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Abstract 
 

The disproportionate burden of COVID-19 among communities of color, 
together with a necessary renewed attention to racial inequalities, have lent 
new urgency to concerns that algorithmic decision-making can lead to 
unintentional discrimination against members of historically marginalized 
groups. These concerns are being expressed through Congressional 
subpoenas, regulatory investigations, and an increasing number of 
algorithmic accountability bills pending in both state legislatures and 
Congress. To date, however, prominent efforts to define algorithmic 
accountability have tended to focus on output-oriented policies that may 
facilitate illegitimate discrimination or involve fairness corrections unlikely 
to be legally valid. Worse still, other approaches focus merely on a model’s 
predictive accuracy—an approach at odds with long-standing U.S. 
antidiscrimination law. 
 
We provide a workable definition of algorithmic accountability that is rooted 
in the caselaw addressing statistical discrimination in the context of Title VII 
of the Civil Rights Act of 1964.  Using instruction from the burden-shifting 
framework, codified to implement Title VII, we formulate a simple statistical 
test to apply to the design and review of the inputs used in any algorithmic 
decision-making processes.  Application of the test, which we label the input 
accountability test, constitutes a legally viable, deployable tool that can 
prevent an algorithmic model from systematically penalizing members of 
protected groups who are otherwise qualified in a legitimate target 
characteristic of interest.
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I.  INTRODUCTION  

In fall 2019, the journal Science published research showing troubling 
evidence on inadvertent racial discrimination in the algorithm of health 
insurer UnitedHealth.1 Hospitals were using the algorithm to allocate limited 
                                                
1 See Melanie Evans & Anna Wilde Mathews, New York Regulator Probes UnitedHealth Algorithm for 
Racial Bias, WSJ (Oct. 26, 2019), https://www.wsj.com/articles/new-york-regulator-probes-unitedhealth-
algorithm-for-racial-bias-11572087601. 
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hospital resources to the sickest patients. However, the researchers showed—
because the algorithm used a patient’s cost of care as the metric for gauging 
sickness and because African-American patients historically incurred lower 
costs for the same illnesses and level of illness—it caused African-Americans 
to receive substandard care as compared to white patients.2 In this instance, 
not only did the seemingly race-blind algorithm produce bias, but it did so 
because of structural inequalities that caused African-Americans to exhibit a 
lower cost per illness, i.e., historically being unable to (or being advised to) 
spend less on healthcare relative to white patients.  

A similar, but gender-focused, instance of algorithmic bias emerged at 
the same time, when Apple Inc. debuted its much-anticipated Apple Card.3 
Within weeks, Twitter was abuzz with headlines that the card’s credit 
approval algorithm was systematically biased against women,4 followed by 
the New York State Department of Financial Services announcing an 
investigation.5   

Despite the potential for algorithmic decision-making to eliminate face-
to-face biases, these episodes provide vivid illustrations of the widespread 
concern that algorithms may nevertheless engage in discrimination, even 
inadvertently.6 The meteoric growth in algorithmic decision-making, 
spawned by the availability of unprecedented data on individuals and the 
accompanying rise in techniques in machine learning and artificial 
intelligence have greatly heighted this concern. Moreover, the laying bare of 
the inequalities and structural racism evident from the COVID-19 pandemic 
and the concurrent renewed attention on civil rights has heighten the necessity 
and urgency of addressing algorithmic bias. Indeed, acting on mounting 
anecdotes and evidence even before the pandemic, New York City,7 
Washington State,8 and Congress9 all introduced algorithm accountability 
bills to regulate governmental or corporate use of algorithms. Yet, a notable 
absence in these legislative efforts is a formal standard for courts or regulators 

                                                
2 See Ziad Obermeyer, Brian Powers, Christine Vogeli, and Sendhil Mullainathan, Dissecting Racial Bias 
in an Algorithm Used to Manage the Health of Populations, 366 SCIENCE 447 (2019). 
3See Press Release, Apple Inc., Introducing Apple Card, A New Kind of Credit Card Created by Apple 
(March 25,2019), https://www.apple.com/newsroom/2019/03/introducing-apple-card-a-new-kind-of-
credit-card-created-by-apple/. 
4 See Sridhar Natarajan & Shahien Nasiripour, Viral Tweet About Apple Card Leads to Goldman Sachs 
Probe, BLOOMBERG (Nov. 19, 2019), https://www.bloomberg.com/news/articles/2019-11-09/viral-
tweet-about-apple-card-leads-to-probe-into-goldman-sachs. 
5 See Neil Vigdor, Apple Card Investigated After Gender Discrimination Complaints, NY TIMES (Nov. 
10, 2019), https://www.nytimes.com/2019/11/10/business/Apple-credit-card-investigation.html. 
6 See, e.g., Salon Barocas & Andrew D. Selbst, Big Data’s Disparate Impact, 104 CAL L. REV. 671, 673 
(2016) (“If data miners are not careful, the process can result in disproportionately adverse outcomes 
concentrated within historically disadvantaged groups in ways that look a lot like discrimination.”). 
7 See Zoë Bernard, The First Bill to Examine ‘Algorithmic Bias' in Government Agencies Has Just Passed 
in New York City, BUSINESSINSIDER (Dec. 19, 2017), http://www.businessinsider.com/algorithmic-bias-
accountability-bill-passes-in-new-york-city-2017-12?IR=T.  
8 H.B. 1655, 66th Leg., Reg. Sess. (Wash. 2019).  
9 H.R. 2231, 116th Cong. (2019). 
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to deploy in evaluating algorithmic decision-making, raising the fundamental 
question: What exactly does it mean for an algorithm to be accountable?    

In this Article, we provide an answer. Central to our framework is the 
recognition that, despite the novelty of artificial intelligence and machine 
learning, existing U.S. antidiscrimination law has long provided a workable 
definition of decision-making accountability dating back to Title VII of the 
Civil Rights Act of 1964.10 What has been missing is a translation of this 
definition into the context of statistical modelling at the heart of algorithmic 
decision-making. The first of our two primary contributions is thus to define 
algorithmic accountability following Title VII. Our second contribution 
emerges naturally from the first. The definition of what it means for an 
algorithm to be accountable under discrimination law lends itself to a formal 
test of accountability. We put forward a workable test that regulators, courts, 
and data scientists can apply in examining whether an algorithmic decision-
making process complies with long-standing antidiscrimination statutes and 
caselaw.  

Title VII and the caselaw interpreting it define what it means for any 
decision-making process—whether human or machine—to be accountable 
under U.S. antidiscrimination law. At the core of this caselaw is the burden-
shifting framework initially articulated by the Supreme Court in Griggs v. 
Duke Power Co.11 Under this framework, plaintiffs putting forth a claim of 
unintentional discrimination under Title VII must demonstrate that a 
particular decision-making practice (e.g., a hiring practice) lands disparately 
on members of a protected group.12 If successful, the framework then 
demands that the burden shift to the defendant to show that the practice is 
“consistent with business necessity.”13 If the defendant satisfies this 
requirement, the burden returns to the plaintiff to show that an equally valid 
and less discriminatory practice was available that the employer refused to 
use.14 The focus of Title VII is on discrimination in the workplace, but the 
analytical framework for unintentional discrimination that emerged from the 
Title VII context now spans other domains and applies directly to the type of 
unintentional, statistical discrimination utilized in algorithmic decision-
making.15 

                                                
10 42 U.S.C. § 2000e (2012). 
11 Griggs v. Duke Power Co., 401 U.S. 424, 432 (1971). 
12 See Dothard v. Rawlinson, 433 U.S. 321, 329 (1977). 
13 42 U.S.C. § 2000e–2(k) (2012); see also Griggs, 401 U.S. at 431 (noting that in justifying employment 
practice that produces disparate impact, “[t]he touchstone is business necessity”). 
14 See Albemarle Paper Co. v. Moody, 422 U.S. 405, 425 (1975). 
15 For example, this general burden-shifting framework has been extended to other domains where federal 
law acknowledges the possibility of claims of unintentional discrimination under a disparate impact theory. 
See, e.g., Texas Dep’t of Housing & Cmty. Affairs v. Inclusive Cmtys. Project, Inc., 135 S. Ct. 2507 
(2015), (adopting the burden-shifting framework for disparate impact claims under the Fair Housing Act); 
Ferguson v. City of Charleston, 186 F.3d 469, 480 (4th Cir. 1999) (discussing cases adopting the Title VII 
burden-shifting framework in Title VI disparate impact cases), rev’d on other grounds, 532 U.S. 67 (2001). 
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The feature of the burden-shifting framework that is often overlooked in 
the recent legal and economic literature on algorithmic bias16 is the second 
step of the analysis. This step requires a showing that a process and its inputs 
satisfy a legitimate business necessity. This implies that outcome-focused 
tests and fixes (i.e., actions to make sure a decision equalizes outcomes, 
conditional on observables, across race or some other protected category) are 
insufficient actions for an algorithmic decision-maker to ensure compliance. 
Output-oriented policies, as we will discuss at length, are critical for 
predictive accuracy and fairness arguments, but fail to comply with input 
accountability in Title VII. 

To see why, consider the facts of the Supreme Court’s 1977 decision in 
Dothard v. Rawlinson.17 There, a prison system desired to hire job applicants 
who possessed a minimum level of strength to perform the job of a prison 
officer, but the prison could not directly observe which applicants satisfied 
this requirement.18 Consequently, the prison imposed a minimum height and 
weight requirement on the assumption that these observable characteristics 
were correlated with the requisite strength required for the job.19 This 
procedure resulted in adverse hiring outcomes for female applicants, resulting 
in a class of female applicants bringing suit under Title VII for gender 
discrimination.20 Deploying the burden-shifting framework, the Supreme 
Court first concluded that the plaintiffs satisfied the disparate outcome step,21 
and it also concluded that the prison had effectively argued that hiring 
applicants with the requisite strength could constitute a business necessity.22 
However, the Court ultimately held that the practice used to discern 
strength—relying on the proxy variables of height and weight—did not meet 
the “consistent with business necessity” criterion.23  Rather, absent evidence 
showing the precise relationship between the height and weight requirements 
to “the requisite amount of strength thought essential to good job 
performance,”24 height and weight were noisy estimates of strength that 
risked penalizing females over-and-above these variables’ relation to the 
prison’s business necessity goal. In other words, height and weight were 
likely to be biased estimates of required strength whose use by the prison 
risked systematically penalizing female applicants who were, in fact, 
qualified. 

The Court thus illustrated that in considering a case of statistical 
discrimination, the “consistent with business necessity” step requires the 
                                                
16 See infra Part II(B) and Part II(C). 
17 433 U.S. 321 (1977). 
18 Id. at 331-32. 
19 Id.  
20 Id. at 323. 
21 Id. at 330-31. 
22 Id. at 332. 
23 Id. 
24 Id.  
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assessment of two distinct questions. First, is the use of proxies for an 
unobservable “target” characteristic (e.g., requisite strength) done in pursuit 
of a fundamental business necessity? Second, even with a legitimate target 
characteristic and predictive proxy input variables, are these input variables 
noisy at estimating the legitimate business necessity in a way that will 
systematically penalize members of a protected group who are otherwise 
qualified?  

The first question involves defining a business necessity model that a 
court agrees can justify disparate outcomes across protected and unprotected 
groups. Often, the targets within the business necessity model are 
unobservable attributes or latent concepts an individual might possess. For 
example, a court might deem required strength, reliability, and intelligence to 
be valid targets within the business necessity model of prison officer 
employment. Likewise, in lending, courts have long held that, under the Fair 
Housing Act (FHA),25 an individual’s creditworthiness is an acceptable 
business necessity; 26 thus, variables capturing the expected cash flow of the 
individual enabling repayment are the targets for informing loan decisions.  

 The second question involves assessing a proxy input variable’s relation 
with the target and protected categories. Interpreting Dothard, a proxy 
variable should only be related to the protected category through its relation 
to a valid target. In the case of Dothard, height can only be related to gender 
through its relationship to required strength. Likewise in the context of 
lending, redlining is prohibited because it violates this criterion. 27 A lender 
who engages in redlining refuses to lend to residents of a majority-minority 
neighborhood on the assumption that the average unobservable credit risk of 
its residents is higher than those of observably-similar but non-minority 
neighborhoods.28 By assuming that all residents of minority neighborhoods 
have low credit, redlining systematically penalizes minority borrowers who 
actually have high credit worthiness.   

                                                
25 42 U.S.C. §§ 3601-3619 (2012). 
26 See infra note 118. 
27 See, e.g., Laufman v. Oakley Bldg. & Loan Co., 408 F. Supp. 489, 493 (S.D. Ohio 1976) (redlining on 
the basis of race violates the “otherwise make unavailable or deny” provision of § 3604(a) of the FHA); 
(interpreting identical language in § 3604(f)(2) of the FHA as prohibiting insurance redlining); Strange v. 
Nationwide Mut. Ins. Co., 867 F. Supp. 1209, 1213–14 (E.D. Pa. 1994) (insurance redlining); NAACP v. 
Am. Family Mut. Ins., 978 F.2d 287, 297 (6th Cir. 1995) (insurance redlining); Laufman, 408 F. Supp. at 
496–97 (mortgage redlining); Nationwide Mut. Ins. Co. v. Cisneros, 52 F.3d 1351 (7th Cir. 1995) 
(insurance redlining); Wai v. Allstate Ins. Co., 75 F. Supp. 2d 1, 7 (D.D.C. 1999); Lindsey v. Allstate Ins. 
Co., 34 F. Supp. 2d 636, 641–43 (W.D. Tenn. 1999) (insurance redlining). Regulatory agencies charged 
with interpreting and enforcing the lending provisions of the FHA have defined redlining to include “the 
illegal practice of refusing to make residential loans or imposing more onerous terms on any loans made 
because of the predominant race, national origin, etc. of the residents of the neighborhood in which the 
property is located. Redlining violates both the FHA and ECOA.” Joint Policy Statement on 
Discrimination in Lending, 59 Fed. Reg. 18,266 (1994). 
28 The term red-lining derives from the practice of loan officers evaluating home mortgage applications 
based on a residential map where integrated and minority neighborhoods are marked off in red as poor 
risk areas. Robert G. Schwemm, Housing Discrimination 13–42 (Release # 5, 1995). 
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These two insights from Dothard—that statistical discrimination must be 
grounded in the search for a legitimate target variable and that the input proxy 
variables for the target cannot systematically discriminate against members 
of a protected group who are qualified in the target—remain as relevant in 
today’s world of algorithmic decision-making as they were in 1977. The 
primary task for courts, regulators, and data scientists is to adhere to them in 
the use of big data implementations of algorithmic decisions (e.g., in 
employment, performance assessment, credit, sentencing, insurance, medical 
treatment, college admissions, advertising, etc.).  

Fortunately, Title VII’s burden-shifting framework, viewed through 
basic principles of statistics, provides a way forward. We recast the logic that 
informs Dothard and courts’ attitude towards redlining into a formal 
statistical test that can be widely deployed in the context of algorithmic 
decision-making. We label it the Input Accountability Test (IAT).  

As we show, the IAT provides a simple and direct diagnostic to determine 
whether an algorithm is accountable under U.S. antidiscrimination principles. 
A user of an algorithm (e.g., a business or a regulator) seeking to satisfy the 
IAT would do so by turning to historical data called “training data” that was 
originally used to calibrate the algorithm. In settings such as employment or 
lending where courts have explicitly articulated a legitimate business target 
(e.g., a job required skill or creditworthiness),29 the first step would be 
establishing that the “target” variables sought by the algorithm are indeed 
business necessity variables. Second, taking a proxy input variable (e.g., 
height) that the predictive model utilizes, the next step requires decomposing 
the proxy’s variation across individuals into that which correlates with the 
target variable (or variables) and an error component. The final step requires 
testing whether that error component remains correlated with the protected 
category (e.g., gender). If the error is uncorrelated, this means the proxy input 
variable is unbiased with respect to a protected group; therefore, it will pass 
the IAT. In this fashion, the test provides a concrete method to harness the 
benefits of statistical discrimination with regard to predictive accuracy while 
avoiding the risk that it systematically penalizes members of a protected 
group who are, in fact, qualified in the target characteristics of interest.  

We provide an illustration of the IAT in the Dothard setting, not only to 
provide a clear depiction of the power of the test, but also to introduce several 
challenges in implementing it and suggested solutions. These challenges 
include multiple incarnations of measurement error in the target, as well as 
understanding what “significantly correlated” means in our era of massive 
datasets. We offer an approach that may serve as a way forward. Beyond the 
illustration, we also provide a simulation of the test inspired by Dothard using 
a randomly constructed training dataset of 800 prison officers.  

                                                
29 See infra Part IV(A). 
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We also illustrate how the IAT can be deployed by courts, regulators, and 
data scientists. In addition to employment, we list a number of other sectors—
including credit, parole determination, home insurance, school and 
scholarship selection, and tenant selection—where unintentional 
discrimination is also policed through the burden-shifting framework inspired 
by Title VII and where courts or statutes have provided explicit instructions 
regarding what can constitute a legitimate business necessity target.30 In these 
settings, application of the IAT can provide a critical tool for ensuring 
algorithmic decision-making is lawful. We also discuss other domains such 
as automobile insurance and health care where claims of algorithmic 
discrimination have recently surfaced, but where existing discrimination laws 
are less clear whether liability can arise for unintentional discrimination. For 
those concerned about algorithmic discrimination in these domains, our 
discussion underscores the special need for algorithmic accountability 
legislation in these contexts. In the meantime, businesses in these domains 
are left to self-regulate—often through public pressure—and the IAT 
provides a tool to test their models for bias.  

Our approach differs from other approaches to “algorithmic fairness” that 
focus on “tuning” algorithms to ensure fair outcomes across protected and 
unprotected groups.31 We differentiate ourselves from this outcome-based 
approach for several reasons. First, these approaches often pursue outcome-
based adjustments due to a misperception that existing legal prohibitions on 
unintentional discrimination are ineffective when applied to an accurate 
algorithmic process. For instance, in their widely-cited article Big Data’s 
Disparate Impact,32 Salon Barocas and Andrew Selbst note that the business 
necessity defense merely requires that an employment algorithm is 
“predictive of future employment outcomes.”33  However, as we illustrate, 
faithful application of the burden-shifting framework reveals that predictive 
accuracy is not a necessary and sufficient condition to satisfy the business 
necessity requirement. Rather, cases such as Dothard underscore the 
importance of examining whether proxy input variables are systematically 
biased against protected groups even if they are predictive of a valid 
employment outcome. Focusing exclusively on calibrating outcomes thus 
skips a critical component of the accepted approach to policing unintentional 
discrimination.  

Second, outcome-based approaches can themselves run afoul of U.S. 
antidiscrimination law, particularly given the Supreme Court’s 2009 decision 
in Ricci v. DeStefano.34 In Ricci, a city’s efforts to calibrate a decision-making 
process to equalize hiring outcomes across members of protected and 
                                                
30 See Id. 
31 See infra Part II(B). 
32 Sarocas & Selbst, supra note 6. 
33 Id. at 672. 
34 557 U.S. 557 (2009). 
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unprotected groups—regardless of whether individuals were qualified in a 
legitimate target of interest—were deemed impermissible intentional 
discrimination.35 The decision thus calls into question the legality of explicit 
race-based adjustments of algorithmic outcomes, as would be required by 
“tuning” an algorithm to ensure outcomes meet a specified fairness criterion 
across protected and unprotected groups. 

Given Ricci, addressing distributional concerns implicated by the rise of 
algorithmic decision-making requires a clear-eyed understanding of the 
channels through which algorithms can perpetuate structural inequalities and 
how these channels can be altered. Our focus on checking targets and testing 
inputs provides exactly this understanding. Specifically, when presented with 
an algorithm that produces disparities, our approach highlights the need to 
examine first whether the algorithm is pursuing a valid target, followed by 
assessing whether it utilizes an input that fails the IAT. An algorithm that 
raises neither concern but nevertheless produces disparities thus points 
toward the need for a broader conversation concerning the fundamental 
fairness of the target. 

As an illustration, consider an example that has recently captured 
considerable attention in light of the disproportionate burden of the COVID-
19 pandemic on communities of color. Given the scarcity of ventilators, many 
hospitals around the country have turned to algorithms to allocate this life-
saving resource. A common approach is to rely on a patient’s score from the 
Sequential Organ Failure Assessment (SOFA) that gauges the degree of 
dysfunction of six organ systems. As one state agency noted, allocating 
ventilators based on SOFA scores is  “objective” and “equitable” insofar that 
these “tragically difficult decisions must be based on … biological factors 
related only to the likelihood and magnitude of benefit from the medical 
resources.”36  This approach also ensured that “[f]actors that have no bearing 
on the likelihood or magnitude of benefit, including race, gender, sexual 
orientation, gender identity, [or] ethnicity …, are irrelevant and not to be 
considered by providers making allocation decisions.” 37      

Notwithstanding this stated desire for an equitable allocation of 
resources, however, SOFA-based triage algorithms have alarmed many 
clinicians given the adverse effect they are likely to have on communities of 
color,38 informed by the fact that a legacy of structural racism and inequality 

                                                
35 We discuss this challenge in more detail in Part II(B). 
36 See EXEC. OFFICE OF HEALTH & HUMAN SERVS., MASS. DEP’T OF PUB. HEALTH, CRISIS STANDARDS 
OF CARE: PLANNING GUIDANCE FOR THE COVID-19 PANDEMIC (2020), 
https://d279m997dpfwgl.cloudfront.net/wp/2020/04/CSC_April-7_2020.pdf. 
37 Id. at 4. 
38 See, e.g., Emily Cleveland Manchanda, Inequity in Crisis Standards of Care, 383 NEW ENG. J. MED. 
e16 (2020) (arguing that SOFA-based triage algorithms “penalize people for having conditions rooted in 
historical and current inequities and sustained by identity-blind policies”); Panagis Galisatsatos et al., 
Health Equity and Distributive Justice Considerations in Critical Care Resource Allocation, 8 LANCET 
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has caused Black and Latinx Americans to suffer differential rates of chronic 
and life-shortening conditions, such as hypertension, diabetes, chronic kidney 
disease, and chronic obstructive pulmonary disease. Under a SOFA-based 
triage algorithm, people of color would, on average, have lower priority for a 
ventilator if they contract COVID-19.  

Our approach provides a clear means to assess these concerns. Hospitals 
utilizing a SOFA-based algorithm appear to be doing so based on a desire to 
allocate resources to patients with the best chance of long-term survival—a 
target that would appear to be a plausible business necessity target. 
Application of the IAT would then focus on whether a condition such as 
diabetes or hypertension is correlated with race or ethnicity beyond its ability 
to predict survival. Assuming it passes the IAT, then concerns of fairness 
would require considering whether it is possible to re-define the business 
necessity target—ideally, with input from experts having diverse 
perspectives—in a manner that accounts for the structural inequities that 
contribute to the racial and ethnic disparities in outcomes. Thus, our approach 
is compatible with concerns about distributional outcomes, but in our view, 
it is essential to ask first whether these outcomes arise from an invalid 
algorithmic process. 

This Article proceeds as follows.  In Part II, we begin by articulating a 
definition for algorithmic accountability that is at the core of our input 
accountability test.  As we demonstrate there, our definition of algorithmic 
accountability is effectively a test for “unbiasedness,” which differs from 
various proposals for “algorithmic fairness” that are commonly found in the 
statistics and computer science literatures. Building on this definition of 
algorithmic accountability, Part III formally presents the IAT. We begin by 
situating the IAT within the context of employment, before discussing in Part 
IV how it can also be applied outside this context. Part V addresses several 
challenges in implementing the IAT, along with potential solutions. Part VI 
follows by presenting a simple simulation of how a court, regulator or firm 
might use the IAT in the setting of Dothard. Part VII concludes. 

II.  ACCOUNTABILITY UNDER U.S. ANTIDISCRIMINATION LAW  

A.  Accountability and the Burden-Shifting Framework of Title VII 

We ground our definition of accountability in the antidiscrimination 
principles of Title VII of the Civil Rights Act of 1964.39 Title VII, which 
focuses on the labor market, makes it “an unlawful employment practice for 
an employer (1) to ... discriminate against any individual with respect to his 
compensation, terms, conditions, or privileges of employment, because of 

                                                
RESPIRATORY MED. 758, 759 (2020) (arguing that “SOFA scores might be unfavourably higher in African 
Americans during this pandemic”).  
39 42 U.S.C. § 2000e (2012). 
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such individual’s race, color, sex, or national origin; or (2) to limit, segregate, 
or classify his employees or applicants for employment in any way which 
would deprive or tend to deprive any individual of employment opportunities 
... because of such individual’s race, color, religion, sex, or national origin.”40 
Similar conceptualizations of antidiscrimination law were later written to 
apply to other settings, such as the prohibition of discrimination in mortgage 
lending under the FHA.41 

In practice, Title VII has been interpreted as covering two forms of 
impermissible discrimination.  The first and “the most easily understood type 
of discrimination”42 falls under the disparate-treatment theory of 
discrimination and requires that a plaintiff alleging discrimination prove “that 
an employer had a discriminatory motive for taking a job-related action.”43 
Additionally, Title VII also covers practices which “in some cases, … are not 
intended to discriminate but in fact have a disproportionately adverse effect 
on minorities.”44 These cases are usually brought forth under the disparate-
impact theory of discrimination and allow for an employer to be liable for 
“facially neutral practices that, in fact, are ‘discriminatory in operation,’” 
even if unintentional.45   

Critically, in cases where discrimination lacks an intentional motive, an 
employer can be liable only for disparate outcomes that are unjustified. The 
burden-shifting framework, initially formulated in Griggs v. Duke Power 
Co.46 and subsequently codified by Congress in 1991,47 provides the process 
for understanding when disparities across members of protected and 
unprotected groups are justified. This delineation is central to the definition 
of accountability in today’s era of algorithms. 

Under the burden-shifting framework, a plaintiff alleging unintentional 
discrimination bears the first burden. The plaintiff must identify a specific 
employment practice that causes “observed statistical disparities”48 across 
members of protected and unprotected groups.49 If the plaintiff succeeds in 
establishing this evidence, the burden shifts to the defendant,50 who must then 
“demonstrate that the challenged practice is job related for the position in 
                                                
40 42 U.S.C. § 2000e-2(a) (2012).   
41 42 U.S.C. § 3605 (2012) (“It shall be unlawful for any person or other entity whose business includes 
engaging in residential real estate-related transactions to discriminate against any person in making 
available such a transaction, or in the terms or conditions of such a transaction, because of race, color, 
religion, sex, handicap, familial status, or national origin.”). 
42 Int’l Bhd. of Teamsters v. United States, 431 U.S. 324, 335 n.15 (1977). 
43 Ernst v. City of Chi., 837 F.3d 788, 794 (7th Cir. 2016). 
44 Ricci v. DeStefano, 557 U.S. 557, 577 (2009). 
45 Id. at 577-78 (quoting Griggs v. Duke Power Co., 401 U.S. 424, 431 (1971)). 
46 Griggs, 401 U.S. at 432. 
47 Civil Rights Act of 1991, Pub. L. No. 102-66, 105 Stat. 1071 (1991). 
48 Watson v. Fort Worth Bank & Trust, 487 U.S. 977, 979 (1988). 
49 See also Albemarle Paper Co. v. Moody, 422 U.S. 405, 425 (1975) (holding that the plaintiff has the 
burden of making out a prima facie case of discrimination). 
50 See id. at 425 (noting that the burden of defendant to justify an employment practice “arises, of course, 
only after the complaining party or class has made out a prima facie case of discrimination.”) 
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question and consistent with business necessity.”51 If the defendant satisfies 
this requirement, then “the burden shifts back to the plaintiff to show that an 
equally valid and less discriminatory practice was available that the employer 
refused to use.”52 

This overview highlights two core ideas that inform what it means for a 
decision-making process to be accountable under U.S. antidiscrimination 
law. First, in the case of unintentional discrimination, disparate outcomes 
must be justified by reference to a legitimate “business necessity.”53 In the 
context of employment hiring, for instance, this is typically understood to be 
a job-related skill that is required for the position.54 Imagine, for instance, an 
employer who made all hiring decisions based on applicants’ level of a direct 
measure of a job-related skill. Even if the outcome of these decision-making 
processes results in disparate outcomes across minority and non-minority 
applicants, these disparities would be justified as nondiscriminatory with 
respect to a protected characteristic.   

Second, in invalidating a decision-making process, U.S. anti-
discrimination law does so because of invalid “inputs” rather than invalid 
“outputs” or results. This feature of U.S. antidiscrimination law is most 
evident in the case of disparate treatment claims involving the use by a 
decision-maker of a protected category in making a job-related decision. For 
instance, Section (m) of the 1991 Civil Rights Act states that “an unlawful 
employment practice is established when the complaining party demonstrates 
that race, color, religion, sex, or national origin was a motivating factor for 
any employment practice, even though other factors also motivated the 
practice.”55 However, this focus on inputs is also evident in cases alleging 
disparate impact, notwithstanding the doctrine’s initial requirement that a 
plaintiff allege disparate outcomes across members of protected and 

                                                
51 42 U.S.C. § 2000e-2(k)(1)(A)(i) (2012); see also Griggs, 401 U.S. at 432 (“Congress has placed on the 
employer the burden of showing that any given requirement must have a manifest relationship to the 
employment in question.”). 
52 Puffer v. Allstate Ins. Co., 675 F.3d 709, 717 (7th Cir. 2012); see also 42 U.S.C. § 2000e-2(k)(1)(A)(ii), 
(C). 
53 42 U.S.C. § 2000e-2(k)(1)(A)(i). Likewise, even in the case of claims alleging disparate treatment, an 
employer may have an opportunity to justify the employment decision. In particular, absent direct evidence 
of discrimination, Title VII claims of intentional discrimination are subject to the burden-shifting 
framework established in McDonnell Douglas Corp. v. Green, 411 U.S. 792 (1973). Under the McDonnell 
Douglas framework, a plaintiff must first “show, by a preponderance of the evidence, that she is a member 
of a protected class, she suffered an adverse employment action, and the challenged action occurred under 
circumstances giving rise to an inference of discrimination.” Bennett v. Windstream Commc’ns, Inc., 792 
F.3d 1261, 1266 (10th Cir. 2015). If the plaintiff succeeds in establishing a prima facie case, the burden 
of production shifts to the defendant to rebut the presumption of discrimination by producing some 
evidence that it had legitimate, nondiscriminatory reasons for the decision. Id. at 1266. 
54  See, e.g., Griggs, 401 U.S. at 432 (holding that the employer’s practice or policy in question must have 
a “manifest relationship” to the employee’s job duties); see also Albermarle, 422 U.S. at 425 (“If an 
employer does then meet the burden of proving that its tests are ‘job related,’ it remains open to the 
complaining party to show that other tests or selection devices, without a similarly undesirable racial 
effect, would also serve the employer's legitimate interest in ‘efficient and trustworthy workmanship.’”). 
55 42 U.S.C. § 2000e-2(m). 
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unprotected groups. Recall that even with evidence of disparate outcomes, an 
employer that seeks to defend against a claim of disparate impact 
discrimination must demonstrate why these outcomes were the result of a 
decision-making process based on legitimate business necessity factors (i.e., 
the disparate outcomes were the result of legitimate decision-making 
inputs).56 This focus on “inputs” underscores the broader policy objective of 
ensuring a decision-making process that is not discriminatory. 

The practical challenge in implementing this antidiscrimination regime is 
that the critical decision-making input—an individual’s possession of a job-
related skill—cannot be perfectly observed at the moment of a decision, 
inducing the decision-maker to turn to proxies for it.  However, the foregoing 
discussion highlights that the objective in evaluating these proxy variables 
should be the same: ensuring that qualified applicants from a protected class 
are not being systematically passed over for the job or promotion. As 
summarized by the Supreme Court in Ricci v. DeStefano, “[t]he purpose of 
Title VII ‘is to promote hiring on the basis of job qualifications, rather than 
on the basis of race or color.’”57   

This objective, of course, is the basis for prohibiting the direct form of 
statistical discrimination famously examined by economists Kenneth Arrow58 
and Edmund Phelps.59 In their models, an employer uses a job applicant’s 
race as a proxy for the applicant’s expected productivity because the 
employer assumes that the applicant possesses the average productivity of his 
or her race.  If the employer also assumes the average productivity of minority 
applicants is lower than non-minorities (e.g., because of long-standing social 
and racial inequalities), this proxy will ensure that above-average productive 
minorities will systematically be passed over for the job despite being 
qualified for it.  Because this practice creates a direct and obvious bias against 
minorities, this practice is typically policed under the disparate treatment 
theory of discrimination.60 

Beyond this clearly unlawful form of statistical discrimination, a 
decision-maker can use statistical discrimination to incorporate not just the 
protected-class variable but also other proxy variables for the business-
necessity unobservable attributes. For instance, an employer might seek to 
predict a job applicant’s productivity based on other observable 
characteristics that the employer believes are correlated with future 
productivity, such as an applicant’s level of education or an applicant’s 

                                                
56 See, e.g., Dothard v. Rawlinson, 433 U.S. 321, 331 (1977) (holding that, to satisfy the business necessity 
defense, an employer must show that a pre-employment test measured a characteristic “essential to 
effective job performance” given that the test produced gender disparities in hiring). 
57 Ricci v. DeStefano, 557 U.S. 557, 582 (2009) (citing Griggs , 401 U.S. at 424). 
58 Kenneth J. Arrow, The Theory of Discrimination, in DISCRIMINATION AND LABOR MARKETS 3 (Orley 
Ashenfelter & Albert Rees eds., 1973). 
59 Edmund S. Phelps, The Statistical Theory of Racism and Sexism, 62 AM. ECON. REV. 659 (1972). 
60 See text accompanying note 55. 
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performance on a personality or cognitive ability test.61 Indeed, it is the 
possibility of using data mining to discern new and unintuitive correlations 
between an individual’s observable characteristics and a target variable of 
interest (e.g., productivity as a job skill or wealth as a credit risk variable) that 
has contributed to the dramatic growth in algorithmic decision-making.62 The 
advent of data mining has meant that thousands of such proxy input variables 
are sometimes used.63  

As the UnitedHealth algorithm example revealed, however, the use of 
these proxy variables can result in members of a protected class experiencing 
disparate outcomes. The problem arises from what researchers call 
“redundant encodings”—the fact that a proxy variable can be predictive of a 
legitimate target variable and membership in a protected group.64  Relying on 
these proxy variables therefore risks penalizing members of the protected 
group who are otherwise qualified in the legitimate target variable.65  In short, 
algorithmic accountability requires a method to limit the use proxy variables 
to those that are consistent with Title VII of the Civil Rights Act and to 
prohibit the use of those that are not.66 
 

B.  Input Accountability Versus Outcome Fairness Approaches 
 

Our input-based approach differs significantly from that of other scholars 
who have advanced outcome-oriented approaches to algorithmic 
accountability. For instance, Talia Gillis and Jann Spiess have argued that the 
conventional focus in fair lending on restricting invalid inputs (such as a 
borrower’s race or ethnicity) is infeasible in the machine-learning context.67 
Focusing on the context of algorithmic lending, Gillis and Spiess argue that 
a predictive model of default that excludes a borrower’s race or ethnicity can 

                                                
61 See, e.g., Neal Schmitt, Personality and Cognitive Ability as Predictors of Effective Performance at 
Work, 1 ANN. REV. ORGANIZATIONAL PSYCHOL. & ORGANIZATIONAL BEHAV. 45, 56 (2014) (describing 
web-based pre-employment tests of personality and cognitive ability). 
62 See Barocas & Selbst, supra note 6, at 677 (“By definition, data mining is always a form of statistical 
(and therefore seemingly rational) discrimination.”). 
63 See, e.g., Mikella Hurley & Julius Adebayo, Credit Scoring in the Era of Big Data, 18 YALE. J.L. TECH. 
148, 164 (2020) (describing how ZestFinance uses an “all data is credit data” approach to predict an 
individual’s creditworthiness based on “thousands of data points collected from consumers’ offline and 
online activities”). 
64 See Barocas & Selbst, supra note 6, at 691 (citing Cynthia Dwork et al., Fairness Through Awareness, 
3 PROC. INNOVATIONS THEORETICAL COMPUTER SCI. CONF. 214 app. at 226 (2012)). 
65 As noted in the Introduction, redlining represents a classic example: An individual’s zip code may be 
somewhat predictive of one’s creditworthiness, but given racialized housing patterns, it is almost certainly 
far more accurate in predicting one’s race. Assuming that all residents in a minority-majority zip code 
have low creditworthiness will therefore result in systematically underestimating the creditworthiness of 
minorities whose actual creditworthiness is higher than the zip code average.   
66 In theory, there are statistical methods that would estimate the precise degree to which a redundantly 
encoded proxy variable predicts a legitimate target variable that is independent of the degree to which it 
predicts membership in a protected classification. We discuss these methods and their shortcomings infra 
at notes 114 to 116 and in the Appendix. 
67 See Talia B. Gillis & Jann L. Spiess, Big Data and Discrimination, 86 U. CHI. L. REV 459 (2019). 
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still penalize minority borrowers if one of the included variables (e.g., 
borrower education) is correlated with both default and race.68 Gillis and 
Spiess acknowledge the possibility that one could seek to exclude from the 
model some of these correlated variables on this basis, but they find this 
approach infeasible given that “a major challenge of this approach is the 
required articulation of the conditions under which exclusion of data inputs 
is necessary.”69 They therefore follow the burgeoning literature within 
computer science on “algorithmic fairness”70 and advocate evaluating the 
outcomes from an algorithm against some baseline criteria to determine 
whether the outcomes are fair across protected and unprotected groups.71 If 
they are not, the solution would be to “tune” the algorithm to ensure that they 
are.72 
                                                
68 Id. at 468-69. 
69 Id. at 469. Elsewhere in their article, Gillis and Spiess also suggest that input-based analysis may be 
infeasible because “in the context of machine-learning prediction algorithms, the contribution of individual 
variables is often hard to assess.” Id. at 475. They illustrate this point by showing how in a simulation 
exercise, the variables selected by a logistic lasso regression in a predictive model of default differed each 
time the regression was run on a different randomly-drawn subsample of their data. However, this evidence 
does not speak to how an input-based approach to regulating algorithms would be deployed in practice.  A 
lasso regression—like other models that seek to reduce model complexity and avoid over-fitting—seeks 
to reduce the number of predictors based on the underlying correlations among the full set of predictor 
variables. Thus, it can be used in training a model on a set of data with many proxy variables, and running 
a lasso regression multiple times on different subsamples of the data should be expected to select different 
variables with each run. However, once a model has been trained and the model’s features are selected, 
the model must be deployed, allowing the features used in the final model to be evaluated and tested for 
bias. That is, regardless of the type of model fitting technique one uses in the training procedure (e.g., 
lasso regression, ridge regression, random forests, etc.), the model that is ultimately deployed will utilize 
a set of features that can be examined. 
70 For a summary, see Sam Corbett-Davies & Sharad Goel, The Measure and Mismeasure of Fairness: A 
Critical Review of Fair Machine Learning (Aug. 14, 2018) (unpublished manuscript) (available at 
https://arxiv.org/pdf/1808.00023.pdf). In particular, a common approach to algorithmic fairness within 
computer science is to evaluate the fairness of a predictive algorithm using a “confusion matrix.” Id. at 4. 
A confusion matrix is a cross-tabulation of actual outcomes by the predicted outcome. For instance, the 
confusion matrix for an algorithm that classified individuals as likely to default on a loan would appear 
as follows: 

 Default Predicted No Default Predicted 
Default Occurs  # Correctly Classified as 

Defaulting = NTP  
(True Positives) 

# Incorrectly Classified as Non-
Defaulting = NFN 
(False Negatives) 

Default Does Not 
Occur 

# Incorrectly Classified as 
Defaulting = NFP  
(False Positives) 

# Correctly Classified as Non-
Defaulting = NTN 
(True Negatives) 

 
Using this table, one could then evaluate the fairness of the classifier by inquiring whether the 
classification error is equal across members of protected and unprotected groups. Id. at 5. For example, 
one could use as a baseline fairness criterion a requirement that the classifier have the same false positive 
rate (i.e., NFP / (NFP + NTN)) for minority borrowers as for non-minority borrowers. Alternatively, one could 
use as a baseline a requirement of treatment equality (e.g., the ratio of False Positives to False Negatives) 
across members of protected and unprotected groups. As noted in the text, given a stated fairness criterion, 
an algorithm can then be tuned to achieve it.  
71 See Gillis & Spiess, supra note 67, at 480 (“In the case of machine learning, we argue that outcome 
analysis becomes central to the application of antidiscrimination law.”). 
72 A related line of research addresses disparities arising from redundant encodings by including a 
protected classification as an input variable when calibrating a predictive model.  See Devin G. Pope & 
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We part ways with these approaches for three reasons. First, as noted 
above, our reading of the Civil Rights Act of 1964 and 1968 and the 
subsequent caselaw and codification informs us that an input-based approach 
is required under the burden shifting framework that has long-informed the 
policing of unintentional discrimination. Second, we do not view as 
insurmountable the challenge of articulating the conditions for excluding 
variables that are correlated with a protected classification, as we illustrate in 
Part III. Third, it is likely that “tuning” techniques are themselves problematic 
with respect to discrimination law. 

Outcome-based approaches would almost certainly be deemed legally 
problematic following the Supreme Court’s 2009 decision in Ricci v. 
DeStefano.73 The facts giving rise to Ricci involved a decision by the city of 
New Haven to discard the results of an “objective examination” that sought 
to identify the most qualified city firefighters for promotion.74 The city 
justified its decision to discard the results on the basis that they revealed a 
statistical racial disparity, raising the risk of disparate impact liability under 
Title VII.75 A group of white and Hispanic firefighters sued, alleging that the 
city’s discarding of the test results constituted race-based disparate 
treatment.76 In upholding their claim, the Court emphasized the extensive 
efforts that the city took to ensure the test was job-related77 and that there was 
“no genuine dispute that the examinations were job-related and consistent 
with business necessity.”78 Nor did the city offer “a strong basis in evidence 
of an equally valid, less-discriminatory testing alternative.”79 Prohibiting the 
city from discarding the test results was therefore required to prevent the city 
from discriminating against “qualified candidates on the basis of their race.”80  

The Court’s assumption that the promotion test identified the most 
qualified firefighters makes it difficult to see a legal path forward for explicit 
race-based adjustments of algorithmic outcomes. Assuming the algorithm 
properly identifies qualified individuals in a specified target, such race-based 
adjustments would appear to be no different from what the city of New Haven 
attempted to do with the promotion test results. Rather, Ricci underscores the 
                                                
Justin R. Sydnor, Implementing Anti-Discrimination Policies in Statistical Profiling Models, 3 AM. ECON. 
J. 206, 206 (2011); Crystal Yang & Will Dobbie, Equal Protection Under Algorithms: A New Statistical 
and Legal Framework, John M. Olin Center For Law, Economics, and Business Discussion Paper No. 
1019 (October 2019).  The rationale for doing so is to “de-bias” the redundantly-encoded variable. We 
address problems with this approach in Part III(C)(ii) and in the Appendix. 
73 557 U.S. 557 (2009). 
74 Id. at 562. 
75 Id. 
76 Id. at 562-63. 
77 Id. 586-588. 
78 Id. at 587; see also id at 589 (“The City, moreover, turned a blind eye to evidence that supported the 
exams' validity.”) 
79 Id. at 589. 
80 Id. at 584 (“Restricting an employer’s ability to discard test results (and thereby discriminate against 
qualified candidates on the basis of their race) also is in keeping with Title VII’s express protection of 
bona fide promotional examinations.”) 
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fundamental importance of ensuring that decision-making processes do not 
systematically discriminate against qualified individuals because of their 
race—the goal of the burden shifting framework of Title VII.  

Yet our objective is not to dismiss output-focused considerations of 
fairness. Rather, our goal is instead to emphasize that the burden-shifting 
framework requires separating the question of whether the inputs of an 
algorithmic process are biased against members of a protected group from the 
question of whether the outcomes of an unbiased algorithm meet some 
criterion of fairness.   

As an example, consider again the SOFA algorithm discussed in the 
Introduction.81 As noted, many hospitals have used the SOFA algorithm to 
allocate scarce life-saving resources during the pandemic based on a patient’s 
dysfunction of six organ systems. The stated rational for doing so is that these 
medical conditions are legitimate input variables in a patient’s expected long-
term survival. However, SOFA-based triage algorithms have alarmed many 
clinicians given the adverse effect they are likely to have on communities of 
color due to structural inequalities that cause Black and Latinx Americans to 
suffer differential rates of chronic and life-shortening conditions that 
contribute to a disqualifying SOFA score.  

However, it is far from clear that a SOFA algorithm would be problematic 
under the burden-shifting framework. If a patient’s expected long-term 
survival is the business necessity, then a personal medical history input 
variable of, say, diabetes may well pick up business necessity and not have a 
residual correlation with race beyond its correlation with survival. If that is 
true, the SOFA-based algorithm would therefore not be biased against 
members of a protected group given the algorithm’s objective. But one has to 
wonder how society can view this outcome as equitable in light of the fact 
that the same structural inequalities that put people of color at a greater risk 
of contracting of diabetes would (under the SOFA-algorithm) put them at a 
greater risk of dying from COVID-19 given higher rates of infection among 
Black and Latinx Americans.  

The fairness of the algorithm’s outcomes would thus need to be 
considered separately from whether the algorithm uses invalid input variables 
in pursuing its objective.  From an anti-subordination perspective, one way 
to address these concerns would focus on whether the business necessity 
target is in fact equitable in light of the structural inequalities that contribute 
to Black and Latinx patients having higher SOFA scores. For instance, as a 
matter of health policy, a state’s department of public health could simply 
stipulate an alternative business necessity target following consultation with 
members of the medical community and other stakeholders. However, even 
with a more equitable target, our approach highlights the continuing need to 

                                                
81 See text accompanying notes 36-38. 
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monitor the inputs used in the decision-making model to ensure they are not 
biased against protected groups. 

Likewise, separately considering the question of whether the inputs of a 
decision-making process are biased from the question of whether the 
outcomes of an unbiased algorithm are fair can highlight the need to address 
structural inequalities in a more systematic fashion. Lending provides a 
domain where this has been especially relevant. Under the FHA, courts have 
routinely held that creditworthiness is an approved legitimate business 
necessity target. Yet the determinants of creditworthiness (e.g., income, 
income growth, wealth) reflect long-standing racial and economic 
inequalities, and the process of creating credit scores is also subject to 
criticisms of racial bias. Thus, even an unbiased lending rule that targeted 
creditworthiness would result in lending outcomes that reflect these structural 
inequalities. In this context, absent a change in the business necessity target, 
rectifying inequitable lending outcomes requires an additional intervention, 
such as through subsidized loan programs and other policies designed to 
encourage lending to low and moderate-income families. Indeed, this 
approach is reflected in existing U.S. housing programs such as the Federal 
Housing Administration mortgage program (which seeks to provide 
mortgages to low and moderate-income borrowers)82 and the Community 
Reinvestment Act (which seeks to encourage lenders to provide loans to 
residents of low and moderate-income neighborhoods).83 

Finally, separately considering a model’s inputs from the fairness of its 
outputs recognizes that the question of fair outcomes is fundamentally a 
policy question that requires engagement from a diverse community of 
stakeholders. As Richard Berk and others have noted, efforts to make 
algorithmic outcomes “fair” pose the challenge that there are multiple 
definitions of fairness, and many of these definitions are incompatible with 
one another.84 The central challenge Berk raises is that an outcome fix will 
often result in some form of residual discrimination, raising the inevitable 
question: how much discrimination should be permissible in the outcomes?85  
For this reason, determination of distributional equity is accordingly best left 
to context-specific policy institutions that can evaluate the relevant trade-offs 
in a transparent fashion and with input from diverse perspectives.  

                                                
82 See James H. Carr & Katrin B. Anacker, The Complex History of the Federal Housing Administration: 
Building Wealth, Promoting Segregation, and Rescuing the U.S. Housing Market and The Economy, 34 
BANKING & FIN. SERVS. POL'Y REP. 10 (2015) (describing the program). 
83 See Keith N. Hylton, Banks and Inner Cities: Market and Regulatory Obstacles to Development 
Lending, 17 YALE J. ON REG. 197 (2000) (describing the Act). 
84 See Richard Berk et al., Fairness in Criminal Justice Risk Assessments: The State of the Art 33 (May 
30, 2017) (unpublished manuscript) (available at https://arxiv.org/pdf/1703.09207.pdf) (arguing that 
“[t]here are different kinds of fairness that in practice are incompatible”). 
85 See, e.g., Gillis & Spiess, supra note 67, at 486 (advocating an outcome test in which a regulator 
evaluates whether lending outcomes differ by race among “similarly situated” borrowers “should include 
a degree of tolerance set by the regulator”). 
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C. Input Accountability Versus  

“Least Discriminatory” Predictive Accuracy  
 

We differ also from scholars and practitioners who focus only on the final 
step in the disparate-impact burden-shifting framework. Recall that according 
to this framework, an employer who establishes that a business practice can 
be justified by a legitimate business necessity shifts the burden back to the 
plaintiff to show that an equally valid and less discriminatory practice was 
available that the employer refused to use.86 Some commentators have 
mistakenly assumed that this test implies that the critical question to ask when 
evaluating an algorithm that produces a disparate impact is whether the 
algorithm uses the least discriminatory predictive model for a given level of 
predictive accuracy. Of course, for a data scientist with access to thousands 
of variables, it is easy to run many models and decide which creates the least 
disparate impact for a given level of accuracy in prediction. But this approach 
will not address whether any of the variables used in the model are 
systematically penalizing members of a protected group who are otherwise 
qualified in the skill or characteristic the model is seeking to predict. 

Nonetheless, a number of commentators have, mistakenly we believe, 
argued that the central test for whether an algorithm poses any risk of 
illegitimate discrimination should be whether there are alternative models 
that can achieve the same level of predictive accuracy with lower levels of 
discrimination.87  For instance, in an oft-cited discussion paper regarding fair 
lending risk of credit cards, David Skanderson and Dubravka Ritter advocate 
that lenders should focus on this step of the disparate-impact framework when 
evaluating the fair-lending risk of algorithmic credit-card models.88 
Specifically, Skanderson and Ritter note that “a model or a model’s predictive 
variable with a disproportionate adverse impact on a prohibited basis may 
still be legally permissible if it has a demonstrable business justification and 
there are no alternative variables that are equally predictive and have less of 
an adverse impact.”89 For Skanderson and Ritter, the business necessity 
defense for an algorithmic decision-making process therefore boils down to 
whether it is the most accurate possible test in predicting a legitimate target 

                                                
86 See text accompanying note 52. 
87 See, e.g., Nicholas Schmidt & Bryce Stephens, An Introduction to Artificial Intelligence and Solutions 
to the Problems of Algorithmic Discrimination, (Nov. 8, 2019) (unpublished manuscript) (available at 
https://arxiv.org/pdf/1911.05755.pdf) (advocating for using “a ‘baseline model’ that has been built without 
consideration of protected class status, but which shows disparate impact, and then search[ing] for 
alternative models that are less discriminatory than that baseline model, yet similarly predictive.”). 
88 See, e.g., David Skanderson & Dubravka Ritter, Fair Lending Analysis of Credit Cards (FED. RESERVE 
BANK OF PHILA., Discussion Paper No. 14-02, 2014), https://www.philadelphiafed.org/-/media/consumer-
credit-and-payments/payment-cards-center/publications/discussion-papers/2014/d-2014-fair-
lending.pdf?la=en.   
89 Id. at 38. 
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variable of interest.  As they summarize in the context of lending, “If a scoring 
system is, in fact, designed to use the most predictive combination of 
available credit factors, then it should be unlikely that someone could 
demonstrate that there is an equally effective alternative available, which the 
lender has failed to adopt.”90   

However, validating an algorithm based entirely on the fact that it is the 
most predictive model available would validate algorithms that are clearly 
biased against members of a protected group who are qualified in the desired 
target. To illustrate, we offer a simple example. Consider an employer who 
needs employees that can regularly lift 40 pounds as part of their everyday 
jobs. Imagine this employer designs a one-time test of whether applicants can 
lift 70 pounds as a proxy for whether the applicant can repetitively lift 40 
pounds. The employer can show that this test has 90% prediction accuracy. 
However, those applicants that fail the test who in fact could regularly lift 40 
pounds are disproportionately female. Thus, the test, because it is not a 
perfect proxy, causes a disparate impact on female applicants.  

Now assume that it can be shown that a one-time test of whether 
applicants can lift 50 pounds produces no disparate impact on females but has 
an accuracy rate of just 85%.  Under Skanderson and Ritter’s approach, the 
employer would have no obligation to consider the latter test, despite the fact 
that a 70-pound test will systematically penalize female applicants that can in 
fact satisfy the job requirement. 

Not surprisingly, this approach to pre-screening employment tests has 
been routinely rejected by courts. In Lanning v. Southeastern Pennsylvania 
Transportation Authority,91 for instance, the Third Circuit considered a 
physical fitness test for applicants applying to be transit police officers. The 
fitness test involved a 1.5 mile run that an applicant was required to complete 
within 12 minutes; however, the 12 minute cut-off was shown to have a 
disparate impact on female applicants.92 The transit authority acknowledged 
that officers would not actually be required to run 1.5 miles within 12 minutes 
in the course of their duties, but it nevertheless adopted the 12 minute cut-off 
because the transit authority’s expert believed it would be a more “accurate 

                                                
90 Id. at 43. This line of reasoning also informs Barocas and Selbst’s conclusion that Title VII provides a 
largely ineffective means to police unintentional discrimination arising from algorithms.  See Barocas & 
Selbst, supra note 62, at 701-714. According to Barocas and Selbst, the business necessity defense requires 
that an algorithm is “predictive of future employment outcomes.” Id. If this is correct, it would logically 
follow that an employer will have no disparate impact liability from using the most predictive algorithmic 
model for a legitimate job-related skill since an equally predictive, less discriminatory alternative would 
not be available. However, this conclusion relies on an assumption that predictive accuracy is a necessary 
and sufficient condition to justify a decision-making process that produces a disparate impact. As we show, 
this is an incorrect assumption, as courts have been careful not to conflate the business necessity defense 
with predictive accuracy. A predictive model may be accurate in predicting whether an individual is likely 
to have a legitimate target characteristic but nevertheless be biased against members of a protected group 
who are otherwise qualified in the target characteristic.  
91 181 F.3d 478 (3rd Cir. 1999), cert. denied, 528 U.S. 1131 (2000). 
92 Id. at 482. 
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measure of the aerobic capacity necessary to perform the job of a transit 
police officer.”93  

In considering the transit authority’s business-necessity defense, the 
court agreed that aerobic capacity was related to the job of a transit officer.94 
It also agreed that by imposing a 12 minute cut-off for the run, the transit 
authority would be increasing the probability that a job applicant would 
possess high aerobic capacity.95  Nonetheless, the court rejected this “more is 
better” approach to setting the cutoff time:   

 
Under the District Court’s understanding of business 
necessity, which requires only that a cutoff score be “readily 
justifiable,” [the transit authority], as well as any other 
employer whose jobs entail any level of physical capability, 
could employ an unnecessarily high cutoff score on its 
physical abilities entrance exam in an effort to exclude 
virtually all women by justifying this facially neutral yet 
discriminatory practice on the theory that more is better.96  

 
Accordingly, the court required “that a discriminatory cutoff score be shown 
to measure the minimum qualifications necessary for successful performance 
of the job in question in order to survive a disparate impact challenge.”97 In 
other words, in determining whether disparate outcomes are justified, the 
question to ask is not simply whether the model is accurate in predicting the 
target variable, but whether the choice of the process and inputs met the 
business necessity burden.98   

The Lanning case focused on predictive accuracy in determining the 
minimum cutoff score for qualification, and its holding highlights why an 
employer cannot claim that it is a business necessity to use a high cutoff score 
simply because it is the most accurate score for finding qualified applicants.99 

                                                
93 Id.  
94 Id. at 492. 
95 Id. (“The general import of these studies is that the higher an officer's aerobic capacity, the better the 
officer is able to perform the job.”). 
96 Id. at 493. 
97 Id. 
98 See Lanning, 181 F.3d. 478, 481 (3rd Cir. 1999) (“[U]nder the Civil Rights Act of 1991, a discriminatory 
cutoff score on an entry level employment examination must be shown to measure the minimum 
qualifications necessary for successful performance of the job in question in order to survive a disparate 
impact challenge.”); see also Ass’n of Mex.-Am. Educators v. California, 195 F.3d 465 (9th Cir. 1999) 
(upholding, against a disparate-impact challenge under Title VII, a requirement that public school teachers 
“demonstrate basic reading, writing and mathematics skills in the English language as measured by a basic 
skills proficiency test” and holding as not clearly erroneous the district court’s finding that the cutoff scores 
“reflect[ed] reasonable judgments about the minimum levels of basic skills competence that should be 
required of teachers.”). 
99 The Third Circuit was clear that setting the cutoff was effectively about calibrating the predictive 
accuracy of the employment test. See Lanning, 308 F.3d 286, 292 (3rd Cir. 2002) (“It would clearly be 
unreasonable to require SEPTA applicants to score so highly on the run test that their predicted rate of 
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This same reasoning also applies to the selection of variables one uses in a 
predictive model.  

For example, in the recent past, credit decisions were made primarily on 
application data plus credit history reports and any “soft information” a loan 
officer could glean from interacting with a borrower. For simplicity, imagine 
that all of these items only translated into 10 variables and that these variables 
predict default with predictive accuracy of 85%. With the advent of big data 
and machine learning, lenders now regularly use thousands of variables to 
assess an applicant’s default probability. Imagine that multiple machine 
learning algorithms, after using thousands of variables, can now predict 
default with 90% accuracy. Assume further that all of these algorithms 
produce a greater disparate impact than the conventional 10-variable model, 
but one can nevertheless find the least discriminatory of these machine 
learning algorithms. Does the fact that the least discriminatory algorithm has 
the highest predictive accuracy justify the additional disparate impact caused 
by moving from 10 to 1,000 variables? Under the burden shifting framework, 
legitimate business necessity has not been established. Perhaps the machine 
learning model is indeed consistent with business necessity, but just because 
it is more accurate does not establish this fact. 

Indeed, this latter example speaks directly to a controversial rule 
proposed in 2019 by the Department of Housing and Urban Development 
(HUD).100  Given the increasing role of algorithmic credit scoring, the 
proposed rule-making expressly provides for a new defense for disparate 
impact claims under the FHA where “a plaintiff alleges that the cause of a 
discriminatory effect is a model used by the defendant, such as a risk-
assessment algorithm….”101 In particular, the proposed rule provides that in 
these cases, a lender may defeat the claim by “identifying the inputs used in 
the model and showing that these inputs are not substitutes for a protected 
characteristic and that the model is predictive of risk or other valid 
objective.”102  In other words, so long as a variable is not an undefined 
“substitute” for a protected characteristic, any model that predicts 
creditworthiness is sufficient to defeat a claim of disparate impact 
discrimination.   

This approach to algorithmic accountability, however, suffers from the 
same defect noted previously with regard to those who have misapplied the 
“least discriminatory alternative” test. Specifically, by focusing solely on 
                                                
success be 100%. It is perfectly reasonable, however, to demand a chance of success that is better than 5% 
to 20%.”).  
100 See HUD’s Implementation of the Fair Housing Act's Disparate Impact Standard, 84 Fed. Reg. 42,854 
(Aug. 19, 2019) (to be codified at 24 C.F.R. 100) [hereinafter “2019 HUD Proposal”].  
101 Id. at 42,862. The rulemaking was intended to amend HUD’s interpretation of the disparate impact 
standard “to better reflect” the Supreme Court’s 2015 ruling in Texas Department of Housing & 
Community Affairs v. Inclusive Communities Project, Inc., 135 S. Ct. 2507 (2015), which upheld the ability 
of plaintiffs to bring disparate impact cases of discrimination under the FHA. 
102 Id. 
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whether a model is “predictive of risk or other valid objective,” HUD’s test 
leaves open the possibility that a lender can adopt a model that systematically 
discriminates against borrowers who are, in fact, creditworthy. Recall that in 
our hypothetical strength test, the ability to lift 70 pounds was, in fact, 
predictive of whether an applicant could regularly lift 40 pounds; however, it 
systematically discriminated against women who were qualified for the job.  
Worse still, by not even requiring that a model have any particular level of 
accuracy, HUD’s test would seemingly permit the use of any proxy so long 
as it has some correlation with credit risk.  Indeed, this approach would even 
appear to permit the use of explicit redlining in a predictive model so long as 
a lender could show that the average credit risk of a majority-minority 
neighborhood is marginally higher than that of non-majority-minority 
neighborhoods. 

In contrast, the central goal of the burden shifting framework is to ensure 
that in evaluating a decision-making process, members of a protected class 
are not being systematically penalized despite being qualified in a target 
characteristic of interest.  

III.  THE INPUT ACCOUNTABILITY TEST 

In this section, we move to the second aspect of our contribution:  
presenting our input accountability test (IAT) to test for discrimination under 
Title VII. In Part IV, we examine how the IAT can be extended to applications 
outside of the Title VII context.  

We begin with some nomenclature. The design of a decision-making 
algorithm rests fundamentally on the relationships between a set of input 
variables, sometimes referred to as “features” in the context of machine 
learning, and an underlying latent skill or attribute of interest (strength, 
productivity, etc.), referred to as a “target.” Valid target variables all fall 
under a legitimate business necessity fundamental model. This fundamental 
model can be a formal structural relationship, as is possible in life cycle 
modelling of credit risk, or, more likely, is a nonparametric combination of 
these target variables (i.e., the required job skills are a function of 
intelligence, reliability and strength). Today, the relationships between 
targets and features are increasingly analyzed and developed within artificial-
intelligence and machine-learning processes, but an algorithmic decision-
making process can also be based on human-selected data or even on personal 
intuition. The IAT applies to a decision-making algorithm regardless of 
whether the features (i.e., input variables) are determined through machine 
learning or human learning. 

Our second contribution is a test that informs when an input variable’s 
use produces statistical discrimination against a protected class that is 
unjustified according to the criteria developed in Part II. That is, the IAT 
detects if the use of an input results in systematically penalizing members of 
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a protected group beyond the role of the input variable in extracting the 
business necessity goal.  

A.  The Test 

We illustrate our test throughout with the facts giving rise to the 1977 
Supreme Court decision in Dothard v. Rawlinson.103  As noted previously, in 
Dothard, female applicants for prison officer positions challenged a prison’s 
minimum height and weight requirements as inconsistent with Title VII.104 
Because the average height and weight of females were less than those for 
males, the female applicants argued that the requirement created an 
impermissible disparate impact for females under Title VII.105  In response, 
the prison argued that a height and weight requirement was a justified job 
requirement given that an individual’s height and weight are predictive of 
strength, and strength was required for prison officers to perform their jobs 
safely.106  In short, the prison took the position that the general correlation 
between one’s height/weight and strength was sufficient to justify the 
disparate outcomes this requirement caused for women. The Supreme Court, 
however, rejected this defense.107 Rather, to justify gender differences in 
hiring outcomes, the prison would need to show that it had tested for the 
specific type of strength required for effective job performance; 108 in other 
words, the prison would have to be concerned with the aspects of strength 
that the proxy variables were and were not picking up that related to a prison 
officer’s need for strength. 

We use this setup and some hypothetical applicants to lay out the IAT. 
Imagine for example that twelve individuals apply for an open prison officer 
position, of which six applicants are male and six are female.  In evaluating 
the applicants, the prison seeks to select those applicants who possess the 
actual strength required for successful job performance. For simplicity, 
assume that an individual’s strength can be measured on a scale of zero to 
one hundred, and that a strength score of at least sixty is a true target for job 
effectiveness (i.e., a strength of sixty is a legitimate-business-necessity 
criterion). The challenge the prison faces in evaluating job applicants is that 
each applicant’s actual strength is unobservable at the time of hiring, thus 
inducing the prison to rely on height as a proxy.   

Assume that the use of a minimum height requirement results in the 
following distribution of applicants according to their actual but unobservable 
strength (Figure 1).   
                                                
103 433 U.S. 321 (1977). 
104 Id. at 323-24. 
105 Id. 
106 Id. 331. 
107 Id. at 332. 
108 Id. at 332 (“If the job-related quality that the appellants identify is bona fide, their purpose could be 
achieved by adopting and validating a test for applicants that measures strength directly.”). 
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 Figure 1  

 
Results with  
Height Test 

 

Actual 
Strength 

Meets Height 
Requirement 

Fails Height 
Requirement 

 

100 x   
90 x  Minimum 

Required 
Strength 

80 x  
70 x x 
60  x 
50 x   
40 x x  
30  x  
20  x  
10  x  
0    

x = applicant  
 
Consistent with the prison’s argument, there is a clear correlation between an 
applicant’s height and actual strength. However, when we examine the 
gender of the applicants, we discover that only the six male applicants satisfy 
the minimum height requirement (Figure 2). 
 

 Figure 2  

 
Results with  
Height Test 

 

Applicant’s 
Strength 

Meets Height 
Requirement 

Fails Height 
Requirement 

 

100 �   
90 �  Minimum 

Required 
Strength 

 
 

80 �  
70 � • 
60  • 
50 �   
40 � •  
30  •  
20  •  
10  •  
0    

� = male; • = female  
 

In this situation, a basic correlation test between height and strength has 
produced exactly the injury of concern noted in Part II(A): The imperfect 
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relationship between height and strength results in penalizing otherwise 
qualified female applicants and benefiting unqualified male applicants.  This 
can be seen from the fact that the only applicants who possessed sufficient 
strength but failed the height test were female. Likewise, the only applicants 
who met the height test but lacked sufficient strength were male. The 
screening test is thus systematically biased against female applicants for 
reasons unrelated to a legitimate business necessity. 

This example points to the crux of the IAT. In general, the objective of 
the test is to ensure that a proxy variable is excluded from use if the imperfect 
relationship between the proxy variable and the target of interest results in 
systematically penalizing members of a protected group that are otherwise 
qualified in the target of interest. In other words, since the proxy variable 
(height) is not a perfect predictor of having the target strength, there is some 
residual or unexplained variation in height across applicants that is unrelated 
to whether one has the required strength. The question is whether that residual 
is correlated with gender. In Figure 2, it is.  

To avoid this result in Dothard, the Supreme Court therefore required a 
better proxy for required strength. In particular, the prison would be required 
to “adopt[] and valida[te] a test for applicants that measures strength directly” 
in order to justify disparities in hiring outcomes.109  For example, assume that 
the prison implemented as part of the job application a physical examination 
that accurately assessed required strength, which produced the following 
results (Figure 3).  
 

                                                
109 Id. at 332. 
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 Figure 3  

 
Results with Perfect  

Strength Exam 
 

Actual 
Strength 

Passes  
Exam 

Fails  
Exam 

 

100 �   
90 �  Minimum 

Required 
Strength 

 
 

80 �  
70 � •  
60 •  
50  �  
40  � •  
30  •  
20  •  
10  •  
0    

� = male; • = female  
 
The examination was perfect in classifying all individuals – male and female 
– as qualified if they in fact were so.  Note that, even under this perfect exam, 
more males than females would be deemed eligible for the position. This 
disparity, however, arises solely through differences in actual strength (a 
legitimate business necessity).  

Figure 3 is an ideal outcome in the sense that the prison was perfect in 
measuring each applicant’s actual strength, but perfect proxy variables are 
rarely available. Imagine instead that the prison asks the applicants to 
complete a simple muscle-mass index assessment (Figure 4).110 

 

                                                
110 For instance, imagine the prison assesses each applicant’s mid-arm muscle circumference (MAMC) 
and requires a minimum measure which the prison believes is associated with having a minimum strength 
of 60. The MAMC is one of several techniques to measure muscle mass. See generally Julie Mareschal et 
al., Clinical Value of Muscle Mass Assessment in Clinical Conditions Associated with Malnutrition, 8 J. 
CLINICAL MED. 1040 (2019). 
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 Figure 4  

 
Results with  

Muscle Mass Exam 
 

Actual 
Strength 

Meets 
Muscle Mass 
Requirement 

Fails   
Muscle Mass 
Requirement 

 

100 �   
90 �  Minimum 

Required 
Strength 

 
 

80 �  
70 • � 
60  • 
50 �   
40 • �  
30  •  
20  •  
10  •  
0    

� = male; • = female  
 
As can be seen, muscle mass proxies for required strength with a positive, 
significant correlation, but it does so with error. In particular, there are 
applicants who are sufficiently strong but fail the muscle mass requirement, 
and there are applicants who meet the muscle mass requirement but are not 
sufficiently strong. The difference from Figure 2, however, is that the proxy 
is unbiased: Neither male applicants nor female applicants are favored by the 
fact that the proxy does not perfectly measure required strength. This is 
illustrated by the fact that one male and one female fail the muscle mass 
requirement but possess sufficient strength for the job, and one male and one 
female meet the muscle mass requirement but lack sufficient strength.  
Because the proxy is unbiased with respect to gender, an employer should 
therefore be permitted to use muscle mass as a proxy for required strength. 

B.  The Test in Regression Form 

Moving from concepts to practice, standard regression techniques 
provide a straightforward means to implement the IAT.  In keeping with the 
foregoing example, we return to the modified facts of Dothard, in which a 
prison uses a job applicant’s height as a proxy for whether they have the 
required strength to perform the job of a prison officer.111 The prison does so 
based on the assumption that required strength is manifested in an 

                                                
111 Of course, there might be multiple proxies. For instance, imagine the job requirements were strength 
and IQ, in some combination. Such a specification could be handled by more complex formations on the 
right-hand side of the regression framework that we discuss here. 
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individual’s height. However, height is also determined by a host of other 
causes that are unrelated to strength. If we represent this group of non-
strength determinants of height for a particular individual i as 𝜀", we can 
summarize the relationship between the height and strength as follows: 
 

𝐻𝑒𝑖𝑔ℎ𝑡" = 𝛼 ∙ 𝑆𝑡𝑟𝑒𝑛𝑔𝑡ℎ" + 𝜀",  
 

where 𝛼 is a transformation variable mapping the relationship of strength to 
expected height. If 𝜀" was zero for each individual i, the equation becomes 
𝐻𝑒𝑖𝑔ℎ𝑡" = 𝛼 ∙ 𝑆𝑡𝑟𝑒𝑛𝑔𝑡ℎ". In such a setting, an individual’s height would be 
precisely equal to the individual’s strength, multiplied by the scalar 𝛼. 
Therefore, one could compare with perfect accuracy the relative strength of 
two individuals simply by comparing their heights. 

Where 𝜀 is non-zero, using height as a proxy for strength will naturally 
be less accurate; however, using height in this fashion will pose no 
discrimination concerns if 𝜀	(the unexplained variation in height that is 
unrelated to strength) is uncorrelated with a protected classification. This was 
precisely the case in Figure 4: Strength was somewhat manifested through the 
muscle mass index. Thus, it would be a useful variable for predicting which 
job applicants had the required strength for the job. Moreover, while it was 
error-prone in measuring actual strength (i.e., 𝜀" 	≠ 0), using one’s muscle 
mass index to infer strength would pass the IAT: 
 

𝜀" ⊥ 𝑔𝑒𝑛𝑑𝑒𝑟; 
 
the errors were not statistically correlated with gender, the protected category 
in our example.  

To implement this test empirically, the prison would use the historical 
data it holds concerning its existing employees’ measured height and strength 
and regress employee height on employee strength to decompose the 
variation of height into that which is correlated with strength and that which 
is unexplained. This process would estimate 𝛼9 ∙ 𝑆𝑡𝑟𝑒𝑛𝑔𝑡ℎ", where the 𝛼9 is the 
estimated regression coefficient. Using this estimated relationship between 
strength and height, the difference between an employee’s actual height and 
predicted height would constitute an estimated residual (𝜀") for each 
employee, or the portion of height unexplained by strength.112 This 
decomposition thus takes out the linear correlation of the input variable with 
the target. One could equally do this decomposition on other transforms of 
the input variable (e.g., squared, natural logarithm, or non-parametric interval 
variables). Using these residuals, the prison would then examine whether they 
are correlated with employee gender. 
                                                
112 The regression will also estimate a constant term that is utilized in calculating the relationship between 
strength and height. 
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How would the IAT be used in a setting where the proxy is not a 
continuous measure (such as one’s height or muscle mass) but rather a binary 
outcome of whether an individual possesses a specified level of the measure? 
Recall that this was the case in our hiring example where the prison first 
assessed an applicant’s height and then applied a cut-off score to eliminate 
from consideration those applicants who fell below it. As reflected in 
Dothard and Lanning, applying a minimum cut-off score to a proxy variable 
is a common decision-making practice, including within machine learning.113  

The application of the IAT would use the same framework as above, but 
it would use as the left-hand-side variable an indicator variable for whether 
an individual i was above or below the cutoff—for our example, 𝐻𝑒𝑖𝑔ℎ𝑡" =
1	for applicants above the cutoff and 𝐻𝑒𝑖𝑔ℎ𝑡" = 0 for applicants below it.  To 
estimate a discrete 0-1 variable (Height) as a function of a target (e.g., 
Strength), the preferred model is a logistic estimation (or a comparable model 
for use with a dichotomous outcome variable). Logistic estimation is a 
transformation that takes a set of zeros and ones representing an indicator 
variable and specifies them in terms of the logarithm of the odds ratio of an 
outcome (in our example, the odds ratio is the probability of 𝐻𝑒𝑖𝑔ℎ𝑡" being 
above the cut-off divided by the probability that it is below the cut-off). This 
transformation is then regressed on the target measure (Strength). To generate 
the residuals, one predicts the probability of a positive outcome and then 
generates the residual as the true outcome minus the predicted probability. As 
above, to pass the test, the residuals should not be significantly correlated 
with gender. 

We have thus far assumed a simple model of business necessity based on 
one target, strength. Yet, suppose the skills necessary for a prison officer 
include intelligence, reliability, and diligence. The fundamental business 
necessity model would then have multiple targets. In many contexts, the 
multiple targets are related. For example, muscle mass may not just pick up 
strength but also some aspects of diligence, as it takes grit to persevere at the 
gym regularly. A lender, for example, may choose a number of input 
variables (signals on family and social networks) that could be used to pick 
up missing aspects of wealth and expected income growth. When the targets 
are more than one, the application of the IAT would include all target 
variables on the right-hand side of the estimation, again using historical 
training datasets. 

                                                
113 See, e.g., Elizabeth A.Freeman & Gretchen G.Moisen, A Comparison of the Performance of Threshold 
Criteria for Binary Classification in Terms of Predicted Prevalence and Kappa, 217 ECOLOGICAL 
MODELING 48 (2008) (reviewing criteria for establishing cutoffs in ecological forecasting). 
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C.  Consequence of Failing the IAT  

When an input variable fails the IAT, its use is inconsistent with Title 
VII. Thus, the variable should be excluded. This is a stark statement, and we 
do not take its assertion lightly.  

i.  Concerns with Excluding IAT-Failing Variables  

The first concern with excluding an input variable that fails the IAT might 
be with the empirical reliability of the IAT in detecting input variables that 
are inconsistent with Title VII.  We take this concern seriously, and we devote 
Part V to discussing empirical challenges in implementing the IAT. In 
particular, Part V discusses issues arising from (i) the unobservability of a 
target variable, (ii) measurement error in a target variable, and (iii) testing for 
a statistically uncorrelated relationship between the protected category and 
the residual (from decomposing the input variable into that which is 
correlated with the target(s) and that which is unexplained). We follow this 
discussion in Part VI with a simulation based on Dothard to show how the 
IAT can be implemented in general and in handling these challenges.  

The second concern is that it might be possible to de-bias the input 
variables rather than dropping them. We address this concern in the following 
subsection and in the Appendix. 

ii.  The Possibility of De-biasing IAT-Failing Variables  

If the residuals are correlated with a protected classification (e.g., 
gender), it may be possible to “de-bias” a model that predicts strength from 
height, most notably by adding an individual’s membership (or lack of 
membership) in a protected class as an input in the predictive model. Indeed, 
this approach to de-biasing proxy input variables has been advanced by 
several scholars.114   

However, as shown in the Appendix, the fact that de-biasing requires us 
to include one’s membership in a protected group (e.g., an indicator variable 
for whether an applicant is female or not) in the predictive model impairs the 
utility of this approach. A predictive model that explicitly scores individuals 
differently according to gender constitutes disparate treatment, making it a 
legally impermissible means to evaluate individuals. To avoid this challenge, 
proponents of this approach have therefore advocated that, in making 
predictions, the model should assign all individuals to the mean of the 
protected classification;115 in our example, one would do so by treating all 
                                                
114 See Devin G. Pope & Justin R. Sydnor, Implementing Anti-Discrimination Policies in Statistical 
Profiling Models, 3 AM. ECON. J. 206, 206 (2011); Crystal Yang & Will Dobbie, Equal Protection Under 
Algorithms: A New Statistical and Legal Framework, John M. Olin Center For Law, Economics, and 
Business Discussion Paper No. 1019 (October 2019). We provide an example of this approach, as well as 
its limitations, in the Appendix. 
115 See, e.g., Pope & Sydnor, supra note 114, at 212. 
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individuals as if gender = 0.5 (i.e., (1 + 0) / 2) when estimating the effect of 
gender on predicted strength.  Doing so introduces prediction error, however, 
and as demonstrated by Kristen Altenburger and Daniel Ho, this error can be 
especially problematic when the approach is deployed in common machine-
learning models.116 More troublesome, these prediction errors can themselves 
be systematically biased against members of a protected group who are 
otherwise qualified in the target. We illustrate this challenge in the Appendix, 
which presents a simple example showing that this “de-biasing” procedure 
may actually have almost no effect on the extent of bias in the final outcome. 

 These considerations reinforce our conclusion that a decision-making 
model should exclude any variable that fails our test. While this approach 
risks sacrificing some degree of predictive accuracy in favor of an unbiased 
decision-making process, our discussion in Part II(C) illustrates that U.S. 
antidiscrimination law has long made this trade-off. Additionally, a rule of 
exclusion also creates obvious incentives to seek out observable variables that 
can more accurately capture the target variable of interest, consistent with the 
holding of Dothard that the prison should adopt a test that more directly 
measured an applicant’s strength.117 Indeed, creating this incentive seems 
especially appropriate in the machine learning context given  the capacity of 
machine learning processes to analyze an ever-increasing volume of data to 
identify proxies that can pass the IAT. 

IV.  APPLICATIONS 

The fact that the IAT is rooted in general antidiscrimination principles 
makes it applicable to any setting where a decision-maker relies on statistical 
discrimination, regardless of whether conducted by humans or algorithms. 
Central to our argument is the idea of using a test to ascertain adherence to 
business necessity targets when designing a decision-making process.  

In this section, we discuss additional implementations outside of the 
employment setting to illustrate the general applicability of the IAT whenever 
a court or other regulatory body has articulated business necessity targets that 
can justify disparate outcomes across members of protected and unprotected 
groups. In Part 4(A), we begin by examining settings where courts have 
expressly engaged in this process and defined legitimate business necessity 
targets under various U.S. antidiscrimination laws. In these domains, 
application of the IAT simply requires testing an algorithm’s features against 
the specified business necessity target concept(s).  

In Part 4(B) we turn to other domains where no legally imposed business 
necessity target currently exists for applying the IAT. These are domains 

                                                
116 See Kristen M. Altenburger & Daniel Ho, When Algorithms Import Private Bias into Public 
Enforcement: The Promise and Limitations of Statistical Debiasing Solutions, 175 J. INSTITUTIONAL & 
THEORETICAL ECON. 98, 109-18 (2018). 
117 See supra note 108. 
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where formal liability for claims of disparate impact or other claims of 
unintentional discrimination are currently less clear, absolving courts or 
policy-makers from having to define business necessity targets. Firms 
operating in these settings are, of course, free to self-regulate by applying the 
IAT to their own self-imposed business necessity targets. However, for those 
concerned about algorithmic discrimination in these domains, Part 4(B) 
underscores the special need for algorithmic accountability legislation in 
these contexts. To the extent legislation occurs, the IAT will provide a ready 
means to ensure algorithms are accountable so long as the legislation clearly 
specifies a business necessity target. 

Finally, in Part 4(C) we lay out the case for the fundamental importance 
of properly defining a business necessity target for both policy-makers and 
firms. 

 
A.  Domains with Court-Defined Business Necessity Targets 

 
Consider a regulator tasked with evaluating a decision-making algorithm 

in one of the following domains where legal claims of unintentional 
discrimination are recognized, and where courts have expressly defined a 
legitimate target attribute that can justify unintended disparities that vary 
across protected and unprotected groups: 

 

Table 1 
Domain: Legitimate Target Attribute: 

Credit determinations Creditworthiness118 
Home insurance pricing Risk of loss119 
Parole determinations Threat to public safety120 

                                                
118 See A.B. & S. Auto Serv., Inc. v. S. Shore Bank of Chi., 962 F. Supp. 1056 (N.D. Ill. 1997) (“[In a 
disparate impact claim under the ECOA], once the plaintiff has made the prima facie case, the defendant-
lender must demonstrate that any policy, procedure, or practice has a manifest relationship to the 
creditworthiness of the applicant…”); see also Lewis v. ACB Bus. Servs, Inc., 135 F.3d 389, 406 (6th Cir. 
1998) (“The [ECOA] was only intended to prohibit credit determinations based on ‘characteristics 
unrelated to creditworthiness.’”); Miller v. Countrywide Bank, NA, 571 F. Supp. 2d 251, 258 (D. Mass. 
2008) (rejecting the argument that discrimination in loan terms among African-American and white 
borrowers was justified as the result of competitive “market forces,” noting that prior courts had rejected 
the “market forces” argument insofar that it would allow the pricing of consumer loans to be “based on 
subjective criteria beyond creditworthiness”). 
119 See, e.g., Owens v. Nationwide Mut. Ins. Co., No. Civ. 3:03-CV-1184-H, 2005 WL 1837959, at *9 
(N.D. Tex. Aug. 2, 2005) (holding that minimizing the “risk of loss in homeowner’s insurance” was a 
legitimate business necessity under the FHA that justified the use of facially neutral policy of using credit 
to determine eligibility for homeowner’s insurance). 
120 See, e.g., CAL. PENAL CODE § 3041 (West 2018) ("The [Board of Parol Hearings] shall grant parole to 
an inmate unless it determines that the gravity of the current convicted offense or offenses, or the timing 
and gravity of current or past convicted offense or offenses, is such that consideration of the public safety 
requires a more lengthy period of incarceration for this individual.”); see also Smith v. Sisto, No. CV-08-
00104CBMHCX, 2009 WL 3294860, at *6 (E.D. Cal. Oct. 13, 2009) (denying a claim that denial of parole 
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Tenant selection Ability to meet lease obligations,121 
pay rent,122 and resident safety123 

Post-secondary school admission Predicted academic success124 

Selection into special education  Educational ability125 
 

State merit scholarship eligibility Academic achievement in high 
school126 

 
Just as employers are permitted to make hiring decisions based on the 
legitimate target variables capturing a job-required skill, courts in these 
settings have likewise determined that decision-making outcomes can 
lawfully vary across protected and unprotected groups only if decisions are 
based on the target variables noted in Table 1.  

In applying the IAT in these settings, the regulator’s task thus follows the 
same process noted in Part III.  First, the regulator must evaluate whether the 
decision-making process does, in fact, seek to produce outcomes based on the 
legitimate target attributes.  Second, using historical data for both the target 
variables and the model’s full set of input features, the regulator would then 
apply the IAT to each input variable used in the model.  Finally, any input 
variable that failed the test would be required to be excluded from the model.  

 
B.  Domains Without Court-Defined Business Necessity Targets 

 
What about domains where there are no legally imposed business 

necessity targets? There are two reasons why this might be the case.  First, 
                                                
constituted discrimination and concluding that “[t]he need to ensure public safety provides the rational 
basis for section 3041”). 
121 See 24 C.F.R. § 100.202(c)(1) (2020) (permitting under the FHA a landlord’s “[i]nquiry into an 
applicant's ability to meet the requirements of ownership or tenancy”). 
122 See Ryan v. Ramsey, 936 F. Supp. 417 (S.D.Texas 1996) (noting that under the FHA, “there is no 
requirement that welfare recipients, or any other individuals, secure apartments without regard to their 
ability to pay.”). 
123 See Evans v. UDR, Inc., 644 F. Supp. 2d 675, 683 (2009) ( “The policy against renting to individuals 
with criminal histories is . . . based [on] concerns for the safety of other residents of the apartment complex 
and their property”). 
124 See Kamps v. Baylor Univ., 592 F. App'x 282 (5th Cir. 2014) (rejecting an age discrimination case 
based on law school admissions criteria that relied on an applicant’s grade point average (GPA) because 
GPA is a quantitative predictor of academic success in law school and thus a “a reasonable factor other 
than age”).   
125 See Ga. State Conf. of Branches of NAACP v. Georgia, 775 F.2d 1403, 1420 (11th Cir. 1985) (finding, 
in a Title VI case alleging that school district achievement grouping caused disparate impact on minority 
students, that the school district’s effort to classify students based on assessment of ability was justified 
because it bore “a manifest demonstrable relationship to classroom education”). 
126 See Sharif by Salahuddin v. N.Y. State Educ. Dept., 709 F. Supp. 345, 362 (S.D.N.Y. 1989) (finding 
that the state’s use of SAT scores did not have a “manifest relationship … [to] recognition and award of 
academic achievement in high school” in a Title IX claim of disparate impact alleging that the state’s use 
of SAT scores to determine student eligibility for merit scholarships had a discriminatory effect on 
women). 
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antidiscrimination laws may not formally regulate decision-making processes 
that result in unintended disparities across protected and unprotected groups. 
Second, the legal risk for unintentional discrimination may presently be 
unclear. We provide an example of each.  

With respect to the first situation, insurance outside the context of home 
insurance provides one such example.127 As Ronen Avraham, Kyle Logue, 
and Daniel Schwarcz show, a number of jurisdictions do not have any laws 
restricting providers of automobile or life insurance from discriminating on 
the basis of race, national origin, or religion.128 Nor is there a federal 
antidiscrimination statute applicable to insurance outside of the context of 
home insurance.129 Consequently, insurers likely have considerable 
discretion to rely on statistical discrimination to underwrite policies, which 
may produce unintended disparities across protected and unprotected groups.  

With respect to the second situation, an example can be found in the 
provision of medical treatment, which is relevant given our examples in the 
Introduction of the triage algorithms in the context of COVID-19 and 
UnitedHealth’s patient illness algorithm. Discrimination in healthcare 
provision is covered by Title VI of the Civil Rights Act of 1964, thus making 
it a more regulated setting than the insurance example. However, in 
Alexander v. Sandoval,130 the U.S. Supreme Court held that Title VI does not 
provide for a private right of action to enforce disparate impact claims, greatly 
diminishing the risk that a provider of healthcare will face a claim of 
unintentional discrimination. This has also meant there has not been an 
occasion for courts to articulate a business necessity target. 

Even in these domains, however, the IAT remains a relevant tool for 
policing discrimination for two reasons. First, despite the lack of a clear cause 
of action for unintentional discrimination, these two domains often constitute 
areas of vital importance to the health and welfare of individuals, creating 
strong incentives for members of the public to scrutinize whether the 
transition to algorithmic decision-making is adversely impacting members of 
protected groups. Indeed, it is precisely this concern that led to the public 
scrutiny of SOFA-based triage algorithms during the COVID-19 pandemic. 
Similar public scrutiny has been applied to racial disparities in the pricing of 
auto loans. For instance, a nationwide study by the Consumer Federation of 
America (CFA) in 2015 found that predominantly African-American 

                                                
127 As noted in Table 1, the FHA governs discrimination in home insurance. 
128 See Ronen Avraham et al., Understanding Insurance Anti-Discrimination Laws, 87 S. CAL. L. REV. 
195, 239 (2014). 
129 Id. at 241. Additionally, the few cases alleging discrimination by insurance providers under 42 U.S.C. 
§ 1981—a Reconstruction era statute that prohibits racial discrimination in private contracting—have 
required a showing of intentional discrimination. See, e.g., Amos v. Geico Corp., No. 06-CV-
1281(PJS/RLE), 2008 WL 4425370 (D. Minn. Sept. 24, 2008) (“To prevail under § 1981, plaintiffs must 
prove that GEICO intentionally discriminated against them on the basis of race.”). 
130 532 U.S. 275 (2001). 
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neighborhoods pay higher auto premiums,131 calling into question the 
discriminatory impact of insurance pricing models.  

To the extent public scrutiny induces firms and organizations to self-
regulate, the IAT provides a means to examine whether their decision-making 
models are producing unintentional, illegitimate discrimination. For instance, 
in response to the CFA’s study, the Property Casualty Insurers Association 
of America responded with a declaration that “Insurance rates are color-blind 
and solely based on risk.”132  To the extent insurers are sincere in this claim, 
the IAT provides them with a ready test to ensure compliance with this self-
imposed business necessity target.   

Additionally, we believe that the lack of a clear cause of action for 
unintentional discrimination makes these domains especially vulnerable to 
the concerns about discrimination that have motivated the emergence of 
algorithmic accountability bills. For legislatures seeking to impose 
antidiscrimination guardrails on algorithmic decision-making in these areas, 
the IAT provides a tool to do so provided they articulate what business 
necessity targets can justify disparities in outcomes. 

 
C.  Determining Legitimate Business Necessity Targets 

 
Lastly, the centrality of a business necessity target in the IAT—as in the 

theory of disparate impact more generally—underscores the vital importance 
of how this target is set by policy-makers and applied by firms. Recall that 
neither the IAT nor the theory of disparate impact will prevent unintentional 
disparate outcomes from occurring if they reflect underlying disparities in the 
distribution of a business necessity target.  For instance, as shown in our 
Dothard example, even proper application of the IAT can result in hiring 
predominantly male prison officers if the distribution of strength (the 
business necessity target) favors males.   

For policy-makers seeking to control algorithmic discrimination, this fact 
highlights the important equity considerations that must inform the 
determination of the appropriate target. Recall again the UnitedHealth  
example. Utilization of this algorithm was based on the objective of 
ascertaining the sickest patients for allocating care, a self-imposed target 
which presumably has business necessity. While this approach was designed 
to ensure that every patient had equitable access to care, a considerable 
amount of the criticism erupted regarding the distributional consequences of 
this self-imposed target. 

                                                
131 TOM FELTNER & DOUGLAS HELLER, CONSUMER FED’N OF AM., HIGH PRICE OF MANDATORY AUTO 
INSURANCE IN PREDOMINANTLY AFRICAN AMERICAN COMMUNITIES (2015), https://consumerfed.org/wp-
content/uploads/2015/11/151118_insuranceinpredominantlyafricanamericancommunities_CFA.pdf. 
132 Press Release, Am. Prop. Casualty Insurers Ass’n, Auto Insurance Rates Are Based on Cost Drivers, 
Not Race (Nov. 18, 2015) (available at 
https://www.pciaa.net/pciwebsite/cms/content/viewpage?sitePageId=43349). 
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The UnitedHealth episode provides just one example of the challenging 
equity considerations implicated in setting a business necessity target. While 
resolving this challenge is beyond the scope of this article, it is critically 
important that it is addressed. To mitigate the risk that the distributional 
implications of a proposed target go overlooked, policy-makers would thus 
be well-advised to develop business necessity targets with input from those 
with expertise in distributional equity and with engagement from diverse 
communities. As noted in Part II, the distributional implications of setting the 
business necessity target is also a primary reason why we believe it is 
necessary to separate the question of whether an algorithm uses invalid inputs 
from the question of whether the outcomes from a model are fair and 
equitable. 

Additionally, for firms engaged in algorithmic decision-making, the 
centrality of a business necessity target also underscores the need for 
businesses to be vigilant that a purported target in a decision-making model 
is, in fact, a legitimate one to use. This is especially the case when working 
in a domain where courts have defined what can (and cannot) constitute a 
business necessity target. 

A case in point comes from the credit markets, whereby lenders may have 
incentives to deploy predictive algorithms to estimate demand elasticities 
across different borrowers to engage in price discrimination. Price 
discrimination is made possible by the fact that certain borrowers are more 
prone to accept higher-priced loans rather than engage in price shopping. 
(Technically, their demand is less “elastic”—that is, sensitive—to changes in 
price). These borrowers may not shop around for a host of reasons: They 
might live in financial desert locations of low competition, lack the 
knowledge to shop for the best rate, need to transact in a hurry, have a 
discomfort with financial institutions due to prior discrimination, and/or have 
a history of being rejected for loans. Empirical studies document that loan 
officers and mortgage brokers are aware of variation in borrowers’ interest 
rate sensitivity and engage in price discrimination.133  

A loan applicant’s “price sensitivity” or “willingness to shop” may 
therefore be an additional unobserved characteristic that is of interest to a 
lender. In other words, a lender’s profit margin depends on both 
creditworthiness (the court-determined legitimate business necessity from 
Table 1) and shopping profiles. A lender might therefore design an algorithm 
that seeks to maximize profits by uncovering credit risk and shopping 
profiles. Furthermore, the lender (if lending were not in a formally-regulated 
domain) would argue that profits are legitimate business necessity. Yet, as 

                                                
133 See, e.g., SUSAN E. WOODWARD, URBAN INST., A STUDY OF CLOSING COSTS FOR FHA MORTGAGES 
xi (2008), https://www.huduser.org/Publications/pdf/FHA_closing_cost.pdf (“In neighborhoods where 
borrowers may not be so familiar with prevailing competitive terms, or may be willing to accept worse 
terms to avoid another application, lenders make higher-priced offers …”). 
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noted in Table 1, lending is a domain where courts have expressly held that 
if a lending practice creates a disparate impact, “the defendant-lender must 
demonstrate that any policy, procedure, or practice has a manifest 
relationship to the creditworthiness of the applicant.”134 That is, while 
differences in creditworthiness can justify disparate outcomes in lending, 
differences in shopping behavior cannot. 

The concern of algorithmic profiling for shopping behavior is of general 
concern because empirical evidence, again in lending, finds that profiling on 
lack-of-shopping almost certainly leads to higher loan prices for minority 
borrowers.  For instance, Susan Woodward and Robert Hall135 as well as 
Mark Cohen136 find that adverse pricing for minority borrowers has generally 
been the rule when it comes to lenders who engage in price discrimination.  
In separate work,137 we likewise find empirical evidence that, even after 
controlling for borrower credit risk, “FinTech” lenders charge minority 
homeowners higher interest rates.  We interpret these pieces of evidence as 
consistent with loan originators using a form of algorithmic price 
discrimination.  Were these algorithms subject to an internal or external 
“accountability audit,” it is likely that the proxy variables used would fail the 
IAT because, no matter how well the algorithm performed in detecting the 
profitability of a loan, the target for the test would, by law, be 
creditworthiness—not an outcome that included price sensitivity. In this 
fashion, simply asking what target variable an algorithm seeks to detect can 
illuminate illegitimate algorithmic discrimination. 

Finally, we want to end this applications section on a positive note. In 
many discussions with lenders, it has become evident that, at least in the 
finance realm, firms want to be able to validate what they are doing or what 
they intend to do before they invest and commit to a predictive algorithm. In 
this regard, the IAT can provide these firms with a useful tool for validating 
the use of proxy variables.  

V.  CHALLENGES IN IMPLEMENTING THE INPUT ACCOUNTABILITY TEST 

 
Implementing the IAT faces several challenges, which we list below and 

then discuss in the context of the hiring test used in Part III 
(𝐻𝑒𝑖𝑔ℎ𝑡" = 𝛼 ∙ 𝑆𝑡𝑟𝑒𝑛𝑔𝑡ℎ" + 𝜀"), where the target variable is 𝑆𝑡𝑟𝑒𝑛𝑔𝑡ℎ.  

                                                
134 A.B. & S. Auto Service, Inc., 962 F. Supp. 1056, 1056 (N.D. Ill. 1997). 
135 Susan Woodward & Robert E. Hall, Consumer Confusion in the Mortgage Market: Evidence of Less 
Than a Perfectly Transparent and Competitive Market, 100 AM. ECON. REV. 511 (2010). 
136 Mark Cohen, Imperfect Competition in Auto Lending: Subjective Markup, Racial Disparity, and Class 
Action Litigation, 8 REV. L. ECON. 21 (2012). 
137 Robert Bartlett et al., Consumer Lending Discrimination in the FinTech Era (Nat’l  Bureau of Econ. 
Research Working Paper No. 25943, 2019), https://www.nber.org/papers/w25943. 
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A.  Unobservability of the Target Variable  
 

A first challenge in applying the IAT is the unobservability of the target 
variable of interest. The problem of an unobservable target is the key reason 
for constructing an algorithm to screen an applicant (or make some other 
decision), since the motivation for using statistical inference in the first place 
is the challenge of measuring business necessity target attributes (which are 
often latent) such as creditworthiness, productivity, longevity, or threat to 
public safety.138  

In designing a machine-learning algorithm, this problem thus also arises 
in the training procedure, where a model estimates the relationship between 
various proxy input variables and an outcome of interest.  In practice, the 
solution is to turn to historical data, which can be used to train the predictive 
model,139 at times skipping any effort at directly measuring the target of 
interest. In our example, for instance, the prison may have taken muscle mass 
measures of strength for its prison officers at some point in the past, and it 
can use these data, along with other performance data (e.g., job performance 
assessments), and the application-reported height variable to calibrate its 
height cut-off model. These same data can be used for running the IAT. To 
be sure, the data may suffer from selection bias given that the employer will 
not observe performance of the applicants who were not hired. Accordingly, 
in both training a model and in running the IAT, one must be attendant to 
measurement error—a point we discuss in subsection (ii). 

Nonetheless, this first challenge for the IAT—that the target is 
unobservable—is in many ways one of transparency.  That is, data concerning 
the target attributes exist (after all, these data were required to train the 
model), but they may not necessarily be available to a regulator or researcher 
applying the IAT. As Jon Kleinberg, Jens Ludwig, Sendhil Mullainathan, and 
Cass Sunstein emphasize, transparency in the training data is therefore an 
important step in ensuring the ability to evaluate whether algorithmic 
decision-making facilitates discrimination.140 We agree. The ability to 
examine the training data used in designing a model would allow a regulator, 
litigant or researcher to conduct the IAT.  

 

                                                
138 See Jon Kleinberg et al., Discrimination in the Age of Algorithms, 10 J. LEGIS. ANALYSIS 113, 132 
(2019) (“One way to think about the goal of prediction is to overcome a missing information problem.”). 
139 Id.  
140 Id. at 114 (arguing that harnessing the benefits of algorithmic decision-making while avoiding the risk 
of discrimination “will only be realized if policy changes are adopted, such as the requirement that all 
the components of an algorithm (including the training data) must be stored and made available for 
examination and experimentation”). 
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B.  Measurement Error  
 

In addressing the unobservability problem of latent targets, one can 
inadvertently mis-measure it. This challenge of measurement error—or what 
is alternatively referred to as “label bias”141—has been studied in the 
computer science and economics literatures, providing useful guidance for 
addressing it when applying our test.142 

Consider, for instance, judicial bail decisions where data scientists have 
used past judicial bail decisions to train algorithms to decide whether a 
defendant should be released on bail pending trial.143 In many states, judges 
are required to consider the risk that a defendant poses for public safety, and 
in training the model, the business necessity target is often defined to be 
whether a released defendant was later arrested prior to the trial.144  However, 
heavier policing in minority neighborhoods might lead to minority defendants 
being arrested more often than non-minorities who commit the same 
offense.145 Or, said another way, perhaps the released minority defendant, 
who was re-arrested, was doing nothing illegal when re-arrested. 
Consequently, Sam Corbett-Davies and Sharad Goel have warned that this 
form of label bias risks causing a model to estimate a positive relationship 
between a defendant’s race (and correlates of race) and whether the defendant 
poses a risk to public safety, simply due to the correlation of race with 
measurement error.146  

Likewise, as Jon Kleinberg and others have noted, an employer who 
seeks to measure employee productivity through the number of hours that an 
employee spends at work will likely be using a biased measure of productivity 
if there are gender differences in how efficiently an employee works at the 
office (for example, to attend to childcare obligations before or after work).147  
Similar to the bail example, this form of label bias is problematic because the 
measurement error may be correlated with a protected characteristic, in this 
case, gender.148  

                                                
141 Corbett-Davies & Goel, supra note 70, at 3. 
142 See id. at 17-18. 
143 See, e.g., Berk et al., supra note 84, at 31-33. 
144 Id. at 31. 
145 Corbett-Davies & Goel, supra note 70, at 18. 
146 Id. 
147 See Kleinberg et al., supra note 138, at 139. 
148 Note that in both of these examples, the disparate outcomes for members of protected groups arose 
from the use of an estimate of a business necessity target that was mis-measured; that is, arrests are a noisy 
(and biased) measure for dangerousness and hours-worked is a noisy (and biased) measure for 
productivity. The concerns about the resulting disparities are thus different from those where the disparities 
arise from disparities in the target of interest.  For instance, in the case of the SOFA algorithm for sorting 
patients for ventilator access during the COVID-19 pandemic, a health-condition such as diabetes may 
legitimately imply a greater mortality risk, inducing a hospital to prioritize patients that do not have 
diabetes if the business necessity is to prioritize patients with a greater expected long-term survival. 
However, the prevalence of higher rates of diabetes among African-Americans implies that they would 
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These examples illustrate the general point that measurement error in a 
target variable will create discriminatory bias when the measurement error is 
correlated with membership in a protected group.  This result occurs because 
a statistical model that seeks to estimate the predictors of a true target y that 
is mis-measured as y + µ will inevitably discover that the protected 
classification (and any correlate of it) predicts the level of the mis-measured 
target.  

For similar reasons, when measurement error in a target variable is 
correlated with a protected classification, application of our test may fail to 
detect this bias. Returning to the Dothard example, imagine that we applied 
the IAT to Height as before, but we use a measure for strength, Strength*, 
that has measurement error µ that is correlated with gender. Formally, the test 
would be: 

 
𝐻𝑒𝑖𝑔ℎ𝑡" = 𝛼 ∙ 𝑆𝑡𝑟𝑒𝑛𝑔𝑡ℎ"∗ + 𝜀" 

 
which is equivalent to: 
 

𝐻𝑒𝑖𝑔ℎ𝑡" = 𝛼 ∙ (𝑆𝑡𝑟𝑒𝑛𝑔𝑡ℎ" + 𝜇") + 𝜀" 
 
In such a setting, the IAT may fail to reveal that the unexplained portion of 
height is correlated with the protected classification of gender. The reason is 
because the unexplained variation between “true” Strength and Height is 
(𝜇" + 𝜀"), but the IAT will not be able to detect how gender is correlated with 
𝜇" because it is part of Strength*, the mis-measured target. In short, 
measurement error in a target variable is a critical issue to consider regardless 
of whether one is calibrating a model or running our test. 

Recognition of this latter point is implicit in Kleinberg, Ludwig, 
Mullainathan, and Sunstein’s argument for making training datasets 
transparent. Often, the data for a target will reveal fairly obvious risks that 
the measurement error is biased with respect to a protected classification 
(such as the example cited earlier when an employer uses hours-worked as a 
measure for productivity). At the same time, other instances when this 
problem arises may be less obvious. In these situations, transparency about 
the target proxy can nevertheless allow regulators and third-party researchers 
to scrutinize whether measurement error is correlated with a protected 
classification. 

As an example, we revisit the controversy surrounding the widely-used 
health care algorithm deployed by UnitedHealth that we highlighted in the 

                                                
get less access to ventilators under a SOFA algorithm. In this case, the target may be legitimate and 
measured correctly, but there may be a need for a fairness correction, as discussed in Part II(B). 
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Introduction.149 UnitedHealth was transparent that it used a patient’s cost of 
care as its proxy for the unobservable target (sickness). Using this 
information, researchers were subsequently able to show that this proxy for 
sickness had measurement error that was correlated with being an African-
American patient, causing these patients to receive substandard care as 
compared to white patients. In particular, using actual morbidity data, these 
researchers showed that African-American patients historically incurred 
lower costs for the same illnesses and level of illness.150  In short, 
transparency about the target’s proxy allowed these researchers to examine 
how the measurement error was correlated with a protected classification, 
calling into question the use of this proxy for the target. 

Beyond the benefits of transparency about a target, this last example also 
underscores the need to run the IAT with alternative measures of the target to 
identify mis-measured targets.  This is particularly important given potential 
selection bias in the measure used for a target. Consider, for instance, a model 
that seeks to predict creditworthiness based solely on whether a borrower 
defaults in the training data. By construction, the training dataset consists 
only of those borrowers who received a loan; borrowers who do not get a loan 
provide no information. Thus, it is infeasible to estimate actual 
creditworthiness within the broader group of all applicants. This issue is often 
referred to as a “selective labels” problem within the computer science and 
economics literatures.151 The literature on selective labels in training a model 
has suggested a process of interventions to correct the misestimations.152 
Another approach would be to implement the IAT through a structural 
estimation of theoretic representations of the target business necessity.153   
                                                
149 Melanie Evans & Anna Wilde Mathews, New York Regulator Probes UnitedHealth Algorithm for 
Racial Bias, WALL ST. J. (Oct. 26, 2019, 7:00 AM), https://www.wsj.com/articles/new-york-regulator-
probes-unitedhealth-algorithm-for-racial-bias-11572087601. 
150 Ziad Obermeyer et al., Dissecting Racial Bias in an Algorithm Used to Manage the Health of 
Populations, 366 SCIENCE 447 (2019). 
151See Himabindu Lakkaraju et al., The Selective Labels Problem: Evaluating Algorithmic Predictions in 
the Presence of Unobservables, 2017 KDD ’17: PROC. 23RD ACM SIGKDD INT’L CONF. ON KNOWLEDGE 
DISCOVERY & DATA MINING 275; Kleinberg et al., Human Decisions and Machine Predictions, 133 Q.J. 
ECON. 237, 256 (2018). 
152 See, e.g., Maria De-Arteaga et al., Learning Under Selective Labels in the Presence of Expert 
Consistency (July 4, 2018) (unpublished manuscript) (available at https://arxiv.org/pdf/1807.00905v1.pdf) 
(proposing a data augmentation approach that can be used to leverage expert consistency to mitigate the 
partial blindness that results from selective labels). 
153For instance, consider a credit scoring algorithm that predicts credit risk based on default rates for loans 
that were previously extended to a group of borrowers.  A model built using these target data (i.e., whether 
or not a borrower defaults) suffers from bias insofar as it only includes default data for loans that were 
approved by a lender. This selective labels problem can result in bias if the human decision-maker who 
approved the loans based the approval decision on borrower characteristics that were observable to the 
loan officer but are unobservable to the data scientist because they do not appear in the dataset.  Imagine, 
for instance, that a loan officer records data on a loan applicant’s occupation and, for low-paying 
occupations, the loan officer also evaluates informally an applicant’s attire, which the officer believes is 
associated with creditworthiness.  Assume the loan officer approves loans to well-dressed applicants in 
occupations that would otherwise make them ineligible for a loan and that these applicants are, in fact, 
more creditworthy than their occupation would suggest. Training a predictive model using only default 
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Another version of the problem of measurement error comes in the 
context of threshold analysis. In our example, the prison asserted that it 
needed a minimum required level of strength. As a result, the target was not 
the continuous variable of strength, but the applicant possessing a strength 
level of at least 60, which we assumed was a legitimate business necessity 
threshold for a prison officer job. But what if the level of strength needed is 
not obvious? What if the prison erroneously thought the true level of required 
strength was 80? We previously referred to this setting as a mis-asserted 
target threshold. Cases such as Lanning v. Southeastern Pennsylvania 
Transporation Authority underscore the potential for these target thresholds 
to be mis-asserted in a way that results in intentional discrimination, such as 
when they are purposefully set at a level that will adversely affect members 
of a protected group. 

In Figure 5, we assume that, as in Figure 3, the prison implements a 
physical exam that perfectly measures actual strength. If the prison 
mistakenly sets the minimum required strength threshold at 80 (the dashed 
line), the resulting problem is that more women cluster in the just-failed space 
(between the dashed and straight line), which is the region between the mis-
asserted target threshold relative to the true required strength level. As the 
figures shows, if an employer did not want to hire women, it could 
intentionally implement a mis-asserted target, knowing that more women 
would be excluded.  
 

                                                
data and occupation at the time of application would therefore suggest to the model that “high risk” 
occupations are actually more creditworthy than they are because they default infrequently.  Moreover, 
given racial, ethnic and gender differences in the composition of certain occupations, this model would 
likely be biased in addition to being inaccurate.  However, evidence of this bias would become apparent 
in applying the IAT if one were to run the test using an estimate for creditworthiness that was based on 
borrowers’ cash flow data as opposed to default data. 
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 Figure 5    

 
Results with Valid  

Strength Exam 
   

Actual 
Strength 

Passes  
Exam 

Fails  
Exam Minimum Required 

Strength 

 

100 �   
90 �  True  Model  
80 �    
70  � •   
60   •   
50  �    
40  � •    
30  •    
20  •    
10  •    
0      

� = male; • = female    
 
In this setting, the exam would pass the IAT insofar that it was unbiased with 
respect to gender in predicting whether an applicant had strength of at least 
80. However, the employer’s use of the exam would nevertheless fail our 
definition of accountability set forth in Part II because the employer has set 
the cut-off at a level where qualified females are systematically exluded from 
the position. As emphasized in Lanning, this example underscores the 
importance of supplementing the IAT with the ability to scrutinze whether a 
classification threshold has been set at a level that is justified by actual 
business necessity. 
 

C.  Testing for “Not Statistically Correlated” 
 

The third challenge in applying the IAT concerns how to reject the null 
hypothesis that no correlation exists between a set of proxy variable residuals 
and a protected category. In our Dothard illustration, the use of Height as a 
proxy for Strength would pass the IAT if the unexplained variation between 
Strength and Height (denoted as 𝜀")  is uncorrelated with Gender, as given by 
the test: 

 
Regression: 𝜀" = 𝛽? + 𝛽@𝐺𝑒𝑛𝑑𝑒𝑟" 
Null Hypothesis: 𝛽@ = 0. 

 
The tradition in courts and elsewhere is to use a statistical significance level 



ALGORITHMIC ACCOUNTABILITY   45 

of 0.05;154  i.e., we are willing to allow for a 5% probability of making the 
“Type I” error of rejecting the null hypothesis (b1 = 0) by chance, when it is 
actually true. A related concept is the p-value of an estimate: the probability 
of obtaining an estimate for 𝛽@	at least as far from zero as the value estimated, 
assuming the null hypothesis is true. If the p-value is smaller than the 
statistical significance level, one rejects the null hypothesis.  

However, a problem with focusing on p-values is that as the sample size 
grows increasingly large, realized p-values converge to zero if the sample 
estimate for 𝛽@	is even trivially different from the null. This is because as the 
sample size grows larger, the uncertainty of our estimates (usually measured 
by their “standard error”) gets closer and closer to zero, causing any 
coefficient (even magnitude-irrelevant ones) to look different from an exact 
null of 𝛽@ = 0 in a p-value test. In particular, a company that brings a large 
dataset to bear on an IAT test might be disadvantaged relative to firms with 
less data.  

The source of the problem is the fact that in any statistical test we are 
actually trading off the probabilities of making two different errors: Type I 
errors (when we wrongly reject the null when it is, in fact, true) and Type II 
errors (when we wrongly fail to reject the null when it is, in fact, false). The 
“significance level” of a test is the probability of making a Type I error. 
Keeping this fixed (e.g., at 5%) as the sample size increases means that we 
are keeping the probability of a Type I error fixed. But at the same time, again 
because the standard error of our estimates is going to zero as the sample size 
gets large, the probability of a Type II error is actually converging to zero. If 
we care about both types of error, it makes sense to reduce the probability of 
both as the sample size increases, rather than fixing the probability of Type I 
errors and letting that of Type II errors go to zero. This point has been made 
forcefully by many authors, especially Edward Leamer, and a number of 
solutions have been proposed for adjusting the significance level as the 
sample size increases.155 A full consideration of these different approaches is 
                                                
154 See, e.g., Karen A. Gottlieb, What Are Statistical Significance and Probability Values? 1 TOXIC TORTS 
PRAC. GUIDE § 4:10 (2019)(“Through a half century of custom, the value of 0.05 or 1 in 20 has come to 
be accepted as the de facto boundary between those situations for which chance is a reasonable explanation 
(probabilities > 0.05) and those situations for which some alternative is a reasonable explanation 
(probabilities < 0.05).”); see also Eastland v. Tennessee Valley Authority, 704 F.2d 613, 622 n. 12 (1983) 
(noting, in an employment discrimination lawsuit, that “a probability level of .05 is accepted as statistically 
significant” in determining whether racial disparities in pay were statistically significant). 
155 See, e.g., Edward Leamer, SPECIFICATION SEARCHES: AD HOC INFERENCE WITH NONEXPERIMENTAL 
DATA (1978) (proposing p-value adjustment to minimize error losses associated with Type I and Type II 
error);  I.J. Good, Standardized Tail-Area Probabilities, 16 J. STATISTICAL COMPUTATION AND 
SIMULATION 65 (1982) (proposing p-value adjustment based on a “Bayes/non-Bayes compromise”); 
Mingfeng Lin et al., Too Big to Fail: Large Samples and the p-Value Problem, 24 INFO. SYS. RES. 906, 
908-15 (2013) (surveying approaches to adjusting p-values in large samples, recommending the reporting 
of effect sizes and confidence intervals, and using coefficient/p-value/sample-size plots for interpreting 
the data along with Monte Carlo simulations); Eugene Demidenko, The p-value You Can’t Buy, 70 AM. 
STATISTICIAN 33, 34-37 (2016) (proposing the use of d-values for assessing statistical inference in large 
datasets). 
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beyond the scope of this Article. Our basic point is to note when the issue 
will be relevant when applying the IAT and that there are a number of 
solutions to it.  We provide below an example of one such approach to 
illustrate how it can be utilized to discern when a seemingly significant result 
when applying the IAT is actually a function of the large sample size and not 
evidence of a discriminatory proxy variable. 

 
D.  Nonlinearities or Interactions Among Proxies  

 
Machine learning models are often focused on forming predictions based 

on nonlinear functions of multiple variables. In introducing the IAT, our 
specification focused on linear settings, but the IAT could in principle be 
amended to handle nonlinear models as well. For example, rather than just 
running the test regression once, we could run it repeatedly, with each of a 
set of basis functions of the explanatory variables on the left-hand side. Our 
goal in this Article has been to translate the legal notion of accountability 
under Title VII into the context of statistical modelling at the heart of 
algorithmic decision-making; therefore, we leave a more thorough 
consideration of this topic to future work. However, in general, 
implementation of the IAT could be made part of the type of feature selection 
and feature analysis protocols that are used in practice with both linear and 
non-linear machine-learning processes.156      

VI.  SIMULATION 

We conclude with a simulation illustrating how to use the IAT to examine 
disparities arising from a hiring algorithm.  In addition to demonstrating the 
application of the IAT, the simulation also illustrates how to address many of 
the concerns noted in Part V.  As in Part III, we base the simulation on the 
facts of Dothard.  

 

                                                
156In particular, a related literature in computer science focuses on feature selection to enhance model 
interpretability.  See Datta et al. Algorithmic  Transparency via Quantitative Input  Influence: Theory and 
Experiments  with Learning Systems, Proceedings of IEEE Symposium  on Security  & Privacy 2016, 598–
617, 2016 (proposing a quantitative-input-influence (QII) protocol based upon Shapley values to 
determine the importance of features and clustering metrics to summarize feature influence); see also 
Phillipe Bracke et al., Machine learning explainability in default risk analysis, Bank of England Staff 
Working Paper No. 816 (June 5, 2019) (implementing QII method in predicting mortgage defaults).    More 
formally, Lundberg, et al., Consistent Individualized Feature Attribution for Tree Ensembles, 
arXiv:1802.03888v3 [cs.LG], March 7, 2019 and Merrill et al., Generalized Integrated Gradients: A 
practical method for explaining diverse ensembles,” ArXiv 2019, build upon game-theoretic SHAP 
(Shapley Additive explanation) values and propose new feature credit-assignment algorithms that can 
handle a broad class of predictive functions with both piecewise-constant (tree-based), continuous (neural-
network or radial-basis-function based), and mixed models. 
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A.  Set-Up  
 
The simulation assumes that the prison has historical records for 800 

employees, of which roughly one-third are female (n=256) and two-thirds are 
males (n=544). We further assume that the prison uses these historical records 
to develop a sorting algorithm for considering a pool of 1,200 applicants. The 
800 employees are endowed with an unobservable strength level, which we 
model as a random variable distributed normally with (i) a mean of 68 and a 
standard deviation of 10 for male employees and (ii) a mean of 62 and a 
standard deviation of 6 for female employees. With these modeling 
assumptions, females have lower mean strength but a smaller standard 
deviation, as plotted below in Figure 6. To be an effective prison officer 
requires a minimum strength of 60, the business necessity. The prison’s past 
hiring is not perfectly effective at sorting which officers will meet this 
threshold; therefore, even among the employees, there are officers who fall 
below the required strength for the job. For now, we assume that the prison 
can implement a costly physical exam to measure true strength for these 
employees. (We abstract from other aspects of effectiveness such as 
psychological and managerial skills needed for prison-officer work.) 

We assume the strength of applicants is likewise distributed randomly.  
However, for obvious reasons, the applicant pool has not been previously 
selected for strength as employees have. Therefore, we model strength 
across applicants as a random variable distributed normally with a mean of 
50 and a standard deviation of 10 for male employees and a mean of 44 and 
a standard deviation of 6 for female employees.  

 
Figure 6 

Distribution of Strength Across Prison Officers 
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The prison managers cannot directly observe applicants’ strength, and 
implementing a full physical exam across applicants is costly. Therefore, the 
prison decides to use height as a proxy variable for an applicant’s strength, 
since it is easily measured on applications. We model height as a sum of a 
baseline 50 inches (with a normally-distributed error of 4 inches) plus a 
concave (quadratic) function increasing in strength. Female height has the 
same relation to strength but a ten percent lower baseline. The resulting mean 
height in the employee training dataset is 5’10” with a standard deviation of 
5”. 

Finally, as in Dothard, the prison seeks to filter applicants by imposing a 
minimum height requirement. To determine the height cut-off, the prison runs 
a classification analysis. In doing so, the prison determines that they want to 
ascertain that an individual will be above the strength threshold with an 80% 
certainty, i.e., they want only a 20% risk of incorrectly classifying an 
applicant as eligible for hiring (above the strength threshold of 60) when the 
person in fact has a strength of less than 60. Based on the height and strength 
of the prison officers, this results in a 5’10” cut-off.  The prison applies this 
cut-off to all 1,200 applicants.  

Among the 370 female applicants, 344 (93%) fail the height test. In 
contrast, among the 830 male applicants, 504 (61%) fail the height test. These 
disparities suggest that the height cut-off may discriminate against female 
applicants, but we cannot definitively conclude this from the high rejection 
rates because, as we saw in Figure 6, females in our samples have lower 
strength than males on average. 

 
B.  Applying the Input Accountability Test  

 
Assume that in advance of deploying the height test, the prison instead 

decides to conduct the IAT to ensure that any disparities in hiring would be 
based on differences in predicted applicant strength. Table 2 presents the 
results from the test. To run the IAT, the prison would return to the training 
data it possesses regarding its employees’ actual strength and height that it 
used to determine the 5’10” cut-off. In panel A, we present the first step of 
regressing the proxy variable of height on employee strength, the target of 
interest. Because the prison is focused on using a cutoff for height, we 
estimate a logistic regression of whether an employee passes the height cut-
off as a function of the employee’s strength. (To do so, we use as our 
dependent variable an indicator variable that equals 1 for employees that are 
at least 5’10” and 0 for all others.) Note that this indicator variable is on the 
left-hand side of the regression (and not strength) because we want to 
decompose whether an employee meets the height cut-off into two 
components – the part that can be predicted from an employee’s strength and 
the part that cannot be predicted from an employee’s strength (the “residual”). 
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Stated differently, logistic regression effectively estimates the probability that 
an employee is 5’10” based on employee strength. Therefore, the residual, 
which is equal to one minus this predicted probability for each employee, can 
be viewed as the variation in whether an employee meets the height threshold 
of 5’10” that is unrelated to an employee’s strength. In panel B, we present 
the results from regressing the residual from panel A onto the indicator 
variable for female. 

 
Table 1 

 (1) (2) (3) (4) (5) 

Panel A: First Step of IAT (Dependent Variable =Column Heading) 

 
Cut-Off 
Height 

Cut-Off 
Muscle 
Mass 

Muscle 
Mass 

Strength 
Assessment 

Cut-Off 
Muscle 
Mass 

Strength 0.0206*** 0.0377*** 0.9965***  0.0387*** 

 [0.00155] [0.000747] [0.0191]  [0.0000138] 
Muscle Mass    0.675***  
    [0.0307]  
Observations 800 800 800 800 2,000,000 
[Pseudo] R-squared 0.111 0.466 0.772 0.376 0.496 

      
Panel B: Second Step of IAT (Dependent Variable=Residuals from Step 1) 

Female -0.354*** -0.013265 -0.3552 -8.858*** -0.0013*** 

 [0.0327] [0.02625] [0.379] [0.542] [0.000505] 

      
Observations 800 800 800 800 2,000,000 
R-squared 0.128 0 0 0.25 0 
d-value     50% 

Standard errors in brackets     
*** p<0.01, ** p<0.05, * p<0.1     
 

Panel A of Column (1) reports that strength only accounts for a small part 
of the variation (R-squared = 0.111) for whether an employee is (or is not) 
taller than 5’10”. In Panel B, our column (1) results show that the residual of 
the first step regression has a negative, significant correlation with gender, 
thus failing the IAT. Females incur a penalty because the proxy variable for 
the business necessity of required strength has residual correlation with 
gender. 

Imagine that the prison realizes this flaw in using a height cut-off and 
decides instead to consider incurring an extra cost for doing a muscle-mass 
index evaluation of applicants. Because the evaluation is imperfect in 
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assessing true strength, we assume that the results of a muscle-mass index 
evaluation is equal to an individual’s strength plus random noise.157 To 
implement this screening procedure, the prison first applies the muscle-mass 
index evaluation to existing employees so that it can estimate the minimum 
muscle mass an individual should have to be above the minimum strength 
threshold with an 80% certainty. The classification analysis produces a 
muscle-mass cut-off score of 64. As above, the prison then conducts the IAT. 

In column (2) of panel A we present the results of the IAT for the muscle-
mass index evaluation based on the employee training data. To implement the 
IAT, we run the same regressions that we used for testing the height cut-off, 
but we substitute an indicator variable for whether an employee has a muscle 
mass of at least 64 for the indicator variable for whether an employee is at 
least 5’10”. In panel A, column (2) shows that the probability that an 
employee has a muscle mass of at least 64 is (unsurprisingly) related to an 
employee’s strength, resulting in a much larger R-squared. Importantly, the 
residual should not fail the IAT, because (by construction) it has no bias 
against females. In column (2) of panel B, we see that this is indeed the case; 
the coefficient on female is statistically insignificant and small in magnitude. 

In column 3, we instead consider a continuous variable version of muscle 
mass as a scoring variable rather than a cut-off version of the indicator 
variable. Perhaps the underlying job-required strength is not a threshold but 
a strength score that will feed into wage-setting or other profiling of 
individuals that focus on continuous rather than discrete measures. To 
implement the IAT in this context, we use the same training data that was 
used for column (2) of Table 2; however, the regression specification for the 
first step takes the form of a linear regression of employees’ muscle mass 
scores on their measured strength. As in column (2), column (3) shows that 
muscle mass is a legitimate business necessity variable. In panel A, we find 
that muscle mass and strength are very correlated, with strength accounting 
for almost 80% of the variation in muscle mass. Column (3) of panel B shows 
that muscle mass again passes the IAT: the residual is uncorrelated with the 
female indicator variable.  

In the final two columns of Table 2, we demonstrate the importance of 
two challenges we introduced in Part 5.  

First, we use column (4) to illustrate the concern about measurement 
error in the target (strength). Thus far, we have been working under the 
assumption that the prison can take an accurate measurement via a physical 
exam of the training dataset employees. However, what if instead the prison 
cannot measure actual strength but uses a strength score made by a manager. 
(We label this assessment measure an employee’s “Strength Assessment”). 
As noted above, a central challenge in real world settings is that target 
                                                
157 We model the random noise as a random variable drawn from a normal distribution having a mean of 
zero and a standard deviation of 5. 
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variables used to train predictive models are typically estimated in this 
fashion and may contain measurement error that is correlated with a protected 
characteristic. We therefore simulate an employee’s Strength Assessment as 
biased against females.158 In this regard, the simulation replicates the same 
problem illustrated with the UnitedHealth algorithm discussed previously 
(where the illness severity measure was inadvertently biased against African 
Americans).  

In addition to employees’ Strength Assessment, assume that the prison 
also has at its disposal data from the muscle measure index evaluation used 
in columns (2) and (3). Even without perfect data regarding employee 
strength, the prison can still use these data with the IAT to evaluate whether 
its preferred estimate of the target (an employee’s Strength Assessment) 
suffers from bias. To implement this test, we treat muscle mass as an 
alternative measure of the target of interest (strength), and we treat the 
Strength Assessment as a proxy for strength, as we did for height in columns 
(1) – (3).  Accordingly, the first step of the IAT is conducted by regressing 
employees’ Strength Assessment on the muscle mass evaluation data. The 
results are shown in column (4) of panel A. Not surprisingly, an employee’s 
muscle mass is closely related to an employee’s Strength Assessment. In 
column (4) of panel B, we show the results of regressing the residuals from 
this regression on the gender variable. As shown in the table, Strength 
Assessment fails the IAT.  In this fashion, the IAT can be used to test whether 
an estimate for a target suffers from biased measurement error, so long as one 
has an alternative estimate for the target (even a noisy one) that is believed to 
be unbiased.   

The final column in Table 2 illustrates the concern of large data samples. 
For this column, we implement the same muscle mass test as in column (2), 
except that we randomly draw 2 million employees for the training dataset 
rather than 800 employees. (For all 2 million employees, we model their 
strength using the same assumptions used for the original 800 employees). 
For each employee, we likewise calculate muscle mass as employee strength 
plus a random variable distributed normally with a mean of 0 and a standard 
deviation of 5. Thus, in our simulated setting, muscle mass is a noisy estimate 
of employee strength but it has zero bias with respect to gender. Even so, 
however, the possibility remains that in drawing random measurement error 
for our sample, very slight differences may exist by chance between the 
average measurement error of females and males. (This is equivalent to 
observing that even if a coin is unbiased, it may still return more than 50% 
heads in a trial of 100 flips). Moreover, as we described in Part III, the p-

                                                
158 In particular, for males, we model the Strength Assessment measure as strength plus random noise; 
however, for females, we model Strength Assessment as concave in strength (like the height variable)—a 
quadratic concave function of strength plus random noise. This modeling assumption implies that the 
managers evaluating females do not fairly evaluate them, especially for the stronger females. 



ALGORITHMIC ACCOUNTABILITY   52 

value may converge to 0 for any small deviation, as sample sizes approach 
infinity. Thus, even a small (economically non-meaningful) correlation may 
look significant. This would create a setting of a large-dataset proxy variable 
failing the IAT, not because of a fundamental problem, but just because of 
the use of a fixed p-value. This is what we find in column (5). The coefficient 
on female in column (5) of Panel B is very small (-0.0013) but statistically 
significant, notwithstanding the fact that we modeled measurement error 
from a distribution that had exactly zero gender bias.  

As noted in Part 5(C), when the IAT is applied to a large dataset, it is 
therefore critical to check whether a proxy that fails the IAT might have failed 
the test simply because of the large number of observations in the sample. 
That the seemingly statistical finding in column (5) may be an artifact of a 
trivial difference within a large dataset can initially be seen by the fact that 
the R-squared in column (5) of Panel B is 0%; if effectively no variation in 
the residuals can be explained by gender, how can it be that this proxy is 
penalizing females in a systematic fashion? Additionally, as noted previously, 
a number of formal solutions exist to examine this issue more fully. Here, we 
illustrate one such approach using the concept of the “d-value” proposed by 
Eugene Demidenko.159 Rather than focus on a comparison of group means, 
the d-value is designed to examine how a randomly chosen female fared 
under this proxy variable relative to a randomly chosen male. Specifically, in 
the context of the IAT, the d-value answers the question “what is the 
probability that members of a protected group are being penalized by the 
proxy?” As shown in the last row of column (5) of Panel B, the d-value is 
approximately 50%, indicating that the probability that females are penalized 
by the use of a muscle-mass proxy is effectively a coin-toss; that is, there is 
no evidence that female applicants are being systematically penalized by the 
use of this proxy.  

 This finding, of course, is hardly a surprise given that we designed the 
simulation for column (5) to ensure that it was an unbiased proxy.  In this 
fashion, the use of a d-value can highlight when a seemingly significant 
finding is a function of the large sample size and not evidence of a 
discriminatory proxy variable.160 
                                                
159 See Demidenko, supra note 155. 
160 To the extent one utilizes the d-value in this fashion, a natural question is what level of a d-value would 
constitute evidence of a discriminatory proxy. Given that the d-value answers the question “what is the 
probability that members of a protected group are being penalized by the proxy?”, any result that yields a 
d-value deviating from 50% would presumably be evidence of a discriminatory proxy, allowing for a 
percentage difference to incorporate a far tail sampling draw.  This conclusion follows from the 
conventional judicial reliance to on p-values, which likewise assumes that any finding with a p-value of 
less than 0.05 is evidence of discrimination. That said, in adopting such an approach, it would be important 
to utilize a d-value analysis only upon a finding that a proxy fails the IAT using a conventional statistical 
test. The reason stems from the fact that in smaller samples, even an unbiased proxy could result in a d-
value that is slightly different from 50% due sample variance. For example, the d-value for column (3) is 
just slightly less than 51%, despite the fact that muscle mass is modeled as an unbiased proxy. However, 
running the same simulation with 50,000 observations produces a d-value of 50%. 
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VII.  CONCLUSION 

The era of Big Data places the antidiscrimination mandate at the heart of 
the Civil Rights Acts of 1964 and 1968 at a critical cross-roads.  By relying 
on data-driven, statistical models, machine learning provides a promising 
alternative to the type of subjective, face-to-face decision-making that has 
traditionally been fraught with the risk of bias or outright animus against 
members of protected groups. Yet left unchecked, algorithmic decision-
making can also undermine a central goal of U.S. antidiscrimination law.  As 
we have shown throughout this Article, any decision-making rule that simply 
maximizes predictive accuracy can result in members of historically 
marginalized groups being systematically excluded from opportunities for 
which they are qualified to participate.  

Ensuring that algorithmic decision-making promotes rather than inhibits 
equality thus demands a workable antidiscrimination framework. To date, 
however, prevailing approaches to this issue have focused on solutions that 
fail to grapple with the unique challenge of regulating statistical 
discrimination. Prominent regulatory approaches (such as reflected in HUD’s 
recent proposed rule-making) have frequently prioritized predictive accuracy 
despite the fact that such an approach ignores the central risk posed by 
statistical discrimination demonstrated in our simulation. Conversely, 
interventions emanating from the field of computer science have largely 
focused on outcome-based interventions that could themselves lead to claims 
of intentional discrimination. 

Because we derive our input accountability test from caselaw addressing 
statistical discrimination—in particular, the burden-shifting framework—the 
IAT advances a vision of algorithmic accountability that is consistent with 
the careful balance courts have struck in considering the decision-making 
benefits of statistical discrimination while seeking to minimize their 
discriminatory risks. By enhancing the predictive accuracy of decision-
making, statistical discrimination can greatly enhance the ability of an 
employer, lender or other decision-maker to identify those individuals who 
possess a legitimate target characteristic of interest.  However, cases such as 
Griggs and Dothard underscore the danger of simply focusing on predictive 
accuracy because a proxy that predicts a target variable can nonetheless result 
in systematically penalizing members of a protected group who are qualified 
in the target characteristic. That such discriminatory proxies have been 
consistently declared to be off limits underscores the conclusion that 
predictive accuracy alone is an insufficient criterion for evaluating statistical 
discrimination under U.S. antidiscrimination law. 

At the same time, our approach is also consistent with the focus in Griggs 
and Dothard that differences in a legitimate target can justify disparities that 



ALGORITHMIC ACCOUNTABILITY   54 

differ across members of protected and unprotected groups. As we show, so 
long as a proxy used to predict a legitimate target variable is unbiased with 
respect to a protected group, it will pass the IAT, even if it results in disparate 
outcomes.  The IAT can therefore provide greater transparency into whether 
disparate outcomes are the result of a biased model or more systemic 
disparities in the underlying target variable of interest, such as credit risk. In 
so doing, it can provide vital information about whether the proper way to 
address observed disparities from an algorithmic model is through de-biasing 
the model or through re-defining the target in a more equitable fashion or 
addressing disparities in the underlying target variable of interest (such as 
through targeted subsidies or other transfers). More generally, because the 
goal of the IAT is to avoid penalizing members of a protected group who are 
otherwise qualified in a target characteristic of interest, our approach will also 
be immune to the concern informing cases such as Ricci v. DeStefano that our 
test is biased against qualified individuals.  

Finally, our approach provides clear “rules of the road” for how to exploit 
the power of algorithmic decision-making while also adhering to the 
antidiscrimination principles at the heart of the Civil Rights Acts of 1964 and 
1968.  In particular, the IAT offers data scientists a simple test to use in 
evaluating the risk that an algorithm is producing biased outcomes, mitigating 
a key source of the regulatory uncertainty surrounding the growing use of 
algorithmic decision-making.  Additionally, our exploration of the early 
caselaw considering statistical discrimination also reveals that these rules of 
the road encompass more general concepts to guide both data scientists and 
regulators when evaluating algorithmic discrimination. These include the 
notion that, fundamentally, algorithmic decision-making is an effort to assess 
an unobservable attribute, such as productivity, criminality, longevity, or 
creditworthiness, through the use of one or more proxy variables. 
Consequently, evaluating an algorithm must begin with transparency about 
this target characteristic. And they likewise include the fact that correlation 
between the unobservable characteristic and the proxy is not, by itself, 
sufficient to justify the use of the proxy under antidiscrimination principles. 
 

 



APPENDIX  
DE-BIASING PROXY VARIABLES VERSUS DE-BIASING PREDICTIVE MODELS 
 

In this Appendix, we conduct a simulation exercise to illustrate how 
attempting to de-bias a proxy variable used in a predictive algorithm may do 
little to de-bias the ultimate predictions. The example we use assumes that a 
college admissions director wishes to use applicants’ standardized test scores 
(STS) to predict college success.  For this purpose, we assume that a student’s 
performance on the STS is a function of just two equally-important factors: 
aptitude and family wealth. In our simulation, wealth contributes to test 
performance because children from wealthier households often purchase 
expensive test preparation classes. To keep the simulation tractable, we 
assume that wealth does not affect college performance; its only effect is on 
a student’s STS. 

Our simulation uses a hypothetical training dataset of 1,000 college 
graduates where the admissions director has data on each student’s STS at 
the time of application, student race, and the student’s ultimate college 
performance (e.g., a weighted grade point average or other measure of 
performance).  We divide the race of students, 𝑋"C, equally so that 500 
students are non-White (𝑋"C = 0)	and 500 are White (𝑋"C = 1). We assume 
that wealth and aptitude are distributed as follows: 
   

𝑋"DEFGHI~ K
𝑁(0,1)	𝑖𝑓	𝑋"C = 0
	𝑁(5,1)	𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

 
𝑋"
RSH"HTUE~𝑁(0,1) 

 
That is, a student’s wealth is defined to be a random variable drawn from a 
normal distribution for all students. However, the mean and standard 
deviation for White students are 5 and 1, respectively, while it is 0 and 1 for 
non-White Students.  In contrast, a student’s aptitude is modeled as a random 
variable drawn from a normal distribution having a mean of 0 and a standard 
deviation of 1 for all students regardless of race.  

Note that under these distributional assumptions, there is very little 
common support in wealth across race categories. This is by design to 
illustrate the point noted by Kristen Altenburger and Daniel Ho that in these 
settings, the effort to de-bias proxy variables can produce the largest 
estimation errors.161 As noted, a student’s STS (𝑋"VWV) is a function of 𝑋"DEFGHI 
and 𝑋"

RSH"HTUE, with each variable given equal weight: 

                                                
161 See Altenburger & Ho, supra note 116, at 111.  These settings arise “where sharp preexisting 
demographic differences may exist across groups.” Id. 
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𝑋"VWV = 0.5X𝑋"DEFGHIY + 0.5(	𝑋"

RSH"HTUE) 
 
Finally, we simulate college performance (Performancei) to be entirely 
determined by aptitude multiplied by a scalar (which we assume here to be 
2).   

Aptitude is unobservable to the admissions director, inducing her to 
estimate whether she can use STS to predict college performance. In Figure 
1A, we plot the relationship between college performance and STS for White 
and non-White graduates separately based on data simulated using the 
foregoing assumptions. We also include a line that provides the predicted 
college performance from a simple regression of college performance on 
STS. As shown in the Figure, White graduates had much higher STS on 
average, as would be expected from their higher family wealth.   

 

 
The admissions director would like to admit students that are likely to 

have a positive measure of college performance (i.e., Performance>0). She 
therefore runs a simple regression of Performance on STS, which produces a 
regression coefficient (𝛽ZVWV) of 0.47. This estimate indicates that a one-point 
change in STS is associated with a 0.47 change in Performance. Using this 
regression estimate, she generates the fitted line shown in Figure 1A, which 
provides a predicted measure of Performance based solely on STS.  The fitted 
line predicts that Performance is zero at roughly 1.3, suggesting that using a 
minimum STS of 1.3 would admit students with an expected college 
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performance of at least 0. However, had the admissions director applied this 
cutoff to these individuals, the bias in STS would result in significant bias 
against non-White students owing to their lack of access to test preparation 
classes:  
 
 Non-White White 
# of Qualified Candidates 
Predicted by Test Score 13 465 

 
Now assume that the admissions director seeks to control for the greater 

wealth (and therefore, the greater test preparation bias) among White 
applicants. Using the same data, she expressly adds 𝑋"C	as a control variable 
in the regression of Performance on STS. Doing so allows her to predict 
Performance as a function of both STS and Race. The results are presented in 
Figure 2A. 

 

 
This procedure corrects for the racial bias that arises from using only STS 

to predict Performance. This can be seen by the two fitted regression lines, 
which do a much better job of predicting measured performance across the 
two racial groups than in Figure 1A. The reason stems from the fact that this 
regression specification estimates a different y-intercept for each racial group 
in estimating the relationship between STS and Performance. Specifically, 
the regression yields a y-intercept for 𝑋"C of -4.72, which indicates that in 
using STS to predict Performance, it is necessary to deduct 4.72 from the 
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expected performance of White students. (Recall that the difference in 
average wealth across White and non-White students is 5.0, so this 
adjustment eliminates the bias that wealth creates when using STS as a 
measure of aptitude). With that adjustment, the regression coefficient for STS 
increases from 0.47 to 1.89 because the regression has effectively removed 
the confounding effect of wealth on STS so that it more accurately reflects 
aptitude. As above, the admissions director evaluates each fitted line and 
determines that the fitted line for non-White students predicts that 
Performance is zero where STS is also zero, and that the fitted line for White 
students predicts that Performance is zero where STS is 2.53. Applying a 
minimum test cut-off of 0 for non-White students and 2.53 for White students 
would result in the following students being deemed qualified:   
 
 Non-White White 
# of Qualified Candidates 
Predicted by Test Score 250 248 

 
This procedure solves the racial bias created by using only STS to 

estimate Performance, but it is clearly problematic insofar that it requires a 
different minimum cut-off for White and Non-White students. This is 
disparate treatment. To avoid this problem, the admissions director therefore 
turns to the approach advanced by Devin Pope and Justin Sydnor as well as 
by Crystal Yang and Will Dobbie.162 This procedure involves using the 
regression estimates generated for Figure 2A but treating all students as if 
they had the average value of race, which is 0.5 in this example. Making this 
adjustment means that every student receives a deduction of -2.36 (i.e., 0.5 * 
-4.72) after multiplying their score by the slope coefficient for STS of 1.89, 
which remains purged of the confounding influence of wealth. This enables 
the admissions director to estimate a single fitted regression line as shown in 
Figure 3A:  
 

                                                
162 See supra note 66. 
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The fitted line predicts that Performance is zero at approximately 1.28, which 
the director uses as the minimum cut-off. Had the director applied this cut-
off to this group of individuals, the following results would have occurred: 
 
 Non-White White 
# of Qualified Candidates 
Predicted by Test Score 15 468 

 
In effect, the results are largely identical to those obtained by using only STS 
to predict performance. The reason stems from the lack of common support 
in wealth across White and non-White students, resulting in the need for a 
significant negative adjustment to every White student when estimating 
performance from STS. Applying half of this negative adjustment to every 
student thus works against the de-biasing of the slope coefficient for STS. In 
short, the slope coefficient for STS in Figure 3A is unbiased with respect to 
non-White students, but the predictive model is not. This problem was 
significant in this example because there is so little common support in wealth 
across White and non-White students—a problem that will exist whenever 
there are significant demographic differences across protected and 
unprotected groups. 
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