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1 Problem 1: Basic Concepts

1.1 Part A

Dominated strategies come in two varieties, strictly dominated strategies and
weakly dominated strategies. Suppose player i has pure strategy set Si.

A strategy for player i, si, is strictly dominated if there’s another strategy
ŝi such that ∀s

−i ∈ S−i, ui(ŝi, s−i) > ui(si, s−i). Thus, a strictly dominated
strategy is one that delivers a strictly lower payoff than some other specific
alternative strategy no matter what other players do.

A strategy for player i, si, is weakly dominated if there’s another strategy
ŝi such that ∀s

−i ∈ S−i, ui(ŝi, s−i) ≥ ui(si, s−i). Thus, a weakly dominated
strategy is one that delivers a weakly lower payoff than some other specific
alternative strategy no matter what other players do.

One can define dominance by mixed strategies analogously.

1.2 Part B

A Nash equilibrium is a profile of strategies (pure or mixed), s∗, in which each
player plays a best response given the other players’ strategies, i.e. in which
∀i ∈ N, s∗i ∈ BRi(s

∗

−i). One could equivalently say that a Nash equilibrium
is a strategy profile such that no player can strictly increase her utility by
unilaterally changing her strategy. So s∗ is a NE in pure strategies if ∀i ∈ N
and ∀si ∈ Si, ui(s∗i , s

∗

−i) ≥ ui(si, s
∗

−i). The definition for NE in mixed strategies
is similar.

1.3 Part C

The statement is false. One can easily construct a counter-example using a
game with simultaneous moves. Suppose players i and j move simultaneously.
One can reverse the order of i’s and j’s moves in the extensive form of the game
without changing the normal form of the game.
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1.4 Part D

The statement is true. The game is a game of perfect information, so we can
solve for the SPE of the game using backward induction. Since no player is
indifferent between any two outcomes, each player has a unique optimal action
at each node at which she moves. Therefore, backward induction yields only a
single SPE.

This question essentially asks you to prove a simple version of the theorem
that says that all games of perfect information have unique SPE if no player is
indifferent between any two outcomes.

1.5 Part E

The statement is true. We’ll show that at least one of the Nash equilibria
in pure strategies is not Pareto dominated by any other strategy profile, and
therefore must be Pareto optimal.

Before we begin, recall the definition of Pareto optimality. A strategy profile
s is Pareto optimal if there is no other strategy profile that Pareto dominates s.
A strategy profile s̃ Pareto dominates strategy profile s if and only if ∀i ∈ N ,
ui(s̃) ≥ ui(s) and ∃j ∈ N such that uj(s̃) > uj(s). In words, s̃ Pareto dominates
s if and only if moving from s to s̃ makes no player worse off and makes at least
one player better off. Unfortunately many students confused the concepts of
Pareto dominance and Pareto optimality. You show a strategy profile s is
Pareto optimal by showing no other profile Pareto dominates s, not by showing
that s Pareto dominates all other profiles. Showing that neither of two strategy
profiles dominates the other does not show that neither is Pareto optimal. In
fact, both may be Pareto optimal if no other strategy profile dominates either
one.

Suppose the payoff matrix for the game is as follows.
Player 2
L R

Player 1 T a, b c, d
B e, f g, h

Step 1: Neither player can have a strictly dominant strategy. If
either player had a strictly dominant strategy, then she would have to play
that strategy in both Nash equilibria in pure strategies; you can’t play a strictly
dominated strategy in a Nash equilibrium. So if player i has a strictly dominant
strategy, then she must play it in both Nash equilibria. But since the other
player, j, isn’t indifferent between any two outcomes, j cannot be indifferent
between the two Nash equilibria in pure strategies. Since j strictly prefers one
Nash equilibrium to the other, and since i plays the same strategy in both NE,
j would deviate from the NE that she likes less to the one she likes more. Thus
the NE that j likes less cannot be a NE, and we’ve reached a contradiction. We
conclude that neither player can have a strictly dominant strategy.

Step 2: No profile of pure strategies that isn’t a NE can Pareto

dominate a NE. We’ve shown that neither player has a strictly dominant
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strategy, so without loss of generality, we can assume that the two NE in pure
strategies are (T,L) and (B,R). If either player played the same strategy in
both NE, she would have to have a strictly dominant strategy since we assumed
no player is indifferent between any two outcomes. Therefore, no player plays
the same strategy in both NE, and we can assume that the two NE are (T,L)
and (B,R).

Remember that one strategy profile Pareto dominates another only if the
first profile gives every player weakly greater utility than the second profile does,
and the first profile gives at least one player strictly greater utility than does
the second. Since neither player is indifferent between any two pure strategy
combinations, one strategy profile must offer both players strictly greater utility
in this game to Pareto dominate a second profile. Since (T,L) is a NE, we know
that a > e and b > d, so neither (B,L) nor (T,R) can Pareto dominate (T,L).
Since (B,R) is a NE, we know that g > c and h > f , so neither (B,L) nor (T,R)
can Pareto dominate (B,R). We conclude that neither of the pure strategy
combinations that isn’t a NE can Pareto dominate either NE in pure strategies.

Step 3: Either one NE Pareto dominates the other or neither NE

dominates the other. The preceding statement must be true because it’s
impossible for both NE to Pareto dominate each other.

Step 4: No profile of mixed strategies can Pareto dominate both

of the NE in pure strategies. So far, we’ve shown that at least one of
the NE in pure strategies is not Pareto dominated by any other profile of pure
strategies; it’s not Pareto dominated by any strategy profile that’s not a NE,
and it’s not Pareto dominated by the other NE in pure strategies. Our last
step is to show that this NE is not Pareto dominated by any profile of mixed
strategies, either.

Suppose, without loss of generality, that (T,L) is not Pareto dominated by
any other pure strategy profile. Then either a > g or b > h, or both. The
payoffs for a mixed strategy profile are a weighted average of the payoffs for pure
strategy profiles, so a player’s payoff from a mixed strategy profile is less than the
maximum payoff she can receive from a pure strategy profile. Suppose a > g.
Then if the players play mixed strategies, u1 < max(a, c, e, g) = a. Suppose
b > h. Then if the players play mixed strategies, u2 < max(b, d, f, h) = b. It
follows that whether a > g or b > h, the mixed strategy profile cannot Pareto
dominate (T,L), since at least one player is better off playing (T,L) than playing
the mixed strategy profile. We conclude that (T,L) is not Pareto dominated
by any mixed strategy.

We’ve shown that the game has at least one NE in pure strategies that is not
Pareto dominated by any other strategy profile — pure or mixed. We conclude
that this NE must be Pareto optimal.
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2 Problem 2: Angry Friends

2.1 Part A
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The only subtlety in the game tree is that because the two players move
simultaneously after 1 chooses N , neither observes the other’s choice of friend.
Accordingly, one can draw the game tree so that either player moves first after
1 chooses N . Player 1 doesn’t know which friend player 2 has chosen, so all of
player 1’s nodes after player 2’s choice of friend belong to the same information
set.

2.2 Part B

This game has three proper subgames. A proper subgame begins at each of the
two nodes at which player 2 moves. The entire game is also a proper subgame.
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One cannot divide the subgame with simultaneous moves into more subgames,
because attempting to do so would separate nodes in the same information set
for player 1. If a subgame contains one node in an information set, it must
contain all other nodes in the information set as well.

2.3 Part C

Player 1 has 2 possible actions at his first information set and three possible
actions at his second information set, so he has a total of 2 × 3 = 6 pure
strategies. Similarly, player 2 has 2 possible actions at her first information set
and three possible actions at her second information set, so she has a total of
2× 3 = 6 pure strategies.

2.4 Part D

Recall that, by definition, a SPE induces a NE in every proper subgame. We’ll
solve for all NE in each proper subgame assuming that the players play NE in
the other subgames.

Begin with the subgame with simultaneous moves. Notice that B is not a
rationalizable strategy for 1 because it is never a best response to any strategy
of 2. Similarly, b is not a rationalizable strategy for 2 because it is never a
best response to any strategy of 1. Recall that all strategies played in a NE
must be rationalizable. Therefore, we can eliminate strategies B and b from
this subgame. (Note that we can make this simplification only because we’ve
ruled out mixed strategies! We have to do more work to show that B and b
aren’t rationalizable if mixed strategies are possible.) The subgame becomes:

Player 2
a c

Player 1 A −3,−3 4,1
C 1,4 −3,−3

Once we’ve eliminated B and b, it’s easy to see that (C, a) and (A, c) are
NE of this subgame.

Next, consider the subgame in which 2 chooses between A and R. Clearly
the only NE for this subgame occurs when 2 chooses A, since A yields 2 a payoff
of 3 and R yields a payoff of 2.

Now, consider the subgame consisting of the entire game. 1 knows that if
he chooses S, he’ll receive a payoff of 2 because the only NE in the subgame
after S is for 1 to choose A. 1 also knows that if he chooses N , he’ll get 1 if
the players play (C, a), and 4 if the players play (A, c). In a NE for the game
as a whole, the players correctly forecast each other’s strategies. Therefore, if
player 1 anticipates (C,a), he’ll choose S, since S gives him 2 and N gives him
only 1. If player 1 anticipates (A, c), however, he’ll choose N , since N gives
him 4 and S gives him 2.
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Designate each player’s strategy with two letters, each indicating his action
at one of his information sets; the second letter indicates the player’s action in
the subgame with simultaneous moves. We conclude that the only SPE in pure
strategies are (NA,Ac) and (SC,Aa).

2.5 Part E

Let’s write out the matrix representation of the normal form of this game.
Player 2

Aa Ab Ac Ra Rb Rc
NA −3,−3 4, 0 4, 1 −3,−3 4, 0 4,1
NB 0, 4 −3,−3 0, 1 0,4 −3,−3 0,1

Player 1 NC 1, 4 1, 0 −3,−3 1,4 1, 0 −3,−3
SA 2, 3 2, 3 2, 3 3,2 3, 2 3,2
SB 2, 3 2, 3 2, 3 3,2 3, 2 3,2
SC 2, 3 2, 3 2, 3 3,2 3, 2 3,2

We can see that (NA,Rc) and (SA,Aa) are NE that are not SPE.

2.6 Part F

Before we begin, let me note that this part of the problem is tricky and compli-
cated, so you weren’t alone if you struggled with it.

We must now check whether allowing mixed strategies in the subgame with
simultaneous moves creates new NE in this subgame. If so, we must then check
whether any new NE in this subgame can be part of a SPE.

The difficulty with this problem is that we don’t know what form the players’
mixed strategies will take. We don’t know whether one player will play all her
actions in this subgame with positive probability, or only some actions. We
have to break down the problem into cases.

I’ll note one common mistake before continuing. Some students thought
that B and b were not rationalizable and therefore could be eliminated from the
players’ strategy sets in the subgame with simultaneous moves. Unfortunately,
while B and b are not rationalizable when only pure strategies are possible, they
are rationalizable when mixed strategies are possible, so we cannot eliminate B
and b.

2.6.1 Case 1: One player plays all actions in the subgame with pos-

itive probability.

Suppose player 1 plays all his strategies with positive probability. Then 2 must
choose a mixed strategy that makes 1 indifferent toward all his pure strategies.
Say that 2 plays σ2 = (p, q,1 − p− q), where p, q ∈ [0, 1] and p + q ≤ 1. Note
that we’re allowing the possibility that 2 will assign zero probability to some of
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her pure strategies. To make 1 indifferent toward all his pure strategies, 2 must
equate the payoffs to 1’s pure strategies. The payoffs to 1’s pure strategies are:

u1(A, σ2) = −3p+ 4q +4(1− p− q) = 4− 7p

u1(B, σ2) = −3q

u1(C, σ2) = p+ q − 3(1− p− q) = 4p+4q − 3

Equating these three expected payoffs and solving for p and q gives us p = 37/61
and q = 5/61. Thus, 2 can only make 1 willing to play all his strategies with
positive probability if 2 plays σ2 = (37/61, 5/61,19/61). But 2 will only play
this mixed strategy if she’s indifferent toward all her pure strategies. By the
same reasoning we just used, one can show that 2 will only be indifferent toward
all her pure strategies if player 1 plays σ1 = (37/61,5/61, 19/61).

We have shown that the only NE for the subgame with simultaneous moves
in which one player plays all strategies with positive probability is σ1 = σ2 =
(37/61, 5/61,19/61). Now we must check whether this NE for the subgame
can be part of an SPE. Plug q into the expression for u1(B,σ2) to show that
1 has an expected payoff of -15/61 in this NE. One can easily show that 2 has
the same expected payoff. Anticipating these NE payoffs in the subgame with
simultaneous moves, player 1 will choose S in his initial move, which gives him
a payoff of 2 > −15/61. We have found another SPE, (Sσ1,Aσ2), where σ1
and σ2 are as defined above.

2.6.2 Case 2: A player plays only one action in subgame with posi-

tive probability.

Inspecting the subgame should convince you that there’s no mixed strategy NE
in which a player plays only one action with positive probability, because if i
plays only one action with positive probability, j can never be indifferent toward
any two or three of her strategies. So this case never occurs in a SPE.

2.6.3 Case 3: Both players play only two actions in the subgame

with positive probability.

We have 9 subcases to consider since each player can choose any one of three
pairs of pure strategies. In each case, we use exactly the same method of analysis
as above. We find mixed strategies for one player that make the other indifferent
(and therefore willing to mix) between the appropriate pure strategies, and then
we repeat the process for the other player. Note one complication: Since each
player assigns zero probability to one pure strategy, we must check to make sure
that she doesn’t prefer the omitted pure strategy to her mixed strategy, given
that the other player is mixing. Since the analysis is extremely repetitious, I
merely state the results below.
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Subcase 3.1: 1 mixes between A and B, and 2 mixes between a and b.
You can show that 1 would deviate to C if the players played a mixed strategy
profile that made 1 indifferent between A and B. Therefore, this subcase cannot
occur in any NE for the subgame.

Subcase 3.2: 1 mixes between A and B, and 2 mixes between a and

c. You can show that 1 will be indifferent between A and B and 2 will be
indifferent between a and c if σ1 = (3/7, 4/7,0) and σ2 = (4/7,0,3/7). Neither
player wants to deviate to a pure strategy. 1 earns a higher payoff from playing
S than from playing N and reaching the subgame with simultaneous moves, so
the resulting SPE is (Sσ1,Aσ2).

Subcase 3.3: 1 mixes between A and B, and 2 mixes between b and
c. It’s easy to see that this subcase cannot occur in any NE for the subgame
because 1 cannot be indifferent between A and B when 2 mixes between b and
c.

Subcase 3.4: 1 mixes between B and C, and 2 mixes between a and

b. This subcase cannot occur in any NE for the subgame because 2 cannot be
indifferent between a and b when 1 mixes between B and C.

Subcase 3.5: 1 mixes between B and C, and 2 mixes between a and

c. This subcase cannot occur in any NE for the subgame because 2 cannot be
indifferent between a and c when 1 mixes between B and C.

Subcase 3.6: 1 mixes between B and C, and 2 mixes between b and c.
If 2 mixes between b and c, then 1 will deviate to A. Therefore, this subcase
cannot occur in any NE for the subgame.

Subcase 3.7: 1 mixes between A and C, and 2 mixes between a and

b. This subcase is just subcase 3.2 with the roles of 1 and 2 reversed. Thus,
the mixed strategies σ1 = (4/7,0, 3/7) and σ2 = (3/7, 4/7,0) form a NE for this
subgame. The resulting SPE is (Sσ1,Aσ2).
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Subcase 3.8: 1 mixes between A and C, and 2 mixes between a and

c. Suppose that 1 plays A with probability p ∈ [0,1] and C with probability
1− p. Suppose that 2 plays a with probability q ∈ [0,1] and c with probability
1− q. Call player i’s mixed strategy σi. The payoffs to 2’s pure strategies (in
this subgame) are:

u2(σ1, a) = −3p+ 4(1− p) = 4− 7p

u2(σ1, c) = p− 3(1− p) = 4p − 3

If both players mix, each must choose a strategy that makes the other in-
different between his pure strategies. Therefore, in equilibrium, p must set
u2(σ1, a) = u2(σ1, c). We conclude that p = 7/11. By similar reasoning, one
can show that q = 7/11. However, the strategy profile σ1 = (7/11)A+(4/11)C,
σ2 = (7/11)a+(4/11)c is NOT a NE of the subgame with simultaneous moves.
The reason is that this strategy profile generates payoffs (−5/11,−5/11), so
player 1 would be better off deviating to B (which gives a payoff of 0), and
player 2 would be better off deviating to b (which gives a payoff of 0). Since
players have incentives to deviate, the mixed strategy profile is not a NE. We
conclude that this subcase cannot occur in any SPE.

Subcase 3.9: 1 mixes between A and C, and 2 mixes between b and
c. This subcase cannot occur in any NE for the subgame because 1 cannot be
indifferent between A and C when 2 mixes between b and c.

We’ve now examined all possible cases. The bottom line for this question
is that the set of SPE does change: We get three new SPE, as described above.
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3 Junk Mail Advertising (30 points)

3.1 part (a)

This is a game of perfect information. In the extensive form representation,
every information set is a singleton.

3.2 part (b)

Players. N = {1,2} or {Buyer, Seller}
Strategies. Player 1 (the buyer) acts at the first node of the game tree, choosing
Commute or Stay Home; and then after each possible price offer p, choosing Buy
or Don’t. Thus, a strategy for player 1 is a choice from {C,S} followed by a
choice rule for every possible p. Thus,

S1 = {C,S} × {s : R+ → {B,D}}

Player 2 (the buyer) acts at only one node, choosing p; thus, S2 = R+.
Payoffs. The payoff functions can be written as

u1(s1, s2) =




0 if s11 = S
−k if s11 = C and s21(s2) = D
v − s2 − k if s11 = C and s21(s2) = B

u2(s1, s2) =



c if s11 = S
c if s11 = C and s21(s2) = D
s2 if s11 = C and s21(s2) = B

where s1 = (s11, s
2
1). (Note that you could alternatively set u2 equal to 0 or p−c;

however, using c and p− c is not correct.)

3.3 part (c)

Buyer

Buyer

Seller

Stay Home

Buy Don't

c
0

c
-k

p
v-p-k

p

Commute
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BR1(s2 = p) =



B if p < v
S if p > v
either if p = v

(Some people wrote that the best-response was to accept if p ≤ v − k.
However, once the buyer has already commuted, he is choosing between payoffs
of v − p− k and −k, not between v − p− k and 0, so the best-response is what
I wrote above.)

3.4 part (d)

Consider the subgame beginning at the node where the seller sets the price. If
the buyer plans to not buy when p = v, or to buy with probability less than 1,
the seller has no best-response. (He will want to set p = v+ ε, but since there is
no smallest ε, he has no strategy that is a best-response.) Thus, the only SPE
of this subgame is for the buyer to buy whenever p ≤ v, and the seller to set
p = v. Backing up a level, the buyer knows that commuting will lead to a payoff
of −k, so he chooses to stay home. Thus, the equilibrium is the following:
s1 is to Stay Home, then Buy if p ≤ v; s2 is to set p = v
This equilibrium is unique, because p = v and Buy if p ≤ v is the only SPE

of that subgame, and Stay Home is the unique best-response if that equilibrium
will be played.

It is not Pareto-optimal. For any price p ∈ (c, v − k), both buyer and seller
would be strictly better off if the buyer commuted and then paid p for the good.

3.5 part (e)

Choose any value p̂ ∈ (c, v − k). Suppose that in the subgame beginning with
the seller’s move, the following equilibrium is played:
s1 is Buy if p ≤ p̂, Don’t Buy otherwise; s2 is to set p = p̂
(This is a Nash equilibrium of the subgame beginning with the seller’s move;

it cannot be played in an SPE because the strategies played following p �= p̂ are
not Nash equilibria of those subgames.) Then the best-response at the top of
the game is to commute. Thus,
s1 to Commute, then Buy if p ≤ p̂, s2 to set p = p̂
is a Nash equilibrium for any p̂ ∈ (c, v− k), and gives strictly higher payoffs

to both players. (p̂ > c and v − p̂− k > 0.)

3.6 part (f)

We assume that sending the card truly commits the seller to the advertised
price, and that SPE are played. From our work above, we know that if the
seller does not send a postcard, the buyer will not commute, so the payoffs will
be (0, c).
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If the seller does send a postcard advertising a price p, the buyer’s best-
response will be

BR1(s2 = p) =




Commute and Buy if p < v − k
Stay Home if p > v − k
Either if p = v − k

Once again, if the buyer stays home when p = v−k is advertised, the seller has
no best-response; the only SPE is when the buyer chooses to commute and buy
when p = v − k, and the seller advertises p = v − k. (This is an SPE whenever
ε ≤ v− c−k, which is is here; if the cost of advertising were too high, the seller
would prefer to just consume the good.)

Thus, by sending the card, the seller gets payoff v − k − ε, which is greater
than c; thus, he does choose to send the card.
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4 The Dean’s Dilemma (25 points)

4.1 part (a)

Lots of people were not sure how to set up a problem like this. The convention
is to introduce a third “player”, Nature, who does not receive any payoffs, but
moves first and randomly chooses whether evidence exists or not. Once Nature
has moved, the Dean moves, followed by the student, who can see the Dean’s
move but not Nature’s. Thus, the extensive-form representation is the following:

DEAN DEAN

STUDENT

2
-2

4
-4

0
0

2
-2

-4
4

0
0

0.5 0.5

NATURE
Evidence No Evidence

Accuse Bounce Accuse Bounce

Confess Deny Confess Deny

Since the student’s information set cuts across the “branches” of the game
tree, there are no proper subgames other than the entire game.

4.2 part (b)

The Dean acts at two information sets — following Nature’s choice of Evidence
or No Evidence — and in each case he has two actions — Accuse or Bounce —
so his strategy set is S1 = {AA,AB,BA,BB}. The Student acts at only one
information set, so his strategy set is just S2 = {C,D}. For each strategy profile
s ∈ S1 × S2, we calculate payoffs as the expected payoffs each player gets, that
is, assuming Nature is mixing half-half. This leads to the following matrix:

Dean

Student
C D

AA
AB
BA
BB

2,-2 0,0
1,-1 2,-2
1,-1 -2,2
0,0 0,0
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4.3 part (c)

We can first notice that the Dean has two strictly dominated strategies — BA is
dominated by AA, and BB is dominated by AB. Thus, we can eliminate these
two strategies, and solve the smaller game

Dean

Student
C D

AA
AB

2,-2 0,0
1,-1 2,-2

We can easily see that there are no pure-strategy Nash equilibria. Using
our usual method (solve for one player’s mixture by setting the other player’s
expected payoffs equal), we can calculate the mixed-strategy equilibrium, which
is

s1 =
1

3
AA+

2

3
AB, s2 =

2

3
C +

1

3
D

That is, the only Nash equilibrium of this game is for the Dean to accuse when-
ever he has evidence, and one-third of the time when he does not; and for the
Student to confess two-thirds of the time when he is accused.

4.4 part (d)

Since the only proper subgame is the entire game, any Nash equilibrium is a
Subgame Perfect equilibrium by definition. So no, you cannot find a NE that is
not a SPE.
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