labor contracts, in most cases a contract

based on relative performance alone is not optimal.

In this paper we study the optimal structure of tournaments. We do not

address the question of whether tournaments are optimal in the class of all

possible compensation schemes, taking as given the fact that tournaments are

commonly observed. Instead, we ask what the prize structure of a tournament



should be: What proportion of the total purse should go the winner? What

proportion should go to the runner-up or the person finishing in third-place?

And what, if anything, should the person finishing last get?

A central tension in the model is the trade-off between choosing very

unequal payment schemes in order to encourage effort on the part of workers

with the need to balance risk-sharing considerations which make such unequal

schemes fairly unattractive. To illustrate these trade-offs while still retaining

simplicity and tractability, we restrict attention to cases with small numbers

of workers competing against one another. Specifically, two, three, or four

identical workers compete in unobservable effort for some fixed purse that is

split into shares based on an ordinal ranking of the observable performances

of the workers. We assume that, due to some form of limited liability, the

employer cannot levy monetary penalties against workers who are ranked low.

In this framework, we show that, regardless of risk preferences, winner-

take-all tournaments are optimal for two or three competing workers

(Propositions 1 and 2, respectively). In the case of four workers, however,

whether winner-take-all tournaments are optimal or not depends on risk

preferences of the workers. Specifically, we show that, regardless of risk

preferences, paying only the winner and the runner-up is optimal and that

the winner’s share is greater than the runner-up’s share. (Proposition 3).

In the case of risk-neutral workers, the share differential is extreme and

winner-take-all is once again optimal (Proposition 4). Interestingly, all of the

above results do not depend on the particular form of the cost of effort.

We also show that winner-take-all results are sensitive to the form of the



relative performance scheme being employed. An alternative to a rank-order

tournament is an elimination tournament first studied by Rosen (1986).

With four workers this consists of two round one “matches” each of which

consists of a two worker tournament. The two winners of the first round

matches are then pitted against one another in a second round tournament.

The winner of the second round is obviously the overall winner. The loser of

the second round is the overall runner-up and the two losers from the first

round share third place. In such set-up, we show that, as in the four worker

rank-order tournament, paying only the winner and the runner-up is optimal

(Proposition 5). With risk neutral workers, however, the two formats differ:

the optimal elimination tournament need not be winner-take-all whereas the

optimal rank-order tournament is.

Thus, our paper indicates that both risk sharing considerations as well as

the structure of the relative compensation scheme itself can lead to outcomes

in which the winner-take-all principle is not optimal.

There is an extensive literature on the incentive properties of relative

compensation schemes (see Lazear (1995) and McLaughlin (1988) for surveys)

that is closely related to our model. In particular, our model retains most

of the features of the tournament schemes considered in the literature, but

differs significantly in the following way: We require that prize structures

introduce limited liability as a constraint on the set of contracts which may

be offered by firms. Perhaps not surprisingly, the upshot of this constraint

is that, in contrast to Lazear and Rosen (1981) where optimal rank order

tournaments induce first-best effort levels on the part of risk-neutral workers,



we find that optimal tournaments induce less than first-best effort levels with

limited liability.

A second difference, mentioned above, is that we are interested only in

the optimal prize structure of tournaments and not whether tournaments are

optimal in the class of all labor contracts. Less significantly, our paper also

differs from the existing literature in its focus on optimal prize structures

for a given purse and in examining tournaments without assuming that

competitive labor markets force firms to zero profits.

The remainder of the paper proceeds as follows: Section 2 outlines the

model and introduces some notation on order statistics. In section 3, we

characterize symmetric equilibria in an n worker tournament and use this

characterization to deduce an optimal prize structure with two, three, and

four workers. Section 4 then examines whether the winner-take-all results

of the previous sections extend to a relative compensation scheme in which

workers participate in a single elimination tournament. Finally, section 5

concludes.

2 Preliminaries

We examine the Lazear and Rosen (1981) model of rank-order tournaments

in a setting where a single firm employs n identical workers. Each worker

chooses an effort level ei which results in publicly observable output

Qi = ei + Xi where Xi is a noise term distributed according to F (·) with
associated density f (·) that is continuous on the support of F, the upper end
of which is denoted by a ≤ ∞.



Each worker’s noise term, Xi is identically and independently distributed.

We assume that F (·) is a symmetric distribution; that is, F (x) = 1−F (−x)
for all x. It follows that the density function, f (·), then satisfies
f (x) = f (−x) . We also assume that f is unimodal and satisfies xf 0 (x) ≤ 0.
A rank-order tournament with total purse V and a prize structure

α1, α2, ..., αn (where
Pn

i=1 αi = 1) is an incentive scheme in which only

relative performance matters. The worker producing the highest output

receives α1V ; likewise, the worker with the second highest output receives

the prize α2V, and so on. Throughout the paper, we shall focus on optimal

tournaments for a fixed purse.

Workers are assumed to be identical and have vNM utility functions of the

form:

u (w)− C (e)

where w denotes monetary wealth and e denotes effort. We make the

standard assumptions that u0 > 0, u00 ≤ 0, C (0) = 0, C 0 > 0, C 00 > 0.

In contrast to most work in this area, we also assume that all workers

begin with no wealth and that workers have limited liability to firms. Thus,

tournament prize structures are constrained to offer non-negative prizes for

all ranks. Formally, for fixed V , the set of possible tournaments is

∆ = {α ∈ Rn : αi ≥ 0,
P

αi = 1} .

2.1 Order Statistics

In order to analyze equilibria of the tournament and its properties it is



necessary to introduce some notation and terminology about order statistics.

Suppose X1,X2, ...,Xm are identically and independently distributed

according to the distribution function F with associated density f. Let Y (m)
i

denote the ith order statistic of m variables. (For instance, Y (m)
1 is the highest

of X1,X2, ..., Xm, Y
(m)
2 is the second-highest, etc.)

Let F (m)
i denote the distribution of Y (m)

i with associated density f (m)i . We

know that:

f
(m)
i (x) = m

µ
m− 1
i− 1

¶
(1− F (x))i−1 (F (x))m−i f (x) . (1)

We adopt the convention that f (m)m+1 ≡ 0 and f
(m)
0 ≡ 0.

If F is symmetric then from (1) it follows easily that

f
(m)
i (−x) = f

(m)
m−i+1 (x) . (2)

3 Rank-Order Tournaments

Suppose all workers except 1 exert the effort level e. The probability that

worker 1 with X1 = x will finish in rank i when she exerts effort e is:

Pr [rank i | x] = Pr[e+ Y
(n−1)
i < e+ x < e+ Y

(n−1)
i−1 ]

= Pr[Y
(n−1)
i < e+ x− e < Y

(n−1)
i−1 ]

= F
(n−1)
i (e+ x− e)− F

(n−1)
i−1 (e+ x− e) (3)

where we adopt the convention that F (n−1)
0 = 0 and F

(n−1)
n = 1.

Thus the expected utility of worker 1 when she exerts effort e is:



U (e, e) =
nX
i=1

u (αiV )

Z ∞

−∞

h
F
(n−1)
i (e+ x− e)− F

(n−1)
i−1 (e+ x− e)

i
f (x) dx−C (e) .

Maximizing U with respect to e results in the first-order condition:

C 0 (e) =
nX
i=1

u (αiV )

Z ∞

−∞

h
f
(n−1)
i (e+ x− e)− f

(n−1)
i−1 (e+ x− e)

i
f (x) dx.

At a symmetric equilibrium, the optimal e = e and thus, a necessary

condition for e to be a symmetric equilibrium is:

C 0 (e) =
nX
i=1

u (αiV )

Z ∞

−∞

h
f
(n−1)
i (x)− f

(n−1)
i−1 (x)

i
f (x) dx (4)

recalling our convention that f (n−1)n (x) = f
(n−1)
0 (x) = 0.

The existence of a symmetric pure-strategy equilibrium is guaranteed if

U (·, e) is concave. Concavity holds if F is “dispersed enough” since the first

term in the expression for U (e, e) then becomes negligible. In this paper, we

will assume that this holds.

It is useful to define

βi =

Z ∞

−∞

h
f
(n−1)
i (x)− f

(n−1)
i−1 (x)

i
f (x) dx

as the coefficient of u (αiV ) in (4). The coefficient βi measures the marginal

change in the ex-ante probability of being in rank i induced by an increase in

effort. To see this, notice that an increase in effort induces a change in the

probabilities of the various ranks and from (3),

∂

∂e
Pr [rank i | x] = f

(n−1)
i (e+ x− e)− f

(n−1)
i−1 (e+ x− e)



and thus we express βi as:

βi =

Z ∞

−∞

·
∂

∂e
Pr [rank i | x]

¯̄̄̄
e=e

¸
f (x) dx.

It is apparent that an increase in effort unambiguously improves the

chances of finishing first and decreases the chances of finishing last. Formally,

β1 =

Z ∞

−∞
f
(n−1)
1 (x) f (x) dx > 0

whereas

βn = −
Z ∞

−∞
f
(n−1)
n−1 (x) f (x) dx

= −
Z ∞

−∞
f
(n−1)
1 (x) f (x) dx

= −β1
< 0

where we have used (2).

Since the firm’s objective is to maximize e and since C 00(e) > 0, the firm

will choose α ∈ ∆ to maximize the right-hand side of (4). Thus, in the

optimal tournament αn = 0; that is, the worker who finishes last gets no

reward. This immediately implies

Proposition 1 With two workers the optimal tournament is winner-take-all.

In the case of two workers, risk-sharing considerations in determining the

prize structure are effectively absent. Due to limited liability, all tournament

payment schemes satisfy individual rationality and since offering payments



to last-finishing workers simply undermines effort incentives, it is clear that

these incentives dominate regardless of risk preferences.

The fact that individual rationality constraints are not binding on workers

with limited liability plays a crucial role in affecting the effort incentives of an

optimal tournament. Specifically, limited liability constraints do not permit

the firm to levy penalties on workers; however, with risk-neutral workers, the

fact that βn < 0 implies that a profit maximizing firm would wish to assess

a penalty against the worker who finishes last. Indeed, the results of Lazear

and Rosen (1981) that rank order tournaments yield first-best effort levels

when firms employ two risk-neutral workers rely essentially on firms’ ability

to do this. The imposition of limited liability can result in such tournaments

yielding efforts below first-best levels even when firms are allowed to choose

the prize structure and the purse.

This is easily illustrated in the following example. Suppose that there are

two risk-neutral workers, C (e) = 1
3
e3, and that noise is distributed uniformly

on [−1, 1] . One can show that under limited liability the optimal purse is
V = 1

2
. This yields equilibrium effort e = 1

2
which is less than the first-best

effort (e = 1) .

3.1 Three Worker Case

One may well surmise that the inequitable prize structures seen in the two

person tournament will be mitigated by the trade-off between risk-sharing

and incentive aspects of prize awards for larger numbers of workers. In the

following section we examine this trade-off for the cases of three and four



workers. In both of these cases, providing payments to a last finishing worker

simply undermines effort incentives without providing any compensating

benefit. However, there is a trade-off in maximizing the effort incentives of

workers not to finish last by balancing the prizes offered to higher ranked

workers versus the disincentive effects such balancing has on the incentives of

workers to finish first.

The case of three workers is the simplest setting in which this tension

might arise. In this case,

β2 =

Z ∞

−∞

h
f
(2)
2 (x)− f

(2)
1 (x)

i
f (x) dx

=

Z ∞

−∞
[2 (1− F (x)) f (x)− 2F (x) f (x)] f (x) dx

=

Z ∞

0

[2 (1− F (−x))− 2F (−x)] (f (−x))2 dx

+

Z ∞

0

[2 (1− F (x))− 2F (x)] (f (x))2 dx

=

Z ∞

0

[2 (F (x))− 2 (1− F (x))] (f (x))2 dx

+

Z ∞

0

[2 (1− F (x))− 2F (x)] (f (x))2 dx

= 0

where we have used the fact that since F is a symmetric distribution function.

Now (4) reduces to

C 0 (e) = u (αV )β1

and clearly in the optimal tournament α = 1.

Proposition 2 With three workers the optimal tournament is winner-take-



all.

Thus, we find that for the case of three workers, the desirable incentive

aspects of the winner-take-all prize structure always outweigh any risk-sharing

considerations. Since the coefficient β2 is zero, there is simply no gain in

equilibrium effort by awarding a second prize. Risk-sharing considerations

only arise from the trade-off in marginal utilities of wealth among prizes

where the β coefficients are positive. Put another way, the presence of

two or more positive β coefficients is a necessary condition for risk-sharing

considerations to affect the prize structure of an optimal tournament.

An additional implication of this result is that, for a fixed purse V,

the equilibrium effort level undertaken by each worker in a three worker

tournament is identical to that undertaken in a two worker tournament.

3.2 Four Worker Case

In cases of two and three workers, risk preferences do not affect the structure

of the optimal tournament. Below we show that the four worker case is the

smallest number of workers in which the trade-off between risk sharing and

effort incentives affects tournament prize structures.

In the case of four workers,

β2 =

Z ∞

−∞

h
f
(3)
2 (x)− f

(3)
1 (x)

i
f (x) dx

and

β3 =

Z ∞

−∞

h
f
(3)
3 (x)− f

(3)
2 (x)

i
f (x) dx.

Now using (2) we can write:



Z ∞

−∞
f
(3)
1 (x) f (x) dx =

Z ∞

−∞
f
(3)
3 (x) f (x) dx.

and thus

β3 =

Z ∞

−∞

h
f
(3)
3 (x)− f

(3)
2 (x)

i
f (x) dx

=

Z ∞

−∞

h
f
(3)
1 (x)− f

(3)
2 (x)

i
f (x) dx

= −β2.

We now show that β2 is non-negative.

β2 = −
Z ∞

−∞

h
F
(3)
2 (x)− F

(3)
1 (x)

i
f 0 (x) dx

= −3
Z ∞

−∞
(1− F (x)) (F (x))2 f 0 (x) dx

= −3
Z ∞

0

(1− F (−x)) (F (−x))2 f 0 (−x) dx

−3
Z ∞

0

(1− F (x)) (F (x))2 f 0 (x) dx

= 3

Z ∞

0

F (x) (1− F (x))2 f 0 (x) dx

−3
Z ∞

0

(1− F (x)) (F (x))2 f 0 (x) dx

= 3

Z ∞

0

F (x) (1− F (x)) (1− 2F (x)) f 0 (x) dx

≥ 0,

since for x ≥ 0, F (x) ≥ 1
2
and f 0 (x) ≤ 0.

This implies that β3 ≤ 0 and thus in the optimal tournament, α3 = 0. This
implies that with four workers, an optimal tournament pays only the winner

and the runner-up.

We now examine the relative sizes of the prizes awarded to the top two



finishers. This depends on the relative magnitudes of β1 and β2.

β1 =

Z ∞

−∞
f
(3)
1 (x) f (x) dx

= f (a)−
Z ∞

−∞
F
(3)
1 (x) f 0 (x) dx

= f (a)−
Z 0

−∞
(F (x))3 f 0 (x) dx−

Z ∞

0

(F (x))3 f 0 (x) dx

= f (a)−
Z ∞

0

(F (−x))3 f 0 (−x) dx−
Z ∞

0

(F (x))3 f 0 (x) dx

= f (a) +

Z ∞

0

(1− F (x))3 f 0 (x) dx−
Z ∞

0

(F (x))3 f 0 (x) dx

= f (a) +

Z ∞

0

£
(1− F (x))3 − (F (x))3¤ f 0 (x) dx

Finally, we show that β1 > β2.

β1 − β2 = f (a) +

Z ∞

0

£
(1− F (x))3 − (F (x))3¤ f 0 (x) dx

−3
Z ∞

0

F (x) (1− F (x)) (1− 2F (x)) f 0 (x) dx

= f (a)−
Z ∞

0

(2F (x)− 1)3 f 0 (x) dx

> 0.

Our findings on tournaments with four workers may be summarized as

follows:

Proposition 3 With four workers, an optimal tournament pays only the

winner and the runner-up. The winner’s share is greater than that of the

runner up.

The intuition for the result is the following. Consider a small increase

in the effort of worker 1 holding fixed the other workers at the equilibrium



level. Now, as we have shown, the marginal increase in probability of the first

rank is greater than the marginal increase in probability of the second rank

(β1 > β2). This is because if worker 1 increases his effort level the chances

of his attaining the highest rank are determined by the likelihood of some

other worker’s noise component being large. Since f 0 (x) < 0 for x > 0 this

likelihood is smaller for the first rank than for the second rank. Thus an

increase in effort has a larger effect on worker 1’s chances of attaining the

first rank than the second rank.

Absent risk-sharing considerations, this difference in the effort incentives

arising from awarding a first versus a second prize immediately implies that

all weight should be assigned to the first prize. Formally,

Proposition 4 With four risk-neutral workers, an optimal tournament is

winner-take-all.

With risk-averse workers, risk-sharing considerations also affect the optimal

prize structure. In this case, the optimal scheme equates the product of

the β coefficients and the marginal utility for the first and second prizes,

respectively.

4 Elimination Tournaments

We now compare rank-order tournaments to elimination tournaments (as

in Rosen (1986)). Consider a setting in which four identical players compete

in a two-round single elimination tournament. As usual, we let each player’s

performance be given by the sum of costly effort e and a random component



x which is independently drawn from the atomless distribution F for each

player and each round.

The total purse for the tournament is V and αi is the share of the purse

given to the ith highest finisher. Naturally, α1 + α2 + 2α3 = 1. (We are

assuming that the losers in the first round both get α3V .)

Consider the effort choices of two contestants meeting in the final round

of the tournament. Since this is the same as a rank order tournament with

two workers we obtain that the equilibrium effort in the second round, e∗∗, is

given by the condition:

C 0 (e∗∗) = u (α1V )

Z ∞

−∞
(f (x))2 dx− u (α2V )

Z ∞

−∞
(f (x))2 dx. (5)

Thus, the “indirect utility” from the second-round equilibrium as a

function of the shares is:

W (α1, α2) =
1

2
u (α1V ) +

1

2
u (α2V )− C (e∗∗ (α1, α2)) .

Now consider the optimal effort choices in the first round. Notice that,

conditional on advancing to the finals, each contestant anticipates a surplus of

W (α1, α2). Thus, given an effort choice be in the first round by her opponent,
player 1 chooses e to maximize:

U (e, be) = W (α1, α2)

Z ∞

−∞
F (e+ x− be) f (x) dx

+u (α3V )

Z ∞

−∞
(1− F (e+ x− be)) f (x) dx− C (e)

Again, differentiating and imposing symmetry, we obtain that the equilibrium

effort level in the first round e∗ is given by:



C 0 (e∗) =W (α1, α2)

Z ∞

−∞
(f (x))2 dx− u (α3V )

Z ∞

−∞
(f (x))2 dx (6)

Suppose that the firm’s objective is to maximize the total expected output

(or equivalently, to maximize the average expected output per worker). The

firm wishes to choose α1, α2 and α3 to maximize

4e∗ + 2e∗∗

Since the coefficient of u (α3V ) in (6) is negative it is clear that in the optimal

elimination tournament, α3 = 0. Thus we obtain:

Proposition 5 With four workers, an optimal elimination tournament pays

only the winner and the first runner-up.

In examining the prize structure of an optimal elimination tournament, it

is useful to highlight the two effects that the second prize has on equilibrium

effort. In the final round of the elimination tournament, we are in a situation

identical to a two-worker rank-order tournament. Consequently, offering a

second prize unambiguously decreases effort incentives in the round regardless

of risk preferences. At the same time, offering rewards to second place

finishers increases the surplus, W (α1, α2) , associated with winning the first

round of the elimination tournament. Obviously, equilibrium effort in the first

round is increasing in the size of the expected surplus; thus, offering larger

second prizes increases equilibrium effort in the first round of the tournament

regardless of risk preferences. Since the firm cares about overall effort in both

rounds of the tournament, it might be willing to trade-off decreased effort in



the second round for increased effort in the first. In the following example,

we establish that this trade-off can indeed result in the award of a second

prize; that is, winner-take-all elimination tournaments need not be optimal,

even with risk-neutral workers.

Example Suppose that V = 1, C (e) = e2 and that F is distributed

uniformly on
£−3

8
, 3
8

¤
. From Proposition 5, we know that setting α3 = 0 is

optimal; hence we restrict attention to schemes where α1 = α and α2 = 1−α.

It is easy to see that in the optimal tournament the winner’s share must

exceed the runner-up’s share and so we suppose α ≥ 1
2
. Thus, in the second

round of the tournament, (5) reduces to

2e∗∗ =
4

3
(2α− 1) ,

and it can be verified that this constitutes an equilibrium. Thus the indirect

utility from the second round equilibrium is:

W (α) =
1

2
−
µ
2

3
(2α− 1)

¶2
.

Thus, (6) reduces to:

2e∗ =
4

3

Ã
1

2
−
µ
2

3
(2α− 1)

¶2!
.

Suppose that the firm wishes to maximize total effort for a given purse V.

Since there are two first round matches and one second round match, then

the total effort expended in the tournament is

E (α) = 4e∗ (α) + 2e∗∗ (α) .



Substituting for e∗ and e∗∗ yields

E (α) =
4

3
(2α− 1) + 8

3

Ã
1

2
−
µ
2

3
(2α− 1)

¶2!
.

The value of α maximizing this expression is

α =
25

32
;

thus we have shown that a winner-take-all elimination tournament is not

optimal.

5 Conclusion

In their controversial book, The Winner-Take-All Society, Frank and

Cook (1995) argue that the dramatic rise income inequality in the US over

the last twenty years is, at least in part, attributable to the proliferation

of “winner-take-all” labor markets; i.e., markets where compensation is

determined by relative performance. Frank and Cook conjecture that

technological advances in assessing relative performance have led to the

observed proliferation of these types of labor markets in fields such as law,

education, banking, and technology as well as their continued use in markets

such as entertainment and sports. While reductions in the difficulty of

monitoring relative performance may indeed make the use of tournament

schemes more prevalent, it does not explain the winner-take-all payoff

structure of these schemes. Indeed, for the proliferation of markets where

rewards are determined by relative compensation to be the source of growing

income inequality requires the optimality of the winner-take-all principle.



Our results on this issue depend on the definition of the winner-take-all

principle one chooses to adopt. If one takes “winner-take-all” to literally

mean that the highest ranked worker receives the entire purse, then our

results show that the winner-take-all principle is not generally optimal. In

the case of four workers, balancing risk-sharing considerations or the use of

an elimination tournament require that the purse be split among the top two

workers. Nonetheless, a weaker form of the winner-take-all principle does

seem to hold: If one views winner-take-all as meaning that only the top half

of the field is compensated and that higher finishers are paid more than lower

finishers, then our results are entirely consistent with the optimality of the

winner-take-all principle. In light of this, one may well conjecture that the

weak form of the winner-take-all principle holds generally for the n worker

case. Investigation of this conjecture remains for future research.
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