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a b s t r a c t 

This paper provides theory and evidence that a low-dimensional term structure model can 

simultaneously price bonds and related options. It shows that a component of volatility 

risk largely unrelated to the shape of the yield curve is a determinant of expected excess 

returns for holding long maturity bonds. It also finds evidence for this return relation- 

ship both in the model and directly in the data through regression analysis. The paper 

also identifies a link between corporate earnings performance and interest rate volatility, 

providing a channel driving interest rate volatility. The structure of risk in the model that 

gives rise to these features of volatility is distinct from that inherent in recent models with 

unspanned stochastic volatility. 

© 2017 Published by Elsevier B.V. 
1. Introduction 

This paper examines the joint properties of the risks 

underlying bond and bond option markets, and the re- 

lationship between these risks, the underlying corporate 

sector, and the macroeconomy. The paper first devel- 

ops a model that captures the cross-section of bond and 

bond option prices. The model shows that the volatil- 

ity of the yield curve—a major macroeconomic factor—
� This paper has greatly benefited from helpful discussions, comments, 

and suggestions from Caio Almeida, Snehal Banerjee, Mary Barth, Eli Bar- 

tov, Darrell Duffie, Jeremy Graveline, Haitao Li, Jun Pan, Kenneth Single- 

ton, Ilya Strebulaev, an anonymous referee, and seminar participants at at 

Caltech, Chicago, Federal Reserve Board, Georgia Tech, LSE, McGill, MIT, 

NYU, Penn State, Stanford, University of California at Berkeley, Vanderbilt, 

Washington University, and WFA. Any remaining errors are our own. The 

paper has been previously distributed with the title “Pricing and Hedging 

Volatility Risk in Fixed Income Markets.”
∗ Corresponding author. 

E-mail addresses: sjoslin@usc.edu (S. Joslin), yaniv@berkeley.edu 

(Y. Konchitchki). 
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0304-405X/© 2017 Published by Elsevier B.V. 
is an important predictor of future bond returns and 

that this volatility is identified through interest rate op- 

tions. Through the model, we also show that stochas- 

tic convexity effects are small and that a volatility fac- 

tor unrelated to the level, slope, and curvature can cre- 

ate nearly unspanned stochastic volatility through a mech- 

anism where a component of volatility has no effect on 

risk-neutral expectations. We validate our results (in- and 

out-of-sample) by demonstrating the ability of the model 

to match conditional first and second moments in the 

data, as well as by demonstrating the relationship be- 

tween volatility and bond risk premium through a model- 

free regression analysis. To conduct the analysis, the pa- 

per also develops a number of Fourier analytic techniques 

for pricing options and computing exact likelihood func- 

tions. These techniques are applicable more broadly both 

in reduced form and general equilibrium asset pricing 

models. The paper also shows that times series varia- 

tion in cross-sectional dispersion of earnings information 

is an important driver of interest rate volatility. In par- 

ticular, a major effect on interest rate volatility stems 

https://doi.org/10.1016/j.jfineco.2017.12.004
http://www.ScienceDirect.com
http://www.elsevier.com/locate/jfec
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jfineco.2017.12.004&domain=pdf
mailto:sjoslin@usc.edu
mailto:yaniv@berkeley.edu
https://doi.org/10.1016/j.jfineco.2017.12.004
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from the aggregation of uncertainty about corporate per-

formance. 

We study these questions through the lens of a four-

factor affine term structure model. Although dynamic

models with a small number of risk factors (e.g., two

or three) have had considerable success at pricing bonds

across a broad spectrum of maturities, they typically gen-

erate large errors when pricing options on these bonds. 1

There are two critical features of our model that under-

lie its relative success in simultaneously pricing bonds and

bond options. First, we focus on members of the affine

family of term structure models ( Duffie and Kan, 1996 )

that are known to be successful in pricing bonds and allow

flexibility in the conditional covariances of the risk factors.

In particular, we use an identified version of the affine pro-

cess specification given in Duffie, Filipovic, and Schacher-

mayer (2003) which allows for a richer covariance struc-

ture among risk factors than the commonly used specifi-

cation of Dai and Singleton (20 0 0) . 2 The second feature of

our analysis is the dependence of the market price of risk

on the state of the macroeconomy. We follow Cheridito,

Filipovic, and Kimmel (2007) in parameterizing the market

prices of risk, which extends the specification of Dai and

Singleton (2002) and Duffee (2002) . This extended specifi-

cation for the market price allows for time-variation in the

premium associated with volatility risks, an element that

we find critical for matching the data. 

Our model also shows that volatility plays an impor-

tant role in determining risk premiums that investors de-

mand for bearing interest rate risk. A number of studies

have shown that the shape of the yield curve is related to

expected excess returns for holding long maturity bonds.

Our results show that volatility, incrementally to the level,

slope, and curvature of the yield curve, is an important

determinant of expected excess returns for holding inter-

est rate risk, explaining approximately 40% of the varia-

tion in expected returns. This result is consistent with the

results of Wright (2011) who argues that inflation uncer-

tainty plays an important role in determining bond risk

premiums. This phenomenon offers a potential explana-

tion associated with the ‘conundrum’ period where during

20 04–20 07, the Federal Reserve raised interest rates in 14

straight Federal Open Market Committee (FOMC) meetings

while long maturity yields remained relatively constant. As

other researchers have noted (e.g., Rudebusch, Swanson,

and Wu, 2006 ), this pattern could be attributed to declin-

ing risk premiums, one cause of which our model would

attribute to declining volatility. 

In support of our results, we also validate our model

out-of-sample. We find similar fit in the out-of-sample pe-

riod. Additionally, we find that the model is able to match

conditional first and second moments both in- and out-of-
1 Mean-squared relative pricing errors for options on the order of 

30% are reported in Buhler, Uhrig-Homburg, Walter, and Weber (1999) , 

Driessen, Klaassen, and Melenberg (2003) , and Jagannathan, Kaplin, and 

Sun (2003) . Trolle and Schwartz (2009) propose a model that fits both 

the term structure of interest rates and the cross-section of options, al- 

though their preferred model includes a total of 24 factors (18 of which 

are locally deterministic). 
2 We use the identification scheme in Joslin (2017) , and also see Collin- 

Dufresne, Goldstein, and Jones (2008) . 

 

 

 

 

 

 

 

 

sample. We also provide complementary evidence on the

relationship between implied volatility and bond risk pre-

mia through a model-free regression analysis. 

Although the model incorporates a component of

volatility risk that varies independently of the level, slope,

and curvature of the yield curve, the mechanism is very

different from a model with unspanned stochastic volatil-

ity (USV; see Collin-Dufresne and Goldstein, 2002a ). In

these models, volatility varies independently of the en-

tire yield curve due to a very specific type of cancel-

lation. In general, volatility drives long maturity interest

rates through two channels: (i) a convexity effect and (ii)

through an expectations effect whereby changes in the

level of volatility affect (risk-neutral) expectations of future

short rates. Models with the USV property rely on an ex-

act cancellation of these two effects across maturities. We

show that the first channel, in fact, generates very little

variation in the yield curve because convexity effects are

very small for short maturities while mean reversion of

volatility implies that the convexity effect at long matu-

rities is nearly constant. The estimation considers the most

general model in order to let the data select the necessary

ingredients in the model. We find a component of volatil-

ity which, while generating small variations in convexity

effects across maturities, also has very little effect on risk-

neutral expectations of future short rates. Under these con-

ditions, a component of volatility will have very little to no

effect on the shape of the yield curve. As elaborated fur-

ther in Section 7 , such a model turns out to be quite dif-

ferent from a model where volatility affects expectations

in such a way to exactly cancel (across all maturities) the

convexity effects that it generates. 

From a methodological perspective, essential to explor-

ing the issues addressed in this paper is an ability to com-

pute the prices of options (for which closed-form solu-

tions do not exist) and the ability to compute the joint

conditional likelihood function of a large cross-section of

bond yields and option prices. We develop a Fourier ana-

lytic quadrature technique for computing option prices. We

also extend this technique to develop a feasible method for

full information maximum likelihood estimation of affine

diffusions. These results are applicable to a wide array of

problems beyond those examined in this paper, both in

bond and equity markets, and therefore they are poten-

tially of interest in their own right. 

This paper also contributes to research in finance and

related fields on firms equity valuation and costs of capi-

tal/discount rates (e.g., Modigliani and Miller, 1958 ; Barth,

Konchitchki, and Landsman, 2013 ). Given that a firms eq-

uity discount rate comprises a risk-free interest rate plus a

risk premium, by shedding light on the time-series dynam-

ics of interest rates this paper provides input for under-

standing a key determinant of firms valuations. In addition,

this paper extends research on links between accounting

performance and the macroeconomy by suggesting that in-

formation about firms performance is an important deter-

minant of interest rates, through the effect on interest rate

volatility which is shown to be incrementally important in

pricing bonds and related options (e.g., Konchitchki, 2011 ). 

The remainder of the paper is organized as follows.

Section 2 describes the model and estimation procedures.
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Section 3 provides the data. Section 4 summarizes the es- 

timation results. Section 5 analyzes the impact of resid- 

ual variance (yield variance unrelated to the level, slope, 

and curvature of the yield curve). Section 6 discusses 

the role of volatility in determining bond risk premia. 

Section 7 considers the role of convexity in bond yields. 

Section 8 describes the out-of-sample analysis and valida- 

tion of the model results through analysis of the first and 

second conditional moments as well as model-free regres- 

sion analysis. It also investigates a firm-related driver of in- 

terest rate volatility. Finally, Section 9 concludes. 

2. Model 

We consider four-factor affine short-rate models. 3 The 

short rate, r t , is driven by a state variable, X t , such that 

r t = ρ0 + ρ1 · X t , (1) 

and 

dX t = μP 
t d t + σt d B 

P 
t , 

μP 
t = K 

P 
0 + K 

P 
1 X t , (2) 

where ρ1 , K 

P 
0 ∈ R 

4 , K 

P 
1 ∈ R 

4 ×4 , and B P t is a standard four- 

dimensional Brownian motion under P , the historical mea- 

sure. Duffie, Filipovic, and Schachermayer (2003) provide 

conditions for (2) to give a well-defined process on R 

M + ×
R 

N−M . Here the conditional covariance is given by σt σ ′ 
t = 

�0 + 

∑ M 

i =1 �i X 
i 
t . We consider A M 

(4) models where either 

M = 1 or M = 2 factors drive volatility. For example, in 

the A 2 (4) case this means that, σt σ ′ 
t = �0 + �1 X 

1 
t + �2 X 

2 
t , 

a 4 × 4 matrix. The constraints in Duffie, Filipovic, and 

Schachermayer (2003) require that (i) each �i is positive 

semi-definite, (ii) �1 , 22 = �2 , 11 = 0 , (iii) K 

P 
1 ,i j 

= 0 for i ≤ 2 

and j ≥ 2, (iv) K 

P 
1 , 12 

, K 

P 
1 , 21 

≥ 0 and (v) K 

P 
0 , 1 

, K 

P 
0 , 2 

≥ 0 . These 

conditions ensure that the covariance is always positive 

semi-definite and the first two factors, which drive volatil- 

ity, always remain positive. As Joslin (2017) notes, in the 

A 2 (4) case, this specification allows for greater flexibility in 

the correlation structure among the risk factors than the 

normalization of Dai and Singleton (20 0 0) . 

The dynamics of the macroeconomy are linked to the 

pricing measure by the market prices of risk. We use 

the completely affine market price of risk specification in 

Cheridito, Filipovic, and Kimmel (2007) . This specification 

allows the expected excess returns for exposure to each 

risk factor to be affine in the state. As elaborated further 

in Section 7 , a flexible market price of risk is critical in 

matching observed risk premia for holding both bonds and 

bond options. Under this market price of risk specification, 

the dynamics of the state variable X t are affine under Q as 

well and satisfy 

dX t = μQ 
t d t + σt d B 

Q 
t , 

μQ 
t = K 0 + K 1 X t , (3) 

where B Q t is a four-dimensional standard Brownian mo- 

tion under Q and K and K satisfy the same conditions 
0 1 

3 See Dai and Singleton (20 0 0) for a summary of affine term term 

structure models. They classify affine term structure models into non- 

nested families denoted A M ( N ). N is the total number of factors and M 

is the number of factors driving volatility. 
as before. The absence of arbitrage is then guaranteed by 

assuming that the Feller condition is satisfied under both 

measures so that K 

P 
0 ,i 

≥ 1 
2 �i,ii and K 

Q 

0 ,i 
≥ 1 

2 �i,ii for i ≤ M . 

To ensure that the parameters are econometrically iden- 

tified, we impose the normalization constraints given in 

Joslin (2017) . See Appendix A for further details. 

Any claim with payoff at time T given by f ( X T ) can be

priced by the discounted risk-neutral expected value 

E Q t 

[ 
e −

∫ T 
t r τ d τ f (X T ) 

] 
. (4) 

Duffie and Kan (1996) show that zero coupon bond prices 

are given by 

P T t ( X t ) = e A ( T −t ) + B ( T −t ) ·X t , (5) 

where P T t denotes the price at time t for a zero coupon 

bond paying $1 at time T . The loadings A and B satisfy the

Riccati differential equations 

˙ B = −ρ1 + 

(
K 

Q 

1 

)′ 
B + 

1 

2 

B 

� H 1 B , B ( 0 ) = 0 , (6) 

˙ A = −ρ0 + 

(
K 

Q 

0 

)′ 
B + 

1 

2 

B 

� �0 B , A ( 0 ) = 0 , (7) 

where H 1 is a tensor in R 

4 ×4 ×4 defined (as in Duffie, 2001 )

so that B ′ H 1 B is a four-dimensional vector with 

(
B ′ H 1 B 

)
i 
= 

B ′ �i B . 

Collin-Dufresne and Goldstein (2002a ) show that it is 

possible that some linear combination of the bond load- 

ings is identically zero for all maturities. In such a case, 

a volatility factor can affect conditional second moments 

but not be contemporaneously spanned by bonds. Such un- 

spanned volatility factors will directly affect fixed income 

derivative prices. Therefore, in addition to the more gen- 

eral specifications, we estimate models with the additional 

constraints required for unspanned stochastic volatility. In 

the case of the A 2 (4) model, see Joslin (2017) for a list of

the constraints. 

We also consider interest rate swaptions. An interest 

rate swaption is an option to enter into a swap, exchang- 

ing a fixed interest rate for a floating interest rate. Since 

the floating side of the swap is always worth par on ini- 

tiation/reset, a swaption is equivalent to an option on a 

coupon bond. 

An option on a Q -year swap expiring in P -year, referred 

to as an in P -for- Q (or P years into Q years) swaption, may

be priced by 

S t = E Q [ e −
∫ t+ P 

t r τ dτ (CB (X t+ P , Q ) − 1) + ] , (8) 

where CB ( X, Q ) is the price of a Q -year coupon bond with

a coupon equal to the strike when the state is X . Singleton

and Umantsev (2003) approximate this expectation by re- 

placing the exact exercise region, { CB (X t+ P , Q ) ≥ 1 } , with

the region implied by a linearization of the swap rate. 

Since the coupon bond price is a sum of coupons whose 

prices are exponential affine functions of the state, this 

reduces the problem of pricing the swaption to that of 

computing forward probabilities which may be evaluated 

by the transform method in Duffie, Pan, and Singleton 

(20 0 0) . 4 
4 Collin-Dufresne and Goldstein (2002b ) suggest computing swaption 

prices using an Edgeworth expansion using the cumulants of the price of 



S. Joslin, Y. Konchitchki / Journal of Financial Economics 128 (2018) 344–362 347 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In estimation of the models, computation is required for

a large number of swaption coupons. This involves eval-

uations of many transforms each of which is an integral

whose integrand is defined as the solution of ordinary dif-

ferential equations similar to (6) and (7) which must be

solved numerically for the general models that we con-

sider. Because of this difficulty, we develop an adaptive in-

tegration scheme to compute the required forward prob-

abilities. This scheme provides accurate prices using only

three or four quadrature nodes. See Appendix B for details.

After computing security prices using the dynamics un-

der the risk-neutral measure, it remains to estimate the

parameters governing the evolution of the economy un-

der the physical measure. Ideally, one would like to esti-

mate the affine diffusion in (2) by maximum likelihood.

Although the exact transition likelihood for an affine dif-

fusion is known in terms of Green’s functions of the

Feynman-Kac partial differential equation, a direct com-

putation is intractable. There is an extensive literature

dealing with alternative estimation methods. Some alterna-

tive approaches to maximum likelihood include moment-

based estimators e.g. quasi-maximum likelihood, general-

ized method of moments, or characteristic-function based

methods as in, e.g., Singleton (2001) , Carrasco, Chernov,

Florens, and Ghysels (2007) , simulation methods (e.g.,

Duffie and Singleton, 1993; Brandt and Santa-Clara, 2002 ),

and approximate methods (e.g., Duffie, Pedersen, and Sin-

gleton, 2003; Ait-Sahalia, 1999; Ait-Sahalia and Kimmel,

2010 ). However, we estimate the models using full in-

formation maximum likelihood employing an extension

of the methods that we develop for pricing options. See

Appendix C for a summary of the calculations used in the

current context. 

We compute the likelihood of the observed time se-

ries of data as follows. First, following Pearson and Sun

(1994) and Chen and Scott (1993) , we suppose that three

zero coupon yields and one swaption price are observed

exactly for each panel of zero coupon yields and option

prices. Given these prices and the underlying parameters,

we can then invert the state using Newton’s method. 5 The

likelihood of the prices of these instruments is then com-

puted by finding the likelihood of the inverted state (as

in Appendix C ) and applying the Jacobian of the linearized

transformation at the observed state. The likelihood of the

complete data is then computed with the assumption that

all other yields and option prices are observed with inde-

pendent and identically distributed (i.i.d.) normal measure-

ment errors. 

3. Data 

The data are obtained from Datastream and consist of

London Interbank Offered Rate (LIBOR), swap rates, and at-
the associated coupon bond. This approach presents a potential problem 

that Edgeworth expansions do not in general converge. Additionally, to 

compute the k -th moment of a 10-year coupon bond with semi-annual 

coupon requires the numerical solution of 
(

20+ k −1 
k 

)
differential equations. 

For k = 6 this already reaches 177,100 equations. 
5 The pricing relation was more nearly linear to equate the model- 

implied Black volatility. 

 

 

 

 

the-money swaption implied volatilities. We use 3-month

LIBOR and the entire term structure of swap rates to boot-

strap swap-implied zero rates. The bootstrap procedure as-

sumes that forward rates are constant between observa-

tions. From these swap zero rates, we then compute time

series of holding period returns. The data period is from

June 1997 to January 2016. We split the data into two pe-

riods: (a) an in-sample period of June 1997 to June 2006

and (b) an out-of-sample period of July 2006 to January

2016. We estimate the model parameters on the earlier, in-

sample period. Using these parameter estimates, we then

make inferences about the fit of the model in the later out-

of-sample period. 

4. Model estimation results 

We estimate the model by maximum likelihood as out-

lined in Section 2 . Specifically, we estimate the model us-

ing 6-month, 1-, 2-, 3-, 4-, 5-, 7-, and 10-years swap-

zero rates and swaptions with expiries of three months,

one year, and three years written on swaps with maturi-

ties of two years, five years, and eight years. The estima-

tion assumes that the 6-month, 2-year, and 10-year yields

are priced without error along with the 1-year into 5-year

swaption. The remaining instruments are priced with er-

rors which are assumed to be independent and normally

distributed. 

The model estimates are in Tables 1 –3 . Throughout,

the superscript USV in the model name refers to the es-

timated model where the unspanned stochastic volatility

constraints are imposed. The standard errors are computed

using the outer product gradient as in Berndt, Hall, Hall,

Hausman, and Berg (1974) . 

Table 4 presents the in-sample root mean square pric-

ing errors for zeros. For the maturities included in the esti-

mation, pricing errors range from 5 to 10 basis points, with

the USV models having slightly higher pricing errors. Also

tabulated are pricing errors for maturities over ten years,

which were not used in estimation. We discuss these re-

sults further in Section 7 

Table 5 provides the in-sample pricing errors for

swaptions. 6 Data from GovPX indicate that swaption bid-

ask spreads range from 1% to 2% implied volatility. With

the exception of the 3-months into 2-years swaption, the

unconstrained models fit the data quite well with pric-

ing errors under 1.5% and often under 1%. The uncon-

strained models are less successful fitting the 3-months

into 2-years swaption, with root-mean-square pricing er-

rors of 4.1 basis points. The fit for the 3-months into 2-

years swaptions does improve a fair amount in low in-

terest rate environments. For example, if the period when

the 6-month rate is greater than 2% is dropped, the

mean-square-error on the in 3-months-for 2-years swap-

tion drops to 2.8% and 2.9% for the A 1 (4) and A 2 (4) mod-

els, respectively. Thus, generally, the unconstrained models

provide a good cross-sectional fit across the options as well
6 Not reported are pricing errors for interest rates caps; pricing results 

are similar and the magnitudes are comparable (slightly smaller) than 

those found in Almeida, Graveline, and Joslin (2011) . 
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Table 1 

Drift Q -parameter estimates. 

This table provides model estimates drift parameter estimates for the risk-neutral ( Q ) measure. Stan- 

dard errors, computed by the gradient of the likelihood function, are given in parentheses. Unreported 

parameters are set to zero by the normalization constraints. The USV superscript denotes an affine 

model with USV constraints imposed and the † indicates parameters that are constrained by USV. The 

model is estimated from the in-sample period of June 1997 to June 2006. 

A 1 (4) A 2 (4) A 1 (4) USV A 2 (4) USV 

K Q 
0 , 1 

0.525 (0.044) 0.5 (0.048) 0.5 (0.041) 1.75 (0.16) 

K Q 
0 , 2 

0 0.5 (0.05) 0 1.05 (0.096) 

K Q 
1 , 11 

−0.317 (0.033) −8.26 (0.8) −0.244 (0.018) −3.83 (0.29) 

K Q 
1 , 12 

0 0.404 (0.033) 0 0 † 

K Q 
1 , 21 

0.084 (0.0079) 0.872 (0.083) 0.103 † 0.648 (0.058) 

K Q 
1 , 22 

−0.642 (0.071) −1.09 (0.094) −0.0338 (0.0036) −1 . 63 † 

K Q 
1 , 23 

0 0 −0.681 (0.054) 0 

K Q 
1 , 24 

0 0 −4 (0.34) 0 

K Q 
1 , 31 

0.384 (0.045) 1.67 (0.18) −0 . 0238 † −1.22 (0.079) 

K Q 
1 , 32 

0 −1.49 (0.12) 0 0.089 † 

K Q 
1 , 33 

−0.0503 (0.0051) −0.624 (0.06) −0 . 068 † −0.118 (0.0084) 

K Q 
1 , 34 

0 0 −0.95 (0.076) −0.402 (0.033) 

K Q 
1 , 41 

0.134 (0.015) 0.758 (0.062) 0 † −1.07 (0.091) 

K Q 
1 , 42 

0 0.0349 (0.0034) 0 −0 . 356 † 

K Q 
1 , 43 

0 0 0 0 

K Q 
1 , 44 

−1.49 (0.13) −0.527 (0.043) −1.23 (0.1) −0 . 237 † 

Table 2 

Drift P -parameter estimates. 

This table provides model estimates drift parameter estimates for the physical ( P ) measure. Stan- 

dard errors, computed by the gradient of the likelihood function, are given in parentheses. Unre- 

ported parameters are set to zero by the normalization constraints. The USV superscript denotes an 

affine model with USV constraints imposed. The model is estimated from the in-sample period of 

June 1997 to June 2006. 

A 1 (4) A 2 (4) A 1 (4) USV A 2 (4) USV 

K P 0 , 1 0.839 (0.15) 0.501 (0.14) 0.669 (0.12) 0.764 (0.12) 

K P 0 , 2 0.122 (0.028) 0.0915 (0.048) 0.658 (0.56) 0.884 (0.26) 

K P 0 , 3 0.143 (0.025) 0.182 (0.045) 0.134 (0.024) 0.273 (0.087) 

K P 0 , 4 0.23 (0.045) 0.131 (0.035) 0.241 (0.044) 0.132 (0.05) 

K P 1 , 1 , 1 0.47 (0.33) 0.48 (0.52) 5.29 (0.5) 0.81 (0.91) 

K P 1 , 1 , 2 0 0 −4.39 (0.59) 1.78 (1.6) 

K P 1 , 2 , 1 −2.79 (4.9) −2.29 (2.9) 0.344 (0.53) 0.9 (0.43) 

K P 1 , 2 , 2 1.22 (0.68) −5.52 (2.5) 0.044 (0.62) 0.81 (0.75) 

K P 1 , 2 , 3 −0.237 (1.9) −11.9 (4.3) 0 0 

K P 1 , 2 , 4 −0.517 (1.5) 18.7 (6.8) 0 0 

K P 1 , 3 , 1 −8.06 (3.4) −1.41 (1.4) 4.62 (1.4) −0.984 (1.1) 

K P 1 , 3 , 2 0.791 (0.48) −3.61 (0.96) −4.72 (0.58) 0.483 (1.4) 

K P 1 , 3 , 3 4.51 (1.3) −6.65 (1.6) 1.85 (0.51) 1.02 (0.2) 

K P 1 , 3 , 4 3.46 (1.1) 11.3 (2.6) 1.17 (0.42) 0.88 (0.9) 

K P 1 , 4 , 1 6.74 (3.3) −2.15 (1.5) 8.18 (2) −0.339 (0.69) 

K P 1 , 4 , 2 −0.701 (0.45) −4.66 (1.2) −7.01 (1) 0.214 (0.85) 

K P 1 , 4 , 3 −3.25 (1.2) −8.95 (2.1) −1.14 (0.72) 0.0276 (0.14) 

K P 1 , 4 , 4 −2.29 (1) 14.9 (3.4) −0.498 (0.59) 1.17 (0.61) 
as the yields. In contrast, the models with USV imposed 

have a noticeably worse fit. 

To understand the role of risk premia in matching both 

markets, observe that the likelihood is made up of a com- 

ponent due to the transition dynamics of the economy and 

a component due to the pricing errors. The pricing compo- 

nent is determined by the risk-neutral drift ( μQ ) and co- 

variance structure ( σ ) of the risk factors, while the likeli- 

hood of the data measured without error is determined by 

the drift under the physical measure( μP ) and the covari- 
ance structure. The drift under the two measures is related 
by the market prices of risk. Thus, the covariance structure 

provides a link between the two. 

As elaborated in Section 7 , convexity plays only a small 

role in the variation of bond yields. This means that bond 

prices depend primarily on risk-neutral expectations spec- 

ified by μQ . Provided that the market prices of risk are 

not restrictive, the likelihood cannot be dominated by the 

pricing errors and the model will be estimated in a consis- 

tent manner. On the other hand, with a constrained mar- 

ket price of risk, there will be a tension between the dy- 

namics and pricing errors. Related points are discussed in 



S. Joslin, Y. Konchitchki / Journal of Financial Economics 128 (2018) 344–362 349 

Table 3 

Variance parameter estimates. 

This table provides model estimates variance parameter estimates. All matrices are sym- 

metric, with the lower diagonals reported. Standard errors, computed by the gradient of 

the likelihood function, are given in parentheses. Unreported parameters are set to zero by 

the normalization constraints. The USV superscript denotes an affine model with USV con- 

straints imposed. The model is estimated from the in-sample period of June 1997 to June 

2006. 

A 1 (4) A 2 (4) A 1 (4) USV A 2 (4) USV 

�0, 22 8.95 (0.96) 0 1 0 

�0, 32 5.52 (0.81) 0 0 0 

�0, 33 3.41 (0.41) 0.191 (0.019) 1 0.0184 (0.002) 

�0, 42 3.7 (0.47) 0 0 0 

�0, 43 2.28 (0.29) -0.482 (0.065) 0 0.147 (0.019) 

�0, 44 1.53 (0.16) 1.22 (0.16) 1 2.14 (0.18) 

�1, 11 1 1 1 1 

�1, 22 4.43 (0.49) 0 6.93 (1.1) 0 

�1, 32 1.35 (0.17) 0 0 0 

�1, 33 8.55 (0.97) 0.644 (0.083) 0 0.0265 (0.0029) 

�1, 42 2.47 (0.39) 0 0 0 

�1, 43 −1.4 (0.17) −2.76 (0.35) 0 0.24 (0.029) 

�1, 24 2.03 (0.25) 11.9 (1.1) 0 5.06 (0.53) 

�2, 22 0 1 0 1 

�2, 33 0 1.42 (0.15) 0 2.15 (0.23) 

�2, 43 0 −4.5 (0.48) 0 0 

�2, 44 0 16.1 (1.7) 0 0 

Table 4 

Zero coupon pricing errors. 

This table computes the root-mean-square zero coupon yield 

pricing errors (in basis points) for the various models for the in- 

sample period. Zero coupon yields are computed by bootstrapping 

the swap curve. The USV superscript denotes an affine model with 

USV constraints imposed. The model is estimated from the in- 

sample period of June 1997 to June 2006. 

A 1 (4) A 1 (4) USV A 2 (4) A 2 (4) USV 

6 Month 0 0 0 0 

1 Year 7.4 12.7 7.4 10.3 

2 Year 0 0 0 0 

3 Year 4.1 10.3 4.1 6.3 

4 Year 5.2 15.1 5.2 8.2 

5 Year 5.3 16.4 5.3 8.3 

7 Year 3.8 13.0 3.8 6.1 

10 Year 0 0 0 0 

12 Year 3.9 12.9 3.9 6.9 

15 Year 8.9 38.8 9.1 19.7 

20 Year 12.9 96.4 13.2 39.0 

25 Year 13.3 176.0 13.6 53.0 

30 Year 17.3 279.1 17.4 66.2 

 

 

 

 

 

 

 

 

 

 

 

 

Table 5 

Swaption implied volatility errors. 

This table computes the root-mean-square errors for swaption im- 

plied volatilities (in percentage points) for the various models for the 

in-sample period. Swaptions are considered to be at-the-money in the 

model. The USV superscript denotes an affine model with USV constraints 

imposed. The model is estimated from the in-sample period of June 1997 

to June 2006. 

A 1 (4) A 1 (4) USV A 2 (4) A 2 (4) USV 

3 Months into 2 Years 4.1 7.2 4.1 21.5 

3 Months into 5 Years 1.5 2.1 1.4 5.4 

3 Months into 8 Years 1.4 1.5 1.4 3.1 

1 Year into 2 Years 1.0 3.6 0.9 5.7 

1 Year into 5 Years 0 0 0 0 

1 Year into 8 Years 0.5 0.5 0.5 0.6 

3 Years into 2 Years 1.0 1.5 0.8 2.0 

3 Years into 5 Years 0.7 0.8 0.7 1.8 

3 Years into 8 Years 0.9 0.8 0.8 1.9 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Dai and Singleton (2003) . The completely affine market

price of risk allows for risk premia to depend on the state

in two important ways. First, it allows for risk premia to

depend on the slope of the yield curve and change sign

over time. Second, it also allows the risk premium de-

manded for holding volatility risk to not shrink to zero

as volatility drops to zero—that is, investors may still be

averse to volatility risk, even when volatility is low. 

The risk premium for volatility risk is particularly im-

portant in matching the cross-section of option prices.

Agents are exposed to interest rate risks directly through

holding bonds and also indirectly through asset prices

linked to interest rates, such as home values. When inter-
est rate volatility is low, these assets become less risky.

This means that when volatility is low, an increase in

volatility turns a portion of the investor’s portfolio from a

riskless asset to a risky asset. If the price of volatility risk

is proportional to the level of volatility, the agent is effec-

tively close to risk-neutral to changes in the risk-level of

large portions of their portfolio. 

Overall, the model fits the prices in the data fairly well

during the in-sample period (with the possible exception

noted above). In general, fitting only prices for a reduced-

form model is not the most stringent test, but given the

cross-section of both bond and bond options and some

prior difficulties fitting both of these simultaneously with

a low-dimensional model, this does build some confidence

in the model. In Section 8 , we build on this by showing the

models’ abilities to explain conditional moments of bonds
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V

 

and bond options and the models’ ability to match prices 

out-of-sample. 

5. Volatility and the cross section of yields 

In general, volatility factors may affect the shape of 

the yield curve as in, for example, Longstaff and Schwartz 

(1992) . This may be through a correlation with the short 

rate (a nonzero entry in ρ1 ), an effect on risk-neutral ex- 

pectations (a nonzero entry in K 

Q 

1 
), or through a stochastic 

convexity effect. This section assesses the magnitude of the 

incremental effect of volatility on the yield curve (relative 

to the level, slope, and curvature) through the lens of the 

model. 

To study this effect, we consider the component of 

variance risk which is locally uncorrelated with the level, 

slope, and curvature of the yield curve. For this purpose, 

define the residual variance 

 

R 
t = V t − α1 � t − α2 s t − α3 c t , (9) 

where V t is the (instantaneous) variance of the 5-year zero 

rate and ( � t , s t , c t ) are measures of the level, slope, and 

curvature of the yield curve: � t = 

1 
3 (y 6 m 

+ y 2 y + y 10 y ) , s t = 

y 10 y − y 6 m 

, c t = −y 6 m 

+ 2 y 2 y − y 10 y . α is chosen so that V R t 

is locally uncorrelated with ( � t , s t , c t ): α = �−1 
y �V y . 

7 Be- 

cause the covariance of the factors is time-varying, the 

weights ( α) are time-varying as well. Here, it is convenient 

to work with variance instead of volatility since variance 

is an affine function of the state. Implicit in this defini- 

tion is the idea that the residual variance primarily drives 

volatility of the yield curve rather than the shape of the 

yield curve. In the case of the models with USV, the resid- 

ual variance factor has exactly no incremental effect on 

the yield curve. This turns out to be approximately true 

also in the case of the unconstrained model. Fig. 1 plots 

the effect of changes in the local residual variance, fix- 

ing the 6-month, 2-year, and 10-year yields, on the cross- 

section of yields for the estimated A 1 (4) model. 8 The ef- 

fect of the residual variance on the yield curve is nonzero, 

but quite small with a one standard deviation monthly 

shock resulting in a shift of less than half a basis point 

in all but very short maturity yields. This indicates that, 

although the model does not precisely have unspanned 

volatility, the residual variance, and thus volatility itself, is 

only very poorly identified from the cross-section of bond 

yields. Thus, while in principle one could extract volatil- 

ity from the cross-section, in practice this may be difficult 

to do in the presence of measurement errors much larger 

than the effect of volatility. This can also be seen by com- 

puting condition numbers for the required matrix inver- 

sion, which are quite large. 

These results agree well with Litterman and 

Scheinkman (1991) , who show that three principal 
7 Alternatively, one could use different maturities or use principal com- 

ponents (as in Joslin, Singleton, and Zhu, 2011 ) with the volatility of the 

level factor instead of individual maturities. 
8 These loadings are found by transforming the original risk factors X t 

from the drift-normalized model to the risk factors Y t = (� t , s t , c t , V R t ) = 

C + DX t . The new loadings for maturity τ are transformed by B (τ ) �→ 

(D −1 ) ′ B (τ ) . 
components explain nearly all of the variation in the yield 

curve. Thus, one would anticipate that a fourth factor 

likely would have only a small effect on yields. Duffee 

(2011) finds support, within the context of a Gaussian 

model, for a factor which has an effect only on returns. 

In the next section, we show that the residual variance 

drives both volatility and expected excess returns. We 

elaborate further on the mechanism that generates this 

effect in comparison to the restrictions in the USV model 

in Section 7 . 

6. Pricing yield risk 

Fama and Bliss (1987) , Campbell and Shiller (1991) , and 

others have suggested that the shape of the yield curve 

drives risk premia that investors demand for holding long 

maturity bonds over short maturity bonds. A number of re- 

sults (see, e.g., Cochrane and Piazzesi, 2008; Duffee, 2011; 

Joslin, Priebsch, and Singleton, 2014; Ludvigson and Ng, 

20 0 0; Rudebusch, Swanson, and Wu, 2006; Wright and 

Zhou, 2009 ) suggest that factors which have little incre- 

mental impact on the shape of the yield curve may be 

important for predicting excess returns for holding long 

maturity bonds. Indeed, Ludvigson and Ng (20 0 0) find evi- 

dence that inflation and real macroeconomic activity risk 

factors have the ability to predict variation in bond ex- 

cess returns above and beyond the level of interest rates. 

This raises the question of whether fixed income deriva- 

tives may be useful for identifying time-series variation in 

expected excess returns for holding long maturity bonds. 

The theoretical possibility that volatility may incremen- 

tally forecast bond returns can be seen as follows. The (lo- 

cal) risk premium for exposure to a risk factor F t is given 

by 

risk premium = μP 
F (X t ) − μQ 

F 
(X t ) . 

That is, the expected excess returns for exposure to a risk 

is determined by the difference between the P and Q ex- 

pected changes in the risk factor. We can reparameter- 

ize the model so that rather than the latent state vari- 

able X t , we have the state variable Y t = (� t , s t , c t , V 
R 

t ) as in

Section 5 . In these terms, we can transform the model to 

be given in terms of Y t which will have 

μQ 

Y 
= K 

Q 

0 Y 
+ K 

Q 

1 Y 
Y t , (10) 

μP 
Y = K 

P 
0 Y + K 

P 
1 Y Y t . (11) 

As seen in Fig. 1 , volatility has little incremental impact 

on bond yields relative to the level, slope, and curvature. 

Moreover, we show in Section 7 , volatility induces only 

minor variation in the convexity effect across maturities. 

Together, these observations imply that volatility has little 

incremental impact on Q -forecasts of the level, slope, and 

curvature. In this case (where volatility does not affect the 

Q -forecasts of the yield factors), volatility will be useful for 

forecasting bond returns whenever volatility is incremen- 

tally informative for predicting future yields through μP 
Y 

. 

We decompose the risk premia into a component asso- 

ciated with the yield curve and a component due to the 

residual variance. A one-year standard deviation increase 
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Fig. 1. Effect of residual variance on the yield curve. This figure plots the effect of the residual variance on the yield curve. The residual variance is defined 

as the risk which is locally uncorrelated with the 6-month, 2-year, and 10-year yields. The figure plots the effect of a monthly one standard deviation 

shock in the residual variance on the yield curve, fixing the 6-month, 2-year, and 10-year yields for the A 1 (4) model on June 21, 2006. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

9 These results partially reflect the fact that swaption implied volatility 

is quoted on a log of yields scale, rather than on a level of yields scale. 
10 As a robustness check, we also estimate the non-USV models over 

the shorter period ending in April 2004, which excludes this episode. The 

results were generally similar with the exception of declining statistical 
in the level of residual variance results in a decrease in ex-

pected return of approximately 1% for the five-year zero

coupon bond. The variation in risk premia due to residual

variance accounts for approximately 40% of the total vari-

ation in risk premia. Although not the dominant term, the

residual variance drives an economically meaningful por-

tion of the risk premium. 

The period from June 2004 to June 2006 is suggestive

of this relationship. During this period, the Federal Open

Market Committee raised the target Fed funds rate 25 ba-

sis points for 17 consecutive meetings. This period has

been referred to as a conundrum by then Fed Chairman

Alan Greenspan because during this period the long rate

remained relatively constant despite the increasing short

rate. This conundrum is resolved either through changing

expectations of future short rates (i.e., long rates could

remain unchanged if investors anticipated the future Fed

policy actions) or through declining term premiums. The

model estimates indicate that this flattening of the yield

curve was largely associated with declining risk premia.

Thus, we can associate the flattening of the yield curve

with a decline in risk premia for holding long maturity

bonds ( Section 7 further discusses the decomposition of
the yield curve into expectations, term premia, and con-

vexity effects). Fig. 2 plots the slope of the yield curve (the

10-year rate minus the 6-month rate) on the left axis and

the implied volatility of an in 1-year-for-5-year swaption. 9

Here it is evident that the period is also associated with a

decline in yield volatility (perhaps due to increased trans-

parency of monetary policy, as some suggest). These obser-

vations, albeit over a short time period, support the em-

pirical results that volatility is an important determinant

of the risk premium demanded for holding long maturity

bonds. 10 

7. Role of convexity in bond pricing 

Long maturity bond yields reflect expectations of fu-

ture interest rates, risk premia, and convexity effects.
significance due to larger standard errors. 
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Fig. 2. Long-yield conundrum. The figure plots the slope of the yield curve (10-year swap-implied zero rate minus the 6-month LIBOR rate) on the left axis 

and the implied volatility of the in 6-month-for-2-year swaption on the right axis. During this period, the yield curve became flat as the Fed continually 

raised interest rates. Also, implied volatilities declined similarly. 

Table 6 

Convexity effects in zero coupon bond yields. 

The top panel provides the average model-implied convexity effect in 

basis points for different bond maturities. The bottom panel provides the 

sample standard deviation, in basis points, of monthly changes in the 

model-implied convexity effects. The convexity effect of a T -year yield: 

C t (T ) ≡ 1 

T 
log E 

[ 
e −

∫ t+ T 
t r τ dτ

] 
+ 

1 

T 
E Q 

[∫ t+ T 

t 

r τ dτ

]
. 

The USV superscript denotes an affine model with USV constraints im- 

posed. The model is estimated from the in-sample period of June 1997 

to June 2006. 

Panel A: Average convexity effects 

A 1 (3) A 1 (4) A 1 (4) USV A 2 (4) A 2 (4) USV 

2 year 0.48 0.46 0.79 0.46 1.80 

5 year 4.06 4.01 4.78 4.02 5.20 

10 Year 16.19 15.65 17.79 15.83 15.00 

30 Year 85.48 79.15 168.29 80.06 90.95 

Panel B: Time variation of convexity effects 

A 1 (3) A 1 (4) A 1 (4) USV A 2 (4) A 2 (4) USV 

2 year 0.02 0.03 0.07 0.04 0.11 

5 year 0.13 0.28 0.36 0.27 0.28 

10 Year 0.39 0.84 1.01 0.83 0.38 

30 Year 0.80 1.84 2.69 1.82 0.27 
Fixing (risk-neutral) forecasts of future interest rates, 

convexity affects long maturity bond yields through 

Jensen’s inequality as 

exp 

(
E Q 

[
−

∫ T 

0 

r τ dτ

])
< E Q 

[
exp 

(
−

∫ T 

0 

r τ dτ

)]
. 

The size of the convexity effect will be determined by the 

volatility of interest rates. We now turn to analyze the rel- 

ative importance of this channel and its impact on bond 

prices and the modeling of the yield curve. 

The T -year zero coupon yield can be decomposed into 

an expectations effect ( y t, E ), a risk premium ( y t, RP ), and a 

convexity effect ( y t, C ) as 

y T t = y T t,E + y T t,RP + y T t,C , (12) 

where 

y T t,E ≡
1 

T 

∫ t+ T 

t 

E P t [ r τ ] dτ, 

y T t,RP ≡
1 

T 

∫ t+ T 

t 

(E Q t [ r τ ] − E P t [ r τ ] ) dτ , (13) 

y T t,C ≡ − 1 

T 

(
log E Q t 

[ 
e −

∫ t+ T 
t r τ dτ

] 
+ 

∫ t+ T 

t 

E Q t [ r τ ] dτ
)
. 

The expectations term represents the bond price dis- 

counted with a yield to maturity equal to the average ex- 

pected future short rate. 

Fig. 3 plots the decomposition of the 10-year zero 

coupon yield in terms of expectations, risk premia, and 

convexity effects as defined above. Each of the terms are 

an affine function of the state variable whose loading can 

be computed by solving a Riccati differential equation or 

a linear constant coefficient ordinary differential equation. 

The figure shows that the variation in yields is dominated 

by expectations and risk premium effects and that the con- 

vexity effects are quite small (see also Gupta and Subrah- 

manyam, 20 0 0 ). 
Table 6 provides the magnitude of the convexity effect 

across maturities for the various models’ specifications. For 

comparison, an A 1 (3) model, estimated on the same data 

but not inverting the swaption, is added to both tables. 

Panel A shows that the average convexity effects are small 

for the 2-year zero coupon bond, around one basis point. 

Extending the maturity to ten years, the average size of 

the convexity effects becomes more economically mean- 

ingful, reaching around 15 basis points. However, Panel B 

shows that, although the 10-year convexity effect is larger, 

the variation is still quite small with a monthly standard 
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Fig. 3. Yield decomposition. This figure plots model-implied decomposition of the 10-year yield into expectations, risk premiums, and convexity compo- 

nents for the estimated A 1 (4) model. Expectations, risk premiums, and convexity terms are defined by 

y expectation = 

1 

10 

∫ t+10 

t 

E P t [ r τ ] dτ, 

y risk premia = 

1 

10 

∫ t+10 

t 

(E Q t [ r τ ] − E P t [ r τ ]) dτ, and 

y t, convexity = − 1 

10 

(
log E t [ e 

− ∫ t+10 
t r τ dτ ] + 

∫ t+10 

t 

E Q t [ r τ ] dτ

)
. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

11 More formally, the precise condition is the existence of an eigenvector 

of K Q 
1 

which is orthogonal to ρ1 and loads on the volatility factors. 
12 Andersen and Benzoni (2010) stress the theoretical deficiency of gen- 

eral affine models to produce low correlation between volatility changes 

and yield changes. 
deviation of less than one basis point. Extending to 30-

year bonds, the average convexity effect becomes impor-

tant, but the variation still remains quite small. The reason

behind this is intuitive: over short horizons, convexity ef-

fects are generally unimportant; over long horizons, mean

reversion in the level of volatility implies that the current

level of volatility has only a small impact on long maturity

yields. 

These results show that convexity plays only a small

role in bond prices. The fact that convexity effects are

small implies that a dynamic term structure model may

exhibit arbitrary correlation between the first few principal

components and volatility under very parsimonious condi-

tions. For example, consider the A 1 (4) model and approxi-

mate (6) by eliminating the quadratic convexity term, 

˙ B ≈ −ρ1 + (K 

Q ) ′ B . (14)

1 
If there is a risk factor that affects the conditional volatility

of yields but does not affect risk-neutral expectations of fu-

ture rates, volatility will only be related to the yield curve

through the small convexity effect and correlation between

the risk factors. 11 

As Collin-Dufresne, Goldstein, and Jones (2009) argue,

the fact that convexity effects are small suggests that

volatility may be poorly identified from the cross-section

of bond prices. 12 Indeed, even in a model where the

constraints for USV are strongly violated, volatility may

only be identified through the convexity effect in a very
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Table 7 

Eigenvalues under the risk-neutral measure. 

Eigenvalues of the mean-reversion matrix, κQ , under the 

risk-neutral measure. Eigenvalues of the CIR factors are de- 

noted with a ◦. The USV superscript denotes an affine model 

with USV constraints imposed. The model is estimated from 

the in-sample period of June 1997 to June 2006. 

A 1 (4) A 1 (4) USV A 2 (4) A 2 (4) USV 

1st Eigenvalue 1.492 1.233 1.563 ° 3.833 °
2nd Eigenvalue 0.642 0.244 ° 0.624 1.628 °
3rd Eigenvalue 0.317 ° 0.067 0.348 ° 0.237 

4th Eigenvalue 0.050 0.034 0.053 0.118 

13 Joslin (2017) shows that in order for the convexity effect to cancel, 

three types of restrictions must hold: (1) some factor mean reversions 

must be related in a 2:1 ratio in order to possibly cancel a quadratic con- 

vexity effect, (2) some factors must have constant volatility in order to 

not generate convexity effects, and (3) volatility must affect expectations 

of future rates in exactly the right way to cancel the convexity effect. 
sensitive manner. More precisely, although volatility may 

be directly inferred from bond prices, it is only through 

solving the numerically unstable equation Ax = b where A 

is nearly singular. The near singularity of A means that 

small errors, for example, measurement errors in the yields 

or estimation errors, may result in large errors in the in- 

ferred volatility. For example, if 6-month, 2-year, 5-year, 

and 10-year zero coupon yields are used to infer volatility, 

the unconstrained A 1 (4) estimates indicate that the ma- 

trix A will have a very high condition number (6,299—

condition numbers over 30 suggest multicollinearity) and 

thus will be nearly non-singular. 

To highlight the mechanism, define a model with a fac- 

tor that has volatility unspanned by expectations by 

Defintion 7.1 . A diffusive Q -short rate model, 

d r t = μ(X t , t) d t + σ (X t , t) d B t , 

has volatility unspanned by expectations if there exists a 

change of variable Y t = f (X t ) such that Y 1 t drives volatility 

but does not affect Q -expectations of future interest rates 

( ∂ μ/ ∂ y 1 ≡ 0). 

A non-degenerate affine term structure model has 

volatility unspanned by expectations if there exists an 

eigenvector of K 1 which is orthogonal to ρ1 . In an affine 

model, we can obtain this representation as follows. First, 

assuming K 1 is diagonalizable, let { u 1 , u 2 , . . . , u n } be a ba- 

sis of eigenvectors of K 1 so that u 1 is an eigenvector cor- 

responding to a zero eigenvalue which is also orthogo- 

nal to ρ1 . Letting U = [ u 1 , . . . , u n ] , define a change of vari-

ables Y t = UX t . We will then have (1) ρY 1 , 1 = 0 and (2) Y t , 1 
will not have any feedback on the conditional mean of the 

other variables (i.e., K Y 1 , j, 1 = 0 for j > 1); thus, E Q t [ r t+ τ ] will 

not depend on Y t , 1 for any horizon. In case K 1 is not diag- 

onalizable, we can use a real Schur form as in Joslin, Sin- 

gleton, and Zhu (2011) . 

Not all classes of term structure models admit volatil- 

ity risk factors unspanned by expectations. Gaussian affine 

term structure models clearly cannot admit expectations 

unspanned volatility risk factors (the eigenvector condition 

implies the model will be degenerate). Additionally, it is 

easy to show that quadratic affine term structure models, 

as in Longstaff (1989) , Ahn, Dittmar, and Gallant (2002) , Li 

and Zhao (2006) , and others, do not admit volatility un- 

spanned by expectations. 

The mechanism at work in models with unspanned 

volatility and expectations unspanned volatility are very 

different. In USV models, there exist small convexity ef- 

fects whose differential effects across maturities must be 

exactly canceled by a corresponding expectations effect. 

This requires restrictions on the number of stochastic con- 

vexity effects generated and the rates of mean reversions 

of the risk factors. For example, in the A 1 (3) specification, 

there are ten parameter constraints required. In contrast, 

when volatility is unspanned by expectations, it will by 

spanned by yields. However, this is only through the con- 

vexity effects which we have seen empirically show very 

small time-series variation. Furthermore, this requires only 

a single parameter constraint. 

The simple condition in Defintion 7.1 is very differ- 

ent from the multiple conditions required for unspanned 
stochastic volatility, which explicitly cancel the convexity 

effect. For exam ple, Joslin (2017) shows that in order for 

the convexity effect to cancel, there must be some factors 

whose mean reversions are related in a 2:1 ratio in order 

to possibly cancel a quadratic convexity effect. 13 We can 

examine this particular condition further by looking at the 

rates of mean reversion (determined by the eigenvalues of 

κQ = −K 1 ) for each of the models. The eigenvalues under 

the risk-neutral measure are given in Table 7 . We see that 

both USV models have two persistent risk factors with long 

half-lives. This is because the convexity effect generated by 

a persistent risk factor with stochastic volatility can only 

be canceled by a risk factor with twice the rate of mean re- 

version. This stands in contrast to the unconstrained mod- 

els that have only a single persistent risk factor. 

We can examine the severity of this constraint on the 

eigenvalues both through statistical tests and through the 

out-of-sample pricing performance of the models. Table 8 

shows that both a Lagrange-multiplier test using the re- 

stricted estimates and a Wald test using the unrestricted 

estimates reject the restriction on the rates of mean rever- 

sion. Additionally, a likelihood ratio test of the constrained 

USV model against the unconstrained model strongly re- 

jects the USV restrictions for both the A 1 (4) and A 2 (4) 

models. The economic effect of the mean-reversion re- 

strictions can also be understood by comparing the abil- 

ity of the models to price 30-year zero coupon bonds in 

Table 4 . These bonds were not used in estimation and 

thus represent an out-of-sample comparison of the models. 

For the longer maturities, the non-USV models price the 

yields reasonably well with root-mean-square errors rang- 

ing from 10 to 17 basis points. The errors for the USV mod- 

els are much larger. The cause for the larger error can be 

attributed to the restrictions on the rates of factor mean 

reversion imposed by USV. 

8. Out-of-sample analysis 

This section provides additional analysis that focuses on 

out-of-sample tests. Specifically, it first focuses on out-of- 

sample assessment of the ability of the models to accu- 
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Table 8 

Statistical tests of USV constraints. 

This table gives the test statistics for the constraints required for the A 1 (4) and A 2 (4) 

models to exhibit unspanned stochastic volatility. The USV constraint imposes nine param- 

eter restrictions on the unconstrained model. The mean-reversion constraint is tested by a 

Lagrange-multiplier test. In addition, the complete set of restrictions is rejected by a likeli- 

hood ratio test and by a Wald test. 

A 1 (4) A 2 (4) 

Lagrange multiplier (mean reversion) 6.31 (0.006) 14.73 (  0.001) 

Wald test (full model) 987 (  0.001) 1,320 (  0.001) 

Likelihood ratio (full model) 2,690 (  0.001) 4,80 0 (  0.0 01) 

Table 9 

Out-of-sample zero coupon pricing errors. 

This table computes the out-of-sample root-mean-square zero coupon 

yield pricing errors (in basis points) for the various models. Zero 

coupon yields are computed by bootstrapping the swap curve. The USV 

superscript denotes an affine model with USV constraints imposed. The 

model is estimated from the in-sample period of June 1997 to June 

2006. The out-of-sample period is from July 2006 to January 2016. 

A 1 (4) A 1 (4) USV A 2 (4) A 2 (4) USV 

6 Month 0 0 0 0 

1 Year 7.2 14.5 7.2 12.4 

2 Year 0 0 0 0 

3 Year 4.4 12.4 4.7 7.5 

4 Year 5.7 18.2 5.7 9.9 

5 Year 5.8 19.6 5.8 10.0 

7 Year 4.0 14.7 4.3 7.0 

10 Year 0 0 0 0 

12 Year 4.2 15.0 4.4 7.8 

15 Year 10.9 47.8 10.2 25.3 

20 Year 14.7 125.0 14.8 49.6 

25 Year 15.3 221.5 15.5 66.1 

30 Year 18.5 362.5 18.6 80.2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 10 

Out of sample swaption implied volatility errors. 

This table computes the out-of-sample root mean square errors for for 

swaption implied volatilities (in percentage points) for the various mod- 

els. Swaptions are considered to be at-the-money in the model. The USV 

superscript denotes an affine model with USV constraints imposed. The 

model is estimated from the in-sample period of June 1997 to June 2006. 

The out-of-sample period is from July 2006 to January 2016. 

A 1 (4) A 1 (4) USV A 2 (4) A 2 (4) USV 

3 Months into 2 Years 3.3 9.3 3.4 26.9 

3 Months into 5 Years 1.7 2.6 1.5 6.8 

3 Months into 8 Years 1.5 1.9 1.5 4.0 

1 Year into 2 Years 1.1 4.4 1.0 7.0 

1 Year into 5 Years 0 0 0 0 

1 Year into 8 Years 0.5 0.6 0.6 0.7 

3 Years into 2 Years 1.1 1.9 0.8 2.4 

3 Years into 5 Years 0.8 1.0 0.8 2.2 

3 Years into 8 Years 1.0 1.0 0.9 2.4 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

rately price the cross-section of yields and swaption im-

plied volatilities. The section then evaluates the ability of

the model to match conditional first and second moments

of yields in- and out-of-sample. In addition, we extend the

evidence in the model to examine the role of volatility in

bond risk premia through model-free regression tests. To

briefly summarize the findings described in the rest of the

section below: (a) the model is able to price quite well

the cross-section of yields and swaption implied volatili-

ties out-of-sample, supporting the in-sample evidence pre-

viously provided; (b) the model can match conditional first

moments of yields and swaption implied volatilities in-

and out-of-sample; (c) the model can match conditional

second moments of yields in- and out-of-sample; and (d)

there is additional model-free regression evidence on the

role of volatility in determining bond risk premia. Taken

together, the additional findings in this section indicate

that the model describes interest rate dynamics and they

provide further confirmatory evidence on the impact of

volatility on interest rates and their dynamics. 

Table 9 provides the out-of-sample fit to the swap-

implied zero curve. The results show that the out-of-

sample fit is generally similar to the in-sample fit. In par-

ticular, compared to the in-sample fit in Table 4 , the fit is

generally only slightly worse with root-mean-square errors

within one basis point. A few notable exceptions are that:

(a) the fit for the one-year zero is slightly better out-of-
sample for the unconstrained models; and (b) the fit of the

longer maturities beyond ten years (which were not used

in estimation) is slightly worse for the unconstrained mod-

els (increases in root-mean-square errors of around one to

two basis points) and considerably worse relative to an al-

ready poor fit for the USV-constrained models. 

Table 10 provides the out-of-sample fit to the swap-

tion implied volatilities. As with the zero curve, the out-

of-sample fit is similar to the in-sample fit. In particular,

compared to the in-sample fit in Table 5 , most of the root-

mean-square errors (RMSEs) are within around 10 to 20

basis points (0.10–0.20%) in implied volatility. An exception

is the in 3-months-for-2-years swaption that has the short-

est expiration and shortest underlying maturity. Here, the

out-of-sample fit actually improves somewhat for the un-

constrained models. This finding is consistent with the fact

that in-sample the model fits this swaption better in lower

interest rate environments and the fact that the out-of-

sample period is dominated by low interest rates. In gen-

eral, the same conclusion for the in-sample period holds

for the out-of-sample period. That is, the unconstrained

models match well the cross-section of swaptions with the

exception of a poorer fit to the short expiration-short ma-

turity swaption. 

To further evaluate the fit of the model to first condi-

tional moments, we compare the ability of the models to

predict changes in yields and changes in implied volatili-

ties relative to standard baseline models. Table 11 presents

the root-mean-square errors for predicting monthly and

annual changes for the ten-year swap-implied zero rate
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Table 11 

Predicting changes in yields. 

This table presents the ability of the in-sample estimated term 

structure to forecast in-sample and out-of-sample changes in 10- 

year swap-implied zero rate. Panel A (Panel B) presents the results 

for forecasting changes one (12) month(s) ahead. The first (third) 

data column presents the root-mean-square prediction error for 

the models for the in-sample (out-of-sample) period. The second 

(fourth) data column presents the t -statistic from Diebold-Mariano- 

West tests of equal predictive accuracy compared to a random walk. 

Double (single) asterisk indicates statistical significance at the 5% 

(10%) level using two-tailed tests. The 3 PC row uses a regression 

with the level, slope, and curvature to predict future changes. The 

USV superscript denotes an affine model with USV constraints im- 

posed. The in-sample period is June 1997 to June 2006 and the out- 

of-sample period is from July 2006 to January 2016. 

Panel A: One-month-ahead yield changes 

In Out 

RMSE t DMW RMSE t DMW 

A 1 (4) 27.0 2.50 ∗∗ 30.8 0.76 

A 2 (4) 27.2 1.81 31.0 0.44 

A 1 (4) USV 28.0 0.51 31.3 −0.02 

A 2 (4) USV 29.0 −0.80 31.6 −0.52 

3 PC 27.6 1.38 35.3 −1.03 

Random walk 28.5 31.3 

Panel B: 12-Month-ahead yield changes 

In Out 

RMSE t DMW RMSE t DMW 

A 1 (4) 76.0 2.21 ∗∗ 76.4 1.95 ∗

A 2 (4) 77.0 1.99 ∗∗ 77.9 1.77 ∗

A 1 (4) USV 86.1 0.57 90.5 −0.06 

A 2 (4) USV 89.1 −0.22 92.5 −0.42 

3 PC 59.8 2.03 ∗∗ 97.5 −1.04 

Random walk 88.2 90.3 
for both the in- and out-of-sample periods. For the out- 

of-sample period, we use the model estimated on the 

in-sample period and computed the implied forecasted 

changes in rates based on the states extracted in the out- 

of-sample period. For comparison, we also compute the 

root-mean-square forecast errors for a random walk. Addi- 

tionally, for predicting changes in swap-implied zeros, we 

consider the predictions of a standard three-factor Gaus- 

sian model ( A 0 (3)) estimated using yield data only. We 

estimate the model using the in-sample period as in the 

main estimation except that we do not fit the swaption im- 

plied volatilities. 

The results show, unsurprisingly, that all the models 

are able to beat a random walk for the in-sample period. 

Out-of-sample, the fit of all of the models declines. The 

unconstrained models maintain lower root-mean-square 

errors than the random walk out-of-sample for nearly 

all zero rates and implied volatilities. The models with 

USV constraints imposed have generally worse forecasting 

ability out-of-sample. We additionally conduct a Diebold- 

Mariano-West (DMW) test ( Diebold and Mariano, 1995; 

West, 1996 ) based on the root-mean-square errors (that 

is, a test of whether the models provide superior forecast- 

ing ability versus a random walk). We compute the spec- 

tral density at frequency zero using a Newey and West 

(1987) estimator with 12 lags. 
Table 11 shows that the unconstrained models generally 

provide superior forecasting ability for predicting changes 

in yields in- and out-of-sample. Unsurprisingly, the DMW 

test (uncorrected for the in-sample overfit), rejects the null 

of equal forecasting ability for the uncontrained models in- 

sample. As is commonly observed (see, e.g., Diebold and 

Li, 2006 ), at a one-month horizon, we cannot reject the 

null of equal forecasting ability with a random walk for 

any of the models. At a one-year horizon, we see that both 

unconstrained models reject the null of equal forecasting 

power at the 10% level. 

As additional analysis, we also conduct several addi- 

tional tests to examine results using a wide array of ma- 

turities and horizons. The results generally extend if we 

consider other yield maturities and horizons between one 

month and one year. For almost all maturities and hori- 

zons, the unconstrained models have lower RMSEs than 

a random walk. Generally, for longer (shorter) horizons, 

there is evidence (less evidence) that we can reject the null 

of equal forecasting ability between the models and a ran- 

dom walk. This holds for most maturities except less so for 

the six-month zero. 

The results are also broadly similar if we consider pre- 

dicting changes in the implied volatilities (for various un- 

derlying maturities and expirations) at different horizons. 

One key difference between the yields and the implied 

volatilities is that there was a marked increase in the 

volatilities of implied volatilities between the in-sample 

and out-of-sample periods. One measure of this is the in- 

crease in the RMSE of a random walk going from the in- 

sample to the out-of-sample period. For example, for the 

one-year into five-year swaption, the RMSE increases from 

2.20% in-sample to 3.78% out-of-sample. A result of this 

is that simple time-series models such as an AR(1) actu- 

ally perform quite a bit worse out-of-sample than a ran- 

dom walk due to inaccurate forecasts of large changes in 

implied volatilities. The estimated models (with or with- 

out the USV constraints) perform substantially better than 

s simple AR(1) model at all horizons. However, even at the 

one-year horizon there is not enough evidence to reject a 

null of equal forecasting ability with a random walk. How- 

ever, using a loss function in the DMW test based on mean 

absolute error (which is less sensitive to outliers) allows a 

significant rejection of the null of equal forecasting ability 

with a random walk for the one-year horizon for several 

specifications. 

Next, we turn to consider the ability of the models to 

match conditional second moments in- and out-of-sample. 

The fact that the (forward-looking) volatility of the zero 

rates is not observed complicates inference on the abil- 

ity of the models to match conditional second moments. 

To assess the ability of the model to fit conditional mo- 

ments, we follow Patton (2010) , Meddahi (2002) , and oth- 

ers and assess the ability of the models to predict a condi- 

tionally unbiased volatility proxy. As a baseline, h 1, t , the 

(scaled) past-month realized daily variance, is used as a 

predictor of the future conditional variance, and we then 

test whether the models provide a superior forecast rel- 

ative to this baseline. Specifically, we use ˆ σ 2 
t , the subse- 

quent squared monthly change in the yield, as a proxy 

for the unobserved conditional variance. From the model, 
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Table 12 

Model fit to conditional second moments. 

This table presents the t -statistics from Diebold-Mariano- 

West tests of equal predictive accuracy for predicting future 

variance by a 30-day rolling window forecast and by fore- 

casts from estimated affine term structure models for the 

10-year swap-implied zero rate. Future variance is proxied 

by the square return and the loss function is given by QLIKE. 

Double (single) asterisk indicates statistical significance at 

the 5% (10%) level using two-tailed tests. The USV superscript 

denotes an affine model with USV constraints imposed. The 

in-sample period is June 1997 to June 2006 and the out-of- 

sample period is from July 2006 to January 2016. 

A 1 (4) A 2 (4) A 1 (4) USV A 2 (4) USV 

In -sample 1.78 ∗ 1.82 ∗ 1.42 1.32 

Out-of-ample 2.03 ∗∗ 2.10 ∗∗ 1.79 ∗ 1.68 ∗

Full sample 2.50 ∗∗ 2.61 ∗∗ 2.16 ∗∗ 2.02 ∗∗

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

tat and use all available data with consecutive observations 
we compute the conditional variance of the yields: h 2 ,t ≡
E t [(y m 

t+1 
− ȳ m 

t+1 
) 2 ] , which is readily found as the solution

to an ordinary differential equation. We then test using

a DMW test whether E[ L (σ 2 
t , h 1 ,t )] = E[ L (σ 2 

t , h 2 ,t )] . Here

we use the QLIKE loss function of L ( ̂  σ 2 , h ) = log (h ) + ˆ σ 2 /h .

Patton (2010) shows that this loss function has several ap-

pealing theoretical properties and is robust to extreme ob-

servations. 

The results of this analysis for the ten-year swap-

implied zero is in Table 12 . The reported DMW statistic

is positive when the term structure model provides a bet-

ter fit than the prior month daily realized variance (i.e.,

whether the loss function is lower for the term structure

model). Over all the sample periods, the evidence is gen-

erally consistent with the fact that the models are able to

match the conditional second moments better than the re-

alized variance, although it is not always possible to reject

the null hypothesis. Results are similar for other maturities.

These findings, together with the results on the conditional

first moments, show that the models are able to capture a

number of features of the dynamics of interest rates and

implied volatilities. 

We now further examine the validity of the model im-

plication shown in Section 6 relating volatility and bond

returns. This section reconsiders this examination in a

model-free way through a regression framework. In partic-

ular, here we consider whether a variance factor has in-

cremental ability to predict bond returns in- and out-of-

sample for various holding periods. For this, we construct

h -month realized log excess returns for the m -month zero

coupon bond as 

r t ,t + h = −(m − h ) y m −h 
t+ h + my m 

t − y h t . (15)

We then consider whether a variance factor incremen-

tally predicts bond returns relative to the level, slope, and

curvature of the yield curve. To do this, we convert the

three-months into five-years swaption implied volatility to

variance factor rather than using volatilities themselves,

following the implication of the model. 14 In particular, we

conduct the variance factor as follows. FIrst, we convert the
14 This also follows the equity literature as in, for example, Bollerslev, 

Tauchen, and Zhou (2009) . 
implied volatility of the in 3-months-for 5 years swaption

(which is implicitly measured in logs) to a realized vari-

ance by first multiplying by the level of the 5-year rate and

then squaring. Second, for each month we compute the

variance of the daily changes in the 5-year rate over the

prior month. The variance factor is then the difference be-

tween these implied and realized variance measures. Alter-

natively, one could construct a measure based on model-

free estimates of implied volatility (and variance) as in

Britten-Jones and Neuberger (20 0 0) . This would provide a

cleaner implied volatility measure that is free from model-

ing assumption implicit in the implied volatility. 

The results are shown in Table 13 for the excess re-

turn of holding a ten-year zero coupon bond for a 12

month holding period. 15 Standard errors are computed as

in Newey and West (1987) using 12 lags. With the ex-

ception of the univariate regression in the in-sample pe-

riod, the variance factor predicts excess returns with at

least a 10% significance level and typically, a 5% signifi-

cance level. This applies as well even when controlling for

the level, slope, and curvature factors. Similar results ob-

tain for excess returns for other maturities and holding pe-

riods (though the statistical significance and magnitude at-

tenuate for shorter holding periods). These results validate

the implications of the estimated model in Section 6 and

show that the variance factor is incrementally informative

about future bond returns. 

We now turn to investigate some structural causes of

the reduced form relationships that we have documented.

In order to understand some of the sources of variation

in interest rate volatility, we consider the relationship be-

tween interest rate volatility and the macroeconomy. More

specifically, our model so far studies the properties of in-

terest rate volatility in a reduced form manner. We add

to this by examining a source of time series variation in

interest rate volatility. Because of the major role of the

corporate sector in the macroeconomy including in affect-

ing monetary policy, we analyze how the corporate sec-

tor is linked to interest rate volatility. In standard eco-

nomics models, both the risk free rate and the overall dis-

count rate are endogenously determined in equilibrium.

Higher uncertainty can lead to lower interest rates through

the precautionary savings channel (decreased inflationary

pressures stemming from reduced consumption and in-

creased saving). On the other hand, higher uncertainty may

lead to higher interest rates and higher cost of capital

through changes in investment opportunity sets. In a real

options model of investment, higher uncertainty can make

real options more valuable and increase asset values with

a concurrent increase in volatility. Given that higher un-

certainty can be driven by higher cross-sectional disper-

sion in corporate unexpected performance, we operational-

ize the real options investment channel by examining how

interest rate volatility is linked to cross-sectional disper-

sion in firms earnings information. To conduct this analy-

sis, we obtain quarterly accounting variables from Compus-
15 Generally, results are similar, though statistical significance is attenu- 

ated for a one-month holding period. 
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Table 13 

Volatility and interest rate risk. 

This table presents the ability of term structure factors (PCs1–3: level, slope, and cur- 

vature) and a variance factor to predict 12-month holding period excess returns for 

holding a ten-year zero coupon bond. The variance factor is computed by converting 

the implied volatility of the 3-months into 5-year swaption. Standard errors are based 

on Newey and West (1987) with 12 lags. Double (single) asterisk indicates statistical 

significance at the 5% (10%) level using two-tailed tests. The in-sample period is June 

1997 to June 2006 and the out-of-sample period is from July 2006 to January 2016. 

Panel A: In-sample period 

Variance factor −116 ∗ −131 ∗∗ −114 ∗∗

(62) (45) (37) 

PC1 0.095 0.118 

(0.078) (0.087) 

PC2 0.242 0.435 0.117 0.381 

(0.38) (0.31) (0.46) (0.34) 

PC3 0.131 −0.050 

(1.31) (1.3) 

Panel B: Out-of-sample period 

Variance factor −96.7 −87 . 2 ∗ −110 ∗∗

(62) (51) (43) 

PC1 −0 . 182 ∗∗ −0 . 17 ∗∗

(0.070) (0.069) 

PC2 −0.100 −0.253 −0.303 −0.498 

(0.40) (0.28) (0.42) (0.32) 

PC3 0.81 0.81 

(1.0) (1.1) 

Panel C: Full sample 

Variance factor −105 ∗∗ −103 ∗∗ −123 ∗∗

(43) (37) (31) 

PC1 −0.066 −0.047 

(0.058) (0.061) 

PC2 −0.027 −0.004 −0.149 −0.149 

(0.31) (0.29) (0.34) (0.33) 

PC3 −0.055 −0.225 

(0.79) (0.85) 
when considering the intersection of available Treasury 

rates and Compustats earnings. First, tracking the time se- 

ries of interest rate volatilities (untabulated for brevity) 

reveals that (a) volatilities across different horizons are 

highly correlated, with slightly higher volatilities for short- 

term maturity horizons, and (b) volatilities spike around 

recessions, demonstrating the sensitivity of yields to eco- 

nomic uncertainty such as recessions. Second, we calculate 

cross-sectional dispersion in firms earnings information by 

measuring each firms scaled earnings information (scaled 

quarterly income before extraordinary items) in each quar- 

ter and then computing the cross sectional dispersion as 

the standard deviation of the cross section of earnings 

changes (year-over-year changes in scaled earnings) across 

firms in each period. To avoid negative denominator prob- 

lems, we scale earnings by sales. Time series of disper- 

sion in earnings information are calculated every month 

throughout the year based on the cross-sectional standard 

deviation across all firms with fiscal quarter ends falling in 

that month. We then estimate regression models of future 

one-month and two-months interest rate volatility for each 

horizon in Federal Reserve H.15 reports on current period 

dispersion in earnings information. 

The main takeaway from these regression results, unt- 

abulated for brevity, is that there is a strong link between 

corporate accounting information and future interest rate 
volatilities, especially over the short to middle terms. In 

particular, the cross-sectional earnings information disper- 

sion is significantly tied to subsequent interest rate volatil- 

ity, which is consistent with the real options investment 

channel. 

9. Conclusion 

This paper provides theory and evidence showing that 

when the covariance structure of risk factors and market 

prices of risk are not restricted, low-dimensional dynamic 

term structure models are able to simultaneously capture 

the price dynamics in bond and bond option markets. We 

show that under parsimonious conditions there can exist 

a residual component of volatility risk largely uncorrelated 

with yield changes. This residual volatility risk is an impor- 

tant determinant of the risk premium that investors de- 

mand for holding long maturity bonds. We find empiri- 

cal evidence rejecting conditions for unspanned volatility. 

We find evidence for a component of volatility that has 

very little effect on the cross-section of bond yields due 

to having a small effect on risk-neutral expectations of fu- 

ture short rates and inducing little variation in convexity 

effects. We show that our model is able to capture condi- 

tional first and second moments in the data and provide 

model-free regression analysis demonstrating the role of 
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volatility in bond risk premia. This paper also shows an

important link between corporate performance and inter-

est rate volatility. Finally, we develop computational meth-

ods for pricing options and extend the technique to pro-

vide maximum likelihood estimation of general affine dif-

fusions which can be used in a number of contexts. 

Appendix A. Model specification 

For the affine term structure model 

r t = ρ0 + ρ1 · X t , 

dX t = μt dt + σt dB t , 

μt = K 0 + K 1 X t , 

σt σ
′ 
t = H 0 + H 1 · X t , 

where 

K 1 = 

[
K V 0 

K VG K G 

]
, H 0 = 

[
0 0 

0 �G 
0 

]
, H 

i 
1 = 

[
�V 

i 
0 

0 �G 
i 

]
, 

with K V an M × M matrix, K G and �G 
i 

(N − M) × (N − M)

matrices, and �V 
i 

M × M matrices. The drift-normalized

canonical representation is as follows. For the param-

eters 
 = (ρ0 , ρ1 , K 

P 
0 , K 

P 
1 , K 

Q 
0 

, K 

Q 
1 

, C G 
M+1 

, C G 
M+2 

, . . . , C G 
N 
) , im-

pose the constraints: 

1. K 

Q 
G 

is diagonal with entries increasing on the diagonal. 

2. C G 
i 

is lower triangular and gives the Cholesky factoriza-

tion of �G 
i 

: �G 
i 

= (C G 
i 
) T (C G 

i 
) . 

3. K 

Q 
0 ,n 

= 0 , n > M . 

4. �V 
i, jk 

= 1 , if j = k = i, or 0 otherwise. 

5. ρ1 ,n = 1 , n > M . 

6. ρ1 ,n < ρ1 ,n +1 , n < M . 

7. K 

P 
V,i j 

> 0 , K 

Q 
V,i j 

> 0 if i � = j . 

8. K 

P 
0 ,n ≥ 1 

2 , K 

Q 
0 ,n 

≥ 1 
2 , n ≤ M . 

Appendix B. Pricing 

This appendix presents a computationally efficient

method for computing the transform given in Duffie, Pan,

and Singleton (20 0 0) : 

G (y ) = E Q [ e −
∫ P 

0 r τ d τ+ d ·X T { δ · X T ≤ y } ] , 
ˆ G (y ) = E Q [ e −

∫ P 
0 r τ d τ+ d ·X T + iδ·X T ] , (A1)

G (y ) = 

ˆ G (0) 

2 

− 1 

π

∫ ∞ 

0 

1 

t 
Im ( ̂  G (t ) e ity ) dt . 

In computing the transform, we can use the fact that

 = δ · X P is roughly normally distributed under the for-

ward measure, F , where 

dF 

dQ 

= 

e −
∫ P 

0 r τ d τ+ d ·X T 

E Q [ e −
∫ P 

0 r τ d τ+ d ·X T ] 
. (A2)

More precisely, ˆ G (t) ≈ ce −σ 2 
Y 

t 2 / 2+ itμY . 16 In the case of an

A 0 ( N ) Gaussian model, this equation is exact. Considering

this case for now, the Levy integral then becomes: 

I = 

∫ ∞ 

0 

1 

t 
Im ( ̂  f (t) e −ity ) dt 
16 It is important to note that a smooth density function implies fast 

decay of the Fourier transform. 

 

 

 

= 

∫ ∞ 

0 

1 

t 
Im (e −

σ2 t 2 

2 e itμe −ity ) dt 

= 

∫ ∞ 

0 

sin (t(μ − y )) 

t 
e −

σ2 t 2 

2 dt 

= 

∫ ∞ 

0 

g(t) w (t) dt, 

where w (t) = e −σ 2 t 2 / 2 , g(t) = sin ((μ − y ) t ) /t . w ( x ) is a

scaling of the weighting function e −t 2 used in Gauss-

Hermite quadrature. By using flexibility in both the choice

of nodes and weights, Gauss-Hermite quadrature allows

very accurate computations for integrals of the form∫ 
g(t ) e −t 2 dt with very few nodes. This suggests that, after

appropriate scaling, Gauss-Hermite quadrature will be an

accurate way to compute the inversion integral. 

In general, we can write the Levy integral as: 

I = 

∫ ∞ 

0 

1 

t 
Im ( ̂  f (t) e −ity e σ

2 t 2 ) ︸ ︷︷ ︸ 
g(t) 

e −σ 2 t 2 dt 

≈
∑ 

i 

g(t i,σ ) w i,σ . 

Two points also become clear: 

1. Scale matters. If we are computing the transform inte-

gral, we must integrate on approximately t ∈ [ − 3 
σ , 3 

σ ]

before rescaling. This means if we are directly comput-

ing this integral and we are using options with various

maturities (so that σ will vary), any quadrature scheme

must take this into account. 

2. Out-of-moneyness increases oscillation of integrand. By

rescaling to change the integral to: 

I = 

∫ ∞ 

0 

σ
sin ( μ−y 

σ u ) 

u 

e −u 2 / 2 du 

we see that the integral will have a weighting function

times a decaying oscillatory terms. The frequency of os-

cillation increases as we move more standard deviation

for μ. 

B.1. Example 

We now turn to an example of computing forward

probabilities. Consider the risk-free A 1 (2) term structure

model in Duffie, Pedersen, and Singleton (2003) . To em-

phasize the generality of the approach, we augment the

model with jumps occurring with intensity λ = 1 of size

± 1.5% in the short rate. 

We then compute a term involved in pricing a zero

coupon bond option: 

E 0 

[
e −

∫ T 
0 r s ds e B (τ ) ·X T 

{
−A (τ ) + B (τ ) · X T 

τ
≥ f 0 + m 

}]
. 

Here, τ is the maturity of the underlying zero coupon bond

(which has log price A (τ ) + B (τ ) · X 0 when the state is X 0 ),

T is the expiry of the option, and f 0 is the corresponding

forward rate with m a moneyness adjustment. We com-

pute this term for an option on a 5-year zero coupon bond

with expiry of six months ( T = 0 . 5 , τ = 5 .) The strikes are

adjusted from the corresponding forward rate of 7.27%. The

initial state was taken to be the long run mean, X = θ . 
0 P 
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Fig. A1. Levy integrand. The top panel plots the Levy-integrand used in computing the value of an out-of-the-money bond option. The integrand is approx- 

imately a scaled normal density times an oscillatory function. The bottom panel plots the oscillatory multiplier by weighting the integrand. The squares 

indicate nodes used in Gauss-Hermite quadrature. 
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Table A1 

Accuracy of quadrature. 

This table presents the accuracy of the adaptive Gauss-Hermite 

quadrature scheme for computing option prices. The first column 

gives the strike of the 6-month option on 5-year zero coupon bond. 

The exact price of the option is given in the second column and 

the number of standard deviations (under the risk-neutral measure) 

the option is out-of-the-money is given in the third column. The re- 

maining columns give the accuracy of the quadrature scheme. 

Strike Price n σ 3 Nodes 5 Nodes 8 Nodes 

7.27% 30.55 0.03 0.0 0 029 1.02e −006 8.47e −009 

8.27% 6.60 1.24 0.00409 2.18e −005 3e −008 

9.27% 0.55 2.46 0.178 0.00247 7.49e −006 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. A1 shows the integrand (scaled by σ ) in the Levy

inversion integral for the various strikes. In each case the

integrand can be seen to be e −x 2 g(t) where g ( t ) is a decay-

ing oscillatory function which is more oscillatory the more

the option is out-of-the money. The left panels plot the in-

tegrand itself, where the right panel plots g ( t ). The figure

also plots in the nodes used for the quadrature with n = 5

nodes. 

Another method of computing the forward probability

P ( b · X T ≤ y ) would be to use a cumulant expansion for the

random variable b · X T . 
17 This amounts to doing a Taylor

series expansion of the right-hand panel. As can be seen,

when the option is near the money, the Taylor series will

be accurate, except for large values of t which are given lit-

tle weight in the integral. However, as the options become

more out-of-the money (the lower panel), the Taylor se-

ries approximation will become inaccurate. In contrast, the

quadrature scheme is able to both pick up the oscillatory

nature of the integrand and focus on the region which is

important for the integral. 

Table A1 reports the accuracy of the quadrature for var-

ious numbers of nodes. The reference value was computed

using Simpson’s rule with 10,0 0 0 nodes spaced on the in-

terval [0, 6/ σ ]. The variable n σ measures how many stan-

dard deviations (under the forward measure) the option is

out-of-the money. For a fixed number of nodes, the ac-

curacy decays as the option goes out-of-the money since

the Levy integrand becomes more oscillatory. For options

which are within a standard deviation of being at-the-

money, the quadrature scheme is quite accurate with even

just three nodes. 

Appendix C. Computing exact likelihood 

Because the conditional characteristic function is

known in terms of the solution to an ordinary differen-

tial equation, the transition likelihood for an affine diffu-

sion can be recovered from the characteristic function: 

ˆ f (s | x t ) = E[ e is ·X t+1 | X t = x t ] 

f (x t+1 | x t ) = 

1 

(2 π) n 

∫ 
ˆ f (s | x t ) e −ix t+1 ·s ds. (A3)
17 The cumulants will be affine in the state and can be obtained by re- 

peatedly differentiating the original Riccati equation. In the case of a for- 

ward measure, the cumulants can again be computed by differentiating a 

different Riccati equation. 
However, direct computation of this integral is often

intractable. Two ideas are used in order to simplify the

computations involved. First, the integrand in the inverse

Fourier transform of a transition becomes more oscillatory

as the transition varies from the expected transition. In or-

der to remove the oscillations, a transition measure is de-

fined where the observed transition becomes a likely tran-

sition. That is, 

ˆ f (s ) ≈ e iμt ·s − 1 
2 s 

� �t s 

Real 
(

ˆ f (s ) e −is ·x t+1 

)
≈ Real 

(
e i (μt −x t+1 ) ·s − 1 

2 s 
� �t s 

)
= cos (s · (μt − x t+1 )) e 

− 1 
2 s 

� �t s . 

If we define d T /d P = e a ·X t+1 /E t [ e 
a ·X t+1 ] , under T ,

E t [ X t+1 ] ≈ μ + �a . 18 So, by choosing a = �−1 (x t+1 − μ) ,

E T t [ X t+1 ] ≈ x t+1 and 

f (x t+1 | x t ) = f T (x t+1 | x t ) × dP 

dT 
(x t+1 ) . 

After this change of measure, ˆ f T ≈ e ix t+1 ·s − 1 
2 

s � �t s and so

the integrand in the inverse Fourier transform to compute

f T (x t+1 ) is approximately e −
1 
2 

s � �s . Thus, the integral 

f T (x t+1 ) = 

1 

(2 π) n 

∫ 
ˆ f T (s ) e −is ·x t+1 ds 

= 

1 

(2 π) n 

∫ 
w (s ) e −

1 
2 s 

� �s ds, 

where w (s ) = e −
1 
s 

� 
�s / ̂  f T (s ) e −is ·x t+1 ds ≈ 1 . This multidi-

mensional integral is suitable to be evaluated by Gauss-

Hermite quadrature with very few nodes. Also, since the

integrand is odd, only half of the evaluations need actu-

ally be done. Though the curse of dimensionality is still

present, the computation now become tractable since even

four nodes give reasonable accuracy. Evaluating the inverse

transform for rare transition with highly oscillatory inverse

Fourier transform integrands would require solving hun-

dreds of millions of differential equations (4 4 versus 100 4 ,

for example). 
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Online Appendix to

“Interest Rate Volatility, the Yield Curve, and

the Macroeconomy”

Scott Joslin and Yaniv Konchitchki∗

These notes supplement Joslin and Konchitchki (2017). Joslin and Konchitchki (2017)

considers the residual variance – the portion of the variance of the five-year zero rate that is

uncorrelated with the level, slope, and curvature of the yield curve. In the macro-finance

model described in the paper, there are stochastic correlations among all of the risk factors.

Figure 1 plots the time series of the local correlation of the residual variance with the

total variance of the 5-year yield for the A1(4) model. Note that a high correlation between

the variance and residual variance indicates that the yield curve, as summarized by its level,

slope, and curvature, explains a small part of the variation in the yield volatility. The

correlation typically ranges from 40% to 60%, thus indicating that about half of the variation

in the variance of the 5-year yield is accounted for by factors unrelated to the level slope and

curvature of the yield curve. A notable exception it that in late 1998, around the time of the

Russian default and the LTCM bailout, the model indicates that the variance was nearly

perfectly correlated with the residual variance. This indicates that in this period movements

in the volatility of the yield curve were almost completely uncorrelated to movements in the

level, slope, and curvature of the yield curve.

In our model and its estimation, we study the properties of interest rate volatility as if

interest rate volatility is a given construct. We also examine a source of time series variation in

interest rate volatility. Because of the major role of the corporate sector in the macroeconomy

including in affecting monetary policy (Fischer and Merton, 1984). As we describe, we

employ a real options model of investment. In a real options model of investment, higher

uncertainty can make real options more valuable and increase asset values with a concurrent

increase in volatility. Given that higher uncertainty can be driven by higher cross-sectional

dispersion in corporate unexpected performance, we operationalize the real options investment

∗Joslin is at University of Southern California, sjoslin@usc.edu. Konchitchki is at University of California
at Berkeley, yaniv@berkeley.edu.
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Figure 1: Correlation of variance with residual variance
This figure plots the correlation of the variance of the 5-year yield with the
residual variance for the A1(4) model. The residual variance is defined as the
risk which is locally uncorrelated with the 6-month, 2-year, and 10-year yields.
A correlation of 1 between the variance and residual variance indicates that
6-month, 2-year, and 10-year yields are uncorrelated with volatility.







Figure 2: Time series of interest rate volatilities
This figure plots time series of yield volatilities of constant maturity Treasury
bonds and bills for all horizons available from the Federal Reserve Board of
Governors H15 Reports. We obtain data from the Federal Reserve Board of
Governors H15 Reports available on Wharton Research Data Services (WRDS).
We use all data with consecutive observations when considering the intersection
of Fed’s yields and Compustat’s accounting earnings (January 1973 to January
2016). The available horizons are for the 1-month (rf m1), 3-month (rf m3),
6-month (rf m6), 1-year (rf y1), 3-year (rf y3), 5-year (rf y5), 7-year (rf y7),
10-year (rf y10), 20-year (rf y20), and 30-year (rf y30) yields. The suffix “ vol”
refers to volatility, calculated as the monthly standard deviation of the daily
interest rate yields during that month.



(a) Corporate earnings effect on one month ahead volatilities for different horizons of constant maturity
Treasury bills and bonds

Estimate StdErr t-statistic Adj.R2

1 Month 0.00052∗∗ 0.00025 2.11253 0.08378
3 Month 0.00044∗∗ 0.00020 2.19679 0.10889
6 Month 0.00027∗∗ 0.00011 2.45221 0.06559

3 Year 0.00018∗∗ 0.00005 3.78813 0.04870
5 Year 0.00015∗∗ 0.00005 3.01000 0.04082
7 Year 0.00013∗∗ 0.00005 2.55691 0.02877

10 Year 0.00011∗∗ 0.00004 2.53991 0.02220
20 Year 0.00007∗ 0.00004 1.93235 0.00712
30 Year 0.00005 0.00004 1.44384 0.00107

(b) Corporate earnings effect on two months ahead volatilities for different horizons of constant maturity
Treasury bills and bonds

Estimate StdErr t-statistic Adj.R2

1 Month 0.00040∗∗ 0.00014 2.76060 0.04413
3 Month 0.00036∗∗ 0.00013 2.82923 0.07172
6 Month 0.00032∗∗ 0.00011 2.86632 0.09705

1 Year 0.00030∗∗ 0.00009 3.36788 0.11335
3 Year 0.00018∗∗ 0.00008 2.42936 0.04794
5 Year 0.00015∗∗ 0.00006 2.58699 0.03804
7 Year 0.00013∗∗ 0.00005 2.59619 0.02833

10 Year 0.00013∗∗ 0.00005 2.59764 0.03052
20 Year 0.00009∗∗ 0.00004 1.95786 0.01323
30 Year 0.00004 0.00004 1.10180 -0.00311

Table 1: Accounting information and interest rate volatilities.
This table provides results from regression models of future interest rate
volatilities on cross sectional dispersion in earnings information. Accounting
data items are from the Compustat North America Fundamentals Quarterly
dataset and yield volatilities are from the Federal Reserve Board of Governors
H15 Reports dataset, both available on Wharton Research Data Services
(WRDS). Yield volatilities are the constant maturity Treasury bonds and bills
for all horizons available from the Federal Reserve Board of Governors H15
Reports. We use all data with consecutive observations when considering the
intersection of Fed’s yields and Compustat’s accounting earnings (January 1973
to January 2016). The available horizons are for the 1-, 3-, and 6-month as
well as for the 1-, 3-, 5-, 7-, 10-, 20-, and 30-year yields. We calculate yield
volatilities as the monthly standard deviation of the daily interest rate yields
during that month, and earnings dispersion information as the periodic cross
sectional dispersion in earnings changes.



affect future P -expectations. This is because the drift of rt is κθ− .2it− .1st = κθ− .1it− .1rt.1

Additionally, there is the possibility that excess returns may be identified accurately not

through bond prices but through derivative prices. This will be precluded when there another

orthogonality condition on the volatility is obtained.

The econometric method used in Joslin and Konchitchki (2017) precludes such identifica-

tion of risk premia since it is assumed that the state of the economy can be inferred from

fixed income security prices. To allow for such flexibility would require the use of a filtering

technique which is complicated both by computational burden and by the non-linearity in

the option prices.
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